
05 February 2025

Università degli Studi Mediterranea di Reggio Calabria
Archivio Istituzionale dei prodotti della ricerca

MQTT-A: A broker-bridging P2P architecture to achieve anonymity in MQTT / Buccafurri, Francesco; De
Angelis, Vincenzo; Lazzaro, Sara. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. -
10:17(2023), pp. 15443-15463. [10.1109/JIOT.2023.3264019]

Original

MQTT-A: A broker-bridging P2P architecture to achieve anonymity in MQTT

Published
DOI: http://doi.org/10.1109/JIOT.2023.3264019
The final published version is available online at:https://ieeexplore.ieee.org/document/10090434

Terms of use:

Publisher copyright

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website

Availability:
This version is available at: https://hdl.handle.net/20.500.12318/135529 since: 2023-05-02T07:27:15Z

This is the peer reviewd version of the followng article:

This item was downloaded from IRIS Università Mediterranea di Reggio Calabria (https://iris.unirc.it/) When
citing, please refer to the published version.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 1

MQTT-A: A broker-bridging P2P architecture
to achieve anonymity in MQTT

Francesco Buccafurri, Member, IEEE, Vincenzo De Angelis, and Sara Lazzaro

Abstract—The demand for privacy in the current digital era is
continuously growing. This is particularly true in the context of
IoT, in which huge amounts of data are handled. Communication
anonymity is a fundamental requirement when high privacy levels
should be guaranteed. On the other hand, very little attention
has been devoted to this problem in the past scientific literature,
when referring to MQTT, which is the de-facto standard for IoT
communication. In this paper, we try to cover this gap. Specifi-
cally, we propose a new protocol, called MQTT-A, which extends
the MQTT bridging mechanism to support the anonymity of both
publishers and subscribers. This task is accomplished through the
P2P collaboration of intermediate bridge brokers, which forward
the requests of clients so that the final broker cannot understand
the actual source/destination. Moreover, an anonymity-preserving
topic discovery mechanism is provided, which allows clients
to discover available topics and associated brokers, preventing
client identification. Importantly, all the MQTT-A messages are
exchanged by leveraging standard MQTT primitives and the
bridging mechanism natively offered by MQTT. This allows us
not to require changes in the standard MQTT infrastructure. To
validate the performance of our solution, we performed a deep
experimental campaign by deploying the bridge brokers on cloud
platforms in various countries of the world. The experimental
validation shows that, the price of latency we have to pay because
of the trade-off with anonymity is quite reasonable. Moreover, no
significant impact on goodput occurs in the case of good network
conditions.

Index Terms—Anonymity, Privacy, IoT, MQTT bridging, P2P.

I. INTRODUCTION

INTERNET OF THINGS [1] is an evolving paradigm in
which smart objects are connected to each other to de-

liver services. Since IoT devices can be resource-constrained,
traditional communication protocols such as HTTP cannot be
adopted to connect them. Therefore, researchers proposed new
lightweight protocols allowing communication in scenarios in
which limited bandwidth is available and energy consumption
is a serious issue. MQTT [2] is the most popular protocol in
the IoT context. As highlighted by [3], MQTT is the best
candidate for M2M communication due to its lightweight
features and ability to work efficiently in low-power and
limited memory devices as compared to its counterpart, CoAP.

F. Buccafurri, V. De Angelis, and S. Lazzaro are with the DIIES Dept.,
University Mediterranea of Reggio Calabria, Via dell’Universita 25, 89124
Reggio Calabria, Italy
E-mail: {bucca,vincenzo.deangelis,sara.lazzaro}@unirc.it

This work was partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the European
Union - NextGenerationEU.

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Specifically, MQTT has numerous applications such as home
automation [4], sensor networks [5], smart manufacturing [6],
and smart-city services [7]. Moreover, to address the issues
related to smartphones such as their limitations in terms
of battery life and network bandwidth, the Facebook social
network [8] employs MQTT for instant messaging [9]–[12].
Also AWS (Amazon Web Services) IoT uses MQTT due to
several features such as fault tolerance, support for intermittent
connectivity, and high efficiency in terms of the network
bandwidth consumption and device memory [13].

Despite its large adoption, MQTT presents several security
and privacy issues [14]–[16]. Actually, as pointed out by [17],
these issues concern the IoT context in general. Indeed, due
to resource constraints, smart devices are unable to support
highly secure protocols and cryptographic algorithms. This
may in principle lead to serious threats, due to the pervasive-
ness of IoT devices and their interaction with the physical
world. Specifically, at the application layer, [18] identifies
four issues: mutual authentication [19]–[22], information pri-
vacy [23]–[27], data management [28]–[30], and application-
specific vulnerabilities [31]–[33].

Most of the privacy-preserving solutions proposed in the
literature are intended to ensure that users are aware of who
is collecting their personal data and how data are collected
and used [26].

Nonetheless in collecting them, third parties may also
collect metadata related to communications with users’ IoT
devices. In fact, not concealing such metadata may create a
huge privacy leakage. This is because metadata could allow
third parties to link data from different IoT devices belonging
to the same user. This way, third parties may be able to track
and profile users, thus compromising their privacy.

Communication anonymity is a fundamental requirement
when high privacy levels should be guaranteed. On the other
hand, very little attention has been devoted to this problem
in the past scientific literature, also regarding MQTT. In this
paper, we try to cover this gap.

Specifically, we aim to prevent the identification of MQTT
publishers and subscribers when sending/receiving data, in
every phase of the protocol, including the topic discovery.
Observe that the direct application of existing anonymous
access to the network like Tor [34] or I2P [35] is not possible,
as MQTT clients cannot support existing protocols of this
family. This is due to the heavy computational effort and
time overhead they require for operations such as layered
encryption of messages and tunnel construction in the network.
In addition, these protocols require clients to perform some
operations using public-key encryption, which is much heavier

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 2

than symmetric encryption.
On the other hand, for privacy reasons and censorship

resistance, also in the context of IoT, anonymity requirements
are becoming emerging, to the extent that IoT devices are more
and more the digital counterpart of humans.

Therefore, a practical solution MQTT-compliant borrowed
from ideas belonging to the field of anonymous communica-
tion networks [36] is highly desirable. This is the contribution
of this paper.

According to the standard definition [37], there are three
types of communication anonymity that we can reach. Sender
anonymity means hiding the identity of a sender inside a set of
potential senders. Similarly, recipient anonymity means hiding
the identity of a recipient inside a set of potential recipients.
Finally, relationship anonymity means hiding the fact that
a given sender and a given recipient are communicating. It
is easy to see that guaranteeing just one, between sender
and recipient anonymity, is enough to obtain relationship
anonymity.

