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The interest in Self-Sovereign Identity (SSI) in research, industry, and governments is rapidly increasing. SSI is 
a paradigm where users hold their identity and credentials issued by authorized entities. SSI is revolutionizing 
the concept of digital identity and enabling the definition of a trust framework wherein a service provider 
(verifier) validates the claims presented by a user (holder) for accessing services. However, current SSI 
solutions primarily focus on the presentation and verification of claims, overlooking a dual aspect: ensuring 
that the verifier is authorized to access the holder’s claims. Addressing this gap, this paper introduces an 
innovative SSI-based solution that integrates decentralized wallets with Ciphertext-Policy Attribute-Based Proxy 
Re-Encryption (CP-ABPRE). This combination effectively addresses the challenge of verifier authorization. Our 
solution, implemented on the Ethereum platform, enhances accountability by notarizing key operations through 
a smart contract. This paper also offers a prototype demonstrating the practicality of the proposed approach. 
Furthermore, it provides an extensive evaluation of the solution’s performance, emphasizing its feasibility and 
efficiency in real-world applications.
1. Introduction

Self-Sovereign Identity (SSI) is an emerging paradigm in digital iden-

tity management, where users, rather than organizations, have com-

plete control over their digital identity and personal data [1]. This 
paradigm empowers users to manage their identity independently, uti-

lizing Verifiable Credentials (VCs) issued by trusted entities (issuers) 
and stored in personal digital wallets, usually stored locally. These VCs, 
when required, are presented as Verifiable Presentations (VPs) to a ver-

ifier for service access. For the sake of simplicity, this paper uses the 
terms VCs and VPs interchangeably.

To clarify this concept, consider a practical example in a car-sharing 
context:

Example 1.1. Alice needs to rent a car. The car rental company (ver-

ifier) must be sure that Alice has her driving license. Therefore, Alice 
must contact the Motor Vehicle Office (issuer) to obtain a driver’s li-
cense attestation (VC) and provide it to the car rental company.

* Corresponding author.

Most existing SSI solutions, as highlighted in the literature [2–4], 
mainly focus on the problem of the trust required of the user to obtain 
a service. They leverage blockchain technology to check the correctness 
of VCs, without compromising personal information. For example, in 
Ref. [5], the issuer stores on the blockchain only cryptographic proofs 
of the VCs, which do not contain personal information about the users. 
These proofs are used by the verifier to check, through cryptographic 
mechanisms, that the VCs presented by the user are valid and released 
by an authorized issuer.

However, existing solutions primarily focus on trust establishment 
for service access, overlooking a critical aspect: ensuring the verifier’s 
right to access the user’s VCs. Our paper addresses this dual issue by 
posing and answering a fundamental question: “How can the holder 
be sure that the verifier is authorized to access users’ VCs?”. In other 
words, we want to implement an innovative access control mechanism 
within the SSI framework, so that the verifier (which we often call the 
service provider) has to prove that it satisfies some requirements before 
accessing the VCs of the holder. We argue that this is a relevant problem 
in practice because VCs might contain very sensitive data (e.g., health 
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data). So the disclosure of such data should be controlled. Hence, the 
original contribution of this paper is to integrate an encryption-enforced 
access control mechanism into an SSI framework to complete it.

To clarify the main goal of this paper, let us consider the following 
example:

Example 1.2. Bob needs a cardiologist appointment at a given hospi-

tal. Bob should provide the hospital with his identity document along 
with some medical records previously released by different health facil-

ities, describing his health status. Even though this information (apart 
from the identity document) does not represent a credential in the strict 
sense, it is needed to obtain the service. Therefore, it plays the role of 
the VC in an SSI scenario. While the standard problem is to allow its se-

cure, privacy-preserving, and verifiable presentation, according to our 
approach, Bob’s problem also includes being sure that the hospital owns 
an accredited cardiology ward before disclosing his data. Metaphori-

cally, we can say that Bob would like to be sure that he does not open 
his wallet in front of a thief.

Looking at the previous example, it is rather clear that we can-

not adopt any other access control model than Attribute-Based-Access-

Control (ABAC) [6]. Indeed, access rights can only derive from the 
possession of some attributes, and further, we are in an open context 
in which subjects are not a priori known. As a matter of fact, the holder 
has no reason to allow or deny access to personal data to a specific ser-

vice provider, but they are more interested in protecting their data by 
stating attribute-based policies that have to be satisfied to access such 
data.

An effective way to implement ABAC is Ciphertext-Policy Attribute-

Based Encryption (CP-ABE) [7]. CP-ABE is a type of public-key encryp-

tion, in which a policy is associated with ciphertext and each user owns 
a private key associated with the attributes they own. If such attributes 
satisfy the policy, the user can decrypt the ciphertext with the private 
key. In our context, the data of the user (i.e., the VCs) can be encrypted 
under a given policy and the service providers have to prove to satisfy 
such a policy to access them. From the side of the specification of the 
policies, our proposal includes an additional abstraction layer, allowing 
the definition of policies with hierarchical attributes.

An issue that should be taken into account is that the user might 
own a large amount of data and might want to change the associated 
policies very frequently. In this case, the user cannot locally store the 
wallet in their device and has to rely on an external database (where 
VCs are stored in encrypted form). However, if the user wants to change 
the policy of a VC, they would have to download the VC, re-encrypt it 
under a new policy, and store it again in the database. This can re-

sult in an excessive effort on the client-side, especially if the user relies 
on resource-constrained devices in terms of storage and computational 
capabilities.

To solve this, we leverage an extension of CP-ABE, called Cipher-

Policy Attribute-Based Proxy Re-Encryption (CP-ABPRE) [8], which al-

lows a semi-trusted proxy, which we call consensus provider, to transform 
a ciphertext encrypted under a given policy into another ciphertext with 
a new policy without learning anything about the plaintext.

In our solution, the consensus provider acts as an intermediary in the 
communication between the user and the service provider by providing 
the latter (if authorized) with all the information needed to access the 
VCs. The benefit of the introduction of this intermediary is the reduction 
of the client-side effort without threatening the VCs’ confidentiality.

A small price to pay is in terms of privacy since the consensus 
provider knows some metadata (but not the content) about the users’ 
VCs and who is the service provider interacting with the user (but not 
the required service).

However, this price is compensated by the above benefit and another 
advantage in terms of accountability that our solution offers. Indeed, 
the introduction of the consensus provider allows us to notarize some 
2

critical operations and to disclose them to an agent authorized by the 
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law in case of need [9,10]. To achieve this, we leverage the smart con-

tracts offered by Ethereum [11], by referring to an integration into an 
SSI solution leveraging the Ethereum blockchain.

The contributions of this paper are as follows:

• We propose a user-centric access control mechanism in SSI, pre-

venting unauthorized access to holder credentials.

• The solution integrates CP-ABPRE, Ethereum blockchain, and IPFS, 
adhering to W3C standards for credentials and Decentralized Iden-

tifiers (DIDs) [12,13].

• The proposal also offers a notarization mechanism based on smart 
contracts to obtain accountability for the relevant operations.

• We provide mechanisms to manage hierarchical attributes in the 
CP-ABPRE schemes and solve some practical problems such as the 
management of identities as attributes, the inclusion of file labels, 
and the setting of a validity time for the policies.

This work significantly extends our preliminary ideas presented in 
Ref. [14], offering a detailed architecture, a specific CP-ABPRE scheme 
and blockchain application, a prototype, and solutions to practical chal-

lenges not covered in the initial presentation. In this work, we adopt the 
Ethereum blockchain and the CP-ABPRE scheme [15] to define a con-

crete way to notarize critical operations through smart contracts and 
to develop a prototype of the solution. These aspects are not consid-

ered in the previous work, in which notarization is only mentioned at 
a high level, and no validation is provided. Furthermore, in this pa-

per, the architecture is entirely revised by introducing new components 
and features. Finally, no improvement in solving practical problems of 
CP-ABPRE schemes is mentioned in the previous work.

The structure of this paper is as follows. Sections 2 and 3 review 
related literature and provide the necessary technical background. Sec-

tion 4 discusses the motivation behind this work. Sections 5 and 6 delve 
into managing CP-ABPRE schemes’ practical aspects. The proposed solu-

tion is then detailed in Section 7, with its security analyzed in Section 9. 
A prototype and performance evaluation are presented in Section 8. Fi-

nally, Section 10 ends the paper by drawing final remarks.

2. Related work

In this section, we explore the relevant literature on SSI-based so-

lutions. Furthermore, we introduce the techniques of attribute-based 
encryption employed in this paper to implement an attribute-based ac-

cess control mechanism.

2.1. Self-Sovereign Identity

In the European Union, the General Data Protection Regulation 
(GDPR) [16] addresses the management of personal data and aims to 
provide users with full control and rights over their data. The compli-

ance of the SSI paradigm with GDPR [17,18] makes it very attractive 
for governments and business enterprises. In particular, some domains 
that will benefit from the SSI paradigm are the healthcare [19,20] and 
the industrial IoT [21].

An interesting survey on the components of an SSI architecture is 
provided in Ref. [22]. Currently, several implementations of SSI are 
available in the literature [2,3,23–25].

A common element of all the implementations is that they are based 
on blockchain technology [26,27].

For example, uPort [2] is an identity management system which im-

plements the SSI paradigm and is based on the Ethereum blockchain 
[11], in which an identity is a simple smart contract. The uPort project 
has evolved into the Veramo project [28], a JavaScript framework that 
makes it easier to implement SSI solutions that are fully compliant with 
the W3C standard in terms of the format of DIDs and verifiable creden-
tials [12,13]. Veramo also supports the Ethr-DID library [29], which 
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Table 1

Comparison table.

Proposal Trust in

the holder

Trust in

the verifier

Trust in

the issuer

Access control

mechanism

Implementation

available

Blockchain adopted

[3] yes no yes N/A yes Hyperledger Indy

[28] yes no no N/A yes Ethereum

[30] yes no no N/A yes Ethereum

[31] yes no no N/A yes Ethereum

[32] yes no no N/A yes Hyperledger Indy

[34] (Non-SSI) no yes N/A Mandatory no N/A

[35] (Non-SSI) no yes N/A Mandatory no N/A

[36] yes no yes N/A yes Hyperledger Besu /

Ethereum

Our proposal yes yes no ABAC yes Ethereum
allows Ethereum addresses to be used as fully self-managed DIDs that 
comply with the W3C specification.

Other solutions using the Ethereum blockchain can be found in Refs. 
[30,31]. Although several types of blockchain can be adopted in our 
solution, we also rely on Ethereum in order to provide a practical im-

plementation.

On the other hand, other solutions, such as Refs. [3,32], use a per-

missioned blockchain.

Due to its accountability features, blockchain remains the prevalent 
approach to implementing SSI-based solutions. However, recent promis-

ing approaches, such as Ref. [33], trace the road towards the adoption 
of Peer-to-Peer (P2P) solutions not relying on blockchain. The advan-

tage of Ref. [33] is that it does not require blocks, chains, or miners 
to provide the proofs for P2P transactions. It is also advantageous in 
terms of scalability and throughput. However, it is still not clear how to 
apply this approach in the SSI framework and in particular, how to re-

place the role of smart contracts. In future work, we plan to study the 
possibility of transforming our solution into a blockchain-free version.

All the above solutions focus on the problem of the trust required of 
the user to obtain a service. To the best of our knowledge, no proposal 
in the literature deals with the problem of the trust required of the 
service provider to obtain users’ credentials and data.

Some similarities with our work, in terms of objectives to reach, can 
be found in Ref. [34], in which the authors proposed a personal data 
management system, which uses blockchain as an automated access-

control manager. Anyway, this proposal is not tailored to the SSI con-

text. Furthermore, the access control mechanism is totally different 
from ours. Indeed, in Ref. [34], the user knows the service provider 
and defines the data it can access to. In our setting, the user does not 
know in advance the service provider and wants to be sure that it satis-

fies some requirements.

Similar considerations can be made for Ref. [35], in which a 
blockchain-based information management system to handle medical 
records is provided. Anyway, the access control mechanism is for spe-

cific users known by the owner of a file and no attributed-based policy 
can be set.

Finally, we highlight a very recent paper [36] focusing on another 
relevant aspect that is not treated in standard SSI approaches. In partic-

ular, the current paradigm suffers from trust issues between the verifier 
and the issuer of a verifiable credential. Then, Salve et al. [36] proposed 
a new multi-layer framework that exploits the web of trust concept to 
solve this problem. This aspect is also partially treated in Ref. [3] in 
which the authors provided a quantitative model for computing reputa-

tion scores for issuers.

