
Blockchain: Research and Applications 5 (2024) 100196

Contents lists available at ScienceDirect

Blockchain: Research and Applications

journal homepage: www.journals.elsevier.com/blockchain-research-and-applications

Research Article

How can the holder trust the verifier? A CP-ABPRE-based solution to

control the access to claims in a Self-Sovereign-Identity scenario

Francesco Buccafurri a,∗, Vincenzo De Angelis b, Roberto Nardone c

a University of Reggio Calabria, 89124 Reggio Calabria, Italy
b University of Calabria, 87036 Arcavacata di Rende (CS), Italy
c University of Naples “Parthenope”, 80143 Naples, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Blockchain

IPFS

Self Sovereign Identity

Smart contract

Access control

The interest in Self-Sovereign Identity (SSI) in research, industry, and governments is rapidly increasing. SSI is
a paradigm where users hold their identity and credentials issued by authorized entities. SSI is revolutionizing
the concept of digital identity and enabling the definition of a trust framework wherein a service provider
(verifier) validates the claims presented by a user (holder) for accessing services. However, current SSI
solutions primarily focus on the presentation and verification of claims, overlooking a dual aspect: ensuring
that the verifier is authorized to access the holder’s claims. Addressing this gap, this paper introduces an
innovative SSI-based solution that integrates decentralized wallets with Ciphertext-Policy Attribute-Based Proxy
Re-Encryption (CP-ABPRE). This combination effectively addresses the challenge of verifier authorization. Our
solution, implemented on the Ethereum platform, enhances accountability by notarizing key operations through
a smart contract. This paper also offers a prototype demonstrating the practicality of the proposed approach.
Furthermore, it provides an extensive evaluation of the solution’s performance, emphasizing its feasibility and
efficiency in real-world applications.
1. Introduction

Self-Sovereign Identity (SSI) is an emerging paradigm in digital iden-

tity management, where users, rather than organizations, have com-

plete control over their digital identity and personal data [1]. This
paradigm empowers users to manage their identity independently, uti-

lizing Verifiable Credentials (VCs) issued by trusted entities (issuers)
and stored in personal digital wallets, usually stored locally. These VCs,
when required, are presented as Verifiable Presentations (VPs) to a ver-

ifier for service access. For the sake of simplicity, this paper uses the
terms VCs and VPs interchangeably.

To clarify this concept, consider a practical example in a car-sharing
context:

Example 1.1. Alice needs to rent a car. The car rental company (ver-

ifier) must be sure that Alice has her driving license. Therefore, Alice
must contact the Motor Vehicle Office (issuer) to obtain a driver’s li-
cense attestation (VC) and provide it to the car rental company.

* Corresponding author.

Most existing SSI solutions, as highlighted in the literature [2–4],
mainly focus on the problem of the trust required of the user to obtain
a service. They leverage blockchain technology to check the correctness
of VCs, without compromising personal information. For example, in
Ref. [5], the issuer stores on the blockchain only cryptographic proofs
of the VCs, which do not contain personal information about the users.
These proofs are used by the verifier to check, through cryptographic
mechanisms, that the VCs presented by the user are valid and released
by an authorized issuer.

However, existing solutions primarily focus on trust establishment
for service access, overlooking a critical aspect: ensuring the verifier’s
right to access the user’s VCs. Our paper addresses this dual issue by
posing and answering a fundamental question: “How can the holder
be sure that the verifier is authorized to access users’ VCs?”. In other
words, we want to implement an innovative access control mechanism
within the SSI framework, so that the verifier (which we often call the
service provider) has to prove that it satisfies some requirements before
accessing the VCs of the holder. We argue that this is a relevant problem
in practice because VCs might contain very sensitive data (e.g., health
Available online 4 April 2024
2096-7209/© 2024 THE AUTHORS. Published by Elsevier B.V. on behalf of Zhej
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: bucca@unirc.it (F. Buccafurri).

https://doi.org/10.1016/j.bcra.2024.100196

Received 9 June 2023; Received in revised form 8 January 2024; Accepted 2 April 2
iang University Press. This is an open access article under the CC BY license

024

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/blockchain-research-and-applications
mailto:bucca@unirc.it
https://doi.org/10.1016/j.bcra.2024.100196
https://doi.org/10.1016/j.bcra.2024.100196
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2024.100196&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Buccafurri, V. De Angelis and R. Nardone

data). So the disclosure of such data should be controlled. Hence, the
original contribution of this paper is to integrate an encryption-enforced
access control mechanism into an SSI framework to complete it.

To clarify the main goal of this paper, let us consider the following
example:

Example 1.2. Bob needs a cardiologist appointment at a given hospi-

tal. Bob should provide the hospital with his identity document along
with some medical records previously released by different health facil-

ities, describing his health status. Even though this information (apart
from the identity document) does not represent a credential in the strict
sense, it is needed to obtain the service. Therefore, it plays the role of
the VC in an SSI scenario. While the standard problem is to allow its se-

cure, privacy-preserving, and verifiable presentation, according to our
approach, Bob’s problem also includes being sure that the hospital owns
an accredited cardiology ward before disclosing his data. Metaphori-

cally, we can say that Bob would like to be sure that he does not open
his wallet in front of a thief.

Looking at the previous example, it is rather clear that we can-

not adopt any other access control model than Attribute-Based-Access-

Control (ABAC) [6]. Indeed, access rights can only derive from the
possession of some attributes, and further, we are in an open context
in which subjects are not a priori known. As a matter of fact, the holder
has no reason to allow or deny access to personal data to a specific ser-

vice provider, but they are more interested in protecting their data by
stating attribute-based policies that have to be satisfied to access such
data.

An effective way to implement ABAC is Ciphertext-Policy Attribute-

Based Encryption (CP-ABE) [7]. CP-ABE is a type of public-key encryp-

tion, in which a policy is associated with ciphertext and each user owns
a private key associated with the attributes they own. If such attributes
satisfy the policy, the user can decrypt the ciphertext with the private
key. In our context, the data of the user (i.e., the VCs) can be encrypted
under a given policy and the service providers have to prove to satisfy
such a policy to access them. From the side of the specification of the
policies, our proposal includes an additional abstraction layer, allowing
the definition of policies with hierarchical attributes.

An issue that should be taken into account is that the user might
own a large amount of data and might want to change the associated
policies very frequently. In this case, the user cannot locally store the
wallet in their device and has to rely on an external database (where
VCs are stored in encrypted form). However, if the user wants to change
the policy of a VC, they would have to download the VC, re-encrypt it
under a new policy, and store it again in the database. This can re-

sult in an excessive effort on the client-side, especially if the user relies
on resource-constrained devices in terms of storage and computational
capabilities.

To solve this, we leverage an extension of CP-ABE, called Cipher-

Policy Attribute-Based Proxy Re-Encryption (CP-ABPRE) [8], which al-

lows a semi-trusted proxy, which we call consensus provider, to transform
a ciphertext encrypted under a given policy into another ciphertext with
a new policy without learning anything about the plaintext.

In our solution, the consensus provider acts as an intermediary in the
communication between the user and the service provider by providing
the latter (if authorized) with all the information needed to access the
VCs. The benefit of the introduction of this intermediary is the reduction
of the client-side effort without threatening the VCs’ confidentiality.

A small price to pay is in terms of privacy since the consensus
provider knows some metadata (but not the content) about the users’
VCs and who is the service provider interacting with the user (but not
the required service).

However, this price is compensated by the above benefit and another
advantage in terms of accountability that our solution offers. Indeed,
the introduction of the consensus provider allows us to notarize some
2

critical operations and to disclose them to an agent authorized by the
Blockchain: Research and Applications 5 (2024) 100196

law in case of need [9,10]. To achieve this, we leverage the smart con-

tracts offered by Ethereum [11], by referring to an integration into an
SSI solution leveraging the Ethereum blockchain.

The contributions of this paper are as follows:

• We propose a user-centric access control mechanism in SSI, pre-

venting unauthorized access to holder credentials.

• The solution integrates CP-ABPRE, Ethereum blockchain, and IPFS,
adhering to W3C standards for credentials and Decentralized Iden-

tifiers (DIDs) [12,13].

• The proposal also offers a notarization mechanism based on smart
contracts to obtain accountability for the relevant operations.

• We provide mechanisms to manage hierarchical attributes in the
CP-ABPRE schemes and solve some practical problems such as the
management of identities as attributes, the inclusion of file labels,
and the setting of a validity time for the policies.

This work significantly extends our preliminary ideas presented in
Ref. [14], offering a detailed architecture, a specific CP-ABPRE scheme
and blockchain application, a prototype, and solutions to practical chal-

lenges not covered in the initial presentation. In this work, we adopt the
Ethereum blockchain and the CP-ABPRE scheme [15] to define a con-

crete way to notarize critical operations through smart contracts and
to develop a prototype of the solution. These aspects are not consid-

ered in the previous work, in which notarization is only mentioned at
a high level, and no validation is provided. Furthermore, in this pa-

per, the architecture is entirely revised by introducing new components
and features. Finally, no improvement in solving practical problems of
CP-ABPRE schemes is mentioned in the previous work.

The structure of this paper is as follows. Sections 2 and 3 review
related literature and provide the necessary technical background. Sec-

tion 4 discusses the motivation behind this work. Sections 5 and 6 delve
into managing CP-ABPRE schemes’ practical aspects. The proposed solu-

tion is then detailed in Section 7, with its security analyzed in Section 9.
A prototype and performance evaluation are presented in Section 8. Fi-

nally, Section 10 ends the paper by drawing final remarks.

2. Related work

In this section, we explore the relevant literature on SSI-based so-

lutions. Furthermore, we introduce the techniques of attribute-based
encryption employed in this paper to implement an attribute-based ac-

cess control mechanism.

2.1. Self-Sovereign Identity

In the European Union, the General Data Protection Regulation
(GDPR) [16] addresses the management of personal data and aims to
provide users with full control and rights over their data. The compli-

ance of the SSI paradigm with GDPR [17,18] makes it very attractive
for governments and business enterprises. In particular, some domains
that will benefit from the SSI paradigm are the healthcare [19,20] and
the industrial IoT [21].

An interesting survey on the components of an SSI architecture is
provided in Ref. [22]. Currently, several implementations of SSI are
available in the literature [2,3,23–25].

A common element of all the implementations is that they are based
on blockchain technology [26,27].

For example, uPort [2] is an identity management system which im-

plements the SSI paradigm and is based on the Ethereum blockchain
[11], in which an identity is a simple smart contract. The uPort project
has evolved into the Veramo project [28], a JavaScript framework that
makes it easier to implement SSI solutions that are fully compliant with
the W3C standard in terms of the format of DIDs and verifiable creden-
tials [12,13]. Veramo also supports the Ethr-DID library [29], which

Blockchain: Research and Applications 5 (2024) 100196F. Buccafurri, V. De Angelis and R. Nardone

Table 1

Comparison table.

Proposal Trust in

the holder

Trust in

the verifier

Trust in

the issuer

Access control

mechanism

Implementation

available

Blockchain adopted

[3] yes no yes N/A yes Hyperledger Indy

[28] yes no no N/A yes Ethereum

[30] yes no no N/A yes Ethereum

[31] yes no no N/A yes Ethereum

[32] yes no no N/A yes Hyperledger Indy

[34] (Non-SSI) no yes N/A Mandatory no N/A

[35] (Non-SSI) no yes N/A Mandatory no N/A

[36] yes no yes N/A yes Hyperledger Besu /

Ethereum

Our proposal yes yes no ABAC yes Ethereum
allows Ethereum addresses to be used as fully self-managed DIDs that
comply with the W3C specification.

Other solutions using the Ethereum blockchain can be found in Refs.
[30,31]. Although several types of blockchain can be adopted in our
solution, we also rely on Ethereum in order to provide a practical im-

plementation.

On the other hand, other solutions, such as Refs. [3,32], use a per-

missioned blockchain.

Due to its accountability features, blockchain remains the prevalent
approach to implementing SSI-based solutions. However, recent promis-

ing approaches, such as Ref. [33], trace the road towards the adoption
of Peer-to-Peer (P2P) solutions not relying on blockchain. The advan-

tage of Ref. [33] is that it does not require blocks, chains, or miners
to provide the proofs for P2P transactions. It is also advantageous in
terms of scalability and throughput. However, it is still not clear how to
apply this approach in the SSI framework and in particular, how to re-

place the role of smart contracts. In future work, we plan to study the
possibility of transforming our solution into a blockchain-free version.

All the above solutions focus on the problem of the trust required of
the user to obtain a service. To the best of our knowledge, no proposal
in the literature deals with the problem of the trust required of the
service provider to obtain users’ credentials and data.

Some similarities with our work, in terms of objectives to reach, can
be found in Ref. [34], in which the authors proposed a personal data
management system, which uses blockchain as an automated access-

control manager. Anyway, this proposal is not tailored to the SSI con-

text. Furthermore, the access control mechanism is totally different
from ours. Indeed, in Ref. [34], the user knows the service provider
and defines the data it can access to. In our setting, the user does not
know in advance the service provider and wants to be sure that it satis-

fies some requirements.

Similar considerations can be made for Ref. [35], in which a
blockchain-based information management system to handle medical
records is provided. Anyway, the access control mechanism is for spe-

cific users known by the owner of a file and no attributed-based policy
can be set.

Finally, we highlight a very recent paper [36] focusing on another
relevant aspect that is not treated in standard SSI approaches. In partic-

ular, the current paradigm suffers from trust issues between the verifier
and the issuer of a verifiable credential. Then, Salve et al. [36] proposed
a new multi-layer framework that exploits the web of trust concept to
solve this problem. This aspect is also partially treated in Ref. [3] in
which the authors provided a quantitative model for computing reputa-

tion scores for issuers.

To conclude this section, in Table 1, we summarize the solutions
discussed in this section and compare them with our approach in terms
of 6 features. Specifically, we consider:

1. Trust in the holder, i.e., the verifier is able to trust the holder. This
is the standard objective of SSI.

2. Trust in the verifier, i.e., the holder is able to trust the verifier. This
3

is the objective of this proposal.
3. Trust in the issuer, i.e., the verifier is able to trust the issuer.

4. Access control mechanism adopted to trust the verifier.

5. Availability of a code implementation of the solution.

6. Blockchain adopted to implement the solution.

From the table, it arises that our proposal is the first SSI-based ap-

proach achieving trust in the verifier with the ABAC mechanism.

2.2. ABE for access control

In this paper, we implement an ABAC [6] mechanism, by exploiting
Attribute-Based Encryption (ABE) [37].

ABE represents a generalization of the standard public-key encryp-

tion. It is based on attributes and policies: if a policy is satisfied by a
set of attributes, decryption is allowed. In the literature, ABE schemes
are divided into two categories: Key-Policy ABE (KP-ABE) and CP-ABE.
In KP-ABE, a ciphertext is labeled with a set of attributes (character-

izing the ciphertext itself), and a user receives a private key with an
embedded policy. The policy defines which types of ciphertext the user
can decrypt. On the contrary, in CP-ABE, the policy is associated with
the ciphertext while the attributes are associated with the private key
of the user. In this paper, we refer to the latter. The first ABE scheme
has been proposed in Ref. [37]. Actually, Sahai and Waters [37] pre-

sented a new type of Identity-Based Encryption (IBE) called Fuzzy-IBE
(FIBE) in which the identities of the users are represented by sets of
attributes. In particular, a user owns a private key associated with the
attributes 𝑤. Similarly, the ciphertext is encrypted with attributes 𝑤′

and it can be decrypted if |𝑤
⋂

𝑤′| > 𝑑, where 𝑑 is an appropriate
threshold. This approach is suitable for biometric applications since it
allows a sort of error tolerance. The first KP-ABE and CP-ABE schemes
have been proposed in Ref. [38] and Ref. [7], respectively. In both pro-

posals, the policies are expressed as monotonic access trees where the
leaves represent attributes and the internal nodes are threshold gates.
This allows the users to set very expressive policies including AND and
OR connectives. Successively, several improved schemes (KP-ABE and
CP-ABE) have been proposed [39–42]. For example, in Refs. [40,42],
the authors proposed CP-ABE and KP-ABE schemes, respectively, where
the length of the ciphertext is constant and does not depend on the
number of attributes. An interesting CP-ABE scheme where the policy
is hidden to a potential decryptor is discussed in Ref. [41]. This way,
regardless of the satisfaction of a policy, they learn nothing about the
policy itself from the ciphertext except the fact that they are or are not
able to decrypt the data.