In MQTT, publishers play the role of senders and sub-
scribers play the role of recipients. Our solution reaches both
sender and recipient anonymity, then relationship anonymity
too. Furthermore, the proposed approach can be applied just
from one side (publishers or subscribers) achieving just one
between sender and recipient anonymity (but still enough to
obtain relationship anonymity).

The problem with the standard MQTT approach is that
clients communicate directly with the broker, thus it is able to
infer important information about them [38].

To solve this problem, we take advantage of the bridging
architecture offered by MQTT (see Section II for details).
In this architecture, clients do not communicate directly with
the broker that hosts the topics, but through an intermediate
broker called bridge broker. This natively implements a weak
form of anonymity, which is, in general, not sufficient. Indeed,
the bridge broker merely forwards requests of clients without
hiding some patterns (e.g., number of requests, topics of
interest, and so on) sufficient for client re-identification.

The core of our proposal is to set up an anonymous peer-to-
peer (P2P) network composed of bridge brokers such that the
final broker cannot discover which actual bridge broker has
started the communication. Our solution is inspired by [39].
We chose this protocol since it is lighter than alternative solu-
tions (e.g., [34]) and, then, more suitable for IoT applications.
Moreover, our solution is designed to be transparent to MQTT
clients, leaving all the complexities to the brokers. This leads
to two main advantages. First, clients can use our protocol
regardless of whether they implement MQTT or MQTT-SN
[40]. Second, also resource-constrained clients can leverage
our protocol.

The experiments performed in Section VIII show that an
(acceptable) price in terms of latency has to be paid if
both sender and recipient anonymity are desired (and then
relationship anonymity too). However, when just one between
sender and recipient anonymity is enough (thus achieving also
relationship anonymity), the latency required by our protocol
is halved. In terms of goodput, no appreciable difference is

observed in the case of good network conditions (i.e., low
round-trip time between bridge brokers).

To provide a complete and effective solution, we did not
neglect an aspect not strictly related to MQTT communication,
but nevertheless of critical importance regarding anonymity.
We refer to the problem of topic discovery, that is, how
to allow clients to know which topics are available and the
brokers that host them. This aspect is not treated in the
standard MQTT protocol ( [41], [42]), in which it is assumed
that clients know in advance topics and where to find them.
This can be true for some applications where publishers can
advertise the topics to which they send data or subscribers
can advertise their interest in a given topic. However, when
anonymity is desired, this advertisement mechanism cannot be
trivially adopted. Therefore, a suitable mechanism has to be
investigated. This is another outcome of this paper.

To summarize, the main highlights of this paper are the
following:

• We provide an anonymity protocol supporting publisher
and subscriber anonymous communication with a remote
broker. We call this protocol MQTT-Anonymous (MQTT-
A).

• We define an anonymity-preserving discovery protocol
that allows the clients to know the available topics and
the brokers hosting them.

• All the exchanged information used to implement the
above protocols is provided through standard MQTT
messages. This avoids infrastructural changes in the ar-
chitecture and requires no particular effort for clients and
brokers.

The structure of the paper is the following. In Section
II, we provide some background notions about the MQTT
protocol and the bridging mechanism. The considered sce-
nario and the motivations leading to this work are discussed
in Section III. In Section IV, we propose the anonymity-
preserving discovery protocol and in Section V, we provide
the details about our anonymity protocol. In Section VI, we
analyze the computational complexity and the overhead of
the proposed approach. Some refinements of the protocol to
manage QoS and path intersection are provided in Section
VII. We perform an experimental validation in Section VIII
by comparing MQTT-A with standard MQTT. We analyze the
security of the proposed approach in Section IX. In Section
X, we overview the literature about the security problems in
MQTT. Finally, in Section XI, we draw our conclusions.

II. BACKGROUND

MQTT is a client-server publish/subscribe messaging trans-
port protocol [2]. Two kinds of agents are involved in the
message exchange: MQTT clients and MQTT brokers. In
turn, MQTT clients can be of two types: publisher (producer
of information) and subscriber (consumer of the provided
information). An MQTT client can play both roles of publisher
and subscriber even at the same time. The MQTT protocol
requires that the information provided by a publisher must be
associated with a topic, which in general is used to categorize
the information itself. Therefore, a subscriber can manifest

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 3

that it is interested in receiving certain information by just
specifying its topic.

A topic can present one or more levels separated by a
forward slash (‘/’). This way, topics can be organized in a
hierarchical structure. Nevertheless, there is no standardized
semantic model for MQTT topics, therefore the name of a
topic can be chosen freely by publishing or subscribing entities
[43].

Unlike the classical client-server architecture, in the MQTT
architecture, publishers and subscribers do not communicate
directly between them, but through an MQTT broker. This
mechanism is sketched in Figure 1. As depicted in the figure,
first all the subscribers interested in a given topic (say T )
should send the broker a subscribe message sub(T ) specifying
such a topic (dashed arrows). Then, when a publisher sends
a message to the broker, it specifies the information I and
the topic T to which that information should be published.
This message is reported in Figure 1 as pub(T, I) (solid
arrows). Then, the broker forwards the above message to all
the subscribers interested in that topic.

Concerning MQTT messages, they present a limited amount
of overhead, since the protocol header is only 2 bytes. More-
over, MQTT limits the payload dimension up to a maximum
size of 256 MBytes. These constraints make MQTT suitable
for low-bandwidth networks and resource-constrained clients,
such as IoT devices.

Furthermore, in both publish and subscribe messages, an
MQTT client can specify the desired Quality of Service (QoS)
level. MQTT supports three different Quality of Service (QoS)
levels (0,1, and 2). In detail:

• level 0 requires that messages are delivered at most once;
• level 1 requires that messages are delivered at least once;
• level 2 requires that messages are delivered exactly once.

Suppose a publisher sets QoS level QoSp when it publishes
to a topic t. Similarly, a subscriber chooses QoS level QoSs

when it subscribes to the same topic t. Two cases may occur:
(i) if QoSp > QoSs, then the broker forwards the data to the
subscribing client using QoSs; (ii) if QoSp ≤ QoSs, then the
broker forwards the data to the subscribing client using QoSp.

Another feature provided by the MQTT protocol is repre-
sented by the retained messages. A retained message is an
MQTT message, with the retained flag set to true. When a
broker receives a retained message labeled with topic t, it
stores it for that topic. Thus, when a client subscribes to the
topic t it will receive the retained message immediately after
the subscription. A broker can store only one retained message
per topic. Therefore, to update the retained message for a topic,
it is sufficient for a publisher to send a new message, to that
topic, with the retained flag set to true.

A core MQTT feature is represented by the bridging mech-
anism that allows two MQTT brokers to connect with each
other.

This configuration is adopted to connect an edge broker
(which will act as a bridge) to a public broker. This way, the
bridge broker will act as an MQTT client for the public broker,
thus being able to send a subscribe or publish message to the
latter.