To conclude this section, in Table 1, we summarize the solutions 
discussed in this section and compare them with our approach in terms 
of 6 features. Specifically, we consider:

1. Trust in the holder, i.e., the verifier is able to trust the holder. This 
is the standard objective of SSI.

2. Trust in the verifier, i.e., the holder is able to trust the verifier. This 
3

is the objective of this proposal.
3. Trust in the issuer, i.e., the verifier is able to trust the issuer.

4. Access control mechanism adopted to trust the verifier.

5. Availability of a code implementation of the solution.

6. Blockchain adopted to implement the solution.

From the table, it arises that our proposal is the first SSI-based ap-

proach achieving trust in the verifier with the ABAC mechanism.

2.2. ABE for access control

In this paper, we implement an ABAC [6] mechanism, by exploiting 
Attribute-Based Encryption (ABE) [37].

ABE represents a generalization of the standard public-key encryp-

tion. It is based on attributes and policies: if a policy is satisfied by a 
set of attributes, decryption is allowed. In the literature, ABE schemes 
are divided into two categories: Key-Policy ABE (KP-ABE) and CP-ABE. 
In KP-ABE, a ciphertext is labeled with a set of attributes (character-

izing the ciphertext itself), and a user receives a private key with an 
embedded policy. The policy defines which types of ciphertext the user 
can decrypt. On the contrary, in CP-ABE, the policy is associated with 
the ciphertext while the attributes are associated with the private key 
of the user. In this paper, we refer to the latter. The first ABE scheme 
has been proposed in Ref. [37]. Actually, Sahai and Waters [37] pre-

sented a new type of Identity-Based Encryption (IBE) called Fuzzy-IBE 
(FIBE) in which the identities of the users are represented by sets of 
attributes. In particular, a user owns a private key associated with the 
attributes 𝑤. Similarly, the ciphertext is encrypted with attributes 𝑤′

and it can be decrypted if |𝑤 
⋂

𝑤′| > 𝑑, where 𝑑 is an appropriate 
threshold. This approach is suitable for biometric applications since it 
allows a sort of error tolerance. The first KP-ABE and CP-ABE schemes 
have been proposed in Ref. [38] and Ref. [7], respectively. In both pro-

posals, the policies are expressed as monotonic access trees where the 
leaves represent attributes and the internal nodes are threshold gates. 
This allows the users to set very expressive policies including AND and 
OR connectives. Successively, several improved schemes (KP-ABE and 
CP-ABE) have been proposed [39–42]. For example, in Refs. [40,42], 
the authors proposed CP-ABE and KP-ABE schemes, respectively, where 
the length of the ciphertext is constant and does not depend on the 
number of attributes. An interesting CP-ABE scheme where the policy 
is hidden to a potential decryptor is discussed in Ref. [41]. This way, 
regardless of the satisfaction of a policy, they learn nothing about the 
policy itself from the ciphertext except the fact that they are or are not 
able to decrypt the data.

The disadvantage of ABE schemes is that they are based on pairing-

based cryptography [43], which is time-expansive [44]. To solve this, 
alternative solutions [45,46] propose ABE schemes without pairing. 
These solutions appear suitable for the IoT, where constrained devices 
cannot perform high-intensive computations.

Parallel to the development of ABE, other advanced cryptography 
schemes, called Proxy Re-Encryption (PRE) schemes, have emerged in 
Ref. [47]. In PRE, a user delegates a semi-trusted proxy intended for 

them to re-encrypt a ciphertext into another ciphertext for a different 
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user. The main advantage of this approach is that the user saves the 
computational effort to re-encrypt the ciphertext, but the proxy learns 
nothing about the content of this latter. The first PRE scheme is intro-

duced in Ref. [47]. However, this scheme is bidirectional (if the proxy 
is able to re-encrypt a ciphertext from Alice to Bob, it is also able to 
re-encrypt a ciphertext from Bob to Alice) and transitive (if the proxy 
is able to re-encrypt a ciphertext from Alice to Bob and from Bob to 
Charlie, it is able to re-encrypt a ciphertext from Alice to Charlie). An 
interesting discussion about the properties that a PRE scheme should 
guarantee is presented in Ref. [48].

Successively, more efficient and secure solutions have been pro-

posed in Refs. [48–50].

PRE approaches can be integrated with ABE to obtain Attribute-

Based Proxy Re-Encryption (ABPRE) [51]. In this paper, we focus our 
attention on CP-ABPRE where the re-encryption procedure consists of 
replacing the policy associated with a ciphertext with a new policy. 
The first CP-ABPRE scheme is presented in Ref. [8] and supports AND 
gates between positive and negative attributes. Then, other works have 
been proposed [15,52,53]. Further details are provided in Section 3.3, 
in which we investigate the CP-ABPRE schemes available in the litera-

ture and select the scheme for our proposal.

We observe that ABE schemes, possibly in combination with proxy 
re-encryption, have been extensively used in the literature to implement 
ABAC [38,54–59] but not within a blockchain-based SSI architecture.

3. Background

In this section, we provide the technical background useful for the 
comprehension of the rest of this paper.

3.1. Self-Sovereign Identity (SSI)

We provide a brief overview of the SSI approach. We do not aim 
to be exhaustive since SSI is a very broad topic in which several im-

plementations are possible. Therefore, we focus our attention only on 
the aspects and implementations relevant to our purpose and show how 
these concepts are adopted in our proposal.

In SSI, each user (also called the holder) generates and maintains 
some DIDs, which they use to interact with other entities. This allows 
users to have full control of their identity (and of their data) without 
requiring the collaboration of a trusted third party such as an identity 
provider.

A VC is a set of claims about a subject that represent information 
issued by a certain authority. Such authority is called the issuer. At a 
high level, according to the W3C specifications [12,13], a VC includes 
three sections:

• VC’s metadata (e.g., date of issue, expiration date, state of the cre-

dential, and so on);

• VC’s claims about the subject;

• Proof, i.e., the digital signature made by the issuer of the credential.

The VCs are stored by the holder in a digital wallet. The holder can 
prove something about themselves by presenting a Verifiable Presenta-

tion (VP) to a verifier that consists of data derived from one or more 
VCs. VCs often coincide with VPs.

As a standard technology, the DIDComm [60] protocol is used to 
exchange the credentials between the issuer and the holder and between 
the holder and the verifier.

Blockchain technology is largely adopted in SSI. Indeed, when the 
issuer releases the VCs to the user, it also stores cryptographic proofs 
of the VCs on the blockchain. These proofs do not contain any personal 
information about the user but can be used by the verifier to check 
the correctness of the VPs. This way, the issuer is not directly involved 
in the process when the user contacts the verifier. Furthermore, it is 
4

the user who chooses the information to disclose to the verifier. The 
Blockchain: Research and Applications 5 (2024) 100196

Fig. 1. Self-Sovereign Identity (SSI) paradigm.

blockchain also stores the DID documents. Each DID points to a DID 
document that contains a set of data describing the DID subject, includ-

ing mechanisms, such as cryptographic public keys, that the DID subject 
or a DID delegate can use to authenticate itself and prove its association 
with the DID [12].

On the contrary, in a traditional identity management model, an 
identity provider is involved during the user’s request to the verifier 
by disclosing the information on behalf of the user. This leads to an 
unnecessary privacy leakage since the identity provider discovers that 
the user has required a certain service from a certain verifier. In the SSI 
model, the role of the identity provider is reduced to that of an identity 
issuer that releases some information about the identity of the user but 
does not manage it.

Another advantage of the blockchain is that it represents a natural 
way to generate DIDs. Indeed, blockchain addresses can be generated 
and exploited by users as DIDs [29]. Furthermore, each user can gener-

ate as many blockchain addresses as they need and use them to perform 
independent requests.

Anyway, when blockchain addresses are used as DIDs, a linkage 
between the real identity and the DID may be necessary [61], other-

wise the user may repudiate the ownership of such DIDs. This happens, 
for example, when the juridical regulation requires that the parties in-

teracting with the user know who actually the user is. Furthermore, 
under certain circumstances, the accountability of some critical opera-

tions performed by the user is required so that an agent authorized by 
the law (also with the collaboration of some entities) can identify the 
user.

The mapping between the DID and the real identity of the user can 
be guaranteed by a certification authority.

To certify such a mapping, there are some ways. For example, the 
user could generate a transaction from their blockchain address contain-

ing a challenge provided by the certification authority. Alternatively, 
the user can sign a message with the private key corresponding to the 
public key associated with their blockchain address.

In our application, the certification authority coincides with an iden-

tity issuer [61] (who already knows the real identity of the user). In 
particular, by adopting the SSI principles, after verifying the mapping 
between the Ethereum address and the real identity of a user, the iden-

tity issuer releases a VC to the user, certifying the ownership of the 
blockchain address.

However, the identity issuer alone should not be able to know the ac-

tions performed by the user, but only with the collaboration of another 
entity willing to prove to a legal authority that the user performed a 
given action. This aspect is better discussed in Section 9.

In this paper, we refer to a service provider (playing the role of 
verifier), an identity issuer, and a set of attribute providers (playing the 
role of attribute issuers).

A high-level representation of the SSI paradigm is represented in 

Fig. 1.
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3.2. Ciphertext-policy attribute-based proxy re-encryption (CP-ABPRE)

CP-ABPRE is a public-key encryption scheme that allows a semi-

trusted proxy to transform a ciphertext encrypted under a given policy 
into another ciphertext under a different access policy without learning 
anything about the plaintext. We introduce the following definitions.

Definition 3.1 (Access structure [62]). Let {𝑃1, 𝑃2… , 𝑃𝑛} be a set of 
parties. A set 𝔸 ⊆ 2{𝑃1 ,𝑃2…,𝑃𝑛} is monotone if ∀𝐵,𝐶 : if 𝐵 ∈ 𝔸 and 𝐵 ⊆

𝐶 then 𝐶 ∈ 𝔸. An access structure (monotone access structure) is a 
set (monotone set) 𝔸 of non-empty subsets of {𝑃1, 𝑃2… , 𝑃𝑛}, i.e., 𝔸 ⊆
2{𝑃1 ,𝑃2…,𝑃𝑛} ⧵ {∅}. The sets in 𝔸 are called the authorized sets, whereas 
the other sets are called the unauthorized sets. 𝔸 is also called policy.

Definition 3.2. A CP-ABPRE scheme consists of the following algo-

rithms:

1. Setup(𝑘): This algorithm receives a security parameter 𝑘 and re-

turns a public parameter 𝑃𝐾 and a master secret key 𝑀𝑆𝐾 .

2. Encrypt(𝑃𝐾, 𝑀, 𝔸): This algorithm encrypts a message 𝑀 under 
the policy (access structure) 𝔸 by using 𝑃𝐾 . It outputs a ciphertext 
𝐶𝑇 , which can be decrypted only by a user who owns the attributes 
that satisfy 𝔸.

3. KeyGen(𝑀𝑆𝐾, 𝑆): This algorithm takes as input a set of attributes 
𝑆 and the master secret key 𝑀𝑆𝐾 . It outputs a private key 𝑆𝐾

associated with 𝑆 .

4. Decrypt(𝐶𝑇 , 𝑆𝐾, 𝑃𝐾): This algorithm takes as input a public pa-

rameter 𝑃𝐾 , a private key 𝑆𝐾 associated with a set of attributes 
𝑆 , and a ciphertext 𝐶𝑇 encrypted under an access structure 𝔸. If 
𝑆 satisfies 𝔸, then the algorithm outputs a plaintext 𝑀 .

5. ReKeyGen(𝑃𝐾, 𝑆𝐾, 𝔸′): This algorithm takes as input a private key 
𝑆𝐾 associated with a set of attributes 𝑆 and an access structure 𝔸′. 
It outputs a re-encryption key 𝑅𝐾 that can be used, by a proxy, to 
re-encrypt a ciphertext 𝐶𝑇 , encrypted under a policy 𝔸, into a new 
ciphertext 𝐶𝑇 ′ encrypted under the policy 𝔸′. The re-encryption is 
allowed only if 𝑆 satisfies 𝔸.

6. ReEncrypt(𝑃𝐾, 𝐶𝑇 , 𝑅𝐾): This algorithm uses a re-encryption key 
𝑅𝐾 to re-encrypt a ciphertext 𝐶𝑇 , encrypted under a certain pol-

icy, into another ciphertext 𝐶𝑇 ′ under a new policy.