The disadvantage of ABE schemes is that they are based on pairing-

based cryptography [43], which is time-expansive [44]. To solve this,
alternative solutions [45,46] propose ABE schemes without pairing.
These solutions appear suitable for the IoT, where constrained devices
cannot perform high-intensive computations.

Parallel to the development of ABE, other advanced cryptography
schemes, called Proxy Re-Encryption (PRE) schemes, have emerged in
Ref. [47]. In PRE, a user delegates a semi-trusted proxy intended for

them to re-encrypt a ciphertext into another ciphertext for a different

F. Buccafurri, V. De Angelis and R. Nardone

user. The main advantage of this approach is that the user saves the
computational effort to re-encrypt the ciphertext, but the proxy learns
nothing about the content of this latter. The first PRE scheme is intro-

duced in Ref. [47]. However, this scheme is bidirectional (if the proxy
is able to re-encrypt a ciphertext from Alice to Bob, it is also able to
re-encrypt a ciphertext from Bob to Alice) and transitive (if the proxy
is able to re-encrypt a ciphertext from Alice to Bob and from Bob to
Charlie, it is able to re-encrypt a ciphertext from Alice to Charlie). An
interesting discussion about the properties that a PRE scheme should
guarantee is presented in Ref. [48].

Successively, more efficient and secure solutions have been pro-

posed in Refs. [48–50].

PRE approaches can be integrated with ABE to obtain Attribute-

Based Proxy Re-Encryption (ABPRE) [51]. In this paper, we focus our
attention on CP-ABPRE where the re-encryption procedure consists of
replacing the policy associated with a ciphertext with a new policy.
The first CP-ABPRE scheme is presented in Ref. [8] and supports AND
gates between positive and negative attributes. Then, other works have
been proposed [15,52,53]. Further details are provided in Section 3.3,
in which we investigate the CP-ABPRE schemes available in the litera-

ture and select the scheme for our proposal.

We observe that ABE schemes, possibly in combination with proxy
re-encryption, have been extensively used in the literature to implement
ABAC [38,54–59] but not within a blockchain-based SSI architecture.

3. Background

In this section, we provide the technical background useful for the
comprehension of the rest of this paper.

3.1. Self-Sovereign Identity (SSI)

We provide a brief overview of the SSI approach. We do not aim
to be exhaustive since SSI is a very broad topic in which several im-

plementations are possible. Therefore, we focus our attention only on
the aspects and implementations relevant to our purpose and show how
these concepts are adopted in our proposal.

In SSI, each user (also called the holder) generates and maintains
some DIDs, which they use to interact with other entities. This allows
users to have full control of their identity (and of their data) without
requiring the collaboration of a trusted third party such as an identity
provider.

A VC is a set of claims about a subject that represent information
issued by a certain authority. Such authority is called the issuer. At a
high level, according to the W3C specifications [12,13], a VC includes
three sections:

• VC’s metadata (e.g., date of issue, expiration date, state of the cre-

dential, and so on);

• VC’s claims about the subject;

• Proof, i.e., the digital signature made by the issuer of the credential.

The VCs are stored by the holder in a digital wallet. The holder can
prove something about themselves by presenting a Verifiable Presenta-

tion (VP) to a verifier that consists of data derived from one or more
VCs. VCs often coincide with VPs.

As a standard technology, the DIDComm [60] protocol is used to
exchange the credentials between the issuer and the holder and between
the holder and the verifier.

Blockchain technology is largely adopted in SSI. Indeed, when the
issuer releases the VCs to the user, it also stores cryptographic proofs
of the VCs on the blockchain. These proofs do not contain any personal
information about the user but can be used by the verifier to check
the correctness of the VPs. This way, the issuer is not directly involved
in the process when the user contacts the verifier. Furthermore, it is
4

the user who chooses the information to disclose to the verifier. The
Blockchain: Research and Applications 5 (2024) 100196

Fig. 1. Self-Sovereign Identity (SSI) paradigm.

blockchain also stores the DID documents. Each DID points to a DID
document that contains a set of data describing the DID subject, includ-

ing mechanisms, such as cryptographic public keys, that the DID subject
or a DID delegate can use to authenticate itself and prove its association
with the DID [12].

On the contrary, in a traditional identity management model, an
identity provider is involved during the user’s request to the verifier
by disclosing the information on behalf of the user. This leads to an
unnecessary privacy leakage since the identity provider discovers that
the user has required a certain service from a certain verifier. In the SSI
model, the role of the identity provider is reduced to that of an identity
issuer that releases some information about the identity of the user but
does not manage it.

Another advantage of the blockchain is that it represents a natural
way to generate DIDs. Indeed, blockchain addresses can be generated
and exploited by users as DIDs [29]. Furthermore, each user can gener-

ate as many blockchain addresses as they need and use them to perform
independent requests.

Anyway, when blockchain addresses are used as DIDs, a linkage
between the real identity and the DID may be necessary [61], other-

wise the user may repudiate the ownership of such DIDs. This happens,
for example, when the juridical regulation requires that the parties in-

teracting with the user know who actually the user is. Furthermore,
under certain circumstances, the accountability of some critical opera-

tions performed by the user is required so that an agent authorized by
the law (also with the collaboration of some entities) can identify the
user.

The mapping between the DID and the real identity of the user can
be guaranteed by a certification authority.

To certify such a mapping, there are some ways. For example, the
user could generate a transaction from their blockchain address contain-

ing a challenge provided by the certification authority. Alternatively,
the user can sign a message with the private key corresponding to the
public key associated with their blockchain address.

In our application, the certification authority coincides with an iden-

tity issuer [61] (who already knows the real identity of the user). In
particular, by adopting the SSI principles, after verifying the mapping
between the Ethereum address and the real identity of a user, the iden-

tity issuer releases a VC to the user, certifying the ownership of the
blockchain address.

However, the identity issuer alone should not be able to know the ac-

tions performed by the user, but only with the collaboration of another
entity willing to prove to a legal authority that the user performed a
given action. This aspect is better discussed in Section 9.

In this paper, we refer to a service provider (playing the role of
verifier), an identity issuer, and a set of attribute providers (playing the
role of attribute issuers).

A high-level representation of the SSI paradigm is represented in

Fig. 1.

F. Buccafurri, V. De Angelis and R. Nardone

3.2. Ciphertext-policy attribute-based proxy re-encryption (CP-ABPRE)

CP-ABPRE is a public-key encryption scheme that allows a semi-

trusted proxy to transform a ciphertext encrypted under a given policy
into another ciphertext under a different access policy without learning
anything about the plaintext. We introduce the following definitions.

Definition 3.1 (Access structure [62]). Let {𝑃1, 𝑃2… , 𝑃𝑛} be a set of
parties. A set 𝔸 ⊆ 2{𝑃1 ,𝑃2…,𝑃𝑛} is monotone if ∀𝐵,𝐶 : if 𝐵 ∈ 𝔸 and 𝐵 ⊆

𝐶 then 𝐶 ∈ 𝔸. An access structure (monotone access structure) is a
set (monotone set) 𝔸 of non-empty subsets of {𝑃1, 𝑃2… , 𝑃𝑛}, i.e., 𝔸 ⊆
2{𝑃1 ,𝑃2…,𝑃𝑛} ⧵ {∅}. The sets in 𝔸 are called the authorized sets, whereas
the other sets are called the unauthorized sets. 𝔸 is also called policy.

Definition 3.2. A CP-ABPRE scheme consists of the following algo-

rithms:

1. Setup(𝑘): This algorithm receives a security parameter 𝑘 and re-

turns a public parameter 𝑃𝐾 and a master secret key 𝑀𝑆𝐾 .

2. Encrypt(𝑃𝐾, 𝑀, 𝔸): This algorithm encrypts a message 𝑀 under
the policy (access structure) 𝔸 by using 𝑃𝐾 . It outputs a ciphertext
𝐶𝑇 , which can be decrypted only by a user who owns the attributes
that satisfy 𝔸.

3. KeyGen(𝑀𝑆𝐾, 𝑆): This algorithm takes as input a set of attributes
𝑆 and the master secret key 𝑀𝑆𝐾 . It outputs a private key 𝑆𝐾

associated with 𝑆 .

4. Decrypt(𝐶𝑇 , 𝑆𝐾, 𝑃𝐾): This algorithm takes as input a public pa-

rameter 𝑃𝐾 , a private key 𝑆𝐾 associated with a set of attributes
𝑆 , and a ciphertext 𝐶𝑇 encrypted under an access structure 𝔸. If
𝑆 satisfies 𝔸, then the algorithm outputs a plaintext 𝑀 .

5. ReKeyGen(𝑃𝐾, 𝑆𝐾, 𝔸′): This algorithm takes as input a private key
𝑆𝐾 associated with a set of attributes 𝑆 and an access structure 𝔸′.
It outputs a re-encryption key 𝑅𝐾 that can be used, by a proxy, to
re-encrypt a ciphertext 𝐶𝑇 , encrypted under a policy 𝔸, into a new
ciphertext 𝐶𝑇 ′ encrypted under the policy 𝔸′. The re-encryption is
allowed only if 𝑆 satisfies 𝔸.

6. ReEncrypt(𝑃𝐾, 𝐶𝑇 , 𝑅𝐾): This algorithm uses a re-encryption key
𝑅𝐾 to re-encrypt a ciphertext 𝐶𝑇 , encrypted under a certain pol-

icy, into another ciphertext 𝐶𝑇 ′ under a new policy.

Moreover, a trusted third party, called Private Key Generator
(PKG), is also present. The PKG invokes Setup(𝑘) to obtain 𝑃𝐾 and
𝑀𝑆𝐾 . It shares 𝑃𝐾 with all the users and keeps 𝑀𝑆𝐾 secret.
Finally, another entity, called the proxy, has the role of invoking
ReEncrypt(𝑃𝐾, 𝐶𝑇 , 𝑅𝐾) and changing the policy associated with the
ciphertexts.

The scheme works as follows.

Consider two users Alice and Bob. Suppose that Alice wants to en-

crypt a file 𝑓 so that only the users satisfying a policy  can decrypt
it. She invokes 𝐶=Encrypt(𝑃𝐾 ,𝑓 ,) and sends 𝐶 to the proxy that
manages Alice’s files without accessing their content. If Bob wants to
access the file 𝑓 , he first contacts the PKG to obtain a private key as-

sociated with his attributes 𝑆 . The PKG verifies that Bob really owns
such attributes (often this step requires the collaboration of some at-

tribute providers), invokes 𝑆𝐾𝐵=KeyGen(𝑀𝑆𝐾 ,𝑆), and provides Bob
with 𝑆𝐾𝐵 . If the set 𝑆 satisfies the policy  , Bob asks the proxy for 𝐶
and accesses the file 𝑓 =Decrypt(𝐶 ,𝑆𝐾𝐵 ,𝑃𝐾).

Until now, we have seen only the ABE part of the ABPRE scheme,
and the proxy plays just the role of a simple database storing Alice’s
data.

Now, suppose that Alice wants to change the policy associated with
the file 𝑓 from  to  ′. She can download the encrypted file from the
proxy, decrypt it, re-encrypt it under  ′, and upload the file again on
the proxy. However, if she owns many files and/or the policy changes
are frequent, the encryption/decryption operations (and also down-
5

load/upload) may result in prohibitive costs, especially in the case of
Blockchain: Research and Applications 5 (2024) 100196

resource-constrained devices. Therefore, Alice generates a re-encryption
key 𝑅𝐾 =ReKeyGen(𝑃𝐾, 𝑆𝐾𝐴,  ′), where 𝑆𝐾𝐴 is the private key as-

sociated with Alice’s attributes (in this example, we suppose that Al-

ice satisfies the policy ), and sends it to the proxy. When another
user (possibly, Bob) contacts the proxy to obtain 𝑓 , the proxy invokes
𝐶 ′=ReEncrypt(𝑃𝐾, 𝐶, 𝑅𝐾) and sends 𝐶 ′ to the user. The user can re-

trieve 𝑓 only if they own a private key satisfying the policy  ′ .
To conclude this section, we observe that when CP-ABPRE is applied

in real-life contexts, there are some issues that need to be considered.

1. First, consider another user, Charlie, who stores a file 𝑓 ′ with the
same policy  chosen by Alice. If he provides a re-encryption key
to the proxy to change the policy of 𝑓 ′ from  to  ′′, the proxy
can use this key to change the policy associated with the file 𝑓 of
Alice. This issue is analyzed in Section 6.1.

2. A similar problem occurs if Alice encrypts multiple files under 
and wants to change the policy of just some of them. Once the re-

encryption key is obtained, the proxy can change the policies of
all the other files of Alice encrypted under the same policy. Even
though in some cases this can be considered a positive feature of
the system (since Alice can provide a single re-encryption key for
many files), we are interested in providing a mechanism such that
Alice can avoid the re-encryption of non-intended files even under
already used policies. This issue is analyzed in Section 6.2.

3. Another issue to solve is that a policy should have a time validity, in
such a way that a file can be accessed only during a time window.
This issue is analyzed in Section 6.3.

4. Finally, a mechanism to manage hierarchical attributes is desirable.
This aspect is addressed in Section 5.

3.3. Selection of the CP-ABPRE scheme

Our solution requires the application of a CP-ABPRE scheme to im-

plement the access control mechanism. Even though our solution works
with any underlying scheme (also by applying the approaches discussed
in Sections 5 and 6), we investigated the literature and selected a spe-

cific scheme (i.e., Ref. [15]) to provide a more concrete proposal. Fur-

thermore, we also provide our Java implementation of such a scheme
and integrate it in a complete prototype described in Section 8.

The Ref. [15] is widely referred to in the literature. The scheme
therein presented supports any monotonic access policy represented by
an LSSS matrix (𝑀, 𝜌) [62,63], where 𝑀 is a matrix and 𝜌 is a map-

ping between the rows of 𝑀 and a set of attributes. There are two
issues to take into consideration when using this scheme. The first is
that it does not support policies with negation. This is not a limita-

tion in our setting. Indeed, the satisfaction of a negative attribute, in
practice, would be implemented according to a closed-world assump-

tion (otherwise, it would be infeasible for a PKG to test the universe
of attribute providers). Therefore, an attribute not provided by the user
would be satisfied if negated. This would be clearly incorrect for practi-

cal purposes. If we want to require that an attribute is not fulfilled by a
user (e.g., no criminal conviction), we set a positive attribute with this
meaning.

The second issue is that, in this scheme, the re-encryption re-

quires that the old access structure (𝑀, 𝜌) and the new access structure
(𝑀 ′, 𝜌′) are disjoint, i.e., if an attribute 𝑥 satisfies (𝑀, 𝜌), then 𝑥 does
not satisfy (𝑀 ′, 𝜌′). This is not suitable in several real scenarios where
the policies have slight changes (e.g., only a new attribute is required
or a single attribute is no longer required).

However, as it will be clear in Section 7, in our solution, the re-

encryption is done from a policy including only the identity of the user
and a label (see Section 6) to a new policy requiring some attributes to
a service provider. Therefore, the two associated access structures are
always disjoint.

The main advantages of this scheme are: (1) it uses LSSS matrix that

allows very expressive policies, and (2) the performance (the size of

F. Buccafurri, V. De Angelis and R. Nardone

keys and ciphertext and the number of computations) does not depend
on the size of the attribute universe.

Now, we see the other possible schemes. The schemes in Refs. [8,52]

allow only policies with AND connectives between positive and nega-

tive attributes, thus less expressive policies. Furthermore, their perfor-

mance depends on the size of the attribute universe. The scheme in Ref.
[53] is, basically, very similar to that in Ref. [15]. In Ref. [64], a cipher-

text is associated with an attribute-based access structure and an access
time that defines when a user can access the data. This is an interest-

ing feature, and we implement it through the mechanism described in
Section 6.3. Unfortunately, in the Ref. [64] scheme, the re-encryption
regards only the access time and not the attribute-based access struc-

ture.