Fig. 1: MQTT architecture.

Usually, clients are connected to the bridge broker through
the local network, and the bridge broker can decide on which
local topics to apply the bridging mechanism. This is due to
the fact that not all the MQTT traffic locally generated is meant
to be sent to a remote broker.

The bridging mechanism is sketched in Figure 2. Therein,
the subscribers send the subscribe message sub(T ) directly to
the public broker (dashed arrows). Conversely, the publisher
sends the publish message pub(T, I) to the bridge broker
(solid arrow). Then, by exploiting the bridging mechanism,
the bridge broker can forward pub(T, I) to the public broker.
In turn, the latter forwards pub(T, I) to all the interested
subscribers.

Finally, MQTT allows the remapping of the local topics to
public broker’s topics. This procedure takes place in the bridge
broker, in such a way that it is transparent to MQTT clients. It
is worth noting that, through the bridging mechanism, infor-
mation produced behind different brokers can be aggregated
in a single place at a public broker, thus allowing subscribers
to retrieve it with a single connection.

III. SCENARIO AND MOTIVATIONS

The aim of this work is twofold. First, we want to offer
anonymity guarantees to both publishers and subscribers. In-
deed, in a classical MQTT architecture, the broker can observe
which subscribers are interested in which topics and which
publishers send messages labeled with those topics.

Clearly, encryption-based data-confidentiality does not solve
the anonymity problem. Indeed, the broker is still able to
observe which publishers and subscribers are communicating.
Therefore, attacks based on background knowledge about even
one client can allow the broker to infer the topic and, as a
consequence, information about all the clients communicating
on this topic.

Based on the above considerations, in this paper, we focus
on achieving privacy goals by hiding identities rather than
contents. If client identities are really hidden, then the broker
cannot link contents with clients. Privacy is then achieved,
even in the case of non-encrypted contents. Consider that the
trivial use of a pseudonym for the client is not enough because
de-anonymization is always possible, also by taking into

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 4

Fig. 2: MQTT bridging mechanism.

account the source and the destination of the communication
(i.e., the IP addresses) are quasi identifiers [44]. Therefore,
we have to guarantee that both publishers and subscribers are
entities that the broker is not able to identify in the network.
This is a goal typically reached in the context of anonymous
communication networks [36].

To accomplish the above objective, we refer to the MQTT
bridging mode (see Section II) in which clients (publish-
ers/subscribers) interact with a public broker through a bridge
broker. This natively implements a low level of anonymity,
in the sense that clients do not connect directly to a broker
but are hidden behind their bridge brokers acting as proxies.
However, it is not enough to achieve true anonymity. First, also
the identification of the local bridge could threaten privacy in
the case in which the local bridge serves a restricted group
of clients. Moreover, it may happen that the bridge broker
aggregates similar clients (in terms of interests). Therefore,
the above-mentioned issues still occur. This problem is related
to the concept of l-diversity [45]. In general, inference-based
attacks are still possible.

The idea we follow in this paper is to hide the identity of
the clients by making anonymous and not identifiable the local
bridge from/to which the communication comes/goes. To do
this, we implement, in Section V, an anonymity peer-to-peer
protocol inspired by [39], in which the peers are represented
by the bridge brokers.

To make effective the approach, we also provide a protocol
allowing the clients to discover which topics are offered by
which public brokers. This is an important aspect to take into
consideration even when anonymity features are not required.
Indeed, MQTT does not implement any native mechanism to
accomplish this task [41]. Furthermore, this becomes a fun-
damental pillar when publishers remain anonymous. Indeed,
being anonymous, a publisher cannot otherwise advertise the
topics to which it will publish.

To conclude this section, we provide the notations we use
throughout the rest of the paper. We denote by BR the set of
the bridge brokers. They form the peer-to-peer network of the
anonymity protocol. We denote by BP the set of the public
brokers. They represent the actual brokers hosting the topics
to which the clients publish or subscribe. We denote by BD

the set of discovery brokers. They implement the discovery

TABLE I: Notations.

Symbol Description
BR set of the bridge brokers
BP set of the public brokers
BD set of discovery brokers
p a generic publisher
s a generic subscriber

pub(T, I)
publish message of the information I

labeled with the topic T

sub(T ) subscribe message labeled with the topic T

Bp
R bridge broker directly connected to the publisher p

Bs
R bridge broker directly connected to the subscriber s

TN
topic to which new topics available

at a certain public broker are published

TN′
topic to which new bridge brokers
joining the network are published

TS
topic to which the current set of

all the available topics is published

TS′
topic to which the current set

of all bridge brokers is published

TF
(forwarding topic) topic-prefix labeling

information coming from remote bridge brokers
TA (actual topic) actual topic labeling an information
pf Forwarding probability
R Generic random value to compare with pf
L Average length of the paths

S
Set of pairs composed of a

topic and public broker hosting it

S′ Set of pairs composed of
IP address and port of a bridge broker

n number of brokers in the P2P network

c
number of collaborating malicious brokers

in the P2P network

protocol allowing the clients to know which public broker
offers which topic. Moreover, they enable peer discovery for
the anonymity protocol.

Finally, we denote by pub(T, I) the publish message of the
information I labeled with the topic T , and by sub(T ) the
subscribe message labeled with the topic T .

We report in Table I the notations used throughout the rest
of the paper.

IV. THE DISCOVERY PROTOCOL

Through this protocol, we offer a discovery service to the
bridge brokers so that they can know which topics are available

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 5

and which public brokers offer them. This service is provided
by the discovery brokers. In principle, just a single discovery
broker is enough to implement this protocol. Anyway, for
scalability, it is more realistic to distribute the service to more
brokers so that bridge and public brokers are not connected to
a single possible point of failure [46].

Each discovery broker in BD maintains:
• a set of pairs S = {(T,BP )} where BP ∈ BP . Each pair
(T,BP ) ∈ S represents the information that the topic T
is available on the public broker BP . The set S has to
be the same for all the discovery brokers in BD.

• a topic TN that will contain a single pair (T,BP )
denoting that a new topic T is available on the public
broker BP .

• a topic TS that will provide the current set S to the
new bridge brokers joining the network. S is stored as
a retained message for the topic TS .

Since S could exceed the maximum size allowed for the
content of a topic, we may consider more topics T 1

S , . . . , T
k
S ,

each one containing a portion of S. For the sake of presen-
tation, we consider just a single topic TS , which is also the
more realistic case.

The topics TN and TS are prefixed strings in the system.
The broker BD publishes (to itself) the message S with the

retained flag set to true. This way, all the clients subscribing to
the topic TS receive the retained message immediately after
they subscribe. To update the set S, it is sufficient for the
broker to just re-publish again S (with retained flag set to true).
Doing so, as explained in Section II, only the last retained
message will be stored.