Moreover, a trusted third party, called Private Key Generator 
(PKG), is also present. The PKG invokes Setup(𝑘) to obtain 𝑃𝐾 and 
𝑀𝑆𝐾 . It shares 𝑃𝐾 with all the users and keeps 𝑀𝑆𝐾 secret. 
Finally, another entity, called the proxy, has the role of invoking 
ReEncrypt(𝑃𝐾, 𝐶𝑇 , 𝑅𝐾) and changing the policy associated with the 
ciphertexts.

The scheme works as follows.

Consider two users Alice and Bob. Suppose that Alice wants to en-

crypt a file 𝑓 so that only the users satisfying a policy  can decrypt 
it. She invokes 𝐶=Encrypt(𝑃𝐾 ,𝑓 ,) and sends 𝐶 to the proxy that 
manages Alice’s files without accessing their content. If Bob wants to 
access the file 𝑓 , he first contacts the PKG to obtain a private key as-

sociated with his attributes 𝑆 . The PKG verifies that Bob really owns 
such attributes (often this step requires the collaboration of some at-

tribute providers), invokes 𝑆𝐾𝐵=KeyGen(𝑀𝑆𝐾 ,𝑆), and provides Bob 
with 𝑆𝐾𝐵 . If the set 𝑆 satisfies the policy  , Bob asks the proxy for 𝐶
and accesses the file 𝑓 =Decrypt(𝐶 ,𝑆𝐾𝐵 ,𝑃𝐾).

Until now, we have seen only the ABE part of the ABPRE scheme, 
and the proxy plays just the role of a simple database storing Alice’s 
data.

Now, suppose that Alice wants to change the policy associated with 
the file 𝑓 from  to  ′. She can download the encrypted file from the 
proxy, decrypt it, re-encrypt it under  ′, and upload the file again on 
the proxy. However, if she owns many files and/or the policy changes 
are frequent, the encryption/decryption operations (and also down-
5

load/upload) may result in prohibitive costs, especially in the case of 
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resource-constrained devices. Therefore, Alice generates a re-encryption 
key 𝑅𝐾 =ReKeyGen(𝑃𝐾, 𝑆𝐾𝐴,  ′), where 𝑆𝐾𝐴 is the private key as-

sociated with Alice’s attributes (in this example, we suppose that Al-

ice satisfies the policy ), and sends it to the proxy. When another 
user (possibly, Bob) contacts the proxy to obtain 𝑓 , the proxy invokes 
𝐶 ′=ReEncrypt(𝑃𝐾, 𝐶, 𝑅𝐾) and sends 𝐶 ′ to the user. The user can re-

trieve 𝑓 only if they own a private key satisfying the policy  ′ .
To conclude this section, we observe that when CP-ABPRE is applied 

in real-life contexts, there are some issues that need to be considered.

1. First, consider another user, Charlie, who stores a file 𝑓 ′ with the 
same policy  chosen by Alice. If he provides a re-encryption key 
to the proxy to change the policy of 𝑓 ′ from  to  ′′, the proxy 
can use this key to change the policy associated with the file 𝑓 of 
Alice. This issue is analyzed in Section 6.1.

2. A similar problem occurs if Alice encrypts multiple files under 
and wants to change the policy of just some of them. Once the re-

encryption key is obtained, the proxy can change the policies of 
all the other files of Alice encrypted under the same policy. Even 
though in some cases this can be considered a positive feature of 
the system (since Alice can provide a single re-encryption key for 
many files), we are interested in providing a mechanism such that 
Alice can avoid the re-encryption of non-intended files even under 
already used policies. This issue is analyzed in Section 6.2.

3. Another issue to solve is that a policy should have a time validity, in 
such a way that a file can be accessed only during a time window. 
This issue is analyzed in Section 6.3.

4. Finally, a mechanism to manage hierarchical attributes is desirable. 
This aspect is addressed in Section 5.

3.3. Selection of the CP-ABPRE scheme

Our solution requires the application of a CP-ABPRE scheme to im-

plement the access control mechanism. Even though our solution works 
with any underlying scheme (also by applying the approaches discussed 
in Sections 5 and 6), we investigated the literature and selected a spe-

cific scheme (i.e., Ref. [15]) to provide a more concrete proposal. Fur-

thermore, we also provide our Java implementation of such a scheme 
and integrate it in a complete prototype described in Section 8.

The Ref. [15] is widely referred to in the literature. The scheme 
therein presented supports any monotonic access policy represented by 
an LSSS matrix (𝑀, 𝜌) [62,63], where 𝑀 is a matrix and 𝜌 is a map-

ping between the rows of 𝑀 and a set of attributes. There are two 
issues to take into consideration when using this scheme. The first is 
that it does not support policies with negation. This is not a limita-

tion in our setting. Indeed, the satisfaction of a negative attribute, in 
practice, would be implemented according to a closed-world assump-

tion (otherwise, it would be infeasible for a PKG to test the universe 
of attribute providers). Therefore, an attribute not provided by the user 
would be satisfied if negated. This would be clearly incorrect for practi-

cal purposes. If we want to require that an attribute is not fulfilled by a 
user (e.g., no criminal conviction), we set a positive attribute with this 
meaning.

The second issue is that, in this scheme, the re-encryption re-

quires that the old access structure (𝑀, 𝜌) and the new access structure 
(𝑀 ′, 𝜌′) are disjoint, i.e., if an attribute 𝑥 satisfies (𝑀, 𝜌), then 𝑥 does 
not satisfy (𝑀 ′, 𝜌′). This is not suitable in several real scenarios where 
the policies have slight changes (e.g., only a new attribute is required 
or a single attribute is no longer required).

However, as it will be clear in Section 7, in our solution, the re-

encryption is done from a policy including only the identity of the user 
and a label (see Section 6) to a new policy requiring some attributes to 
a service provider. Therefore, the two associated access structures are 
always disjoint.

The main advantages of this scheme are: (1) it uses LSSS matrix that 

allows very expressive policies, and (2) the performance (the size of 
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keys and ciphertext and the number of computations) does not depend 
on the size of the attribute universe.

Now, we see the other possible schemes. The schemes in Refs. [8,52]

allow only policies with AND connectives between positive and nega-

tive attributes, thus less expressive policies. Furthermore, their perfor-

mance depends on the size of the attribute universe. The scheme in Ref. 
[53] is, basically, very similar to that in Ref. [15]. In Ref. [64], a cipher-

text is associated with an attribute-based access structure and an access 
time that defines when a user can access the data. This is an interest-

ing feature, and we implement it through the mechanism described in 
Section 6.3. Unfortunately, in the Ref. [64] scheme, the re-encryption 
regards only the access time and not the attribute-based access struc-

ture.

Other schemes in Refs. [65,66] do not meet our requirements.

4. Motivation

In this section, we explain the rationale of our proposal by highlight-

ing the advantages we achieve with respect to a standard solution. The 
idea at the basis of our proposal is that the holder is able to check if 
some credentials of the verifier are compliant with self-defined access 
control policies.

Our solution extends the standard SSI paradigm by introducing new 
actors and new mechanisms. Basically, they are listed as below.

• A distributed wallet (instead of the standard client-side wallet) that 
gathers all encrypted verifiable credentials. The symmetric key en-

abling their decryption is generated by the user and encrypted with 
an ABPRE scheme to embed access control policies.

• A consensus provider whose role is twofold: (1) eliminating direct 
interaction between the holder and the verifier until trust is estab-

lished and (2) implementing accountability for relevant actions by 
the holder and the verifier.

To achieve the objective (1), the consensus provider delivers sym-

metric keys (using re-encryption) to the verifier. We observe that, 
due to the proxy-re-encryption mechanism, the consensus provider 
has no additional rights to access symmetric keys beyond those al-

lowed by embedded access control policies. Concerning objective 
(2), the consensus provider interacts with a smart contract (that 
we will mention below) to notarize some relevant actions of the 
holder and the verifier without compromising their privacy. It is 
worth noting that the presence of the consensus provider seems 
to move us away from the SSI principles. This is true, but, as ex-

plained below, this is a necessary price we have to pay to achieve 
our goals.

• A smart contract, whose functions are invoked by the holder, the 
verifier, and the consensus provider, notarizes the relevant actions 
performed by the various actors, thus achieving the aimed account-

ability features.

The main objective of our extended SSI architecture is to empower 
the holder with greater control over their data, aligning seamlessly with 
the principles of SSI. This enhanced control is achieved through two in-

terrelated mechanisms. First, the implementation of an access control 
mechanism restricts access to the holder’s data solely to authorized and 
trusted parties. Second, accountability plays a crucial role by providing 
the holder with digital (forensic) proofs. These proofs enable verifica-

tion of whether data access aligns correctly with the established access 
policies.

To underscore the significance of accountability, it is important to 
note that in standard SSI, an untrusted verifier receiving verifiable cre-

dentials could potentially share them with unauthorized parties. In the 
absence of accountability mechanisms, the holder lacks control over 
such data leakage in traditional SSI frameworks.

Now we show that our extended SSI architecture is necessary to 
6

achieve the general objective described above. In other words, we ar-
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gue that a standard SSI solution in which the role of the holder and 
the verifier is reversed (i.e., the holder requires the verifier’s verifiable 
credentials to check if they are compliant with the access control poli-

cies) would not reach the achievement we are looking for and other 
advantages of our solution.

First, no accountability mechanism could be implemented (at least 
in a trivial way) without the consensus provider. In our solution, we 
reach accountability, addressing the concern of unauthorized forward-

ing of credentials by using a smart-contract-based approach that relies 
on the presence of a distributed wallet, to access to which no action is 
required with the holder. An additional point is that in scenarios where 
access control is managed locally by the user (as is the case with a 
standard wallet), relevant information such as policy changes may lack 
accountability. In contrast, our approach using the smart contract and 
the distributed wallet ensures accountability even for policy changes, 
providing a more comprehensive and secure solution.

Second, for the exchange of verifier credentials with the holder, the 
establishment of a secure channel, typically P2P [60], is required. How-

ever, this introduces a potential risk to the holder’s identity, which 
should remain undisclosed until the verifier is authorized to receive the 
credential. In contrast, our solution eliminates the need for a bidirec-

tional connection. The holder initiates the process by sending a request 
to the verifier, possibly through a proxy to conceal their IP address, and 
no response is required from the verifier. This approach ensures a more 
secure and privacy-preserving credential exchange.

Finally, we address a scenario where a multitude of credentials and 
policies may be present. In such cases, it becomes crucial to minimize 
the burden on the management of an access control mechanism, espe-

cially considering that the holder device is often a smartphone with 
limited computational and memory resources.

5. Hierarchical attributes in CP-ABPRE schemes

One of the contributions of this work is to provide a mechanism 
to manage hierarchical attributes. Indeed, this feature is not addressed 
directly by any CP-ABPRE scheme available in the literature. For ex-

ample, consider an academic domain in which there are three types of 
professors: full, associate, and assistant. Some files may be encrypted 
only for full professors, while other files may be encrypted for any kind 
of professor. In the first case, the files should be encrypted under the 
policy ={Full}. In the second case, the files should be encrypted 
under the policy  ′={Full ∨ Associate ∨ Assistant}, where ∨
denotes the OR operator. Anyway, in the latter case, it would be more 
practical, for the user encrypting the files, to select a simple policy 
 ′′={Professor} equivalent to  ′.

Unfortunately, in the state-of-the-art CP-ABPRE schemes, to support 
all the policies  ,  ′, and  ′′ simultaneously, the attribute Professor
has to be maintained separately by the attributes Full, Associate, 
and Assistant. This means that the attribute universe should include 
four attributes in place of three. Furthermore, each professor should 
maintain (in their private key) two attributes (Professor and one 
among Full, Associate, and Assistant) in place of a single at-

tribute.

As discussed at the end of this section, the total number of attributes 
in the attribute universe and/or maintained (in the private key) by the 
users should be as low as possible for efficiency reasons.

It would be desirable to have a CP-ABPRE scheme in which a profes-

sor with just one attribute among the attributes Full, Associate, and

Assistant, can satisfy  ′′ without explicitly maintaining the attribute

Professor.

In this section, we do not have the ambition to provide a new CP-

ABPRE scheme with the above feature. Instead, we provide a way to 
allow the user to express a policy with high-level attributes (then, more 
declarative), which is automatically translated into a policy with low-

level attributes. Only these low-level attributes will be included in the 

attribute universe of the chosen CP-ABPRE scheme.
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Fig. 2. Example of Tree 𝑇𝑖 with |𝑇𝑖| = 17.

We see, in detail, how this mechanism works.