Other schemes in Refs. [65,66] do not meet our requirements.

4. Motivation

In this section, we explain the rationale of our proposal by highlight-

ing the advantages we achieve with respect to a standard solution. The
idea at the basis of our proposal is that the holder is able to check if
some credentials of the verifier are compliant with self-defined access
control policies.

Our solution extends the standard SSI paradigm by introducing new
actors and new mechanisms. Basically, they are listed as below.

• A distributed wallet (instead of the standard client-side wallet) that
gathers all encrypted verifiable credentials. The symmetric key en-

abling their decryption is generated by the user and encrypted with
an ABPRE scheme to embed access control policies.

• A consensus provider whose role is twofold: (1) eliminating direct
interaction between the holder and the verifier until trust is estab-

lished and (2) implementing accountability for relevant actions by
the holder and the verifier.

To achieve the objective (1), the consensus provider delivers sym-

metric keys (using re-encryption) to the verifier. We observe that,
due to the proxy-re-encryption mechanism, the consensus provider
has no additional rights to access symmetric keys beyond those al-

lowed by embedded access control policies. Concerning objective
(2), the consensus provider interacts with a smart contract (that
we will mention below) to notarize some relevant actions of the
holder and the verifier without compromising their privacy. It is
worth noting that the presence of the consensus provider seems
to move us away from the SSI principles. This is true, but, as ex-

plained below, this is a necessary price we have to pay to achieve
our goals.

• A smart contract, whose functions are invoked by the holder, the
verifier, and the consensus provider, notarizes the relevant actions
performed by the various actors, thus achieving the aimed account-

ability features.

The main objective of our extended SSI architecture is to empower
the holder with greater control over their data, aligning seamlessly with
the principles of SSI. This enhanced control is achieved through two in-

terrelated mechanisms. First, the implementation of an access control
mechanism restricts access to the holder’s data solely to authorized and
trusted parties. Second, accountability plays a crucial role by providing
the holder with digital (forensic) proofs. These proofs enable verifica-

tion of whether data access aligns correctly with the established access
policies.

To underscore the significance of accountability, it is important to
note that in standard SSI, an untrusted verifier receiving verifiable cre-

dentials could potentially share them with unauthorized parties. In the
absence of accountability mechanisms, the holder lacks control over
such data leakage in traditional SSI frameworks.

Now we show that our extended SSI architecture is necessary to
6

achieve the general objective described above. In other words, we ar-
Blockchain: Research and Applications 5 (2024) 100196

gue that a standard SSI solution in which the role of the holder and
the verifier is reversed (i.e., the holder requires the verifier’s verifiable
credentials to check if they are compliant with the access control poli-

cies) would not reach the achievement we are looking for and other
advantages of our solution.

First, no accountability mechanism could be implemented (at least
in a trivial way) without the consensus provider. In our solution, we
reach accountability, addressing the concern of unauthorized forward-

ing of credentials by using a smart-contract-based approach that relies
on the presence of a distributed wallet, to access to which no action is
required with the holder. An additional point is that in scenarios where
access control is managed locally by the user (as is the case with a
standard wallet), relevant information such as policy changes may lack
accountability. In contrast, our approach using the smart contract and
the distributed wallet ensures accountability even for policy changes,
providing a more comprehensive and secure solution.

Second, for the exchange of verifier credentials with the holder, the
establishment of a secure channel, typically P2P [60], is required. How-

ever, this introduces a potential risk to the holder’s identity, which
should remain undisclosed until the verifier is authorized to receive the
credential. In contrast, our solution eliminates the need for a bidirec-

tional connection. The holder initiates the process by sending a request
to the verifier, possibly through a proxy to conceal their IP address, and
no response is required from the verifier. This approach ensures a more
secure and privacy-preserving credential exchange.

Finally, we address a scenario where a multitude of credentials and
policies may be present. In such cases, it becomes crucial to minimize
the burden on the management of an access control mechanism, espe-

cially considering that the holder device is often a smartphone with
limited computational and memory resources.

5. Hierarchical attributes in CP-ABPRE schemes

One of the contributions of this work is to provide a mechanism
to manage hierarchical attributes. Indeed, this feature is not addressed
directly by any CP-ABPRE scheme available in the literature. For ex-

ample, consider an academic domain in which there are three types of
professors: full, associate, and assistant. Some files may be encrypted
only for full professors, while other files may be encrypted for any kind
of professor. In the first case, the files should be encrypted under the
policy ={Full}. In the second case, the files should be encrypted
under the policy  ′={Full ∨ Associate ∨ Assistant}, where ∨
denotes the OR operator. Anyway, in the latter case, it would be more
practical, for the user encrypting the files, to select a simple policy
 ′′={Professor} equivalent to  ′.

Unfortunately, in the state-of-the-art CP-ABPRE schemes, to support
all the policies  ,  ′, and  ′′ simultaneously, the attribute Professor
has to be maintained separately by the attributes Full, Associate,
and Assistant. This means that the attribute universe should include
four attributes in place of three. Furthermore, each professor should
maintain (in their private key) two attributes (Professor and one
among Full, Associate, and Assistant) in place of a single at-

tribute.

As discussed at the end of this section, the total number of attributes
in the attribute universe and/or maintained (in the private key) by the
users should be as low as possible for efficiency reasons.

It would be desirable to have a CP-ABPRE scheme in which a profes-

sor with just one attribute among the attributes Full, Associate, and

Assistant, can satisfy  ′′ without explicitly maintaining the attribute

Professor.

In this section, we do not have the ambition to provide a new CP-

ABPRE scheme with the above feature. Instead, we provide a way to
allow the user to express a policy with high-level attributes (then, more
declarative), which is automatically translated into a policy with low-

level attributes. Only these low-level attributes will be included in the

attribute universe of the chosen CP-ABPRE scheme.

F. Buccafurri, V. De Angelis and R. Nardone

Fig. 2. Example of Tree 𝑇𝑖 with |𝑇𝑖| = 17.

We see, in detail, how this mechanism works.

Consider a set of attributes 𝐴 = {𝑎1, … , 𝑎𝑛} and a partition 𝑇 =

{𝑇1, … , 𝑇𝑘} of 𝐴 (i.e.,
𝑘⋃

𝑖=1
𝑇𝑖 = 𝐴 and 𝑇𝑖 ∩ 𝑇𝑗 = ∅ with 1 ≤ 𝑖 < 𝑗 ≤ 𝑘).

The set 𝑇𝑖 = {𝑡(𝑖)1 , … , 𝑡(𝑖)|𝑇𝑖|} ∈ 𝑇 is a hierarchical domain arranged as

a Tree, where each attribute 𝑡(𝑖)
𝑗

∈ 𝑇𝑖 represents a node of the Tree.
W.l.o.g., we assume that the element 𝑡(𝑖)1 is the root of the Tree 𝑇𝑖. An
example of a Tree 𝑇𝑖 with |𝑇𝑖| = 17 is depicted in Fig. 2.

Given a node 𝑡(𝑖)
𝑗

∈ 𝑇𝑖, we denote by 𝐶𝑖𝑗 the set of all the children
nodes of 𝑡(𝑖)

𝑗
. Furthermore, with each node 𝑡(𝑖)

𝑗
∈ 𝑇𝑖, we associate a bit 𝑏𝑖𝑗

with the following integrity constraint: 𝑏𝑖𝑗 =
⋁

𝑡
(𝑖)
ℎ
∈𝐶𝑖𝑗

𝑏𝑖ℎ, where the symbol

⋁
denotes the OR operator.

Finally, we define a function Node Policy 𝑃 (𝑡(𝑖)
𝑗
) for each node 𝑡(𝑖)

𝑗
:

𝑃 (𝑡(𝑖)
𝑗
) =

⎧⎪⎨⎪⎩

𝑡
(𝑖)
𝑗
∧ 𝑏𝑖𝑗 , if 𝑡

(𝑖)
𝑗

is a leaf⋁
𝑡
(𝑖)
ℎ
∈𝐶𝑖𝑗

(𝑃 (𝑡(𝑖)
ℎ
) ∧ 𝑏𝑖ℎ), otherwise

where ∧ denotes the AND operator. The policy 𝑃 (𝑡(𝑖)1) (i.e., the policy
of the root of 𝑇𝑖), is called Root Policy.

We define the Tree Policy as 𝑃 (𝑇𝑖) = 𝑃 (𝑡(𝑖)1) ∨ (¬𝑏𝑖1).

Clearly, given a Tree, we can have different Tree Policies according
to the bits associated with the nodes. For example, some possible Tree
Policies for the Tree in Fig. 2 are depicted in Fig. 3.

We define the Total Policy  as the conjunction of all the Tree Poli-

cies:  =
𝑘⋀

𝑖=1
𝑃 (𝑇𝑖).

The Total Policy is in Conjunctive Normal Form.

At this point, we illustrate how a user can leverage the above struc-

ture to define the policies at a high level, with no need to specify
low-level attributes.

We define the following two semantic constraints.

1. A father-child relationship in a Tree corresponds to an Is-A rela-

tionship so that, if a user owns an attribute associated with a node
𝑡 of the Tree, then they implicitly own all the attributes associated
with the nodes in the path from 𝑡 to the root.

2. If a user owns an attribute associated with a non-leaf node, then
they own at least one attribute associated with one of its children
nodes.

Regarding the management of access control, setting a policy means
assigning bits to the nodes of the trees. In detail, each user sets such bits
according to the following operative rules:
7

1. By default, the bits of all the nodes of all the trees are set to 0.
Blockchain: Research and Applications 5 (2024) 100196

2. If a user sets the bit of a node 𝑡 to 1, then all the bits of the nodes
in the path from 𝑡 to the root are set to 1. Moreover, all the bits of
the nodes in the sub-Tree with 𝑡 as root are set to 1.

3. If a user sets the bit of a node 𝑡 to 0, then all the bits of the nodes
in the sub-Tree with 𝑡 as root are set to 0. Moreover, if all bits of
the sibling nodes of 𝑡 (i.e., the nodes with the same parent node)
are set to 0, then the parent of 𝑡 is set to 0 recursively according to
this rule.

Rule (1) implies that, by default, the Total Policy is equal to 1 i.e.,
it is always satisfied. Rules (2) and (3) are sufficient to guarantee the
integrity constraint for each node of the Tree. Actually, regarding Rule
(2), it is not necessary from a logical point of view to set all the bits
of the nodes in the sub-Tree to 1 to guarantee the integrity constraint.
However, this has an impact on the way the policy is expressed. Indeed,
it allows us to set the policy in terms of high-level attributes without
specifying the leaf attributes.

We illustrate how these operative rules work through an example.

Example 5.1. Consider again the academic context described by the
Tree in Fig. 4. Initially, all the nodes have the bits set to 0 (Rule (1)).
If a user wants to set a policy that can be satisfied by any professor,
they simply change the bit only for the attribute Professor, and due
to Rule (2), the bits of the nodes University, Full, Associate, and

Assistant become 1.

We observe that, since the high-level attributes are translated into
the corresponding low-level attributes, the Total Policy includes only
the low-level attributes. Therefore, the used CP-ABPRE scheme only
needs to include, in the attribute universe, the attributes associated with
the leaves of the trees.

We observe that the hierarchical organization of the attributes gives
an advantage in terms of the space required for the universe with re-

spect to the trivial flat enumeration of all possible attributes (including
also high-level attributes). Indeed, the attribute universe can include
only the attributes associated with the leaves of the trees.

This advantage is effective, especially in those schemes, such as
schemes in Refs. [8,52], in which the size of ciphertexts, public keys,
private keys, re-encryption keys, and the computational costs of CP-

ABPRE algorithms increase as the number of elements of the attribute
universe increases.

Furthermore, for the schemes in which the above sizes and com-

putational costs do not depend on the size of the attribute universe
(e.g., Ref. [15]), we have benefits. Indeed, if high-level attributes are
included, for each attribute a user owns, they would maintain all the
ancestor attributes.

In the above example, an associate professor would maintain the
attributes Associate, Professor, and University in their private
key. Therefore, in this case, the size of this key and all the computations
involving such a key increase with respect to the case in which the
professor maintains only the attribute Associate.

6. Identities, label, and time management in CP-ABPRE schemes

Throughout this section, we face the three problems mentioned in
Section 3.2. As in Section 5, we distinguish between the schemes in
which the performance does not depend on the size of the attribute
universe, which we identify by (i), and the other schemes, which we
identify by (ii).

6.1. Identities management

The first treated problem regards the management of the identities
of users.

Our solution requires that the files (i.e., the VCs) are encrypted un-
der a policy that only a specific user 𝑢 (owner of the files) can satisfy,

Blockchain: Research and Applications 5 (2024) 100196F. Buccafurri, V. De Angelis and R. Nardone

Fig. 3. Examples of Root Policies.
Fig. 4. Tree for an academic context.

i.e., a policy requiring the user’s identity as an attribute. This way, the
re-encryption keys used to change the policies of files of other users
cannot be used to change the policies of the files of 𝑢.

For schemes of type (i), the way to accomplish this is straightfor-

ward: just add an attribute 𝐼𝐷𝑢 in the attribute universe for each user
𝑢 of the system. When a user 𝑢 wants to encrypt a file so that only
himself/herself can decrypt it, he/she defines a policy requiring 𝐼𝐷𝑢 to
access the file. Clearly, 𝐼𝐷𝑢 will be included in the private key provided
to 𝑢 by the PKG.

However, this approach is not applicable for schemes of type (ii),
since the cardinality of the attribute universe would be too high. Thus,
for such schemes, we consider a set 𝐼𝐷 = {𝑖𝑑1, 𝑖𝑑2, … , 𝑖𝑑𝑛} and define
the Identity Set 𝐼𝐷𝑆 as the set of all the subsets of 𝐼𝐷 with cardinality
equal to a fixed value 0 < 𝑘 < 𝑛. We denote by 𝐼𝐷𝑢 ∈ 𝐼𝐷𝑆 the iden-

tity of the user 𝑢. Note that 𝐼𝐷𝑥 ⊄ 𝐼𝐷𝑦 for any pairs of users 𝑥, 𝑦. This
is necessary; otherwise, if an identity 𝐼𝐷𝑥 ⊂ 𝐼𝐷𝑦, then the user 𝑦 can
satisfy the policies requiring 𝐼𝐷𝑥. The cardinality of 𝐼𝐷𝑆 is

(𝑛

𝑘

)
. There-

fore, to maximize such a cardinality, we set 𝑘 = ⌊ 𝑛

2⌋. This way, as the
binomial coefficient

(𝑛

⌊ 𝑛

2 ⌋
)

grows exponentially with 𝑛, even small val-

ues of 𝑛 are enough to have very large domains of users. For example,
8

with only 𝑛 = 33 attributes, we represent 2, 333, 606, 220 users.
6.2. Label management

The second treated problem is to have a label associated with the
encrypted files so that the proxy can re-encrypt only the files of a user
with the same label.

For both schemes of types (i) and (ii), we use the same approach.

We add in the attribute universe a set of labels 𝐿 = {𝑙1, … , 𝑙𝑡}, for
a given value 𝑡. For each label 𝑙 ∈ 𝐿, 𝑢 receives, from the 𝑃𝐾𝐺, a
private key including such a label (along with the identity of the user,
as explained in Section 6.1). When 𝑢 encrypts a file, he/she include
his/her identity 𝐼𝐷𝑢 together with a label 𝑙 in the policy of the file
(this makes the use of a given label unique despite the shared set of
labels). Then, 𝑢 generates the re-encryption key for the proxy by using
the private key associated with (𝐼𝐷𝑢, ̄𝑙). This way, the proxy can only
change the policies of the files of 𝑢 associated with 𝑙.

For both schemes of types (i) and (ii), the number of private keys
required is 𝑡 (according to the needs of the user) and each private key
includes just two attributes, that is, the identity of the user and a file
label.

The above mechanism solves the issues described in items 1 and 2
at the end of Section 3.2.

We will return to these aspects in Section 7.