Consider now a new bridge broker BR ∈ BR joining the
system. It randomly selects a discovery broker BD ∈ BD and
sends it the message sub(TS). In other words, BR subscribes
to the topic TS hosted by the broker BD. This way, BR

receives (as a retained message) the current set S. Then, it
removes its subscription to TS , so that it does not receive
repeated information (i.e., the set S) when other bridge brokers
join the network.

However, a mechanism to update S (when a new topic is
available on some public broker) is needed to BR and BD.
This mechanism is based on TN .

In particular, when the bridge broker BR joins the network
and (randomly) selects the discovery broker BD, BR also
sends sub(TN ) to it. This subscription is maintained over time.

Consider now a public broker BP ∈ BP receiving a publish
message or a subscribe message labeled with a new topic
T ∗ through the anonymity protocol of Section V. BP has to
advertise the fact that it hosts this new topic.

To do this, BP randomly selects a discovery broker BD

and sends the message pub(TN , (T ∗, BP )). BD adds the
pair (T ∗, BP ) to the set S. Moreover, since some bridge
brokers are subscribers to TN , they also receive (through the
standard MQTT approach) the new pair and update the set S.
To propagate the new information to all the bridge brokers,
BD sends the message pub(TN , (T ∗, BP )) to all the other
discovery brokers. Since each bridge broker is a subscriber to
TN on some discovery broker, all the bridge brokers eventually
receive (T ∗, BP ) through the standard MQTT protocol.

V. THE ANONYMITY PROTOCOL MQTT-A

The anonymity protocol we propose in this section is
inspired by the Crowds protocol [39]. Our solution relies on
a P2P network formed by bridge brokers collaborating to
forward publish/subscribe messages from MQTT clients to the
intended public broker. The collaboration among brokers ex-
ploits the bridging mechanism, which is natively supported by
the MQTT protocol, thus requiring no infrastructural change
in the MQTT architecture.

Similarly to Crowds, our protocol is characterized by a
forwarding probability pf , namely the probability for a mes-
sage to remain within the peer network. Moreover, as in
Crowds, we require that each bridge broker knows all the
peers participating in the P2P network. To guarantee this, we
propose an MQTT-based peer discovery protocol, thanks to
which every peer maintains an updated set of all the bridge
brokers forming the network. This protocol is based on the
approach presented in Section IV. It leverages one or more
discovery brokers holding a set of pairs S′ = (IPBR

, portBR
),

where IPBR
and portBR

represent the IP address and the port
of the bridge broker BR participating in the network.

Moreover, each discovery broker stores two additional pre-
fixed topics: TN ′ and TS′ . The topic TN ′ is used by the
discovery broker itself to publish any update of the set S′

(an update typically happens whenever a new peer joins the
network). Instead, the topic TS′ holds the set S′ as a retained
message, so that any new peer joining the network, after
subscribing to this topic, immediately receives the set S′.

When a bridge broker joins the P2P network, it proceeds as
follows. First, it subscribes to the two topics TS′ (to receive
the set S′) and TN ′ , of a randomly selected discovery broker
BD.

Then, the bridge broker sends a publish message labeled
with the topic TN ′ advertising its IP address and its port to
BD. This way, every bridge broker subscribed to the topic TN ′

of BD receives such a message and, at the same time, BD can
update the set S′. At this point, BD sends a publish message
labeled with the topic TN ′ to all the other discovery brokers,
advertising the new pair composed of the IP address and the
port of the new bridge broker. Since each bridge broker is a
subscriber to TN ′ of some discovery broker, this procedure
allows every bridge broker to learn all other brokers of the
network.

We stress that, as described in Section IV, every bridge
broker, joining the P2P network, must subscribe to both TN ′

and TS′ . However, while the subscription to TN ′ lasts over
time, the subscription to TS′ is undone once the set S′ is
received.

This concludes the description of the peer discovery proto-
col.

In the following, we describe in detail the anonymity
protocol we propose.

We consider a scenario involving:
• a public broker BP ∈ BP hosting the topic TA (where A

stands for actual);
• a publisher p aiming to publish information to the topic
TA;

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 6

• a subscriber s interested in the topic TA;
• the set of bridge brokers BR, among which the broker
Bp

R ∈ BR represents the bridge broker directly connected
to the publisher p, and the broker Bs

R ∈ BR represents
the bridge broker directly connected to the subscriber s.

We assume that Bp
R (Bs

R, respectively) is able to distinguish
p (s, respectively) as a client different from other bridge
brokers. This can be done simply by observing that p (s,
respectively) does not belong to the list of peer brokers.

Among other topics, each bridge broker stores a prefixed
topic TF known to all the bridge brokers and clients, where
F stands for forwarding.

Consider now the publisher p that wants to publish the infor-
mation I to the topic TA. p sends the message pub(TF /TA, I)
to the broker Bp

R. Bp
R randomly selects a bridge broker, say

B1
R, among the peers participating in the network. Then, it

simply forwards the message pub(TF /TA, I) to B1
R, via the

bridging mechanism. We recall that the bridging mechanism
allows Bp

R to act as an MQTT client (a publisher, in this case)
towards B1

R.
Once the message is received, B1

R acts as follows. First, it
extracts a random number R between 0 and 1. At this point,
two cases can occur.

If R ≤ pf , then B1
R randomly selects a bridge broker

B2
R among the peers participating in the network. Then, B1

R

sends the message pub(TF /TA, I) to B2
R, via the bridging

mechanism.
If R > pf , then the message must be published to the public

broker holding the topic TA, if any. To do this, B1
R finds the

pair (TA, BP ) in the locally stored set S. If such a pair exists,
after remapping TF /TA to TA, B1

R simply sends the message
pub(TA, I) to BP . Conversely, if such a pair does not exist
yet, B1

R chooses at random a public broker BP ∈ BP and
then sends it the message pub(TA, I). In this case, being TA

a new topic for BP , BP must activate the discovery protocol
(see Section IV) to notify all the bridge brokers of the new
topic. This way, each bridge and discovery broker will update
the set S.

Consider now the case in which R ≤ pf . In this case,
B2

R receives from B1
R the message pub(TF /TA, I). At this

point, the above procedure is applied recursively. Therefore,
B2

R again extracts a random number R′ and compares it with
pf . If R′ ≤ pf , the message pub(TF /TA, I) is sent to a bridge
broker B3

R chosen at random. In this case, no topic remapping
is needed. On the contrary, if R′ > pf , then B2

R sends the
message pub(TA, I) to the public broker BP , following the
procedure described above.

The mechanism so far described provides anonymity to
publishers. A similar mechanism can be employed so that the
same anonymity guarantees are provided to subscribers.