Consider a set of attributes 𝐴 = {𝑎1, … , 𝑎𝑛} and a partition 𝑇 =

{𝑇1, … , 𝑇𝑘} of 𝐴 (i.e., 
𝑘⋃

𝑖=1
𝑇𝑖 = 𝐴 and 𝑇𝑖 ∩ 𝑇𝑗 = ∅ with 1 ≤ 𝑖 < 𝑗 ≤ 𝑘).

The set 𝑇𝑖 = {𝑡(𝑖)1 , … , 𝑡(𝑖)|𝑇𝑖|} ∈ 𝑇 is a hierarchical domain arranged as 

a Tree, where each attribute 𝑡(𝑖)
𝑗

∈ 𝑇𝑖 represents a node of the Tree. 
W.l.o.g., we assume that the element 𝑡(𝑖)1 is the root of the Tree 𝑇𝑖. An 
example of a Tree 𝑇𝑖 with |𝑇𝑖| = 17 is depicted in Fig. 2.

Given a node 𝑡(𝑖)
𝑗

∈ 𝑇𝑖, we denote by 𝐶𝑖𝑗 the set of all the children 
nodes of 𝑡(𝑖)

𝑗
. Furthermore, with each node 𝑡(𝑖)

𝑗
∈ 𝑇𝑖, we associate a bit 𝑏𝑖𝑗

with the following integrity constraint: 𝑏𝑖𝑗 =
⋁

𝑡
(𝑖)
ℎ
∈𝐶𝑖𝑗

𝑏𝑖ℎ, where the symbol 

⋁
denotes the OR operator.

Finally, we define a function Node Policy 𝑃 (𝑡(𝑖)
𝑗
) for each node 𝑡(𝑖)

𝑗
:

𝑃 (𝑡(𝑖)
𝑗
) =

⎧⎪⎨⎪⎩

𝑡
(𝑖)
𝑗
∧ 𝑏𝑖𝑗 , if 𝑡

(𝑖)
𝑗

is a leaf⋁
𝑡
(𝑖)
ℎ
∈𝐶𝑖𝑗

(𝑃 (𝑡(𝑖)
ℎ
) ∧ 𝑏𝑖ℎ), otherwise

where ∧ denotes the AND operator. The policy 𝑃 (𝑡(𝑖)1 ) (i.e., the policy 
of the root of 𝑇𝑖), is called Root Policy.

We define the Tree Policy as 𝑃 (𝑇𝑖) = 𝑃 (𝑡(𝑖)1 ) ∨ (¬𝑏𝑖1).

Clearly, given a Tree, we can have different Tree Policies according 
to the bits associated with the nodes. For example, some possible Tree 
Policies for the Tree in Fig. 2 are depicted in Fig. 3.

We define the Total Policy  as the conjunction of all the Tree Poli-

cies:  =
𝑘⋀

𝑖=1
𝑃 (𝑇𝑖).

The Total Policy is in Conjunctive Normal Form.

At this point, we illustrate how a user can leverage the above struc-

ture to define the policies at a high level, with no need to specify 
low-level attributes.

We define the following two semantic constraints.

1. A father-child relationship in a Tree corresponds to an Is-A rela-

tionship so that, if a user owns an attribute associated with a node 
𝑡 of the Tree, then they implicitly own all the attributes associated 
with the nodes in the path from 𝑡 to the root.

2. If a user owns an attribute associated with a non-leaf node, then 
they own at least one attribute associated with one of its children 
nodes.

Regarding the management of access control, setting a policy means 
assigning bits to the nodes of the trees. In detail, each user sets such bits 
according to the following operative rules:
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1. By default, the bits of all the nodes of all the trees are set to 0.
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2. If a user sets the bit of a node 𝑡 to 1, then all the bits of the nodes 
in the path from 𝑡 to the root are set to 1. Moreover, all the bits of 
the nodes in the sub-Tree with 𝑡 as root are set to 1.

3. If a user sets the bit of a node 𝑡 to 0, then all the bits of the nodes 
in the sub-Tree with 𝑡 as root are set to 0. Moreover, if all bits of 
the sibling nodes of 𝑡 (i.e., the nodes with the same parent node) 
are set to 0, then the parent of 𝑡 is set to 0 recursively according to 
this rule.

Rule (1) implies that, by default, the Total Policy is equal to 1 i.e., 
it is always satisfied. Rules (2) and (3) are sufficient to guarantee the 
integrity constraint for each node of the Tree. Actually, regarding Rule 
(2), it is not necessary from a logical point of view to set all the bits 
of the nodes in the sub-Tree to 1 to guarantee the integrity constraint. 
However, this has an impact on the way the policy is expressed. Indeed, 
it allows us to set the policy in terms of high-level attributes without 
specifying the leaf attributes.

We illustrate how these operative rules work through an example.

Example 5.1. Consider again the academic context described by the 
Tree in Fig. 4. Initially, all the nodes have the bits set to 0 (Rule (1)). 
If a user wants to set a policy that can be satisfied by any professor, 
they simply change the bit only for the attribute Professor, and due 
to Rule (2), the bits of the nodes University, Full, Associate, and

Assistant become 1.

We observe that, since the high-level attributes are translated into 
the corresponding low-level attributes, the Total Policy includes only 
the low-level attributes. Therefore, the used CP-ABPRE scheme only 
needs to include, in the attribute universe, the attributes associated with 
the leaves of the trees.

We observe that the hierarchical organization of the attributes gives 
an advantage in terms of the space required for the universe with re-

spect to the trivial flat enumeration of all possible attributes (including 
also high-level attributes). Indeed, the attribute universe can include 
only the attributes associated with the leaves of the trees.

This advantage is effective, especially in those schemes, such as 
schemes in Refs. [8,52], in which the size of ciphertexts, public keys, 
private keys, re-encryption keys, and the computational costs of CP-

ABPRE algorithms increase as the number of elements of the attribute 
universe increases.

Furthermore, for the schemes in which the above sizes and com-

putational costs do not depend on the size of the attribute universe 
(e.g., Ref. [15]), we have benefits. Indeed, if high-level attributes are 
included, for each attribute a user owns, they would maintain all the 
ancestor attributes.

In the above example, an associate professor would maintain the 
attributes Associate, Professor, and University in their private 
key. Therefore, in this case, the size of this key and all the computations 
involving such a key increase with respect to the case in which the 
professor maintains only the attribute Associate.

6. Identities, label, and time management in CP-ABPRE schemes

Throughout this section, we face the three problems mentioned in 
Section 3.2. As in Section 5, we distinguish between the schemes in 
which the performance does not depend on the size of the attribute 
universe, which we identify by (i), and the other schemes, which we 
identify by (ii).

6.1. Identities management

The first treated problem regards the management of the identities 
of users.

Our solution requires that the files (i.e., the VCs) are encrypted un-
der a policy that only a specific user 𝑢 (owner of the files) can satisfy, 
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Fig. 3. Examples of Root Policies.
Fig. 4. Tree for an academic context.

i.e., a policy requiring the user’s identity as an attribute. This way, the 
re-encryption keys used to change the policies of files of other users 
cannot be used to change the policies of the files of 𝑢.

For schemes of type (i), the way to accomplish this is straightfor-

ward: just add an attribute 𝐼𝐷𝑢 in the attribute universe for each user 
𝑢 of the system. When a user 𝑢 wants to encrypt a file so that only 
himself/herself can decrypt it, he/she defines a policy requiring 𝐼𝐷𝑢 to 
access the file. Clearly, 𝐼𝐷𝑢 will be included in the private key provided 
to 𝑢 by the PKG.

However, this approach is not applicable for schemes of type (ii), 
since the cardinality of the attribute universe would be too high. Thus, 
for such schemes, we consider a set 𝐼𝐷 = {𝑖𝑑1, 𝑖𝑑2, … , 𝑖𝑑𝑛} and define 
the Identity Set 𝐼𝐷𝑆 as the set of all the subsets of 𝐼𝐷 with cardinality 
equal to a fixed value 0 < 𝑘 < 𝑛. We denote by 𝐼𝐷𝑢 ∈ 𝐼𝐷𝑆 the iden-

tity of the user 𝑢. Note that 𝐼𝐷𝑥 ⊄ 𝐼𝐷𝑦 for any pairs of users 𝑥, 𝑦. This 
is necessary; otherwise, if an identity 𝐼𝐷𝑥 ⊂ 𝐼𝐷𝑦, then the user 𝑦 can 
satisfy the policies requiring 𝐼𝐷𝑥. The cardinality of 𝐼𝐷𝑆 is 

(𝑛

𝑘

)
. There-

fore, to maximize such a cardinality, we set 𝑘 = ⌊ 𝑛

2⌋. This way, as the 
binomial coefficient 

( 𝑛

⌊ 𝑛

2 ⌋
)

grows exponentially with 𝑛, even small val-

ues of 𝑛 are enough to have very large domains of users. For example, 
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with only 𝑛 = 33 attributes, we represent 2, 333, 606, 220 users.
6.2. Label management

The second treated problem is to have a label associated with the 
encrypted files so that the proxy can re-encrypt only the files of a user 
with the same label.

For both schemes of types (i) and (ii), we use the same approach.

We add in the attribute universe a set of labels 𝐿 = {𝑙1, … , 𝑙𝑡}, for 
a given value 𝑡. For each label 𝑙 ∈ 𝐿, 𝑢 receives, from the 𝑃𝐾𝐺, a 
private key including such a label (along with the identity of the user, 
as explained in Section 6.1). When 𝑢 encrypts a file, he/she include 
his/her identity 𝐼𝐷𝑢 together with a label 𝑙 in the policy of the file 
(this makes the use of a given label unique despite the shared set of 
labels). Then, 𝑢 generates the re-encryption key for the proxy by using 
the private key associated with (𝐼𝐷𝑢, ̄𝑙). This way, the proxy can only 
change the policies of the files of 𝑢 associated with 𝑙.

For both schemes of types (i) and (ii), the number of private keys 
required is 𝑡 (according to the needs of the user) and each private key 
includes just two attributes, that is, the identity of the user and a file 
label.

The above mechanism solves the issues described in items 1 and 2 
at the end of Section 3.2.

We will return to these aspects in Section 7.

6.3. Time window

The last treated issue is how to set a validity time for the rights of ac-

cess to a ciphertext. This approach is partially inspired by the approach 
proposed in Ref. [7], but it is more general and includes some practical 
aspects.

In detail, the problem is how to set a time window within which the 
files can be accessed.

For schemes of type (i), we include in the attribute universe some 
integers corresponding to the UNIX timestamps (they do not need to be 
materialized or stored). Specifically, when a user 𝑢 receives a private 
key from the PKG, it includes in such a key (as an attribute) the current 
UNIX timestamp 𝑡. When another user 𝑦 wants to encrypt a file so that 
it can be accessed between 𝑡1 and 𝑡2, it sets a policy in the form  =

{𝑡1 <Time< 𝑡2}. If 𝑡1 < 𝑡 < 𝑡2, 𝑢 can decrypt the file.
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As illustrated in Ref. [7], through the connectives “OR” and “AND”, 
it is possible to efficiently implement the operation < and > at a small 
price to express the UNIX timestamps in binary (thus, the user will re-

ceive a private key by the PKG, including as many attributes as the bits 
of the current UNIX timestamp 𝑡).

Regarding schemes of type (ii), the approach is the same, but the 
size of the attribute universe would be too high with the inclusion of 
the UNIX timestamps. Anyway, in a practical context, we do not need a 
time granularity at the level of the second. Therefore, we can lower the 
granularity at the level of the day or the month, thus reducing the size 
of the attribute universe.

7. The proposed protocol

7.1. Overview of the protocol

We start by providing an overview of the proposed protocol. Each 
user is the owner of a set of VCs released by some issuers. We do not 
have any requirement in the way in which the VCs are exchanged and 
their format. Then, standard technologies such as DidComm [60] (for 
the exchange) and JSON-LD (W3C compliant format [13]) should be 
adopted.

On the other hand, to implement our solution, the interaction be-

tween the user and the service provider requires some modifications, 
while the format of the credential is kept standard.

To satisfy the request of a user, a service provider needs to access 
some of their VCs. However, not all VCs are accessible by the service 
provider, only those for which it meets a certain policy chosen by the 
user. In general, the user does not know which attributes the service 
provider owns and which policies it fulfills. The management and en-

forcement of the user’s policies are delegated to a semi-trusted third 
party which we call the consensus provider. It acts as an intermediary 
in the communication between the user and the service provider by 
providing the latter (if authorized) with all the information needed to 
access the VCs. The consensus provider is semi-trusted in the sense that 
it collaborates in the execution of the protocol, but it is not able to ac-

cess the content of users’ VCs so that confidentiality is guaranteed.