6.3. Time window

The last treated issue is how to set a validity time for the rights of ac-

cess to a ciphertext. This approach is partially inspired by the approach
proposed in Ref. [7], but it is more general and includes some practical
aspects.

In detail, the problem is how to set a time window within which the
files can be accessed.

For schemes of type (i), we include in the attribute universe some
integers corresponding to the UNIX timestamps (they do not need to be
materialized or stored). Specifically, when a user 𝑢 receives a private
key from the PKG, it includes in such a key (as an attribute) the current
UNIX timestamp 𝑡. When another user 𝑦 wants to encrypt a file so that
it can be accessed between 𝑡1 and 𝑡2, it sets a policy in the form  =

{𝑡1 <Time< 𝑡2}. If 𝑡1 < 𝑡 < 𝑡2, 𝑢 can decrypt the file.

F. Buccafurri, V. De Angelis and R. Nardone

As illustrated in Ref. [7], through the connectives “OR” and “AND”,
it is possible to efficiently implement the operation < and > at a small
price to express the UNIX timestamps in binary (thus, the user will re-

ceive a private key by the PKG, including as many attributes as the bits
of the current UNIX timestamp 𝑡).

Regarding schemes of type (ii), the approach is the same, but the
size of the attribute universe would be too high with the inclusion of
the UNIX timestamps. Anyway, in a practical context, we do not need a
time granularity at the level of the second. Therefore, we can lower the
granularity at the level of the day or the month, thus reducing the size
of the attribute universe.

7. The proposed protocol

7.1. Overview of the protocol

We start by providing an overview of the proposed protocol. Each
user is the owner of a set of VCs released by some issuers. We do not
have any requirement in the way in which the VCs are exchanged and
their format. Then, standard technologies such as DidComm [60] (for
the exchange) and JSON-LD (W3C compliant format [13]) should be
adopted.

On the other hand, to implement our solution, the interaction be-

tween the user and the service provider requires some modifications,
while the format of the credential is kept standard.

To satisfy the request of a user, a service provider needs to access
some of their VCs. However, not all VCs are accessible by the service
provider, only those for which it meets a certain policy chosen by the
user. In general, the user does not know which attributes the service
provider owns and which policies it fulfills. The management and en-

forcement of the user’s policies are delegated to a semi-trusted third
party which we call the consensus provider. It acts as an intermediary
in the communication between the user and the service provider by
providing the latter (if authorized) with all the information needed to
access the VCs. The consensus provider is semi-trusted in the sense that
it collaborates in the execution of the protocol, but it is not able to ac-

cess the content of users’ VCs so that confidentiality is guaranteed.

As in standard SSI-based solutions, to certify the possession of some
attributes and identities of users and service providers, our solution
includes some attribute issuers and identity issuers that release some
credentials to users and providers. However, according to the SSI prin-

ciples, they are not involved during the interaction between the user
and the service provider.

Regarding the technologies, we rely on the blockchain to nota-

rize critical operations. To be concrete, we consider the Ethereum
blockchain, which supports smart contracts. Through them, we offer
accountability guarantees by post-mortem detecting anomalous behav-

ior of users, service providers, and consensus providers.

We also consider a distributed wallet in which the VCs are stored in
encrypted form and the consensus provider maintains only some sym-

metric keys encrypted with CP-ABPRE that allow access to the VCs.
Such a distributed wallet is implemented through the InterPlanetary
File System (IPFS) [67], which is a distributed file system in which the
VCs are stored and easily accessible by any involved entity. Ethereum
[29] and IPFS [68] are two technologies supported by the Veramo
project [69,28] adhering to W3C standard. Moreover, as reported in
Ref. [70], “over a dozen of the DID methods registered in the W3C
DID Specification Registries are designed to work with either Bitcoin or
Ethereum”.

Finally, as discussed in Section 3.3, we rely on the CP-ABPRE scheme
[15].

7.2. Notations
9

We introduce the notations we use in the following.
Blockchain: Research and Applications 5 (2024) 100196

• We denote by 𝐸𝑘(𝑀) the application of a symmetric encryption
function (e.g., 3DES or AES) on a message 𝑀 with symmetric key
𝑘.

• We denote by 𝐷𝑘(𝐶) the decryption of a ciphertext 𝐶 with the
symmetric key 𝑘.

• We denote by Setup(𝑧), Encrypt(𝑃𝐾, 𝑀, ), KeyGen(𝑀𝑆𝐾, 𝑆),
Decrypt(𝐶𝑇 , 𝑆𝐾, 𝑃𝐾), ReKeyGen (𝑃𝐾, 𝑆𝐾,  ′), and

ReEncrypt(𝑃𝐾, 𝐶𝑇 , 𝑅𝐾) the algorithms of the selected CP-ABPRE
scheme selected as defined in Section 3.

• We model an Ethereum transaction as 𝑇 = ⟨𝑖𝑑𝑇 , 𝐸𝑡ℎ𝑠𝑟𝑐 , 𝐸𝑡ℎ𝑑𝑒𝑠𝑡,

𝑑𝑎𝑡𝑎⟩, where 𝑖𝑑𝑇 is the identifier of the transaction, 𝐸𝑡ℎ𝑠𝑟𝑐 is the
source address, 𝐸𝑡ℎ𝑑𝑒𝑠𝑡 is the destination address and 𝑑𝑎𝑡𝑎 is the
payload. The source and the destination of a transaction can be a
user, a service provider, a consensus provider, or a smart contract.
The Ethereum addresses play the role of DIDs (see Section 3.1).

7.3. Entities

We introduce the following entities of our system.

• The user 𝑢 requiring a service 𝑠.

• The service provider 𝑆𝑃 delivering the service 𝑠 to 𝑢.

• The consensus provider 𝐶𝑃 (which plays the role of a proxy re-

encryptor).

• The 𝑃𝐾𝐺, i.e., a trusted third party that generates the ABE private
keys for users and service providers. It relies on identity providers
and attribute providers to certify the identity of the users and the
attributes of the service providers, respectively.

• The identity issuer 𝐼𝐼 , which associates each user 𝑢 with an iden-

tity 𝐼𝐷𝑢. In addition, 𝐼𝐼 is in charge of certifying the linkage
between the DID of a user or a service provider and their real iden-

tity. 𝐼𝐼 can verify such a linkage through one of the techniques
proposed in Section 3.1. Observe that 𝐼𝐼 does not manage the DIDs
of 𝐶𝑃 since we assume they are public.

W.l.o.g., we assume a single 𝐼𝐼 for all users. In the case of multiple
𝐼𝐼s, they have to guarantee the uniqueness of each identity in the
system.

• The attribute issuer 𝐴𝐼(𝑎𝑖), which is in charge of certifying that
the service providers own the attribute 𝑎𝑖. In general, an attribute
issuer can certify multiple attributes.

• 𝐼𝑃𝐹𝑆 is the InterPlanetary File System, which is used as a reposi-

tory to store the (encrypted) users’ VCs. When a 𝑉 𝐶(𝑐) is stored in
the 𝐼𝑃𝐹𝑆 , it returns an index 𝑖𝐼𝑃𝐹𝑆 (𝑐), which allows the users to
retrieve the VC at a later time.

• The 𝑆𝐶 is the smart contract aimed at achieving accountability.

Now, we describe the phases that the entities involved in our pro-

posal perform to implement the required functionalities.

7.4. Credentials issuing

In this phase, some credentials needed to implement our solution
are released by some issuers. This can be performed by leveraging any
standard technology and protocol implemented for SSI solutions. For
reference, we assume that the credentials are exchanged through the
DIDComm protocol [60] and they are in JSON-LD format according to
the W3C specification [13]. They are standard technologies in the SSI
domain [70].

1. A generic issuer releases the credential 𝑉 𝐶(𝑓) to 𝑢. 𝑉 𝐶(𝑓) repre-

sents the actual credential that 𝑢 needs to access some service of
𝑆𝑃 .

2. 𝐼𝐼 releases a credential 𝑉 𝐶(𝑢) to 𝑢. 𝑉 𝐶(𝑢) contains two attributes.
The first attribute is 𝐼𝐷𝑢 and is used to certify the real identity of

𝑢. The second attribute is 𝐸𝑡ℎ𝑢 and is used to certify that 𝑢 owns

F. Buccafurri, V. De Angelis and R. Nardone

this Ethereum address and that 𝐼𝐼 knows the mapping between
𝐼𝐷𝑢 and 𝐸𝑡ℎ𝑢.

3. 𝐼𝐼 releases a credential 𝑉 𝐶(𝑆𝑃) to 𝑆𝑃 . Similar to the previous
step, 𝑉 𝐶(𝑆𝑃) contains two attributes, the real identity 𝐼𝐷𝑆𝑃 of
𝑆𝑃 and its Ethereum address 𝐸𝑡ℎ𝑆𝑃 .

4. 𝑆𝑃 obtains, for each attribute 𝑎𝑖 it owns, a credential 𝑉 𝐶(𝑎𝑖) from
the attribute issuer 𝐴𝐼(𝑎𝑖). This credential certifies that 𝑆𝑃 owns
the attribute 𝑎𝑖.

7.5. Registration phase, key generation, and smart contract deployment

In this phase, 𝑢 and 𝑆𝑃 register with 𝑃𝐾𝐺 to obtain the CP-ABPRE
private keys. Furthermore, 𝑢 and 𝑆𝑃 perform a registration with 𝐶𝑃 ,
which deploys a smart contract used to notarize some critical operations
performed by 𝑢, 𝑆𝑃 , and 𝐶𝑃 itself.

All these steps are performed only once for each entity of the system.

1. Preliminary, 𝑃𝐾𝐺 invokes Setup(𝑧), where 𝑧 is a security parame-

ter, to obtain 𝑃𝐾 and 𝑀𝑆𝐾 (see Section 3.2). 𝑃𝐾 is made publicly
available while 𝑀𝑆𝐾 is maintained private by 𝑃𝐾𝐺.

2. User 𝑢 sends 𝑃𝐾𝐺 the credential 𝑉 𝐶(𝑢) and a number of labels 𝑣
they need. Observe that, differently from the description given in
Section 6.2, to be more practical, we allow 𝑢 to select a number
of labels 𝑣 ≤ 𝑡 in the case that they do not need all the 𝑡 possible
labels. 𝑃𝐾𝐺 verifies the credential and then the identity 𝐼𝐷𝑢 of 𝑢.

𝑃𝐾𝐺 randomly selects, from the set 𝐿 = {𝑙1, … , 𝑙𝑡}, a set 𝐿𝑢 of
cardinality 𝑣. For each label 𝑙𝑖 ∈ 𝐿𝑢, 𝑃𝐾𝐺 generates a private key
𝑆𝐾

𝑙𝑖
𝑢 =KeyGen(𝑀𝑆𝐾, {𝑙𝑖, 𝐼𝐷𝑢}) and forwards it to 𝑢.

3. Similarly, 𝑆𝑃 contacts 𝑃𝐾𝐺 to obtain the private key 𝑆𝐾𝑆𝑃 as-

sociated with its attributes 𝐴𝑆𝑃 . 𝑆𝑃 provides 𝑃𝐾𝐺 with the set
𝑉 𝐶(𝐴𝑆𝑃) containing all the credentials 𝑉 𝐶(𝑎𝑖) for each attribute
𝑎𝑖 ∈ 𝐴𝑆𝑃 .

After verifying all the credentials (for each attribute 𝑎𝑖), 𝑃𝐾𝐺 gen-

erates the private key 𝑆𝐾𝑆𝑃 =KeyGen(𝑀𝑆𝐾, 𝐴𝑆𝑃 ∪ {𝑈𝑇 }) and
sends it to 𝑆𝑃 . According to the mechanism described in Sec-

tion 6.3, 𝑃𝐾𝐺 includes in the private key the current UNIX times-

tamp 𝑈𝑇 (along with the set 𝐴𝑆𝑃) when 𝑆𝑃 requires the key. The
three steps described above, involving the interactions of 𝑢 and 𝑆𝑃

with 𝑃𝐾𝐺, are summarized in the sequence diagram in Fig. 5.

4. In the next step, 𝑢 and 𝑆𝑃 register with 𝐶𝑃 by providing their
credentials 𝑉 𝐶(𝑢) and 𝑉 𝐶(𝑆𝑃) containing 𝐼𝐷𝑢 and 𝐼𝐷𝑆𝑃 , respec-

tively.

5. This phase ends with the deployment by 𝐶𝑃 of the smart con-

tract 𝑆𝐶 represented in Fig. 6 (written in Solidity [71]). For space
limitation, we represent only a partial version in the figure. The
complete smart contract, which also manages anomalous situa-

tions, is reported at https://github .com /vincenzodeangelisrc /Self -
Sovereign -Identity -Solution -UNIRC /blob /main /Self _Sovereign_

Identity _Solution /src /it /unirc /CP /DeploySC /Contract .sol.

It contains three mappings between an Ethereum address (of a user
or a service provider) and a struct called NotarizationData

containing an array hash_list to store the actual data to nota-

rize, and two temporary variables temp_hash and sent_time

(their meaning will be clear in the following). The first map-

ping (StorageMap) is used to notarize the storage of a VC of
𝑢. The second mapping (PolicyChangeMap) is used to nota-

rize a policy change performed by 𝑢. Finally, the third mapping
(FileAccessMap) is used to notarize the access to the VCs by 𝑆𝑃 .

7.6. VC storage

This phase starts when 𝑢 wants to store the credential 𝑉 𝐶(𝑓) in their
10

distributed wallet.
Blockchain: Research and Applications 5 (2024) 100196

Fig. 5. Interactions of user 𝑢 and the service provider 𝑆𝑃 with the Private Key
Generator 𝑃𝐾𝐺.

1. User 𝑢 selects a symmetric key 𝑘𝑓 (for 𝑉 𝐶(𝑓)) and encrypts it,
thus obtaining 𝑐𝑓 = 𝐸𝑘𝑓

(𝑉 𝐶(𝑓)). Then, 𝑐𝑓 is stored in the 𝐼𝑃𝐹𝑆 ,
which returns the index 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓).

2. User 𝑢 selects a label 𝑙𝑖 ∈ 𝐿𝑢 to be associated with 𝑓 , defines a

Basic Policy  = {𝐼𝐷𝑢 ∧ 𝑙𝑖}, and encrypts 𝑘𝑓 under  (with CP-

https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC/blob/main/Self_Sovereign_Identity_Solution/src/it/unirc/CP/DeploySC/Contract.sol
https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC/blob/main/Self_Sovereign_Identity_Solution/src/it/unirc/CP/DeploySC/Contract.sol
https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC/blob/main/Self_Sovereign_Identity_Solution/src/it/unirc/CP/DeploySC/Contract.sol

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

F. Buccafurri, V. De Angelis and R. Nardone

1 pragma solidity 0.6.11;

2 contract Notarization{

3

4 mapping(address => NotarizationData) StorageMap;

5 mapping(address => NotarizationData) PolicyChangeMap;

6 mapping(address => NotarizationData) FileAccessMap;

7 struct NotarizationData{

8 bytes32 [] hash_list;

9 bytes32 temp_hash;

0 uint256 sent_time;}

1 function startNotarization(uint8 _type, address _ETHr,

bytes32 _hash){

2 if(_type==1){

3 if((StorageMap[_ETHr].sent_time==0)&&(StorageMap[_ETHr

].temp_hash==0x0000000000000000000000000)){

4 StorageMap[_ETHr].temp_hash=_hash;

5 StorageMap[_ETHr].sent_time=block.timestamp;}

6 //omitted for readability }

7 else{ //type 2 and type 3

8 //omitted for readability

9 }}

0 function confirmNotarization(uint8 _type, bytes32 _hash){

1 if(_type==1){

2 if((block.timestamp-StorageMap[msg.sender].sent_time)

<=10){

3 if(_hash==StorageMap[msg.sender].temp_hash){

4 StorageMap[msg.sender].hash_list.push(_hash);}

5 else{emit "Event"}}

6 StorageMap[msg.sender].sent_time=0;

7 StorageMap[msg.sender].temp_hash=0

x0000000000000000000000000000000000000;}

8 else{ //type 2 and type 3

9 //omitted for readability

0 }}

1 }

Fig. 6. A portion of the source code of the smart contract.