Consider the subscriber s interested in the topic TA. s sends
the message sub(TF /TA) to the broker Bs

R. Then Bs
R chooses

at random a bridge broker, say B4
R, and sends it the message

sub(TF /TA), via the bridging mechanism.
Once receiving the above message, B4

R acts as follows.
First, B4

R stores Bs
R in the list of clients subscribed to the

topic TF /TA, creating this topic if it has not already been
stored locally. Afterward, it extracts a random number and

compares it to pf to decide whether to send the subscription
message to the public broker BP (retrieved from its local set
S) or to another bridge broker.

In the first case, B4
R sends sub(TA) to BP and then the

procedure stops. Observe that, in this case, the original topic
TF /TA needs to be remapped to TA. In the second case,
B4

R sends sub(TF /TA) to a randomly chosen bridge broker,
say B5

R. At this point, B5
R recursively repeats the procedure

described above. Therefore, B5
R stores B4

R in the list of clients
subscribed to the topic TF /TA, possibly creating this topic.
Then, B5

R extracts a random to decide where to send the
received subscribe message. Eventually, after a certain number
of iterations, the subscribe message will reach the intended
public broker BP .

Finally, when BP receives a publish message, say
pub(TA, I), it broadcasts the payload I to all the subscribers
to the topic TA. Suppose B5

R is the bridge broker directly
subscribed to the topic TA at BP . B5

R will receive I and,
then, it will broadcast this payload to all the clients subscribed
to the topic TF /TA, among which there is B4

R. Observe that,
being B5

R the bridge broker directly connected to BP , the topic
TA must be remapped to TF /TA. Again, following the same
mechanism, B4

R will send the payload I to all the subscribers
interested in the topic TF /TA, among which there is Bs

R.
Once Bs

R receives the payload I , it will broadcast I to all
the subscribers interested in TF /TA, among which there is s.

Observe that, in our solution, the path followed by a
message is not deterministically chosen by the sender, but
it is probabilistically built by peer bridge brokers at each
hop. Probabilistic paths may introduce two issues. The first
concerns the possibility of lacking message ordering since
messages may follow different paths (with different lengths).
The second is about the possibility of loops being created in
the P2P network. We address both problems in Section VI.

To conclude this section, in Figure 3, we provide a graph-
ical representation of the anonymity protocol. Therein, we
represent (i) (solid line on the left) the path followed by a
publish message, from the publisher toward the public broker,
(ii) (solid line on the right) the path followed by a subscribe
message, from a subscriber toward the public broker, and (iii)
(dashed line on the right) the path followed by the publish
message from the public broker toward the subscriber. As
depicted in the figure, the paths in cases (i) and (ii) depend
on the value of R compared to pf . Specifically, when R ≤ pf
publish (or subscribe) messages are forwarded to peer brokers.
Otherwise, when R > pf publish (or subscribe) messages are
forwarded to the final public broker.

VI. COMPLEXITY AND OVERHEAD ANALYSIS OF
MQTT-A

Through this section, we provide a study of the complexity
and the overhead related to the proposed approach by high-
lighting the price to be paid compared to the standard MQTT
protocol.

As a first observation, to provide anonymity we require
messages to traverse paths whose lengths depend on the
probability pf . Clearly, the higher pf , the higher the length
of each path and then the latency to transfer each message.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 7

Fig. 3: MQTT-A.

The average length L of the paths, as a function of pf , can
be derived as follows. First, a single hop is present between
the bridge broker directly connected to an MQTT client and
another bridge broker. Indeed, the first bridge broker does
not extract the random R, but always forwards the messages
to another bridge broker. Then, we have to compute the
average length of the path between the second bridge broker
and the public broker. To compute it, we have to compute
the probability for each possible length of this path. Then,
with probability 1 − pf , the second broker directly sends
the message to the public broker. This results in one hop
between the second broker and the public broker. Instead, with
probability (1−pf )pf the second broker forwards the message
to another bridge broker and the latter forwards the message
to the public broker. This results in two hops between the
second broker and the public broker. Similarly, by extending
the above reasoning, we have a path of length i between the
second bridge broker and the public broker with probability
(1− pf )(pf )

i−1.
Now, we can compute the average length by summing

each possible length weighted with its occurrence probability.
Formally, it results in

∑+∞
i=1 i(1− pf )(pf )

i−1.
By adding the first term including the hop between the first

bridge broker and the second bridge broker, we have that the
average length is given by the following equation:

L =

+∞∑
i=1

i(1− pf )(pf )
i−1 + 1 =

1

1− pf
+ 1 (1)

We report in Table II the average length of the path for each
probability pf .

The actual price in terms of latency introduced by MQTT-
A is experimentally evaluated in Section VIII, by highlighting
also how to set the value of pf not to exceed a maximum
latency value. In addition, the trade-off between security and

TABLE II: Average path length.

pf Average path length
0.5 3

0.66 4

0.75 5

0.8 6

0.835 7

0.86 8

0.875 9

0.89 10

0.9 11

efficiency (in terms of latency) related to the choice of pf is
investigated in Section VIII.

Another price we pay, compared to standard MQTT, is the
introduction of a topic prefix to let the broker know whether
a message should be sent in the P2P anonymous network or
managed locally by the broker (as in standard MQTT). This
can be done with an additional bit associated with the topic
to distinguish these two kinds of situations with no significant
overhead.

Concerning the computational complexity required of bro-
kers, we recall that, with respect to the standard MQTT
protocol, they have just to extract a random value R and
select the broker to send the message. Clearly, the cost of the
first operation is negligible. Concerning the second operation
(selection of the broker), we distinguish two cases. If R ≤ pf ,
then a broker simply selects randomly another broker from
the set of peer brokers. Again, the cost of this operation is
negligible. Otherwise (i.e., R > pf ), the broker retrieves, from
the set S, the public broker associated with the topic of the
received message. This operation can be efficiently performed
by implementing S as a hash table using the names of the
topics as keys. The time required to perform this operation
is constant and negligible compared to the processing time of

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 8

the MQTT message.
To conclude this section, we provide some observations

concerning the message ordering issue and the loop creation
in the P2P network.

As highlighted by [12], although the MQTT protocol was
designed to guarantee a certain QoS level for each message, it
may be hard to ensure that messages are delivered in the exact
order in which they were transmitted by the senders. Indeed,
even though QoS 2 guarantees single message delivery, it does
not guarantee message ordering. This holds also for MQTT-
A. Moreover, in our protocol, the problem may occur more
frequently. Indeed, it may be that two successive messages
sent by a publisher follow different paths so that the first
message traverses a longer path than the second message,
thus arriving at its destination with no predictable order. The
ordering problem in MQTT-A can be solved by adopting
the same strategy as [12] consisting of the inclusion of a
sequence number in the MQTT packets. Clearly, this leads
to computational overhead at the application layer.