As in standard SSI-based solutions, to certify the possession of some 
attributes and identities of users and service providers, our solution 
includes some attribute issuers and identity issuers that release some 
credentials to users and providers. However, according to the SSI prin-

ciples, they are not involved during the interaction between the user 
and the service provider.

Regarding the technologies, we rely on the blockchain to nota-

rize critical operations. To be concrete, we consider the Ethereum 
blockchain, which supports smart contracts. Through them, we offer 
accountability guarantees by post-mortem detecting anomalous behav-

ior of users, service providers, and consensus providers.

We also consider a distributed wallet in which the VCs are stored in 
encrypted form and the consensus provider maintains only some sym-

metric keys encrypted with CP-ABPRE that allow access to the VCs. 
Such a distributed wallet is implemented through the InterPlanetary 
File System (IPFS) [67], which is a distributed file system in which the 
VCs are stored and easily accessible by any involved entity. Ethereum 
[29] and IPFS [68] are two technologies supported by the Veramo 
project [69,28] adhering to W3C standard. Moreover, as reported in 
Ref. [70], “over a dozen of the DID methods registered in the W3C 
DID Specification Registries are designed to work with either Bitcoin or 
Ethereum”.

Finally, as discussed in Section 3.3, we rely on the CP-ABPRE scheme 
[15].

7.2. Notations
9

We introduce the notations we use in the following.
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• We denote by 𝐸𝑘(𝑀) the application of a symmetric encryption 
function (e.g., 3DES or AES) on a message 𝑀 with symmetric key 
𝑘.

• We denote by 𝐷𝑘(𝐶) the decryption of a ciphertext 𝐶 with the 
symmetric key 𝑘.

• We denote by Setup(𝑧), Encrypt(𝑃𝐾, 𝑀, ), KeyGen(𝑀𝑆𝐾, 𝑆), 
Decrypt(𝐶𝑇 , 𝑆𝐾, 𝑃𝐾), ReKeyGen (𝑃𝐾, 𝑆𝐾,  ′), and

ReEncrypt(𝑃𝐾, 𝐶𝑇 , 𝑅𝐾) the algorithms of the selected CP-ABPRE 
scheme selected as defined in Section 3.

• We model an Ethereum transaction as 𝑇 = ⟨𝑖𝑑𝑇 , 𝐸𝑡ℎ𝑠𝑟𝑐 , 𝐸𝑡ℎ𝑑𝑒𝑠𝑡,

𝑑𝑎𝑡𝑎⟩, where 𝑖𝑑𝑇 is the identifier of the transaction, 𝐸𝑡ℎ𝑠𝑟𝑐 is the 
source address, 𝐸𝑡ℎ𝑑𝑒𝑠𝑡 is the destination address and 𝑑𝑎𝑡𝑎 is the 
payload. The source and the destination of a transaction can be a 
user, a service provider, a consensus provider, or a smart contract. 
The Ethereum addresses play the role of DIDs (see Section 3.1).

7.3. Entities

We introduce the following entities of our system.

• The user 𝑢 requiring a service 𝑠.

• The service provider 𝑆𝑃 delivering the service 𝑠 to 𝑢.

• The consensus provider 𝐶𝑃 (which plays the role of a proxy re-

encryptor).

• The 𝑃𝐾𝐺, i.e., a trusted third party that generates the ABE private 
keys for users and service providers. It relies on identity providers 
and attribute providers to certify the identity of the users and the 
attributes of the service providers, respectively.

• The identity issuer 𝐼𝐼 , which associates each user 𝑢 with an iden-

tity 𝐼𝐷𝑢. In addition, 𝐼𝐼 is in charge of certifying the linkage 
between the DID of a user or a service provider and their real iden-

tity. 𝐼𝐼 can verify such a linkage through one of the techniques 
proposed in Section 3.1. Observe that 𝐼𝐼 does not manage the DIDs 
of 𝐶𝑃 since we assume they are public.

W.l.o.g., we assume a single 𝐼𝐼 for all users. In the case of multiple 
𝐼𝐼s, they have to guarantee the uniqueness of each identity in the 
system.

• The attribute issuer 𝐴𝐼(𝑎𝑖), which is in charge of certifying that 
the service providers own the attribute 𝑎𝑖. In general, an attribute 
issuer can certify multiple attributes.

• 𝐼𝑃𝐹𝑆 is the InterPlanetary File System, which is used as a reposi-

tory to store the (encrypted) users’ VCs. When a 𝑉 𝐶(𝑐) is stored in 
the 𝐼𝑃𝐹𝑆 , it returns an index 𝑖𝐼𝑃𝐹𝑆 (𝑐), which allows the users to 
retrieve the VC at a later time.

• The 𝑆𝐶 is the smart contract aimed at achieving accountability.

Now, we describe the phases that the entities involved in our pro-

posal perform to implement the required functionalities.

7.4. Credentials issuing

In this phase, some credentials needed to implement our solution 
are released by some issuers. This can be performed by leveraging any 
standard technology and protocol implemented for SSI solutions. For 
reference, we assume that the credentials are exchanged through the 
DIDComm protocol [60] and they are in JSON-LD format according to 
the W3C specification [13]. They are standard technologies in the SSI 
domain [70].

1. A generic issuer releases the credential 𝑉 𝐶(𝑓 ) to 𝑢. 𝑉 𝐶(𝑓 ) repre-

sents the actual credential that 𝑢 needs to access some service of 
𝑆𝑃 .

2. 𝐼𝐼 releases a credential 𝑉 𝐶(𝑢) to 𝑢. 𝑉 𝐶(𝑢) contains two attributes. 
The first attribute is 𝐼𝐷𝑢 and is used to certify the real identity of 

𝑢. The second attribute is 𝐸𝑡ℎ𝑢 and is used to certify that 𝑢 owns 
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this Ethereum address and that 𝐼𝐼 knows the mapping between 
𝐼𝐷𝑢 and 𝐸𝑡ℎ𝑢.

3. 𝐼𝐼 releases a credential 𝑉 𝐶(𝑆𝑃 ) to 𝑆𝑃 . Similar to the previous 
step, 𝑉 𝐶(𝑆𝑃 ) contains two attributes, the real identity 𝐼𝐷𝑆𝑃 of 
𝑆𝑃 and its Ethereum address 𝐸𝑡ℎ𝑆𝑃 .

4. 𝑆𝑃 obtains, for each attribute 𝑎𝑖 it owns, a credential 𝑉 𝐶(𝑎𝑖) from 
the attribute issuer 𝐴𝐼(𝑎𝑖). This credential certifies that 𝑆𝑃 owns 
the attribute 𝑎𝑖.

7.5. Registration phase, key generation, and smart contract deployment

In this phase, 𝑢 and 𝑆𝑃 register with 𝑃𝐾𝐺 to obtain the CP-ABPRE 
private keys. Furthermore, 𝑢 and 𝑆𝑃 perform a registration with 𝐶𝑃 , 
which deploys a smart contract used to notarize some critical operations 
performed by 𝑢, 𝑆𝑃 , and 𝐶𝑃 itself.

All these steps are performed only once for each entity of the system.

1. Preliminary, 𝑃𝐾𝐺 invokes Setup(𝑧), where 𝑧 is a security parame-

ter, to obtain 𝑃𝐾 and 𝑀𝑆𝐾 (see Section 3.2). 𝑃𝐾 is made publicly 
available while 𝑀𝑆𝐾 is maintained private by 𝑃𝐾𝐺.

2. User 𝑢 sends 𝑃𝐾𝐺 the credential 𝑉 𝐶(𝑢) and a number of labels 𝑣
they need. Observe that, differently from the description given in 
Section 6.2, to be more practical, we allow 𝑢 to select a number 
of labels 𝑣 ≤ 𝑡 in the case that they do not need all the 𝑡 possible 
labels. 𝑃𝐾𝐺 verifies the credential and then the identity 𝐼𝐷𝑢 of 𝑢.

𝑃𝐾𝐺 randomly selects, from the set 𝐿 = {𝑙1, … , 𝑙𝑡}, a set 𝐿𝑢 of 
cardinality 𝑣. For each label 𝑙𝑖 ∈ 𝐿𝑢, 𝑃𝐾𝐺 generates a private key 
𝑆𝐾

𝑙𝑖
𝑢 =KeyGen(𝑀𝑆𝐾, {𝑙𝑖, 𝐼𝐷𝑢}) and forwards it to 𝑢.

3. Similarly, 𝑆𝑃 contacts 𝑃𝐾𝐺 to obtain the private key 𝑆𝐾𝑆𝑃 as-

sociated with its attributes 𝐴𝑆𝑃 . 𝑆𝑃 provides 𝑃𝐾𝐺 with the set 
𝑉 𝐶(𝐴𝑆𝑃 ) containing all the credentials 𝑉 𝐶(𝑎𝑖) for each attribute 
𝑎𝑖 ∈ 𝐴𝑆𝑃 .

After verifying all the credentials (for each attribute 𝑎𝑖), 𝑃𝐾𝐺 gen-

erates the private key 𝑆𝐾𝑆𝑃 =KeyGen(𝑀𝑆𝐾, 𝐴𝑆𝑃 ∪ {𝑈𝑇 }) and 
sends it to 𝑆𝑃 . According to the mechanism described in Sec-

tion 6.3, 𝑃𝐾𝐺 includes in the private key the current UNIX times-

tamp 𝑈𝑇 (along with the set 𝐴𝑆𝑃 ) when 𝑆𝑃 requires the key. The 
three steps described above, involving the interactions of 𝑢 and 𝑆𝑃

with 𝑃𝐾𝐺, are summarized in the sequence diagram in Fig. 5.

4. In the next step, 𝑢 and 𝑆𝑃 register with 𝐶𝑃 by providing their 
credentials 𝑉 𝐶(𝑢) and 𝑉 𝐶(𝑆𝑃 ) containing 𝐼𝐷𝑢 and 𝐼𝐷𝑆𝑃 , respec-

tively.

5. This phase ends with the deployment by 𝐶𝑃 of the smart con-

tract 𝑆𝐶 represented in Fig. 6 (written in Solidity [71]). For space 
limitation, we represent only a partial version in the figure. The 
complete smart contract, which also manages anomalous situa-

tions, is reported at https://github .com /vincenzodeangelisrc /Self -
Sovereign -Identity -Solution -UNIRC /blob /main /Self _Sovereign_

Identity _Solution /src /it /unirc /CP /DeploySC /Contract .sol.

It contains three mappings between an Ethereum address (of a user 
or a service provider) and a struct called NotarizationData

containing an array hash_list to store the actual data to nota-

rize, and two temporary variables temp_hash and sent_time

(their meaning will be clear in the following). The first map-

ping (StorageMap) is used to notarize the storage of a VC of 
𝑢. The second mapping (PolicyChangeMap) is used to nota-

rize a policy change performed by 𝑢. Finally, the third mapping 
(FileAccessMap) is used to notarize the access to the VCs by 𝑆𝑃 .

7.6. VC storage

This phase starts when 𝑢 wants to store the credential 𝑉 𝐶(𝑓 ) in their 
10
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Fig. 5. Interactions of user 𝑢 and the service provider 𝑆𝑃 with the Private Key 
Generator 𝑃𝐾𝐺.

1. User 𝑢 selects a symmetric key 𝑘𝑓 (for 𝑉 𝐶(𝑓 )) and encrypts it, 
thus obtaining 𝑐𝑓 = 𝐸𝑘𝑓

(𝑉 𝐶(𝑓 )). Then, 𝑐𝑓 is stored in the 𝐼𝑃𝐹𝑆 , 
which returns the index 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 ).