ABPRE), thus obtaining 𝑠𝑓 =Encrypt(𝑃𝐾, 𝑘𝑓 , ). Observe that, at
the moment, only 𝑢 is able to decrypt 𝑘𝑓 through 𝑆𝐾

𝑙𝑖
𝑢 , since only

𝑢 owns the attribute 𝐼𝐷𝑢.

3. User 𝑢 authenticates with 𝐶𝑃 (by providing its credential 𝑉 𝐶(𝑢))
and sends the tuple (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓), 𝑙𝑖, 𝐸𝑡ℎ𝑢). Through 𝑉 𝐶(𝑢), 𝐶𝑃

verifies the linkage between 𝐸𝑡ℎ𝑢 and 𝐼𝐷𝑢 and stores this mapping
(if it does not already exist) in the User Association Table in Fig. 7.
Moreover, 𝐶𝑃 stores the tuple (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓), 𝑙𝑖, 𝐼𝐷𝑢) in the VC Ta-

ble in Fig. 8. It is to be observed that external users observing the
blockchain can know that the same user (with the same Ethereum
address) performs the VC Storage operation multiple times. Any-

way, they do not know the real identity of the user, so that it does
not result in any privacy leakage.

4. To notarize this operation, 𝐶𝑃 generates a transaction 𝑇1 =
⟨𝑖𝑑𝑇1

, 𝐸𝑡ℎ𝐶𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ towards the 𝑆𝐶 . The 𝑑𝑎𝑡𝑎 field is set to
(𝑡𝑦𝑝𝑒 = 1||𝐸𝑡ℎ𝑢||𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖)), where 𝐻 denotes a crypto-

graphic hash function (e.g., SHA256) and 𝑡𝑦𝑝𝑒 = 1 represents the
type of notarization to perform (in this case, the notarization of
the storage of a VC). According to the value of 𝑡𝑦𝑝𝑒, the proper
mapping of 𝑆𝐶 will be used.

𝑇1 triggers the function startNotarization of 𝑆𝐶 which finds
in the StorageMap (since 𝑡𝑦𝑝𝑒 = 1) the struct Notarization-
Data associated with 𝐸𝑡ℎ𝑢. In such a struct, 𝑆𝐶 stores the content
of 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖) in temp_hash and the current timestamp
in sent_time.

If there is no struct associated with 𝐸𝑡ℎ𝑢 in the StorageMap, then
a new struct NotarizationData is created (and associated with
𝐸𝑇 𝐻𝑢), where temp_hash and sent_time are set as above.

5. Similarly, 𝑢 generates a transaction 𝑇2 = ⟨𝑖𝑑𝑇2
, 𝐸𝑡ℎ𝑢, 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩

towards 𝑆𝐶 , where the 𝑑𝑎𝑡𝑎 field is set to
(𝑡𝑦𝑝𝑒 = 1||𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖)).
𝑇2 triggers the function confirmNotarization, which finds,
11

in the Storage Map, the struct NotarizationData associated
Blockchain: Research and Applications 5 (2024) 100196

User Identity Ethereum Address

𝐼𝐷𝑢 𝐸𝑡ℎ𝑢

... ...

Fig. 7. User Association Table.

ABPRE-Encrypted symmetric key IPFS index Label Identity

𝑠𝑓 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓) 𝑙𝑖 𝐼𝐷𝑢

...

Fig. 8. Verifiable Credential (VC) Table.

with 𝐸𝑡ℎ𝑢 and checks that temp_hash = 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖) and
that the difference between the current timestamp and the times-

tamp stored in sent_time is less than a certain threshold. The
second step ensures that the VC storage occurs within a short pe-

riod. If both the checks pass, the digest 𝐻(𝑖𝐼𝑃𝐹𝑆 (𝑐)) is added to the

hash_list array contained in the struct NotarizationData.
Otherwise, the 𝑆𝐶 publishes an event to warn 𝐶𝑃 about the fail-

ure of the operation and its originating fault. Finally, 𝑆𝐶 also resets
both temp_hash and sent_time variables.

The VC storage procedure is summarized in the sequence diagram
of Fig. 9.

7.7. Policy setting and policy change

In this phase, 𝑢 sets a new policy ̄ for the VCs associated with the
label 𝑙𝑖.

1. User 𝑢 defines the new policy ̄ . We recall that, in our applica-

tion, the domain of the attributes is organized in a set of trees.
Therefore, setting a policy means assigning the bits to the nodes
of the trees according to the operative rules described in Sec-

tion 5. These rules enable the translation of ̄ , possibly containing
high-level attributes, into the policy  containing only low-level
attributes. Observe that, since  is a conjunctive normal form
of positive attributes, it is supported by the selected CP-ABPRE
scheme [15]. We suppose  may include a validity time as de-

scribed in Section 6.3. At this point, 𝑢 generates the re-encryption
key 𝑅𝐾𝑙𝑖

=ReKeyGen(𝑃𝐾, 𝑆𝐾
𝑙𝑖
𝑢 , ). It allows 𝐶𝑃 to change the

basic policy  (associated with the VCs with label 𝑙𝑖) into  .

2. User 𝑢 authenticates with 𝐶𝑃 (by providing 𝑉 𝐶(𝑢)) and sends
(𝑅𝐾𝑙𝑖

, 𝑙𝑖,𝐸𝑡ℎ𝑢). 𝐶𝑃 finds an entry (𝐼𝐷𝑢, 𝐸𝑡ℎ𝑢) in the User Asso-

ciation Table to verify such a mapping. If such an entry does not
exist, it is added after verifying 𝑉 𝐶(𝑢).

3. Successively, 𝐶𝑃 finds an entry, if any, in the Policy Table (rep-

resented in Fig. 10) with the pair (𝐼𝐷𝑢, 𝑙𝑖) and updates the re-

encryption key field with 𝑅𝐾𝑙𝑖
. If the entry does not exist, then

𝐶𝑃 creates a new tuple (𝐼𝐷𝑢, 𝑙𝑖, 𝑅𝐾𝑙𝑖
) and inserts it in the Policy

Table.

4. The notarization of this phase is analogous to the notarization of
the VC storage phase but it involves another mapping. Specifi-

cally, 𝐶𝑃 generates a transaction 𝑇3 = ⟨𝑖𝑑𝑇3
, 𝐸𝑡ℎ𝐶𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩

towards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is set to (𝑡𝑦𝑝𝑒 = 2||𝐸𝑡ℎ𝑢||𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
)).

𝑇3 triggers the function startNotarization of 𝑆𝐶 , which finds
in the PolicyChangeMap (since 𝑡𝑦𝑝𝑒 = 2) the struct Notariza-
tionData associated with 𝐸𝑡ℎ𝑢. In such a struct, 𝑆𝐶 stores the
content of 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖

) in temp_hash and the current timestamp
in sent_time.

5. User 𝑢 generates a transaction 𝑇4 = ⟨𝑖𝑑𝑇4
, 𝐸𝑡ℎ𝑢, 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ to-

wards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is set to (𝑡𝑦𝑝𝑒 = 2||𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
).

𝑇4 triggers the function confirmNotarization, which finds, in
the PolicyChangeMap, the struct NotarizationData associ-

ated with 𝐸𝑡ℎ𝑢 and checks that temp_hash = 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
) and

that the difference between the current timestamp and the times-
tamp stored in sent_time is less than a certain threshold. If both

F. Buccafurri, V. De Angelis and R. Nardone

Fig. 9. Verifiable Credential (VC) storage.

Identity Label Re-Encryption key

𝐼𝐷𝑢 𝑙𝑖 𝑅𝐾𝑙𝑖

...

Fig. 10. Policy Table.

the checks pass, then 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
) is added to the hash_list ar-

ray contained in the struct NotarizationData. Otherwise, 𝑆𝐶

publishes an event to warn 𝐶𝑃 about the failure of the operation
and the originating fault. Finally, 𝑆𝐶 also resets both temp_hash

and sent_time variables.
12

The above steps are summarized in the sequence diagram of Fig. 11.
Blockchain: Research and Applications 5 (2024) 100196

Fig. 11. Policy Setting and Policy Change.

SP Identity Ethereum Address

𝐼𝐷𝑆𝑃 𝐸𝑡ℎ𝑆𝑃

... ...

Fig. 12. Service Provider Association Table.

7.8. Service request

In this phase, the user 𝑢 requires a service 𝑠 to 𝑆𝑃 , which needs
access to the VCs of 𝑢.

1. 𝑢 contacts 𝑆𝑃 to obtain 𝑠. In this step, we do not require any au-

thentication for 𝑢. Indeed, until 𝑆𝑃 does not prove that it satisfies
the policies and accesses 𝑢’s VCs, it does not need to know 𝑢’s iden-

tity. Observe that, in this step, no response from 𝑆𝑃 is needed;
thus, no bidirectional connection has to be established. To avoid a
possible linkage between the IP address of 𝑢 and his/her real iden-

tity, the request of 𝑢 can be performed behind a proxy, or through
anonymous standard services such as the VPN and Tor [72].

2. 𝑆𝑃 authenticates with 𝐶𝑃 by providing 𝑉 𝐶(𝑆𝑃). Through it,
𝐶𝑃 verifies the mapping between the identity 𝐼𝐷𝑆𝑃 and 𝐸𝑡ℎ𝑆𝑃

and stores this mapping in the Service Provider Association Table in
Fig. 12.

3. Meanwhile, 𝑢 authenticates with 𝐶𝑃 and confirms that they have
required the service 𝑠 to 𝑆𝑃 . Furthermore, 𝑢 sends a set of labels
𝐿𝑠

𝑢
⊆ 𝐿𝑢 to 𝐶𝑃 . 𝐿𝑠

𝑢
identifies the VCs that 𝑢 wants to send to 𝑆𝑃 to

obtain the service 𝑠. Observe that, 𝑢 does not know a priori if 𝑆𝑃

is authorized to access their VCs. Therefore, it is possible that 𝑆𝑃

does not satisfy all the policies associated with the labels in 𝐿𝑠
𝑢
.

4. For each 𝑙𝑖 ∈ 𝐿𝑠
𝑢
, 𝐶𝑃 retrieves the re-encryption key 𝑅𝐾𝑙𝑖

from
the Policy Table. Furthermore, for each 𝑙𝑖 ∈ 𝐿𝑠

𝑢
, it retrieves all the
tuples in the form (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓), 𝑙𝑖, 𝐼𝐷𝑢) from the VC Table (i.e.,

Blockchain: Research and Applications 5 (2024) 100196F. Buccafurri, V. De Angelis and R. Nardone

Fig. 13. Service request.
all the tuples associated with 𝑙𝑖 of the user 𝑢). For each of them,
𝐶𝑃 invokes 𝑣𝑓 =ReEncrypt(𝑃𝐾, 𝑠𝑓 , 𝑅𝐾𝑙𝑖

), where 𝑣𝑓 represents a
symmetric key 𝑘𝑓 encrypted under a policy  associated with the
re-encryption key 𝑅𝐾𝑙𝑖

. We denote by 𝑤𝑓 the pair (𝑣𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓))
and by 𝑊 the set of all the 𝑤𝑓 (obtained for all the 𝑙𝑖 ∈ 𝐿𝑠

𝑢
). 𝐶𝑃

forwards the set 𝑊 to 𝑆𝑃 .

5. For the notarization, again, we follow the same procedure as the
previous sections but with 𝑆𝑃 in place of 𝑢. 𝐶𝑃 generates a trans-

action 𝑇5 = ⟨𝑖𝑑𝑇5
, 𝐸𝑡ℎ𝐶𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ towards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is
13

set to (𝑡𝑦𝑝𝑒 = 3||𝐸𝑡ℎ𝑆𝑃 ||𝐻(𝑊)).
𝑇5 triggers the function startNotarization of 𝑆𝐶 , which finds
in the FileAccessMap (since 𝑡𝑦𝑝𝑒 = 3), the struct Notariza-

tionData associated with 𝐸𝑡ℎ𝑢. In such a struct, 𝑆𝐶 stores the
content of 𝐻(𝑊) in temp_hash and the current timestamp in

sent_time.

6. 𝑆𝑃 generates a transaction 𝑇6 = ⟨𝑖𝑑𝑇6
, 𝐸𝑡ℎ𝑆𝑃 , 𝐸𝑡ℎ𝑆𝐶 , 𝑑𝑎𝑡𝑎⟩ to-

wards 𝑆𝐶 , where 𝑑𝑎𝑡𝑎 is set to (𝑡𝑦𝑝𝑒 = 3||𝐻(𝑊)).
𝑇6 triggers the function confirmNotarization, which finds in
the FileAccessMap, the struct NotarizationData associated

with 𝐸𝑡ℎ𝑆𝑃 and checks that temp_hash = 𝐻(𝑊) and that the dif-

Blockchain: Research and Applications 5 (2024) 100196F. Buccafurri, V. De Angelis and R. Nardone

Fig. 14. Extended Self-Sovereign Identity (SSI) paradigm.
ference between the current timestamp and the timestamp stored in
sent_time is less than a certain threshold. If both the checks pass,
𝐻(𝑊) is added to the hash_list array contained in the struct

NotarizationData. Otherwise, 𝑆𝐶 publishes an event to warn
𝐶𝑃 of the failure of the operation and the originating fault. Finally,
𝑆𝐶 also resets both temp_hash and sent_time variables.

7. Once 𝑊 is obtained, for each pair 𝑤𝑓 = (𝑣𝑓 , 𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)) ∈ 𝑊 , 𝑆𝑃

invokes Decrypt(𝑣𝑓 , 𝑆𝐾𝑆𝑃). If 𝑆𝑃 satisfies the policy  associ-

ated with 𝑣𝑓 , then it retrieves the symmetric key 𝑘𝑓 and, through
𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓), 𝑐𝑓 from 𝐼𝑃𝐹𝑆 . Finally, 𝑆𝑃 accesses to 𝑉 𝐶(𝑓) =
𝐷𝑘𝑓

(𝑐𝑓).

The service request is summarized in the sequence diagram in
Fig. 13.

We want to highlight the cryptographic proofs stored on the
blockchain. They are (1) the signature of the issuers (as in the standard
SSI-approach) and (2) the digests of some information. Specifically, con-

cerning (2), as described in the protocol, these digests are as follows:

• 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖), where 𝑠𝑓 is an ABE encryption of a symmet-

ric key, 𝑖𝐼𝑃𝐹𝑆(𝑐𝑓) is an IPFS index, and 𝑙𝑖 is a file label;

• 𝐻(𝑙𝑖||𝑅𝐾𝑙𝑖
), where 𝑙𝑖 is a file label and 𝑅𝐾𝑙𝑖

is a re-encryption key;

• 𝐻(𝑊), where 𝑊 is a set of pairs, containing the ABE re-encryption
of a symmetric key and an IPFS index.

As a final remark, we want to highlight that the data stored on the
blockchain do not introduce privacy leakage. Indeed, concerning the
traditional issuing of SSI credentials (Section 7.4), only cryptographic
proofs (i.e., the signature of the issuers) are included in the blockchain.
On the other hand, as better highlighted in Section 9, the additional
14

steps (with respect to standard SSI interactions) introduced by our ap-
proach, require the storage on the smart contract of some cryptographic
digests of some potentially sensitive information. However, these di-

gests are not reversible without the collaboration of 𝐼𝐼 and 𝐶𝑃 , which
is just the accountability requirement we want to achieve.

To conclude this section, in Fig. 14, we show that the standard SSI
paradigm (represented in Fig. 1) is extended by the introduction of our
proposal.

8. Prototype and experiment

In this section, we describe a prototype (developed in Java) of the
solution proposed in Section 7. Furthermore, we measure its perfor-

mance. Finally, we discuss the motivation leading to the choice of a
public Ethereum blockchain.

8.1. Prototype

The source code of the prototype is available at https://github .com /
vincenzodeangelisrc /Self -Sovereign -Identity -Solution -UNIRC.

Our implementation consists of 10 modules.