The second issue regards the possibility of loop creation
in the P2P network. Specifically, it is possible that a publish
message crosses twice the same bridge broker before reaching
the public broker. Actually, this does not represent an issue.
Conversely, concerning subscribe messages, the loop creation
may represent an issue since the received (published) mes-
sages may continue to circulate in the network. However, the
solution to the above problem is trivial since each subscriber
message contains a packet id. Then, it is sufficient that the
same packet id used by the client is maintained by the bridge
brokers for a while. This way, if two subscribe messages with
the same id are received by the same bridge broker, the second
message is discarded and no loop arises.

VII. PATH INTERSECTION AND QOS MANAGEMENT

In Section V, to simplify the description of the protocol,
we considered the case of a single publisher and a single
subscriber. Moreover, we assumed that the paths followed by
the publish and subscribe messages labeled with the same topic
do not intersect.

Now, we remove the above-simplifying assumptions and
deal with the consequent impact on QoS guarantees of sub-
scribers.

Three cases are investigated: (i) the paths followed by at
least two subscribe messages labeled with the same topic
intersect, (ii) the paths followed by at least one publish
message and at least one subscribe message labeled with the
same topic intersect, and (iii) the paths followed by at least
two publish messages labeled with the same topic intersect.

As we will see in the following, the problem of path
intersection requires ad-hoc strategies to guarantee the QoS
level chosen by each subscriber.

We recall that QoS levels 0 and 1 allow duplicate messages,
while QoS level 2 requires the message to be delivered exactly
once. We stress that both publishers and subscribers can
independently choose the desired QoS level for each message
being sent or received. Therefore, as an example, a client p
may publish to a topic with QoS level 1, while there is a

subscriber s interested in the same topic but aiming to receive
data with QoS level 2. Therefore, s cannot be sure about the
fact that it is not receiving duplicate messages.

This QoS mismatching represents an open problem even in
standard MQTT. Without loss of generality, in the following,
we will consider that clients always publish messages with
QoS level 2. This way, any QoS level chosen by subscribers
can be met. Moreover, to improve the readability of our
discussion, in the following, unless otherwise stated, we will
implicitly refer to publish and subscribe messages labeled with
the same topic.

A. Subscribe-Subscribe Path Intersection

In this section, we consider a scenario in which a set of
subscribers is interested in the same actual topic TA, hosted
by the public broker BP . Each subscriber may select arbitrarily
a certain QoS level for its subscribe message.

Following our protocol, each subscribe message crosses a
certain number of bridge brokers before reaching the public
broker BP . Suppose that, before reaching BP , two or more
subscribe messages cross the same bridge broker. In the
following, we will call such a broker as intersection broker.

At this point, the intersection broker can choose one of the
following strategies:

• blind strategy;
• topic-aware strategy;
• topic-and-QoS-aware strategy.
These three strategies are sketched in Figures 4,5, and

6, respectively. Specifically, these figures depict the paths
followed by two or more messages (labeled with the same
topic) before and after the intersection in a broker (depicted
in yellow). To facilitate the understanding of the images, the
path followed by each message is represented with a specific
color.

An intersection broker, implementing the blind strategy,
treats all the subscribe messages the same, regardless of
whether they are labeled with the same or different topics.
Therefore, subscribe messages labeled with the same topic,
in principle, can be routed to different brokers. For instance,
as depicted in Figure 4, the messages sent by the first sub-
scriber and the second subscriber (red path and the blue path,
respectively), once they intersect, are routed independently.

An intersection broker, implementing the topic-aware strat-
egy, treats the subscribe messages labeled with the same topic
differently from all other messages crossing it. In particular,
referring back to our scenario, just the first received subscribe
message labeled with the topic TF /TA is forwarded according
to the protocol described in Section V. On the contrary, all
other subscribe messages, labeled with the same topic, that
arrive later are not further forwarded.

For example, in Figure 5, suppose the subscribe message
sent by the second subscriber (blue path) reaches the broker
after the subscribe message sent by the first subscriber (red
path). Being the topic-aware strategy adopted, the message
following the red path is routed to the public broker. Con-
versely, the message following the blue path, once it reaches
the intersection broker, is not further forwarded.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 9

Fig. 4: Blind strategy.

Fig. 5: Topic-aware strategy.

Fig. 6: Topic-and-QoS-aware strategy.

Observe that, for all other subscribe messages (with the
same topic) that arrive later, the intersection broker has just
to memorize the bridge brokers they come from in the list of
brokers interested in topic TF /TA. This is enough to guarantee
that all the subscribers will be able to receive the data later
published to the actual topic TA. We recall that this strategy is
not QoS-aware and therefore messages labeled with the same
topic but requiring different QoS are not treated differently.

An intersection broker, implementing the topic-and-QoS-
aware strategy, distinguishes messages, labeled with the same
topic, on the basis of the QoS level they require. To handle the
different QoS levels, each bridge broker hosts three forwarding
topics TF /Q0, TF /Q1, and TF /Q2. Therefore, subscribe
messages sent by clients interested in the actual topic TA but
with different QoS levels will follow different paths in the
network. In fact, subscribe messages requiring different QoS
levels result in messages labeled with different topics (either
TF /Q0, TF /Q1, or TF /Q2).

For example, in Figure 5, suppose the first and the third
subscriber require QoS 0, while the second subscriber requires
QoS 2. Moreover, suppose that the subscribe message sent by
the first subscriber (red path) arrives at the intersection broker
before the subscribe message sent by the second subscriber
(blue path) that in turn arrives at the intersection broker before
the subscribe message sent by the third subscriber (green

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 10

path). In this case, the subscribe messages of the first and
the second subscribers are routed to the public broker through
different paths since they require different QoS levels. On the
other hand, the message following the green path (sent by
the third subscriber), once it reaches the intersection broker,
is not further forwarded. This is due to the fact that such a
message presents the same QoS level as one of the previously
forwarded messages (i.e, we adopt the topic-aware strategy).

Observe that, regarding the messages labeled with the same
actual topic and QoS level, the following strategies may be
applied:

• concerning topics TF /Q0 and TF /Q1, both blind strat-
egy and topic-aware strategy can be applied (in Figure 6,
we adopt the topic-aware strategy);

• concerning topic TF /Q2, only the topic-aware strategy
can be applied.

B. Publish-Subscribe Path Intersection

In this section, we consider a scenario in which a client
aims to publish to the actual topic TA (hosted by the public
broker BP ) and at least one subscriber is interested in the
same actual topic TA.

Following our protocol, each (publish or subscribe) message
crosses a set of bridge brokers before reaching the public
broker BP . Suppose that, before reaching BP , at least one
subscribe message and one publish message cross the same
bridge broker. As before, we call such a broker intersection
broker.

At this point, the intersection broker can choose one of
the three strategies mentioned above (i.e., either the blind
strategy, the topic-aware strategy, or the topic-and-QoS-aware
strategy).