2. User 𝑢 selects a label 𝑙𝑖 ∈ 𝐿𝑢 to be associated with 𝑓 , defines a 

Basic Policy  = {𝐼𝐷𝑢 ∧ 𝑙𝑖}, and encrypts 𝑘𝑓 under  (with CP-

https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC/blob/main/Self_Sovereign_Identity_Solution/src/it/unirc/CP/DeploySC/Contract.sol
https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC/blob/main/Self_Sovereign_Identity_Solution/src/it/unirc/CP/DeploySC/Contract.sol
https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC/blob/main/Self_Sovereign_Identity_Solution/src/it/unirc/CP/DeploySC/Contract.sol
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1 pragma solidity 0.6.11;

2 contract Notarization{

3

4 mapping(address => NotarizationData ) StorageMap;

5 mapping(address => NotarizationData ) PolicyChangeMap;

6 mapping(address => NotarizationData ) FileAccessMap;

7 struct NotarizationData{

8 bytes32 [] hash_list;

9 bytes32 temp_hash;

0 uint256 sent_time;}

1 function startNotarization(uint8 _type, address _ETHr,

bytes32 _hash){

2 if(_type==1){

3 if((StorageMap[_ETHr].sent_time==0)&&(StorageMap[_ETHr

].temp_hash==0x0000000000000000000000000)){

4 StorageMap[_ETHr].temp_hash=_hash;

5 StorageMap[_ETHr].sent_time=block.timestamp;}

6 ...... //omitted for readability }

7 else{ //type 2 and type 3

8 ....... //omitted for readability

9 }}

0 function confirmNotarization(uint8 _type, bytes32 _hash){

1 if(_type==1){

2 if((block.timestamp-StorageMap[msg.sender].sent_time)

<=10){

3 if(_hash==StorageMap[msg.sender].temp_hash){

4 StorageMap[msg.sender].hash_list.push(_hash);}

5 else{emit "Event"}}

6 StorageMap[msg.sender].sent_time=0;

7 StorageMap[msg.sender].temp_hash=0

x0000000000000000000000000000000000000;}

8 else{ //type 2 and type 3

9 ....... //omitted for readability

0 }}

1 }

Fig. 6. A portion of the source code of the smart contract.

ABPRE), thus obtaining 𝑠𝑓 =Encrypt(𝑃𝐾, 𝑘𝑓 , ). Observe that, at 
the moment, only 𝑢 is able to decrypt 𝑘𝑓 through 𝑆𝐾

𝑙𝑖
𝑢 , since only 

𝑢 owns the attribute 𝐼𝐷𝑢.

3. User 𝑢 authenticates with 𝐶𝑃 (by providing its credential 𝑉 𝐶(𝑢)) 
and sends the tuple (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 ), 𝑙𝑖, 𝐸𝑡ℎ𝑢). Through 𝑉 𝐶(𝑢), 𝐶𝑃

verifies the linkage between 𝐸𝑡ℎ𝑢 and 𝐼𝐷𝑢 and stores this mapping 
(if it does not already exist) in the User Association Table in Fig. 7. 
Moreover, 𝐶𝑃 stores the tuple (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 ), 𝑙𝑖, 𝐼𝐷𝑢) in the VC Ta-

ble in Fig. 8. It is to be observed that external users observing the 
blockchain can know that the same user (with the same Ethereum 
address) performs the VC Storage operation multiple times. Any-

way, they do not know the real identity of the user, so that it does 
not result in any privacy leakage.

4. To notarize this operation, 𝐶𝑃 generates a transaction 𝑇1 =
⟨𝑖𝑑𝑇1

, 𝐸𝑡ℎ𝐶𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ towards the 𝑆𝐶 . The 𝑑𝑎𝑡𝑎 field is set to 
(𝑡𝑦𝑝𝑒 = 1||𝐸𝑡ℎ𝑢||𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖)), where 𝐻 denotes a crypto-

graphic hash function (e.g., SHA256) and 𝑡𝑦𝑝𝑒 = 1 represents the 
type of notarization to perform (in this case, the notarization of 
the storage of a VC). According to the value of 𝑡𝑦𝑝𝑒, the proper 
mapping of 𝑆𝐶 will be used.

𝑇1 triggers the function startNotarization of 𝑆𝐶 which finds 
in the StorageMap (since 𝑡𝑦𝑝𝑒 = 1) the struct Notarization-
Data associated with 𝐸𝑡ℎ𝑢. In such a struct, 𝑆𝐶 stores the content 
of 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖) in temp_hash and the current timestamp 
in sent_time.

If there is no struct associated with 𝐸𝑡ℎ𝑢 in the StorageMap, then 
a new struct NotarizationData is created (and associated with 
𝐸𝑇 𝐻𝑢), where temp_hash and sent_time are set as above.

5. Similarly, 𝑢 generates a transaction 𝑇2 = ⟨𝑖𝑑𝑇2
, 𝐸𝑡ℎ𝑢, 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩

towards 𝑆𝐶 , where the 𝑑𝑎𝑡𝑎 field is set to
(𝑡𝑦𝑝𝑒 = 1||𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖)).
𝑇2 triggers the function confirmNotarization, which finds, 
11
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User Identity Ethereum Address

𝐼𝐷𝑢 𝐸𝑡ℎ𝑢

... ...

Fig. 7. User Association Table.

ABPRE-Encrypted symmetric key IPFS index Label Identity

𝑠𝑓 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 ) 𝑙𝑖 𝐼𝐷𝑢

... ... ... ...

Fig. 8. Verifiable Credential (VC) Table.

with 𝐸𝑡ℎ𝑢 and checks that temp_hash = 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖) and 
that the difference between the current timestamp and the times-

tamp stored in sent_time is less than a certain threshold. The 
second step ensures that the VC storage occurs within a short pe-

riod. If both the checks pass, the digest 𝐻(𝑖𝐼𝑃𝐹𝑆 (𝑐)) is added to the

hash_list array contained in the struct NotarizationData. 
Otherwise, the 𝑆𝐶 publishes an event to warn 𝐶𝑃 about the fail-

ure of the operation and its originating fault. Finally, 𝑆𝐶 also resets 
both temp_hash and sent_time variables.

The VC storage procedure is summarized in the sequence diagram 
of Fig. 9.

7.7. Policy setting and policy change

In this phase, 𝑢 sets a new policy ̄ for the VCs associated with the 
label 𝑙𝑖.

1. User 𝑢 defines the new policy ̄ . We recall that, in our applica-

tion, the domain of the attributes is organized in a set of trees. 
Therefore, setting a policy means assigning the bits to the nodes 
of the trees according to the operative rules described in Sec-

tion 5. These rules enable the translation of ̄ , possibly containing 
high-level attributes, into the policy  containing only low-level 
attributes. Observe that, since  is a conjunctive normal form 
of positive attributes, it is supported by the selected CP-ABPRE 
scheme [15]. We suppose  may include a validity time as de-

scribed in Section 6.3. At this point, 𝑢 generates the re-encryption 
key 𝑅𝐾𝑙𝑖

=ReKeyGen(𝑃𝐾, 𝑆𝐾
𝑙𝑖
𝑢 , ). It allows 𝐶𝑃 to change the 

basic policy  (associated with the VCs with label 𝑙𝑖) into  .

2. User 𝑢 authenticates with 𝐶𝑃 (by providing 𝑉 𝐶(𝑢)) and sends 
(𝑅𝐾𝑙𝑖

, 𝑙𝑖,𝐸𝑡ℎ𝑢). 𝐶𝑃 finds an entry (𝐼𝐷𝑢, 𝐸𝑡ℎ𝑢) in the User Asso-

ciation Table to verify such a mapping. If such an entry does not 
exist, it is added after verifying 𝑉 𝐶(𝑢).

3. Successively, 𝐶𝑃 finds an entry, if any, in the Policy Table (rep-

resented in Fig. 10) with the pair (𝐼𝐷𝑢, 𝑙𝑖) and updates the re-

encryption key field with 𝑅𝐾𝑙𝑖
. If the entry does not exist, then 

𝐶𝑃 creates a new tuple (𝐼𝐷𝑢, 𝑙𝑖, 𝑅𝐾𝑙𝑖
) and inserts it in the Policy 

Table.

4. The notarization of this phase is analogous to the notarization of 
the VC storage phase but it involves another mapping. Specifi-

cally, 𝐶𝑃 generates a transaction 𝑇3 = ⟨𝑖𝑑𝑇3
, 𝐸𝑡ℎ𝐶𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩

towards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is set to (𝑡𝑦𝑝𝑒 = 2||𝐸𝑡ℎ𝑢||𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
)).

𝑇3 triggers the function startNotarization of 𝑆𝐶 , which finds 
in the PolicyChangeMap (since 𝑡𝑦𝑝𝑒 = 2) the struct Notariza-
tionData associated with 𝐸𝑡ℎ𝑢. In such a struct, 𝑆𝐶 stores the 
content of 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖

) in temp_hash and the current timestamp 
in sent_time.

5. User 𝑢 generates a transaction 𝑇4 = ⟨𝑖𝑑𝑇4
, 𝐸𝑡ℎ𝑢, 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ to-

wards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is set to (𝑡𝑦𝑝𝑒 = 2||𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
).

𝑇4 triggers the function confirmNotarization, which finds, in 
the PolicyChangeMap, the struct NotarizationData associ-

ated with 𝐸𝑡ℎ𝑢 and checks that temp_hash = 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
) and 

that the difference between the current timestamp and the times-
tamp stored in sent_time is less than a certain threshold. If both 
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Fig. 9. Verifiable Credential (VC) storage.

Identity Label Re-Encryption key

𝐼𝐷𝑢 𝑙𝑖 𝑅𝐾𝑙𝑖

... ... ...

Fig. 10. Policy Table.

the checks pass, then 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
) is added to the hash_list ar-

ray contained in the struct NotarizationData. Otherwise, 𝑆𝐶

publishes an event to warn 𝐶𝑃 about the failure of the operation 
and the originating fault. Finally, 𝑆𝐶 also resets both temp_hash

and sent_time variables.
12

The above steps are summarized in the sequence diagram of Fig. 11.
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Fig. 11. Policy Setting and Policy Change.

SP Identity Ethereum Address

𝐼𝐷𝑆𝑃 𝐸𝑡ℎ𝑆𝑃

... ...

Fig. 12. Service Provider Association Table.

7.8. Service request

In this phase, the user 𝑢 requires a service 𝑠 to 𝑆𝑃 , which needs 
access to the VCs of 𝑢.

1. 𝑢 contacts 𝑆𝑃 to obtain 𝑠. In this step, we do not require any au-

thentication for 𝑢. Indeed, until 𝑆𝑃 does not prove that it satisfies 
the policies and accesses 𝑢’s VCs, it does not need to know 𝑢’s iden-

tity. Observe that, in this step, no response from 𝑆𝑃 is needed; 
thus, no bidirectional connection has to be established. To avoid a 
possible linkage between the IP address of 𝑢 and his/her real iden-

tity, the request of 𝑢 can be performed behind a proxy, or through 
anonymous standard services such as the VPN and Tor [72].

2. 𝑆𝑃 authenticates with 𝐶𝑃 by providing 𝑉 𝐶(𝑆𝑃 ). Through it, 
𝐶𝑃 verifies the mapping between the identity 𝐼𝐷𝑆𝑃 and 𝐸𝑡ℎ𝑆𝑃

and stores this mapping in the Service Provider Association Table in 
Fig. 12.

3. Meanwhile, 𝑢 authenticates with 𝐶𝑃 and confirms that they have 
required the service 𝑠 to 𝑆𝑃 . Furthermore, 𝑢 sends a set of labels 
𝐿𝑠

𝑢
⊆ 𝐿𝑢 to 𝐶𝑃 . 𝐿𝑠

𝑢
identifies the VCs that 𝑢 wants to send to 𝑆𝑃 to 

obtain the service 𝑠. Observe that, 𝑢 does not know a priori if 𝑆𝑃

is authorized to access their VCs. Therefore, it is possible that 𝑆𝑃

does not satisfy all the policies associated with the labels in 𝐿𝑠
𝑢
.

4. For each 𝑙𝑖 ∈ 𝐿𝑠
𝑢
, 𝐶𝑃 retrieves the re-encryption key 𝑅𝐾𝑙𝑖

from 
the Policy Table. Furthermore, for each 𝑙𝑖 ∈ 𝐿𝑠

𝑢
, it retrieves all the 
tuples in the form (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 ), 𝑙𝑖, 𝐼𝐷𝑢) from the VC Table (i.e., 
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Fig. 13. Service request.
all the tuples associated with 𝑙𝑖 of the user 𝑢). For each of them, 
𝐶𝑃 invokes 𝑣𝑓 =ReEncrypt(𝑃𝐾, 𝑠𝑓 , 𝑅𝐾𝑙𝑖

), where 𝑣𝑓 represents a 
symmetric key 𝑘𝑓 encrypted under a policy  associated with the 
re-encryption key 𝑅𝐾𝑙𝑖

. We denote by 𝑤𝑓 the pair (𝑣𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 ))
and by 𝑊 the set of all the 𝑤𝑓 (obtained for all the 𝑙𝑖 ∈ 𝐿𝑠

𝑢
). 𝐶𝑃

forwards the set 𝑊 to 𝑆𝑃 .