The LiangScheme module includes our Java implementation of the
scheme [15]. We implemented it from scratch by relying on the JPBC
library [73] for the pairing function [43].

The Ethereum and IPFS modules are two wrappers that leverage
the Infura [74] APIs, enabling connectivity with the Ethereum and IPFS
networks, respectively.

The Issuer, Identity Issuer, and Attribute Issuersmod-

ules implement the functions of an issuer in the standard SSI approach.
They are implemented as web applications reachable through HTTP
requests. Our implementation relies on the Trinsic Ecosystems [75],

implementing the Sovrin Framework [1]. This is a reference technol-

https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC
https://github.com/vincenzodeangelisrc/Self-Sovereign-Identity-Solution-UNIRC

Blockchain: Research and Applications 5 (2024) 100196F. Buccafurri, V. De Angelis and R. Nardone

Fig. 15. Identity credential released by the Identity Issuer.
Fig. 16. Private Key Generator (PKG) interface for generating a private key for
a Service Provider 𝑆𝑃 .

ogy adhering to the main SSI standards in terms of the format of the
verifiable credentials (compliant with W3C specifications [12,13]) and
ToIP stack [76]. Each of these three modules releases a verifiable cre-

dential in JSON-LD format. An example of a credential released by the

Identity Issuer module is reported in Fig. 15.

It includes the real identity of the user and their Ethereum address
as attributes.

The main modules of our application are PKG, User, CP, and SP.
We describe them in detail.

The PKG module is composed of a stand-alone application (with
GUI) to implement the Setup function of the scheme [15] and generates
𝑃𝐾 and 𝑀𝑆𝐾 . Furthermore, it includes two web interfaces allowing
users and service providers to retrieve private keys.

For example, in Fig. 16, we can see the web interface by which a
service provider declares its attributes and provides its verifiable cre-

dential (containing all the attributes) to retrieve the private key from
the PKG. The verification of the credential is performed through the
Trinsic API.

The User module is composed of two applications (with GUI). The
first implements the user-side component of the VC Storage operation
presented in Section 7.6. Its GUI is displayed in Fig. 17.

In detail, in the yellow panel, the user selects the VC to store and
the label to be associated with this VC. By pressing the button Store,
this application generates an AES128 symmetric key, encrypts the VC,
and stores it in the IPFS. Then, the symmetric key is encrypted with
CP-ABPRE. At the end of the procedure, the application generates the
15

StorageFile.txt, which contains all the information to be sent to 𝐶𝑃
Fig. 17. User GUI to store a Verifiable Credential (VC).

Fig. 18. User GUI to set a policy for a Verifiable Credential (VC).

(see the next module). In particular, it includes (𝑠𝑓 , 𝑖𝐼𝑃𝐹𝑆 , 𝑙𝑖), as de-

scribed in Section 7.6. Furthermore, such a file will be given as input to
the user application (light blue panel in Fig. 17) to be notarized on the
blockchain.

The other user-side application is similar, and it allows the users to
set a policy for the VCs with a given label. It outputs the PolicyFile.txt,
including (𝑟𝑘𝑙𝑖

, 𝑙𝑖), as explained in Section 7.7. Its GUI is displayed in
Fig. 18.

The core module of our proposal is CP. It includes an application
(with GUI) for deploying smart contracts and four web interfaces.

Two web interfaces are exploited by the user to upload the Stor-

ageFile.txt and PolicyFile.txt in order to trigger the CP-side part of

the VC Storage and Policy Setting/Change operations, respectively. Fur-

F. Buccafurri, V. De Angelis and R. Nardone

Fig. 19. Ciphertext-Policy (CP) interface for the Verifiable Credential (VC) Stor-

age operation.

Fig. 20. Service Provider (SP) GUI to retrieve the Verifiable Credentials (VCs).

thermore, the user also provides their Ethereum address for notarizing
the operation and its credential 𝑉 𝐶(𝑢). For example, the web interface
for the VC Storage operation is reported in Fig. 19.

When CP receives the StorageFile.txt, it performs all the operations
described in Section 7.6, including the verification of the credential
(through the Trinsic API) and the notarization of the received informa-

tion. This notarization has to be confirmed by the user, as reported in
the confirmation message of Fig. 19, by uploading the StorageFile.txt

in the light blue panel of Fig. 17.

The same happens for the Policy Set/Change web interface.

The other two web interfaces provided by the CP module are used
by service providers and users to implement the Service Request op-

eration. At the end of the procedure, the service provider receives the

DecryptFile.txt representing the set 𝑊 of Section 7.8, containing all
the information to access the VCs of the users.

Finally, the SP module is composed of an application (with GUI
displayed in Fig. 20) allowing a service provider to retrieve the VCs. In
particular, it uploads the DecryptFile.txt on the yellow panel and the
application decrypts the CP-ABPRE encrypted symmetric keys, retrieves
the encrypted VCs from the IPFS, and decrypts them. Then, through the
Trinsic API, the VCs are verified. As for the User applications, the light
blue panel allows the notarization of the DecryptFile.txt.

8.2. Experiments

In this section, we evaluate the performance of our prototype with
respect to temporal and economic considerations.

We measured the time needed to perform the operations required
by our protocol. To perform such measurements, we use a personal
computer equipped with a 1.8 GHz Intel i7-8850 CPU and 16 GB of
RAM. We did not consider the user-dependent times (e.g., the time to
select a VC or a policy).

Furthermore, we measured the time needed to deploy the smart con-

tract and invoke its functions.

These results are reported in Table 2. We also report, in Fig. 21, a
timeline that includes all actors (and the blockchain) to complete the
execution of our protocol. For graphical reasons, the timeline is not to
scale.

Finally, we report the costs in terms of ETH and US dollars (in May
2023) for the deployment of the smart contract and invocation of the
relative functions in Table 3. Since they depend on the state of the
Ethereum network, we used Ropsten [77] as a testnet since it is the
16

most similar to the real Ethereum network.
Blockchain: Research and Applications 5 (2024) 100196

Table 2

Time to perform operations.

Operation Time

(seconds)

PKG Setup 0.7–0.8

PKG User Keys Generation (20 labels) 45–65

PKG SP Key Generation (10 attributes) 10–12

Smart Contract Deploy 15–25

StorageFile.txt creation (AES Encryption,

IPFS Storage, ABE encryption)

4–5

VC Storage CP-side (User Association Table

and VC Table update)

0.5–1

VC Storage Notarization CP-side

(startNotarization (type1))

15–25

VC Storage Notarization User-side

(confirmNotarization (type1))

15–25

PolicyFile.txt creation

ABE Re-Encryption Key generation)

5–6

Policy Set/Change CP-side

(Policy Table Update)

0,5–1

Policy Set/Change Notarization CP-side

(startNotarization (type2))

15–25

Policy Set/Change Notarization User-side

(confirmNotarization (type2))

15–25

Service Request CP-side

(Re-encryption of a single symmetric key)

2–3

VC Access SP-side (ABE-Decryption,

IPFS download, AES decryption)

4–6

Service Request Notarization CP-side

(confirmNotarization (type3))

15–25

Service Request Notarization SP-side

(confirmNotarization (type3))

15–25

Note: PKG—Private Key Generator, SP—Service
Provider, AES—Advanced Encryption Standard,
IPFS—InterPlanetary File System, ABE—Attribute-

Based Encryption, VC—Verifiable Credential, CP—

Ciphertext-Policy.

Table 3

Cost in terms of ETH and USD (in May 2023) to perform the
operations. We applied the default gas-price.

Operation Cost

(ETH / US dollars)

Smart Contract Deployment 0.0038728149/ 7.13

VC Storage Notarization CP-side

(startNotarization (type1))

0.0002839865/0.53

VC Storage Notarization User-side

(confirmNotarization (type1))

0.0002219084/0.41

Policy Set/Change Notarization CP-side

(startNotarization (type2))

0.0002840931/0.53

Policy Set/Change Notarization User-side

(confirmNotarization (type2))

0.0002219904/0.41

Service Request Notarization CP-side

(confirmNotarization (type3))

0.0002841874/0.53

Service Request Notarization SP-side

(confirmNotarization (type3))

0.0002221954/0.41

Note: VC—Verifiable Credential, CP—Ciphertext-Policy, SP—

Service Provider.

We observe that all operations, apart from smart contract deploy-

ment, require less than 0.55 USD. Moreover, startNotarization
operations require essentially the same cost regardless of the type (i.e.,
0.41 USD). Similarly, the confirmNotarization operations also re-

quire the same cost regardless of the type (i.e., 0.53 USD). The deploy-

ment of the smart contract requires 7.13 US dollars, but it is performed
just once.

Actually, these prices may vary over time according to two (corre-
lated) factors:

Blockchain: Research and Applications 5 (2024) 100196F. Buccafurri, V. De Angelis and R. Nardone

Fig. 21. Timeline of execution of our protocol.
Fig. 22. USD cost over time for smart contract management.

1. The ETH to USD exchange rate;

2. The current gas price to invoke the functions and deploy the smart
contract.

In Fig. 22, we present the cost trends from January 1, 2023, to De-

cember 1, 2023, indicating the deployment cost of the smart contract
and the costs associated with the startNotarization and con-
firmNotarization operations.

We observe that no appreciable difference exists for startNota-
rization and confirmNotarization operations. The deployment
cost reaches a peak of about 10 USD, but it is below 6 USD for the
majority of the time.

Based on these observations, we can conclude that our solution is
easily implementable, fast to execute, and cheap.

8.3. Choice of Ethereum blockchain

In this paper, we based our solution on the public Ethereum
blockchain. In general, when dealing with public blockchains, one
drawback is associated with the cost. It might be worthwhile to con-

sider implementing our solution on a permissioned blockchain, such as
Hyperledger Fabric (HLF), to achieve cost savings.

However, for research purposes, we decided to place ourselves at
the greatest disadvantage (public blockchain) to prove that, even in this
case, the costs are affordable (we analyzed this in Section 8.2) and that
we do not suffer from confidentiality problems (see Section 9) inherent
to the public nature of Ethereum (in other words, we proved that it is
possible to find suitable cryptographic countermeasures to work in a
public environment).

Our design can be easily moved to HLF (with proper adaptations),
but we argue that having demonstrated that the solution is feasible
even in the context of public blockchains is an added value of our re-
17

search. Moreover, in a practical adoption of our solution, the choice
of Ethereum instead of HLF (public vs. permissioned) may be required,
due to the higher level of assurance in terms of immutability given by
public blockchains. We recall that, indeed, that in our solution, the role
of lawful notarization is central. It is widely accepted that this function
is better accomplished with public blockchains instead of permissioned
ones. Moreover, in a practical application of our solutions, it is not clear
which parties should play the “super” role of the orderers and endorsers
nodes required by HLF in such a way that collusion is improbable and
there is sufficient independence with respect to Trusted Third Party
(TTP).

Based on the above considerations, we can claim that Ethereum rep-

resents a valid option in terms of security and efficiency for practical
adoption.

9. Security analysis

In this section, we provide a security analysis of the protocol pre-

sented in Section 7.

We start by introducing the following assumptions.

A1: The cryptographic primitives used in the protocol are secure.

A2: 𝑃𝐾𝐺 is a TTP.

A3: 𝐼𝐼 and 𝐴𝐼s are honest-but-curious, i.e., they perform honestly the
steps of the protocol, but they try to steal information about users
and service providers. In addition, they can collude with each other
and with other entities to gather information (but without deviat-

ing from protocol specifications).

A4: 𝐶𝑃 is honest-but-curious as defined in A3, but no collusion is al-

lowed for 𝐶𝑃 .

The other actors (users and service providers) are considered mali-

cious.

We discuss the plausibility of the assumptions.

A1 is a basic assumption. Specifically, it simply means that the
CP-ABPRE scheme, the cryptographic hash function 𝐻 , the symmet-

ric encryption scheme (𝐸, 𝐷), and the asymmetric encryption/signature
schemes used in the Ethereum and the IPFS are robust. Obviously, these
primitives are adopted in several real-life contexts, and their security is
well-documented in the literature.

Assumption A2 is a standard assumption done in any existing CP-

ABPRE scheme. The presence of this TTP is necessary for the delivery
of private keys. However, it cannot forge any credentials. We argue
that in the scenario that we are considering in our paper, in which the
identity of citizens is managed and government parties can be involved,
it is realistic to assume that some parties can play a similar role.

Concerning A3, observe that 𝐼𝐼 and 𝐴𝐼s are entities already in-
cluded in the SSI architecture as TTPs. Since in real-life applications,

F. Buccafurri, V. De Angelis and R. Nardone

𝐼𝐼 and 𝐴𝐼s may (also partially) coincide, we assume that they collude
passively (by exchanging information) between them. Furthermore, we
allow them to collude passively with other entities.

However, A3 also requires that 𝐼𝐼 and 𝐴𝐼s do not collude actively

(by deviating from the protocol) with other entities. For example, we
exclude the case in which an 𝐴𝐼 releases a fake attribute to a service
provider to satisfy a policy. Obviously, in traditional SSI, an issuer re-

leasing a fake VC allows the user to access a service even though they
are not authorized. Therefore, some level of trust is normally required
of issuers.

Finally, regarding A4, again, it is the standard assumption of all the
CP-ABPRE solutions. As discussed in Section 4, the presence of a proxy
is a price to pay to achieve our security requirements.

Now, we discuss the Security Properties guaranteed by our solution.

From now on, we use the term Operation to refer to one of the follow-

ing operations: VC Storage, Policy Setting/Change, or Service Request.
Furthermore, we use the term Information (associated with the Opera-

tion) to refer to the content stored (in hashed form) on the blockchain
during a given Operation. Specifically, the Information associated with
the VC Storage Operation is (𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖), the Information asso-

ciated with the Policy Setting/Change Operation is (𝑙𝑖||𝑅𝐾𝑙𝑖
), and the

Information associated with the Service Request Operation is 𝑊 .

We guarantee the following Security Properties.

SP1: No entity, except for a service provider satisfying the policy cho-

sen by a user, can access the content of the VCs stored by the user.
(Confidentiality).

SP2: No entity, except for 𝐶𝑃 , is able to know if a user or a service
provider performs an Operation(Privacy).

SP3: The collaboration between 𝐶𝑃 and 𝐼𝑃 allows us to prove that an
Operation (with the associated Information) has been performed
by a user or a service provider. On the other hand, a user or a
service provider can prove that an Operation (with the associated
Information) is acknowledged by 𝐶𝑃 (Accountability).

SP4: No Operation not actually performed can be attributed to a user,
a service provider, or 𝐶𝑃 (No Fake Attribution).

We discuss the meaning of Security Properties.

SP1 is about the confidentiality of the VCs. Only an authorized ser-

vice provider can access the VCs of a user.

SP2 is about privacy. It is desirable that no entity can know if a
user or a service provider performs a given Operation. This property is
guaranteed for all entities except for 𝐶𝑃 .

This limitation is compensated by the benefits in terms of reduc-

tion of the computational and storage resources required client-side and
the accountability guarantees that the introduction of 𝐶𝑃 provides (see
Section 1).

SP3 is important when it is necessary to prove to an agent authorized
by the law that a given Operation (with the associated Information) is
performed by a user or a service provider. In this case, the collaboration
between 𝐼𝐼 and 𝐶𝑃 can disclose the identity of the user. SP3 also
regards the possibility of proving to the agent that 𝐶𝑃 has taken charge
of a given Operation.

Finally, SP4 is related to SP3 and regards the fact that an Operation
cannot be attributed to a user who did not perform it. For example, 𝐶𝑃

cannot invent that a service provider has the required access to some
users’ VCs.

At this point, we show that the above properties are guaranteed in
our solution.

We start from SP1. Due to Assumption A2, we do not consider 𝑃𝐾𝐺

as an adversary.