An intersection broker, implementing the blind strategy,
acts as follows. When it receives the publish message it does
not publish this message locally, regardless of whether it has
locally memorized other bridge brokers subscribed to the same
topic labeling the publish message. Therefore, the publish
message is further forwarded until it reaches the public broker
BP .

An intersection broker that implements the topic-aware
strategy acts as follows. When it receives the publish message,
it first verifies whether it has locally memorized other bridge
brokers subscribed to the same topic of the publish message.
If this is not the case, then the intersection broker behaves
as described by the blind strategy. Conversely, if the above
condition is met, the intersection broker publishes the received
message locally. This way, all the bridge brokers, subscribed
to the same topic, receive the payload associated with the
publish message and, in turn, this payload is forwarded up
to the actual subscribers. Observe that, even though the topic-
aware strategy is applied, the publish message has to be further
forwarded to the public broker BP , since this is the only way
that message can reach all the interested subscribers.

As already described, implementing the topic-and-QoS-
aware strategy requires a slight modification to the forwarding
topics hosted by each bridge broker. Indeed, according to this
strategy, each bridge broker hosts three forwarding topics:

TF /Q0, TF /Q1, and TF /Q2. When a publish message la-
beled with the topic TF /TA reaches an intersection broker,
such a broker follows the topic-aware strategy. However,
differently from before, the message is locally published only
to the topics TF /Q0 and TF /Q1.

C. Publish-Publish Path Intersection

In this section, we consider a scenario in which the paths
followed by two publish messages intersect. Unlike subscribe
messages, publish messages do not require the memorization
of a permanent state at each broker (i.e., the subscription of
a client). Therefore, bridge brokers are unaware, unless they
maintain the history of messages, of the fact that they may be
crossed by publish messages (labeled with the same topic) at
different time periods.

Actually, this situation requires no additional action from the
side of the intersection broker. The two publish messages are
treated independently and forwarded according to the standard
rules of the MQTT-A protocol.

D. Strategies Comparison

To conclude this section, we examine the advantages and
drawbacks of the presented strategies. Overall, the blind strat-
egy represents the easiest solution to implement. However,
adopting this strategy leads to higher bandwidth consumption
than other strategies since messages intersecting in the same
broker are simply propagated into the network without being
aggregated [47]. On the contrary, the topic-aware strategy
requires the least bandwidth of the three strategies. However,
the main drawback of this strategy is that it is not QoS-aware.
To explain why this may represent an issue, we consider the
following example. Suppose there are two subscribers s1 and
s2 both interested in the topic TA but requiring different QoS,
0 and 2 respectively. We consider that the paths followed
by the two subscribe messages in the network intersect.
According to the topic-aware strategy, the intersection broker
further forwards only the first received subscribe message.
This way, all the brokers (including the intended public broker
BP ) crossed by such a message will memorize the QoS level
that it requires. Such QoS level can be either 0 or 2 depending
on which subscribe message comes first at the intersection
broker. Observe that, since the public broker will be aware
of just one subscription out of the two, applying the topic-
aware strategy also turns out to be advantageous anonymity-
wise speaking, not just bandwidth-wise speaking.

Therefore, all the data published to the topic TA will cross
all the bridge brokers from the public broker to the intersection
broker respecting the QoS level required by the subscribe
message. Observe that, this may be an issue, either for s1 or s2.
Indeed, supposing the s1 subscription (requiring QoS level 0)
comes first at the intersection broker, the QoS level required
by s2 cannot be satisfied, since it is higher than 0. On the
contrary, supposing the s2 subscription (requiring QoS level
2) comes first at the intersection broker, the QoS level required
by s1 can be satisfied, since it is lower than 2. However, this
comes with a cost. Indeed QoS level 2 is satisfied in the path
from the public broker to the intersection broker, while QoS

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 11

level 0 is satisfied in the path from the intersection broker to
s1. In general, the overhead introduced by the QoS level 2, in
the first part (i.e., from the public broker to the intersection
broker) of the path, may not be acceptable for s1.

A similar case may happen when the paths followed by
a publish and a subscribe message intersect. Suppose there
are a publisher p and a subscriber s, both requiring QoS
level 2. According to the topic-aware strategy, the subscriber
s receives the publish message by the intersection broker.
Actually, s will receive the same publish message also by
the public broker. Therefore, despite the fact that s chose the
QoS level 2, s will receive duplicate messages. This is due to
the fact that, regardless of whether or not a path intersection
has occurred, the publish message, as well as the subscribe
message, must reach the public broker. This way, all the
interested subscribers can receive the publish message and the
subscriber s can receive all the messages published to the topic
by all the publishers in the network, not just by p.

As the occurrence of the two situations above described may
not be acceptable, bridge brokers can implement the topic-
and-QoS-aware strategy. Indeed, referring back to our last
example, when the publish message reaches the intersection
broker, it is locally published just to the topics TF /Q0 and
TF /Q1, which are also the QoS levels that can tolerate
duplicate messages. Such a strategy ensures that the QoS level
required by subscribers is always met, provided that publishers
guarantee an appropriate QoS level. However, this comes
with a cost. Indeed this strategy requires more bandwidth
consumption than the topic-aware strategy.

VIII. EXPERIMENTS

Through this section, we perform an experimental validation
of MQTT-A and compare it with the standard MQTT protocol.
To obtain the anonymity features, MQTT-A introduces a
communication overhead. Therefore, this section aims to show
that the price we pay is tolerable and the performance results
acceptable. We also investigate the supported applications and
some trade-offs of MQTT-A.

A. Experimental Setting

For implementation and testing, we relied on HiveMQ CE
[48], which is a Java-based open-source MQTT broker. We
customized the bridge brokers to implement our solution and
deployed a P2P network leveraging also Digital Ocean cloud
platform [49] to have remote peers. No change is required for
clients and public brokers. In detail, for our experiments, we
consider two network configurations, one for MQTT-A and
the other for MQTT. The aim is to compare the two protocols
by measuring latency and goodput.
MQTT-A Configuration In MQTT-A, we have the following
components:

• Clients: They are implemented through the Java library
provided in [50] with no change and deployed on standard
laptops equipped with 1.00 GHz Intel i5-1035G1 CPU
and 8 GB of RAM. They are connected to the bridge
brokers through a local network. We observe that the
performance of our protocol does not depend on the

capabilities of MQTT clients. Indeed, we do not require
any change either publisher-side or subscriber-side. In-
stead, the performance depends on the network conditions
(latency and bandwidth of the network), length of paths
(due to the forward probability pf ), and the possible
overhead introduced broker-side.