5. For the notarization, again, we follow the same procedure as the 
previous sections but with 𝑆𝑃 in place of 𝑢. 𝐶𝑃 generates a trans-

action 𝑇5 = ⟨𝑖𝑑𝑇5
, 𝐸𝑡ℎ𝐶𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ towards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is 
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set to (𝑡𝑦𝑝𝑒 = 3||𝐸𝑡ℎ𝑆𝑃 ||𝐻(𝑊 )).
𝑇5 triggers the function startNotarization of 𝑆𝐶 , which finds 
in the FileAccessMap (since 𝑡𝑦𝑝𝑒 = 3), the struct Notariza-

tionData associated with 𝐸𝑡ℎ𝑢. In such a struct, 𝑆𝐶 stores the 
content of 𝐻(𝑊 ) in temp_hash and the current timestamp in

sent_time.

6. 𝑆𝑃 generates a transaction 𝑇6 = ⟨𝑖𝑑𝑇6
, 𝐸𝑡ℎ𝑆𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ to-

wards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is set to (𝑡𝑦𝑝𝑒 = 3||𝐻(𝑊 )).
𝑇6 triggers the function confirmNotarization, which finds in 
the FileAccessMap, the struct NotarizationData associated 

with 𝐸𝑡ℎ𝑆𝑃 and checks that temp_hash = 𝐻(𝑊 ) and that the dif-
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Fig. 14. Extended Self-Sovereign Identity (SSI) paradigm.
ference between the current timestamp and the timestamp stored in
sent_time is less than a certain threshold. If both the checks pass, 
𝐻(𝑊 ) is added to the hash_list array contained in the struct

NotarizationData. Otherwise, 𝑆𝐶 publishes an event to warn 
𝐶𝑃 of the failure of the operation and the originating fault. Finally, 
𝑆𝐶 also resets both temp_hash and sent_time variables.

7. Once 𝑊 is obtained, for each pair 𝑤𝑓 = (𝑣𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )) ∈ 𝑊 , 𝑆𝑃

invokes Decrypt(𝑣𝑓 , 𝑆𝐾𝑆𝑃 ). If 𝑆𝑃 satisfies the policy  associ-

ated with 𝑣𝑓 , then it retrieves the symmetric key 𝑘𝑓 and, through 
𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 ), 𝑐𝑓 from 𝐼𝑃𝐹𝑆 . Finally, 𝑆𝑃 accesses to 𝑉 𝐶(𝑓 ) =
𝐷𝑘𝑓

(𝑐𝑓 ).

The service request is summarized in the sequence diagram in 
Fig. 13.

We want to highlight the cryptographic proofs stored on the 
blockchain. They are (1) the signature of the issuers (as in the standard 
SSI-approach) and (2) the digests of some information. Specifically, con-

cerning (2), as described in the protocol, these digests are as follows:

• 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖), where 𝑠𝑓 is an ABE encryption of a symmet-

ric key, 𝑖𝐼𝑃𝐹𝑆(𝑐𝑓 ) is an IPFS index, and 𝑙𝑖 is a file label;

• 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
), where 𝑙𝑖 is a file label and 𝑅𝐾𝑙𝑖

is a re-encryption key;

• 𝐻(𝑊 ), where 𝑊 is a set of pairs, containing the ABE re-encryption 
of a symmetric key and an IPFS index.

As a final remark, we want to highlight that the data stored on the 
blockchain do not introduce privacy leakage. Indeed, concerning the 
traditional issuing of SSI credentials (Section 7.4), only cryptographic 
proofs (i.e., the signature of the issuers) are included in the blockchain. 
On the other hand, as better highlighted in Section 9, the additional 
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steps (with respect to standard SSI interactions) introduced by our ap-
proach, require the storage on the smart contract of some cryptographic 
digests of some potentially sensitive information. However, these di-

gests are not reversible without the collaboration of 𝐼𝐼 and 𝐶𝑃 , which 
is just the accountability requirement we want to achieve.

To conclude this section, in Fig. 14, we show that the standard SSI 
paradigm (represented in Fig. 1) is extended by the introduction of our 
proposal.

8. Prototype and experiment

In this section, we describe a prototype (developed in Java) of the 
solution proposed in Section 7. Furthermore, we measure its perfor-

mance. Finally, we discuss the motivation leading to the choice of a 
public Ethereum blockchain.

8.1. Prototype

The source code of the prototype is available at https://github .com /
vincenzodeangelisrc /Self -Sovereign -Identity -Solution -UNIRC.

Our implementation consists of 10 modules.

The LiangScheme module includes our Java implementation of the 
scheme [15]. We implemented it from scratch by relying on the JPBC 
library [73] for the pairing function [43].

The Ethereum and IPFS modules are two wrappers that leverage 
the Infura [74] APIs, enabling connectivity with the Ethereum and IPFS 
networks, respectively.

The Issuer, Identity Issuer, and Attribute Issuersmod-

ules implement the functions of an issuer in the standard SSI approach. 
They are implemented as web applications reachable through HTTP 
requests. Our implementation relies on the Trinsic Ecosystems [75], 

implementing the Sovrin Framework [1]. This is a reference technol-

https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC
https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC
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Fig. 15. Identity credential released by the Identity Issuer.
Fig. 16. Private Key Generator (PKG) interface for generating a private key for 
a Service Provider 𝑆𝑃 .

ogy adhering to the main SSI standards in terms of the format of the 
verifiable credentials (compliant with W3C specifications [12,13]) and 
ToIP stack [76]. Each of these three modules releases a verifiable cre-

dential in JSON-LD format. An example of a credential released by the

Identity Issuer module is reported in Fig. 15.

It includes the real identity of the user and their Ethereum address 
as attributes.

The main modules of our application are PKG, User, CP, and SP. 
We describe them in detail.

The PKG module is composed of a stand-alone application (with 
GUI) to implement the Setup function of the scheme [15] and generates 
𝑃𝐾 and 𝑀𝑆𝐾 . Furthermore, it includes two web interfaces allowing 
users and service providers to retrieve private keys.

For example, in Fig. 16, we can see the web interface by which a 
service provider declares its attributes and provides its verifiable cre-

dential (containing all the attributes) to retrieve the private key from 
the PKG. The verification of the credential is performed through the 
Trinsic API.

The User module is composed of two applications (with GUI). The 
first implements the user-side component of the VC Storage operation 
presented in Section 7.6. Its GUI is displayed in Fig. 17.

In detail, in the yellow panel, the user selects the VC to store and 
the label to be associated with this VC. By pressing the button Store, 
this application generates an AES128 symmetric key, encrypts the VC, 
and stores it in the IPFS. Then, the symmetric key is encrypted with 
CP-ABPRE. At the end of the procedure, the application generates the
15

StorageFile.txt, which contains all the information to be sent to 𝐶𝑃
Fig. 17. User GUI to store a Verifiable Credential (VC).

Fig. 18. User GUI to set a policy for a Verifiable Credential (VC).

(see the next module). In particular, it includes (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 , 𝑙𝑖), as de-

scribed in Section 7.6. Furthermore, such a file will be given as input to 
the user application (light blue panel in Fig. 17) to be notarized on the 
blockchain.

The other user-side application is similar, and it allows the users to 
set a policy for the VCs with a given label. It outputs the PolicyFile.txt, 
including (𝑟𝑘𝑙𝑖

, 𝑙𝑖), as explained in Section 7.7. Its GUI is displayed in 
Fig. 18.

The core module of our proposal is CP. It includes an application 
(with GUI) for deploying smart contracts and four web interfaces.

Two web interfaces are exploited by the user to upload the Stor-

ageFile.txt and PolicyFile.txt in order to trigger the CP-side part of 

the VC Storage and Policy Setting/Change operations, respectively. Fur-
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Fig. 19. Ciphertext-Policy (CP) interface for the Verifiable Credential (VC) Stor-

age operation.

Fig. 20. Service Provider (SP) GUI to retrieve the Verifiable Credentials (VCs).

thermore, the user also provides their Ethereum address for notarizing 
the operation and its credential 𝑉 𝐶(𝑢). For example, the web interface 
for the VC Storage operation is reported in Fig. 19.

When CP receives the StorageFile.txt, it performs all the operations 
described in Section 7.6, including the verification of the credential 
(through the Trinsic API) and the notarization of the received informa-

tion. This notarization has to be confirmed by the user, as reported in 
the confirmation message of Fig. 19, by uploading the StorageFile.txt

in the light blue panel of Fig. 17.

The same happens for the Policy Set/Change web interface.

The other two web interfaces provided by the CP module are used 
by service providers and users to implement the Service Request op-

eration. At the end of the procedure, the service provider receives the

DecryptFile.txt representing the set 𝑊 of Section 7.8, containing all 
the information to access the VCs of the users.

Finally, the SP module is composed of an application (with GUI 
displayed in Fig. 20) allowing a service provider to retrieve the VCs. In 
particular, it uploads the DecryptFile.txt on the yellow panel and the 
application decrypts the CP-ABPRE encrypted symmetric keys, retrieves 
the encrypted VCs from the IPFS, and decrypts them. Then, through the 
Trinsic API, the VCs are verified. As for the User applications, the light 
blue panel allows the notarization of the DecryptFile.txt.

8.2. Experiments

In this section, we evaluate the performance of our prototype with 
respect to temporal and economic considerations.

We measured the time needed to perform the operations required 
by our protocol. To perform such measurements, we use a personal 
computer equipped with a 1.8 GHz Intel i7-8850 CPU and 16 GB of 
RAM. We did not consider the user-dependent times (e.g., the time to 
select a VC or a policy).

Furthermore, we measured the time needed to deploy the smart con-

tract and invoke its functions.

These results are reported in Table 2. We also report, in Fig. 21, a 
timeline that includes all actors (and the blockchain) to complete the 
execution of our protocol. For graphical reasons, the timeline is not to 
scale.

Finally, we report the costs in terms of ETH and US dollars (in May 
2023) for the deployment of the smart contract and invocation of the 
relative functions in Table 3. Since they depend on the state of the 
Ethereum network, we used Ropsten [77] as a testnet since it is the 
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most similar to the real Ethereum network.
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Table 2

Time to perform operations.

Operation Time

(seconds)

PKG Setup 0.7–0.8

PKG User Keys Generation (20 labels) 45–65

PKG SP Key Generation (10 attributes) 10–12

Smart Contract Deploy 15–25

StorageFile.txt creation (AES Encryption,

IPFS Storage, ABE encryption)

4–5

VC Storage CP-side (User Association Table

and VC Table update)

0.5–1

VC Storage Notarization CP-side

(startNotarization (type1))

15–25

VC Storage Notarization User-side

(confirmNotarization (type1))

15–25

PolicyFile.txt creation

ABE Re-Encryption Key generation)

5–6

Policy Set/Change CP-side

(Policy Table Update)

0,5–1

Policy Set/Change Notarization CP-side

(startNotarization (type2))

15–25

Policy Set/Change Notarization User-side

(confirmNotarization (type2))

15–25

Service Request CP-side

(Re-encryption of a single symmetric key)

2–3

VC Access SP-side (ABE-Decryption,

IPFS download, AES decryption)

4–6

Service Request Notarization CP-side

(confirmNotarization (type3))

15–25

Service Request Notarization SP-side

(confirmNotarization (type3))

15–25

Note: PKG—Private Key Generator, SP—Service 
Provider, AES—Advanced Encryption Standard, 
IPFS—InterPlanetary File System, ABE—Attribute-

Based Encryption, VC—Verifiable Credential, CP—

Ciphertext-Policy.

Table 3

Cost in terms of ETH and USD (in May 2023) to perform the 
operations. We applied the default gas-price.

Operation Cost

(ETH / US dollars)

Smart Contract Deployment 0.0038728149/ 7.13

VC Storage Notarization CP-side

(startNotarization (type1))

0.0002839865/0.53

VC Storage Notarization User-side

(confirmNotarization (type1))

0.0002219084/0.41

Policy Set/Change Notarization CP-side

(startNotarization (type2))

0.0002840931/0.53

Policy Set/Change Notarization User-side

(confirmNotarization (type2))

0.0002219904/0.41

Service Request Notarization CP-side

(confirmNotarization (type3))

0.0002841874/0.53

Service Request Notarization SP-side

(confirmNotarization (type3))

0.0002221954/0.41

Note: VC—Verifiable Credential, CP—Ciphertext-Policy, SP—

Service Provider.

We observe that all operations, apart from smart contract deploy-

ment, require less than 0.55 USD. Moreover, startNotarization
operations require essentially the same cost regardless of the type (i.e., 
0.41 USD). Similarly, the confirmNotarization operations also re-

quire the same cost regardless of the type (i.e., 0.53 USD). The deploy-

ment of the smart contract requires 7.13 US dollars, but it is performed 
just once.