Consider a 𝑉 𝐶(𝑓) stored by the user 𝑢 with policy  . Due to As-

sumption A1, the symmetric encryption scheme cannot be broken; thus,
the only way for the adversary to access 𝑉 𝐶(𝑓) is to recover the sym-

metric key 𝑘𝑓 . Such a key is encrypted by 𝑢 with CP-ABPRE under the
18

Basic Policy  obtaining 𝑠𝑓 that is sent to 𝐶𝑃 .  requires the identity
Blockchain: Research and Applications 5 (2024) 100196

of 𝑢 to be satisfied and since the CP-ABPRE scheme is secure by A1,
only 𝑢 can decrypt 𝑠𝑓 . Therefore, there is no way for the adversary to
recover 𝑘𝑓 from 𝑠𝑓 . Due to Assumption A4, 𝐶𝑃 performs legally the
steps of the protocol, then 𝑠𝑓 is re-encrypted under the policy  , ob-

taining 𝑣𝑓 that is sent to the service provider 𝑆𝑃 . Again, due to A1, 𝑣𝑓

can be decrypted by 𝑆𝑃 only if it owns a private key associated with
attributes that satisfy  . Due to Assumption A3, the attribute providers
do not collude actively with 𝑆𝑃 by certificating fake attributes. There-

fore, such a private key can be obtained only if 𝑆𝑃 really owns such
attributes. Thus, SP1 holds.

Now, we consider SP2. It is easy to see that any attacker, except 𝐶𝑃 ,
learns nothing about the Operations performed by users and service
providers. Indeed, the VC storage and Policy Setting/Change Operations
performed by a user only involve 𝐶𝑃 . Similarly, the Service Request
Operation performed by the service provider (on the request of a user)
only involves 𝐶𝑃 too. However, the Information associated with each
Operation is stored (in hashed form) on the blockchain. Therefore, an
external observer (different from 𝐶𝑃) can only see the DID (Ethereum
address) of the user or the service provider performing an Operation but
it does not know the mapping between such a DID and the real identity.
Furthermore, since the CP-ABPRE scheme is probabilistic, the elements
generated by this scheme and stored on the blockchain in hashed form
(specifically, 𝑠𝑓 , 𝑅𝐾𝑙𝑖

, and the first element 𝑣𝑓 of each pair 𝑤𝑓 ∈ 𝑊)
are not guessable by any attacker (different from 𝐶𝑃). This shows that

SP2 holds.

Concerning SP3, when the user/service provider performs an Op-

eration, it generates a transaction from its Ethereum address to the
smart contract, including the Information associated with this Oper-

ation in hashed form. 𝐶𝑃 can disclose this Information to an agent
authorized by the law, and 𝐼𝐼 can confirm the mapping between the
Ethereum address and the real identity of the user/service provider.
Specifically, consider the VC Storage Operation. 𝑢 generates the trans-

action 𝑇2 from 𝐸𝑡ℎ𝑢, including 𝐻(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖). 𝐶𝑃 can disclose
(𝑠𝑓 ||𝑖𝐼𝑃𝐹𝑆 (𝑐𝑓)||𝑙𝑖) and this proves that, since the signature scheme of
Ethereum is secure by Assumption A1, the user owning 𝐸𝑡ℎ𝑢 performs
the above Operation. Finally, 𝐼𝐼 confirms the real identity associated
with 𝐸𝑡ℎ𝑢. The same reasoning applies to the other two Operations
(Policy Setting/Change and Service Request). On the other hand, since
𝐶𝑃 confirms the Operations by storing the associated Information on
the blockchain, the user/service provider can disclose such Information
to prove that 𝐶𝑃 has acknowledged it. This proves SP3.

Finally, we consider SP4. Due to A1, no attacker can generate a
transaction starting from the Ethereum address of another entity. Then,
we consider the case in which the attacker uses their own Ethereum
address to attribute an Operation to a user, a service provider, or 𝐶𝑃 .
Since the Ethereum address of 𝐶𝑃 is public, no fake attribution can
be done on 𝐶𝑃 . Regarding users and service providers, when 𝐼𝐼 is
involved in confirming the real identity of the user/service provider
associated with a given Ethereum address, due to Assumption A3, it
does not disclose a fake mapping. Therefore, SP4 also holds.

This concludes the security analysis.

10. Conclusion

In this paper, we extend the SSI paradigm by including a CP-ABPRE
mechanism enabling the control that the verifier (i.e., the service
provider) has the right to access the claims/credentials submitted by the
holder. This is a missed point in the current SSI solutions, also regarding
what the international (European) standards include. The contribution
of the paper is to highlight the importance of covering this gap and an
effective way to achieve this result. We obtain a more complex SSI ar-

chitecture that gives the user an increased power of control over their
information. The fact that our solution requires an intermediary (i.e.,
the consensus provider) should not be viewed as something that di-

verges from the standard disintermediated SSI paradigm. Indeed, it has

not a conceptual role in the credential-issuing/presenting process, but

F. Buccafurri, V. De Angelis and R. Nardone

only a role allowing the user to be relieved by storage and computation.
The consensus provider does not keep any personal data of the user
(only some metadata) so that the fundamentals of the SSI paradigms
basically remain. In contrast, we have an advantage that leverages the
blockchain that the SSI architecture generally includes per se, which is
a certain level of accountability, and is very useful in real-life contexts
in which possible legal disputes can arise. This advantage would not
have been reached without the presence of the consensus provider.

More importantly, to test the applicability of our solution in real-

life contexts, we provide a prototype of the solution and evaluate its
performance in terms of computational time and costs to interact with
the blockchain.

CRediT authorship contribution statement

Francesco Buccafurri: Conceptualization, Formal analysis, Investi-

gation, Methodology, Project administration, Supervision, Validation,
Writing – original draft, Writing – review & editing. Vincenzo De An-

gelis: Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Resources, Software, Validation, Writing – original draft,
Writing – review & editing. Roberto Nardone: Conceptualization, For-

mal analysis, Investigation, Methodology, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was partially supported by the project STRIDE included in
the Spoke 5 (Cryptography and Distributed Systems Security) of the Re-

search and Innovation Program PE00000014-H73C22000880001, “SE-

curity and RIghts in the CyberSpace (SERICS)”, under the National
Recovery and Resilience Plan, funded by the European Union, NextGen-

erationEU.

References

[1] A. Tobin, D. Reed, The inevitable rise of self-sovereign identity, https://sovrin .org /
wp -content /uploads /2018 /03 /The -Inevitable -Rise -of -Self -Sovereign -Identity .pdf,
2016. (Accessed 2 April 2024).

[2] N. Naik, P. Jenkins, Uport open-source identity management system: an assessment
of self-sovereign identity and user-centric data platform built on blockchain, in: Pro-

ceedings of the 2020 IEEE International Symposium on Systems Engineering (ISSE),
IEEE, 2020, pp. 1–7, https://doi .org /10 .1109 /ISSE49799 .2020 .9272223.

[3] M.P. Bhattacharya, P. Zavarsky, S. Butakov, Enhancing the security and privacy of
self-sovereign identities on hyperledger indy blockchain, in: Proceedings of the 2020
International Symposium on Networks, Computers and Communications (ISNCC),
IEEE, 2020, pp. 1–7, https://doi .org /10 .1109 /ISNCC49221 .2020 .9297357.

[4] Q. Stokkink, J. Pouwelse, Deployment of a blockchain-based self-sovereign iden-

tity, in: Proceedings of the 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), IEEE, 2018, pp. 1336–1342, https://doi .org /10 .1109 /Cybermatics _
2018 .2018 .00230.

[5] D. van Bokkem, R. Hageman, G. Koning, et al., Self-sovereign identity solutions: the
necessity of blockchain technology, arXiv, 2019, preprint, arXiv :1904 .12816.

[6] V.C. Hu, D. Ferraiolo, R. Kuhn, et al., Guide to attribute based access control (ABAC)
definition and considerations (draft), NIST Spec. Publ. 800 (162) (2013) 1–54,
https://doi .org /10 .6028 /NIST .SP .800 -162.

[7] J. Bethencourt, A. Sahai, B. Waters, Ciphertext-policy attribute-based encryption, in:
Proceedings of the 2007 IEEE Symposium on Security and Privacy (SP ’07), IEEE,
2007, pp. 321–334, https://doi .org /10 .1109 /SP .2007 .11.

[8] X. Liang, Z. Cao, H. Lin, et al., Attribute based proxy re-encryption with delegating
capabilities, in: Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, ACM, 2009, pp. 276–286, https://doi .
org /10 .1145 /1533057 .1533094.

[9] F. Buccafurri, V. De Angelis, S. Lazzaro, A blockchain-based framework to enhance
anonymous services with accountability guarantees, Future Internet 14 (8) (2022)
19

243, https://doi .org /10 .3390 /fi14080243.
Blockchain: Research and Applications 5 (2024) 100196

[10] F. Buccafurri, V. De Angelis, G. Lax, et al., An attribute-based privacy-preserving
ethereum solution for service delivery with accountability requirements, in: Pro-

ceedings of the 14th International Conference on Availability, Reliability and Secu-

rity (ARES ’19), ACM, 2019, pp. 1–6, https://doi .org /10 .1145 /3339252 .3339279.

[11] G. Wood, Ethereum: a secure decentralised generalised transaction ledger, https://

ethereum .github .io /yellowpaper /paper .pdf, 2014. (Accessed 2 April 2024).

[12] Decentralized identifiers (DIDs) v1.0, https://www .w3 .org /TR /did -core. (Ac-

cessed 2 April 2024).

[13] Verifiable credentials data model v1.1, https://www .w3 .org /TR /vc -data -model.
(Accessed 2 April 2024).

[14] F. Buccafurri, V. De Angelis, Self-sovereign management of privacy consensus using
blockchain, in: Proceedings of the 15th International Conference on Web Informa-

tion Systems and Technologies - WEBIST, INSTICC, SciTePress, 2019, pp. 426–431,
https://doi .org /10 .5220 /0008493804260431.

[15] K. Liang, L. Fang, W. Susilo, et al., A ciphertext-policy attribute-based proxy re-

encryption with chosen-ciphertext security, in: Proceedings of the 2013 5th Interna-

tional Conference on Intelligent Networking and Collaborative Systems, IEEE, 2013,
pp. 552–559, https://doi .org /10 .1109 /INCoS .2013 .103.

[16] P. Voigt, A. von dem Bussche, The Eu General Data Protection Regulation (GDPR),
A Practical Guide, 1st ed., Springer, Cham, 2017.

[17] N. Naik, P. Jenkins, Your identity is yours: take back control of your identity
using gdpr compatible self-sovereign identity, in: Proceedings of the 2020 7th In-

ternational Conference on Behavioural and Social Computing (BESC), IEEE, 2020,
pp. 1–6, https://doi .org /10 .1109 /BESC51023 .2020 .9348298.

[18] G. Kondova, J. Erbguth, Self-sovereign identity on public blockchains and the GDPR,
in: Proceedings of the 35th Annual ACM Symposium on Applied Computing, ACM,
2020, pp. 342–345, https://doi .org /10 .1145 /3341105 .3374066.

[19] M. Shuaib, S. Alam, M.S. Alam, et al., Self-sovereign identity for healthcare us-

ing blockchain, Mater. Today Proc. 81 (2023) 203–207, https://doi .org /10 .1016 /j .
matpr .2021 .03 .083.

[20] B. Houtan, A.S. Hafid, D. Makrakis, A survey on blockchain-based self-sovereign
patient identity in healthcare, IEEE Access. 8 (2020) 90478–90494, https://doi .org /
10 .1109 /ACCESS .2020 .2994090.

[21] P.C. Bartolomeu, E. Vieira, S.M. Hosseini, et al., Self-sovereign identity: use-cases,
technologies, and challenges for industrial IoT, in: Proceedings of the 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), IEEE, 2019, pp. 1173–1180, https://doi .org /10 .1109 /ETFA .2019 .8869262.

[22] A. Mühle, A. Grüner, T. Gayvoronskaya, et al., A survey on essential components
of a self-sovereign identity, Comput. Sci. Rev. 30 (2018) 80–86, https://doi .org /10 .
1016 /j .cosrev .2018 .10 .002.

[23] Q. Stokkink, D. Epema, J. Pouwelse, A truly self-sovereign identity system, arXiv,
2020, preprint, arXiv :2007 .00415.

[24] A. Grüner, A. Mühle, C. Meinel, An integration architecture to enable service
providers for self-sovereign identity, in: 2019 IEEE 18th International Symposium
on Network Computing and Applications (NCA), IEEE, 2019, pp. 1–5, https://

doi .org /10 .1109 /NCA .2019 .8935015.

[25] L. Stockburger, G. Kokosioulis, A. Mukkamala, et al., Blockchain-enabled decentral-

ized identity management: the case of self-sovereign identity in public transporta-

tion, Blockchain Res. Appl. 2 (2) (2021) 100014, https://doi .org /10 .1016 /j .bcra .
2021 .100014.

[26] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, http://www .bitcoin .
org /bitcoin .pdf, 2008. (Accessed 2 April 2024).

[27] Z. Zheng, S. Xie, H. Dai, et al., Blockchain challenges and opportunities: a survey,
Int. J. Web Grid Serv. 14 (4) (2018) 352–375, https://doi .org /10 .1504 /ijwgs .2018 .
10016848.

[28] Performant and modular apis for verifiable data and ssi, https://veramo .io /docs /
basics /introduction. (Accessed 2 April 2024).

[29] Ethr-did library, https://github .com /uport -project /ethr -did. (Accessed 2 April
2024).

[30] Self-sovereign and decentralised identity by design, https://github .com /jolocom /
jolocom -lib /wiki /Jolocom -Whitepaper, 2018. (Accessed 2 April 2024).

[31] S.K. Radha, I. Taylor, J. Nabrzyski, et al., Verifiable badging system for scientific
data reproducibility, Blockchain Res. Appl. 2 (2) (2021) 100015, https://doi .org /
10 .1016 /j .bcra .2021 .100015.

[32] D. Reed, J. Law, D. Hardman, The technical foundations of sovrin, https://sovrin .
org /wp -content /uploads /2018 /03 /The -Technical -Foundations -of -Sovrin .pdf, 2016.
(Accessed 2 April 2024).

[33] E. Bandara, X. Liang, S. Shetty, et al., Octopus: privacy preserving peer-to-peer trans-

actions system with interplanetary file system (IPFS), Int. J. Inf. Secur. 22 (2023)
591–609, https://doi .org /10 .1007 /s10207 -022 -00650 -2.

[34] G. Zyskind, O. Nathan, A.S. Pentland, Decentralizing privacy: using blockchain to
protect personal data, in: Proceedings of the 2015 IEEE Security and Privacy Work-

shops, IEEE, 2015, pp. 180–184, https://doi .org /10 .1109 /SPW .2015 .27.

[35] K. Fan, S. Wang, Y. Ren, et al., Medblock: efficient and secure medical data sharing
via blockchain, J. Med. Syst. 42 (8) (2018) 1–11, https://doi .org /10 .1007 /s10916 -
018 -0993 -7.

[36] A. De Salve, D.D.F. Maesa, P. Mori, et al., A multi-layer trust framework for self
sovereign identity on blockchain, Online Soc. Netw. Media 37 (2023) 100265,

https://doi .org /10 .1016 /j .osnem .2023 .100265.

https://sovrin.org/wp-content/uploads/2018/03/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf
https://sovrin.org/wp-content/uploads/2018/03/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf
https://doi.org/10.1109/ISSE49799.2020.9272223
https://doi.org/10.1109/ISNCC49221.2020.9297357
https://doi.org/10.1109/Cybermatics_2018.2018.00230
https://doi.org/10.1109/Cybermatics_2018.2018.00230
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib349E3E9294FD815E885225732864E13Fs1
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib349E3E9294FD815E885225732864E13Fs1
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1145/1533057.1533094
https://doi.org/10.1145/1533057.1533094
https://doi.org/10.3390/fi14080243
https://doi.org/10.1145/3339252.3339279
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.w3.org/TR/did-core
https://www.w3.org/TR/vc-data-model
https://doi.org/10.5220/0008493804260431
https://doi.org/10.1109/INCoS.2013.103
http://refhub.elsevier.com/S2096-7209(24)00009-5/bibF42D0C7BE6FFD4AC8E79352DE1042AF8s1
http://refhub.elsevier.com/S2096-7209(24)00009-5/bibF42D0C7BE6FFD4AC8E79352DE1042AF8s1
https://doi.org/10.1109/BESC51023.2020.9348298
https://doi.org/10.1145/3341105.3374066
https://doi.org/10.1016/j.matpr.2021.03.083
https://doi.org/10.1016/j.matpr.2021.03.083
https://doi.org/10.1109/ACCESS.2020.2994090
https://doi.org/10.1109/ACCESS.2020.2994090
https://doi.org/10.1109/ETFA.2019.8869262
https://doi.org/10.1016/j.cosrev.2018.10.002
https://doi.org/10.1016/j.cosrev.2018.10.002
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib8C4A8F50B3600ADAF4B2E74509587A53s1
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib8C4A8F50B3600ADAF4B2E74509587A53s1
https://doi.org/10.1109/NCA.2019.8935015
https://doi.org/10.1109/NCA.2019.8935015
https://doi.org/10.1016/j.bcra.2021.100014
https://doi.org/10.1016/j.bcra.2021.100014
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1504/ijwgs.2018.10016848
https://doi.org/10.1504/ijwgs.2018.10016848
https://veramo.io/docs/basics/introduction
https://veramo.io/docs/basics/introduction
https://github.com/uport-project/ethr-did
https://github.com/jolocom/jolocom-lib/wiki/Jolocom-Whitepaper
https://github.com/jolocom/jolocom-lib/wiki/Jolocom-Whitepaper
https://doi.org/10.1016/j.bcra.2021.100015
https://doi.org/10.1016/j.bcra.2021.100015
https://sovrin.org/wp-content/uploads/2018/03/The-Technical-Foundations-of-Sovrin.pdf
https://sovrin.org/wp-content/uploads/2018/03/The-Technical-Foundations-of-Sovrin.pdf
https://doi.org/10.1007/s10207-022-00650-2
https://doi.org/10.1109/SPW.2015.27
https://doi.org/10.1007/s10916-018-0993-7
https://doi.org/10.1007/s10916-018-0993-7
https://doi.org/10.1016/j.osnem.2023.100265

Blockchain: Research and Applications 5 (2024) 100196F. Buccafurri, V. De Angelis and R. Nardone

[37] A. Sahai, B. Waters, Fuzzy identity-based encryption, in: R. Cramer (Eds.), Advances
in Cryptology—EUROCRYPT 2005, Springer, Berlin, 2005, pp. 457–473, https://

doi .org /10 .1007 /11426639 _27.

[38] V. Goyal, O. Pandey, A. Sahai, et al., Attribute-based encryption for fine-grained
access control of encrypted data, in: Proceedings of the 13th ACM Conference on
Computer and Communications Security, ACM, 2006, pp. 89–98, https://doi .org /
10 .1145 /1180405 .1180418.

[39] L. Cheung, C. Newport, Provably secure ciphertext policy ABE, in: Proceedings of
the 14th ACM Conference on Computer and Communications Security, ACM, 2007,
pp. 456–465, https://doi .org /10 .1145 /1315245 .1315302.

[40] K. Emura, A. Miyaji, A. Nomura, et al., A ciphertext-policy attribute-based en-

cryption scheme with constant ciphertext length, in: Proceedings of the Interna-

tional Conference on Information Security Practice and Experience, Springer, 2009,
pp. 13–23, https://doi .org /10 .1007 /978 -3 -642 -00843 -6 _2.

[41] T. Nishide, K. Yoneyama, K. Ohta, Attribute-based encryption with partially hidden
encryptor-specified access structures, in: Proceedings of the International Confer-

ence on Applied Cryptography and Network Security, Springer, 2008, pp. 111–129,
https://doi .org /10 .1007 /978 -3 -540 -68914 -0 _7.

[42] C. Wang, J. Luo, An efficient key-policy attribute-based encryption scheme with
constant ciphertext length, Math. Probl. Eng. (2013) 810969, https://doi .org /10 .
1155 /2013 /810969.

[43] N. Koblitz, A. Menezes, Pairing-based cryptography at high security levels, in: N.P.
Smart (Eds.), Cryptography and Coding, Springer, Berlin, 2005, pp. 13–36, https://

doi .org /10 .1007 /11586821 _2.

[44] S.D. Galbraith, K.G. Paterson, N.P. Smart, Pairings for cryptographers, Discrete Appl.
Math. 156 (16) (2008) 3113–3121, https://doi .org /10 .1016 /j .dam .2007 .12 .010.

[45] X. Yao, Z. Chen, Y. Tian, A lightweight attribute-based encryption scheme for the
Internet of things, Future Gener. Comput. Syst. 49 (2015) 104–112, https://doi .org /
10 .1016 /j .future .2014 .10 .010.

[46] S. Ding, C. Li, H. Li, A novel efficient pairing-free cp-abe based on elliptic curve
cryptography for iot, IEEE Access. 6 (2018) 27336–27345, https://doi .org /10 .1109 /
ACCESS .2018 .2836350.

[47] M. Blaze, G. Bleumer, M. Strauss, Divertible protocols and atomic proxy cryptog-

raphy, in: K. Nyberg (Eds.), Advances in Cryptology—EUROCRYPT’98, Springer,
Berlin, 1998, pp. 127–144, https://doi .org /10 .1007 /BFb0054122.

[48] G. Ateniese, K. Fu, M. Green, et al., Improved proxy re-encryption schemes with
applications to secure distributed storage, ACM Trans. Inf. Syst. Secur. 9 (1) (2006)
1–30, https://doi .org /10 .1145 /1127345 .1127346.

[49] A.-A. Ivan, Y. Dodis, Proxy cryptography revisited, NDSS (2003).

[50] S.S. Chow, J. Weng, Y. Yang, et al., Efficient unidirectional proxy re-encryption,
in: D.J. Bernstein, T. Lange (Eds.), Progress in Cryptology—AFRICACRYPT 2010,
Springer, Berlin, 2010, pp. 316–332, https://doi .org /10 .1007 /978 -3 -642 -12678 -9 _
19.

[51] P.-S. Chung, C.-W. Liu, M.-S. Hwang, A study of attribute-based proxy re-encryption
scheme in cloud environments, Int. J. Netw. Secur. 16 (1) (2014) 1–13.

[52] S. Luo, J. Hu, Z. Chen, Ciphertext policy attribute-based proxy re-encryption, in:
M. Soriano, S. Qing, J. López (Eds.), Information and Communications Security,
Springer, Berlin, 2010, pp. 401–415, https://doi .org /10 .1007 /978 -3 -642 -17650 -0 _
28.

[53] K. Liang, M.H. Au, J.K. Liu, et al., A secure and efficient ciphertext-policy attribute-

based proxy re-encryption for cloud data sharing, Future Gener. Comput. Syst. 52
(2015) 95–108, https://doi .org /10 .1016 /j .future .2014 .11 .016.

[54] S. Sicari, A. Rizzardi, G. Dini, et al., Attribute-based encryption and sticky policies
for data access control in a smart home scenario: a comparison on networked smart
object middleware, Int. J. Inf. Secur. 20 (5) (2021) 695–713, https://doi .org /10 .
1007 /s10207 -020 -00526 -3.

[55] M. Rasori, P. Perazzo, G. Dini, ABE-cities: an attribute-based encryption system for
smart cities, in: Proceedings of the 2018 IEEE International Conference on Smart

Computing (SMARTCOMP), IEEE Computer Society, 2018, pp. 65–72, https://doi .
org /10 .1109 /SMARTCOMP .2018 .00075.

[56] S. Fugkeaw, H. Sato, An extended cp-abe based access control model for data out-

sourced in the cloud, in: Proceedings of the 2015 IEEE 39th Annual Computer
Software and Applications Conference, IEEE, 2015, pp. 73–78, https://doi .org /10 .
1109 /COMPSAC .2015 .216.

[57] S. Banerjee, B. Bera, A.K. Das, et al., Private blockchain-envisioned multi-authority
cp-abe-based user access control scheme in IIoT, Comput. Commun. 169 (2021)
99–113, https://doi .org /10 .1016 /j .comcom .2021 .01 .023.

[58] T. Feng, J. Guo, A new access control system based on cp-abe in named data net-

working, Int. J. Netw. Secur. 20 (4) (2018) 710–720, https://doi .org /10 .6633 /IJNS .
201807 _20(4).13.

[59] W. Li, K. Xue, Y. Xue, et al., TMACS: a robust and verifiable threshold multi-

authority access control system in public cloud storage, IEEE Trans. Parallel Distrib.
Syst. 27 (5) (2016) 1484–1496, https://doi .org /10 .1109 /TPDS .2015 .2448095.

[60] D. Hardman, Aries RFC 0005: DID communication, https://github .com /
hyperledger /aries -rfcs /blob /main /concepts /0005 -didcomm /README .md. (Ac-

cessed 2 April 2024).

[61] Eidas supported self-sovereign identity, https://ec .europa .eu /futurium /en /system /
files /ged /eidas _supported _ssi _may _2019 _0 .pdf, 2019. (Accessed 2 April 2024).

[62] A. Beimel, Secure schemes for secret sharing and key distribution, https://www .cs .
bgu .ac .il /~beimel /Papers /thesis .pdf, 1996. (Accessed 2 April 2024).

[63] B. Waters, Ciphertext-policy attribute-based encryption: an expressive, efficient, and
provably secure realization, in: D. Catalano, N. Fazio, R. Gennaro, et al. (Eds.),
Public Key Cryptography—PKC 2011, Springer, Berlin, 2011, pp. 53–70, https://

doi .org /10 .1007 /978 -3 -642 -19379 -8 _4.

[64] Q. Liu, G. Wang, J. Wu, Time-based proxy re-encryption scheme for secure data
sharing in a cloud environment, Inf. Sci. 258 (2014) 355–370, https://doi .org /10 .
1016 /j .ins .2012 .09 .034.

[65] H. Deng, Z. Qin, Q. Wu, et al., Flexible attribute-based proxy re-encryption for effi-

cient data sharing, Inf. Sci. 511 (2020) 94–113, https://doi .org /10 .1016 /j .ins .2019 .
09 .052.

[66] F. Luo, S. Al-Kuwari, Revocable attribute-based proxy re-encryption, J. Math. Cryp-

tol. 15 (1) (2021) 465–482, https://doi .org /10 .1515 /jmc -2020 -0039.

[67] J. Benet, IPFS-content addressed, versioned, P2P file system, arXiv, 2014, preprint,
arXiv :1407 .3561.

[68] MetaVerse Chat—Web3 and SSI in action, https://bitbucket .org /netis /veramo -
aceblock -didcomm -over -libp2p -react /src /master/. (Accessed 2 April 2024).

[69] K.A.M. Ahmed, S.F. Saraya, J.F. Wanis, et al., A blockchain self-sovereign identity
for open banking secured by the customer’s banking cards, Future Internet 15 (2023)
208, https://doi .org /10 .3390 /fi15060208.

[70] A. Preukschat, D. Reed, Self-Sovereign Identity, Manning Publications, 2021.

[71] Solidity, Solidity 0.8.3 documentation, https://solidity .readthedocs .io /en /v0 .8 .3,
2021. (Accessed 2 April 2024).

[72] F. Buccafurri, V. De Angelis, M.F. Idone, et al., Achieving sender anonymity in tor
against the global passive adversary, Appl. Sci. 12 (2022) 137, https://doi .org /10 .
3390 /app12010137.

[73] A. De Caro, V. Iovino, jPBC: Java pairing based cryptography, in: Proceedings of
the 2011 IEEE Symposium on Computers and Communications (ISCC), IEEE, 2011,
pp. 850–855, https://doi .org /10 .1109 /ISCC .2011 .5983948.

[74] Infura, Secure and scalable access to Ethereum apis and IPFS gateways, https://

infura .io /docs, 2021. (Accessed 2 April 2024).

[75] Trinsic, https://github .com /trinsic -id. (Accessed 2 April 2024).

[76] M. Davie, D. Gisolfi, D. Hardman, et al., The trust over IP stack, IEEE Commun.
Stand. Mag. 3 (4) (2019) 46–51, https://doi .org /10 .1109 /MCOMSTD .001 .1900029.

[77] Ropsten, Ropsten testnet explorer, https://ropsten .etherscan .io, 2021. (Accessed 2
April 2024).
20

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1315245.1315302
https://doi.org/10.1007/978-3-642-00843-6_2
https://doi.org/10.1007/978-3-540-68914-0_7
https://doi.org/10.1155/2013/810969
https://doi.org/10.1155/2013/810969
https://doi.org/10.1007/11586821_2
https://doi.org/10.1007/11586821_2
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1109/ACCESS.2018.2836350
https://doi.org/10.1109/ACCESS.2018.2836350
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1145/1127345.1127346
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib34C868AC007E87A0E58619061AB827D0s1
https://doi.org/10.1007/978-3-642-12678-9_19
https://doi.org/10.1007/978-3-642-12678-9_19
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib1C32C0982C70364F70F2A2F8C281DD91s1
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib1C32C0982C70364F70F2A2F8C281DD91s1
https://doi.org/10.1007/978-3-642-17650-0_28
https://doi.org/10.1007/978-3-642-17650-0_28
https://doi.org/10.1016/j.future.2014.11.016
https://doi.org/10.1007/s10207-020-00526-3
https://doi.org/10.1007/s10207-020-00526-3
https://doi.org/10.1109/SMARTCOMP.2018.00075
https://doi.org/10.1109/SMARTCOMP.2018.00075
https://doi.org/10.1109/COMPSAC.2015.216
https://doi.org/10.1109/COMPSAC.2015.216
https://doi.org/10.1016/j.comcom.2021.01.023
https://doi.org/10.6633/IJNS.201807_20(4).13
https://doi.org/10.6633/IJNS.201807_20(4).13
https://doi.org/10.1109/TPDS.2015.2448095
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0005-didcomm/README.md
https://ec.europa.eu/futurium/en/system/files/ged/eidas_supported_ssi_may_2019_0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/eidas_supported_ssi_may_2019_0.pdf
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1016/j.ins.2012.09.034
https://doi.org/10.1016/j.ins.2012.09.034
https://doi.org/10.1016/j.ins.2019.09.052
https://doi.org/10.1016/j.ins.2019.09.052
https://doi.org/10.1515/jmc-2020-0039
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib19C7D6B9595D88CC8412B05AFBC8A11Bs1
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib19C7D6B9595D88CC8412B05AFBC8A11Bs1
https://bitbucket.org/netis/veramo-aceblock-didcomm-over-libp2p-react/src/master/
https://bitbucket.org/netis/veramo-aceblock-didcomm-over-libp2p-react/src/master/
https://doi.org/10.3390/fi15060208
http://refhub.elsevier.com/S2096-7209(24)00009-5/bib4DC43E4FBF407F52B298FABB1AC28C98s1
https://solidity.readthedocs.io/en/v0.8.3
https://doi.org/10.3390/app12010137
https://doi.org/10.3390/app12010137
https://doi.org/10.1109/ISCC.2011.5983948
https://infura.io/docs
https://infura.io/docs
https://github.com/trinsic-id
https://doi.org/10.1109/MCOMSTD.001.1900029
https://ropsten.etherscan.io

	How can the holder trust the verifier? A CP-ABPRE-based solution to control the access to claims in a Self-Sovereign-Identi...
	1 Introduction
	2 Related work
	2.1 Self-Sovereign Identity
	2.2 ABE for access control

	3 Background
	3.1 Self-Sovereign Identity (SSI)
	3.2 Ciphertext-policy attribute-based proxy re-encryption (CP-ABPRE)
	3.3 Selection of the CP-ABPRE scheme

	4 Motivation
	5 Hierarchical attributes in CP-ABPRE schemes
	6 Identities, label, and time management in CP-ABPRE schemes
	6.1 Identities management
	6.2 Label management
	6.3 Time window

	7 The proposed protocol
	7.1 Overview of the protocol
	7.2 Notations
	7.3 Entities
	7.4 Credentials issuing
	7.5 Registration phase, key generation, and smart contract deployment
	7.6 VC storage
	7.7 Policy setting and policy change
	7.8 Service request

	8 Prototype and experiment
	8.1 Prototype
	8.2 Experiments
	8.3 Choice of Ethereum blockchain

	9 Security analysis
	10 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