Actually, these prices may vary over time according to two (corre-
lated) factors:
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Fig. 21. Timeline of execution of our protocol.
Fig. 22. USD cost over time for smart contract management.

1. The ETH to USD exchange rate;

2. The current gas price to invoke the functions and deploy the smart 
contract.

In Fig. 22, we present the cost trends from January 1, 2023, to De-

cember 1, 2023, indicating the deployment cost of the smart contract 
and the costs associated with the startNotarization and con-
firmNotarization operations.

We observe that no appreciable difference exists for startNota-
rization and confirmNotarization operations. The deployment 
cost reaches a peak of about 10 USD, but it is below 6 USD for the 
majority of the time.

Based on these observations, we can conclude that our solution is 
easily implementable, fast to execute, and cheap.

8.3. Choice of Ethereum blockchain

In this paper, we based our solution on the public Ethereum 
blockchain. In general, when dealing with public blockchains, one 
drawback is associated with the cost. It might be worthwhile to con-

sider implementing our solution on a permissioned blockchain, such as 
Hyperledger Fabric (HLF), to achieve cost savings.

However, for research purposes, we decided to place ourselves at 
the greatest disadvantage (public blockchain) to prove that, even in this 
case, the costs are affordable (we analyzed this in Section 8.2) and that 
we do not suffer from confidentiality problems (see Section 9) inherent 
to the public nature of Ethereum (in other words, we proved that it is 
possible to find suitable cryptographic countermeasures to work in a 
public environment).

Our design can be easily moved to HLF (with proper adaptations), 
but we argue that having demonstrated that the solution is feasible 
even in the context of public blockchains is an added value of our re-
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search. Moreover, in a practical adoption of our solution, the choice 
of Ethereum instead of HLF (public vs. permissioned) may be required, 
due to the higher level of assurance in terms of immutability given by 
public blockchains. We recall that, indeed, that in our solution, the role 
of lawful notarization is central. It is widely accepted that this function 
is better accomplished with public blockchains instead of permissioned 
ones. Moreover, in a practical application of our solutions, it is not clear 
which parties should play the “super” role of the orderers and endorsers 
nodes required by HLF in such a way that collusion is improbable and 
there is sufficient independence with respect to Trusted Third Party 
(TTP).

Based on the above considerations, we can claim that Ethereum rep-

resents a valid option in terms of security and efficiency for practical 
adoption.

9. Security analysis

In this section, we provide a security analysis of the protocol pre-

sented in Section 7.

We start by introducing the following assumptions.

A1: The cryptographic primitives used in the protocol are secure.

A2: 𝑃𝐾𝐺 is a TTP.

A3: 𝐼𝐼 and 𝐴𝐼s are honest-but-curious, i.e., they perform honestly the 
steps of the protocol, but they try to steal information about users 
and service providers. In addition, they can collude with each other 
and with other entities to gather information (but without deviat-

ing from protocol specifications).

A4: 𝐶𝑃 is honest-but-curious as defined in A3, but no collusion is al-

lowed for 𝐶𝑃 .

The other actors (users and service providers) are considered mali-

cious.

We discuss the plausibility of the assumptions.

A1 is a basic assumption. Specifically, it simply means that the 
CP-ABPRE scheme, the cryptographic hash function 𝐻 , the symmet-

ric encryption scheme (𝐸, 𝐷), and the asymmetric encryption/signature 
schemes used in the Ethereum and the IPFS are robust. Obviously, these 
primitives are adopted in several real-life contexts, and their security is 
well-documented in the literature.

Assumption A2 is a standard assumption done in any existing CP-

ABPRE scheme. The presence of this TTP is necessary for the delivery 
of private keys. However, it cannot forge any credentials. We argue 
that in the scenario that we are considering in our paper, in which the 
identity of citizens is managed and government parties can be involved, 
it is realistic to assume that some parties can play a similar role.

Concerning A3, observe that 𝐼𝐼 and 𝐴𝐼s are entities already in-
cluded in the SSI architecture as TTPs. Since in real-life applications, 
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𝐼𝐼 and 𝐴𝐼s may (also partially) coincide, we assume that they collude 
passively (by exchanging information) between them. Furthermore, we 
allow them to collude passively with other entities.

However, A3 also requires that 𝐼𝐼 and 𝐴𝐼s do not collude actively

(by deviating from the protocol) with other entities. For example, we 
exclude the case in which an 𝐴𝐼 releases a fake attribute to a service 
provider to satisfy a policy. Obviously, in traditional SSI, an issuer re-

leasing a fake VC allows the user to access a service even though they 
are not authorized. Therefore, some level of trust is normally required 
of issuers.

Finally, regarding A4, again, it is the standard assumption of all the 
CP-ABPRE solutions. As discussed in Section 4, the presence of a proxy 
is a price to pay to achieve our security requirements.

Now, we discuss the Security Properties guaranteed by our solution.

From now on, we use the term Operation to refer to one of the follow-

ing operations: VC Storage, Policy Setting/Change, or Service Request. 
Furthermore, we use the term Information (associated with the Opera-

tion) to refer to the content stored (in hashed form) on the blockchain 
during a given Operation. Specifically, the Information associated with 
the VC Storage Operation is (𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖), the Information asso-

ciated with the Policy Setting/Change Operation is (𝑙𝑖||𝑅𝐾𝑙𝑖
), and the 

Information associated with the Service Request Operation is 𝑊 .

We guarantee the following Security Properties.

SP1: No entity, except for a service provider satisfying the policy cho-

sen by a user, can access the content of the VCs stored by the user. 
(Confidentiality).

SP2: No entity, except for 𝐶𝑃 , is able to know if a user or a service 
provider performs an Operation(Privacy).

SP3: The collaboration between 𝐶𝑃 and 𝐼𝑃 allows us to prove that an 
Operation (with the associated Information) has been performed 
by a user or a service provider. On the other hand, a user or a 
service provider can prove that an Operation (with the associated 
Information) is acknowledged by 𝐶𝑃 (Accountability).

SP4: No Operation not actually performed can be attributed to a user, 
a service provider, or 𝐶𝑃 (No Fake Attribution).

We discuss the meaning of Security Properties.

SP1 is about the confidentiality of the VCs. Only an authorized ser-

vice provider can access the VCs of a user.

SP2 is about privacy. It is desirable that no entity can know if a 
user or a service provider performs a given Operation. This property is 
guaranteed for all entities except for 𝐶𝑃 .

This limitation is compensated by the benefits in terms of reduc-

tion of the computational and storage resources required client-side and 
the accountability guarantees that the introduction of 𝐶𝑃 provides (see 
Section 1).

SP3 is important when it is necessary to prove to an agent authorized 
by the law that a given Operation (with the associated Information) is 
performed by a user or a service provider. In this case, the collaboration 
between 𝐼𝐼 and 𝐶𝑃 can disclose the identity of the user. SP3 also 
regards the possibility of proving to the agent that 𝐶𝑃 has taken charge 
of a given Operation.

Finally, SP4 is related to SP3 and regards the fact that an Operation 
cannot be attributed to a user who did not perform it. For example, 𝐶𝑃

cannot invent that a service provider has the required access to some 
users’ VCs.

At this point, we show that the above properties are guaranteed in 
our solution.

We start from SP1. Due to Assumption A2, we do not consider 𝑃𝐾𝐺

as an adversary.

Consider a 𝑉 𝐶(𝑓 ) stored by the user 𝑢 with policy  . Due to As-

sumption A1, the symmetric encryption scheme cannot be broken; thus, 
the only way for the adversary to access 𝑉 𝐶(𝑓 ) is to recover the sym-

metric key 𝑘𝑓 . Such a key is encrypted by 𝑢 with CP-ABPRE under the 
18
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of 𝑢 to be satisfied and since the CP-ABPRE scheme is secure by A1, 
only 𝑢 can decrypt 𝑠𝑓 . Therefore, there is no way for the adversary to 
recover 𝑘𝑓 from 𝑠𝑓 . Due to Assumption A4, 𝐶𝑃 performs legally the 
steps of the protocol, then 𝑠𝑓 is re-encrypted under the policy  , ob-

taining 𝑣𝑓 that is sent to the service provider 𝑆𝑃 . Again, due to A1, 𝑣𝑓

can be decrypted by 𝑆𝑃 only if it owns a private key associated with 
attributes that satisfy  . Due to Assumption A3, the attribute providers 
do not collude actively with 𝑆𝑃 by certificating fake attributes. There-

fore, such a private key can be obtained only if 𝑆𝑃 really owns such 
attributes. Thus, SP1 holds.

Now, we consider SP2. It is easy to see that any attacker, except 𝐶𝑃 , 
learns nothing about the Operations performed by users and service 
providers. Indeed, the VC storage and Policy Setting/Change Operations 
performed by a user only involve 𝐶𝑃 . Similarly, the Service Request 
Operation performed by the service provider (on the request of a user) 
only involves 𝐶𝑃 too. However, the Information associated with each 
Operation is stored (in hashed form) on the blockchain. Therefore, an 
external observer (different from 𝐶𝑃 ) can only see the DID (Ethereum 
address) of the user or the service provider performing an Operation but 
it does not know the mapping between such a DID and the real identity. 
Furthermore, since the CP-ABPRE scheme is probabilistic, the elements 
generated by this scheme and stored on the blockchain in hashed form 
(specifically, 𝑠𝑓 , 𝑅𝐾𝑙𝑖

, and the first element 𝑣𝑓 of each pair 𝑤𝑓 ∈ 𝑊 ) 
are not guessable by any attacker (different from 𝐶𝑃 ). This shows that

SP2 holds.

Concerning SP3, when the user/service provider performs an Op-

eration, it generates a transaction from its Ethereum address to the 
smart contract, including the Information associated with this Oper-

ation in hashed form. 𝐶𝑃 can disclose this Information to an agent 
authorized by the law, and 𝐼𝐼 can confirm the mapping between the 
Ethereum address and the real identity of the user/service provider. 
Specifically, consider the VC Storage Operation. 𝑢 generates the trans-

action 𝑇2 from 𝐸𝑡ℎ𝑢, including 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖). 𝐶𝑃 can disclose 
(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓 )||𝑙𝑖) and this proves that, since the signature scheme of 
Ethereum is secure by Assumption A1, the user owning 𝐸𝑡ℎ𝑢 performs 
the above Operation. Finally, 𝐼𝐼 confirms the real identity associated 
with 𝐸𝑡ℎ𝑢. The same reasoning applies to the other two Operations 
(Policy Setting/Change and Service Request). On the other hand, since 
𝐶𝑃 confirms the Operations by storing the associated Information on 
the blockchain, the user/service provider can disclose such Information 
to prove that 𝐶𝑃 has acknowledged it. This proves SP3.

Finally, we consider SP4. Due to A1, no attacker can generate a 
transaction starting from the Ethereum address of another entity. Then, 
we consider the case in which the attacker uses their own Ethereum 
address to attribute an Operation to a user, a service provider, or 𝐶𝑃 . 
Since the Ethereum address of 𝐶𝑃 is public, no fake attribution can 
be done on 𝐶𝑃 . Regarding users and service providers, when 𝐼𝐼 is 
involved in confirming the real identity of the user/service provider 
associated with a given Ethereum address, due to Assumption A3, it 
does not disclose a fake mapping. Therefore, SP4 also holds.

This concludes the security analysis.

10. Conclusion

In this paper, we extend the SSI paradigm by including a CP-ABPRE 
mechanism enabling the control that the verifier (i.e., the service 
provider) has the right to access the claims/credentials submitted by the 
holder. This is a missed point in the current SSI solutions, also regarding 
what the international (European) standards include. The contribution 
of the paper is to highlight the importance of covering this gap and an 
effective way to achieve this result. We obtain a more complex SSI ar-

chitecture that gives the user an increased power of control over their 
information. The fact that our solution requires an intermediary (i.e., 
the consensus provider) should not be viewed as something that di-

verges from the standard disintermediated SSI paradigm. Indeed, it has 

not a conceptual role in the credential-issuing/presenting process, but 
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only a role allowing the user to be relieved by storage and computation. 
The consensus provider does not keep any personal data of the user 
(only some metadata) so that the fundamentals of the SSI paradigms 
basically remain. In contrast, we have an advantage that leverages the 
blockchain that the SSI architecture generally includes per se, which is 
a certain level of accountability, and is very useful in real-life contexts 
in which possible legal disputes can arise. This advantage would not 
have been reached without the presence of the consensus provider.

More importantly, to test the applicability of our solution in real-

life contexts, we provide a prototype of the solution and evaluate its 
performance in terms of computational time and costs to interact with 
the blockchain.
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