• Bridge Brokers: They are implemented by customizing
the Java library [48] and deployed to form a P2P network.
In particular, they are partially deployed on standard lap-
tops in our laboratory and partially deployed on the Digi-
tal Ocean cloud platform [49]. To obtain realistic results,
we deployed the bridge brokers in different cities of the
world. Specifically, we selected 6 cities: Reggio Calabria
(Italy), Frankfurt (Germany), Amsterdam (Netherlands),
New York (United States), Bangalore (India), and San
Francisco (United States). Then, we considered differ-
ent network configurations to obtain different (average)
round-trip times (RTT) between bridge brokers.
The brokers located in our laboratory in Reggio Calabria
are standard laptops, some equipped with 1.80 GHz
Intel i7-8550U CPU and 16 GB of RAM and others
equipped with 2.70 GHz Intel i7-7500U CPU and 8 GB
of RAM. The other bridge brokers are deployed on virtual
machines in the cloud and they all are equipped with a
vCPU (virtual CPU) and 1 GB of RAM.

• Public Brokers: They are deployed on HiveMQ Cloud,
a cloud-based platform hosting MQTT brokers. They are
standard brokers and do not require any implementation
change. Clearly, the communication bridge-to-public bro-
kers always happens through the Internet.

MQTT Configuration In MQTT, the scenario is a simpli-
fication of the previous scenario. In particular, clients are
connected to bridge brokers through the local network and
bridge brokers are directly connected to public brokers through
the Internet.

Regarding MQTT-A, we chose to adopt the blind strategy
(see Section VII), which is the simplest one but the worst
in terms of performance. As a measure of performance, we
considered goodput and latency. In the next two sections, we
compare MQTT-A and MQTT by fixing the average RTT
between bridge brokers to 55 ms and varying other parameters
(packet size, sending rate, forward probability, and QoS).
Then, in Section VIII-D, we study how the performance of
MQTT-A varies with the RTT by highlighting the supported
applications and possible trade-offs.

B. Goodput
For goodput, we mean the number of useful information bits

received by a subscriber in the unity of time.
To measure it, we fixed a sending rate for the publishers

and observed the corresponding goodput for the subscribers.
We considered three different sending rates: 1 KBytes/s, 10
KBytes/s, and 100 KBytes/s. We study how the goodput varies
as the forward probability of MQTT-A varies. Since the higher
the forward probability the longer the paths, we expect the
goodput of MQTT-A decreases as the forward probability
increases. Obviously, the goodput of MQTT does not depend
on the forward probability.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 12

We performed our experiments by considering two levels
of QoS (0 and 2). Since QoS level 2 requires additional com-
munication overhead compared to QoS level 0, the goodput
of both MQTT and MQTT-A is lower than QoS level 0.

The results with QoS level 0 are reported in Figures 7a,
7b, and 7c, for sending rate of 1 KBytes/s, 10 KBytes/s,
and 100 KBytes/s, respectively. The results with QoS level
2 are reported in Figures 7d, 7e, and 7f, for sending rate of 1
KBytes/s, 10 KBytes/s, and 100 KBytes/s, respectively.

Regarding QoS level 0, we observe that for all the sending
rates and almost all the forwarding probabilities, the percent-
age difference between MQTT and MQTT-A ranges from 3 to
5%. The worst case corresponds to a forward probability equal
to 0.9 and sending rate of 100 KBytes/s. The corresponding
percentage difference is less than 8%.

Considering QoS level 2, MQTT-A shows a slight worsen-
ing. Indeed, for almost all the sending rates and almost all the
forwarding probabilities, the percentage difference is between
7-10%. The worst case corresponds to a forward probability
0.9 and sending rate of 100 KBytes/s in which the percentage
difference is less than 18%.

However, high forwarding probabilities cannot be adopted
also for security reasons (see Section IX). Therefore, we can
conclude that the price in terms of goodput is not relevant.
For completeness, we show in Figure 8, the goodput with
forwarding probability equal to 0.67 and sending rate 10
KBytes/s. We can observe that the goodput is essentially the
same for MQTT and MQTT-A and it is very close to the
sending rate.

C. Latency

The second considered metric is the end-to-end latency
measured between the instant in which a message is sent by
the publisher and the instant in which it is received by the
subscriber. We study how this latency varies as the forwarding
probability of MQTT-A varies. We measured the latency for
three different message sizes (100 bytes, 1000 bytes, and
10000 bytes), considering two QoS levels (0 and 2). The
results are reported in Figures 9a, 9b, and 9c, respectively.

As a first observation, we see that there is no appreciable
difference when the packet size changes in both protocols.

Second, the latency increases for both protocols by approx-
imately the same factor (1.4-1.5), when the QoS level moves
from 0 to 2.

Finally, as expected, the latency of MQTT-A increases with
the forward probability (corresponding to longer paths). This
is the main drawback of the proposed approach.

However, we have to consider that this condition guarantees
both sender and recipient anonymity. If we relax this constraint
and require just one of the two, the latency of MQTT-A is
halved.

In Figure 9d, we set the forward probability to 0.67 and
show the value of latency of MQTT (in blue) and MQTT-
A when both sender and recipient anonymity are achieved
(green) or when just one of two properties is supported (red).

We observe that in the first case (green bar) the ratio
between the latency of MQTT-A and MQTT is less than 3,

while in the second case, it is less than 1.5. This applies with
minimum differences for the two QoS levels and packet sizes.

D. Supported Applications and Trade-offs of MQTT-A

The experiments performed in the previous sections show
that the performance of MQTT-A depends on the length of the
path crossed by MQTT messages. This is not surprising. Since
the above results hold for a fixed RTT between bridge brokers
(i.e., 55 ms), in this section, we repeat the above experiments
by showing the performance of MQTT-A as the RTT varies.

Furthermore, since the performance decreases as pf in-
creases, we show how to set the value of pf (given a value of
RTT) to obtain a maximum latency in MQTT-A compliant
with different applications. This allows us to draw some
conclusions about which types of applications are supported
by MQTT-A according to the network conditions (i.e., RTT)
and security requirements (i.e., pf ).

Finally, in this section, we show the trade-off between
security and performance of our solution.

We start by studying latency as a function of RTT. The
results, with QoS 0 and packet size equal to 100 bytes,
are shown in Figure 10a. Therein, we plot three curves for
three different pf (i.e., 0.5, 0.835, and 0.9). We consider
the values 0.5 and 0.9 since they represent the lower and
upper end of the probability range considered in the above ex-
periments. Moreover, we also consider an upper-intermediate
value (0.835). Observe that, values lower than 0.5 do not
meet any security requirement (any broker receiving a message
can guess with a probability higher than 0.5 that the broker
sending that message is directly connected to a broker in
turn connected to a client). Concerning 0.9, as reported in
Section IX, there is no advantage for too high values of
pf , from the security point of view. Moreover, values higher
than 0.9 may result in unacceptable latencies. On the other
hand, we also chose the value 0.835 to show that a small
decrease in the probability value (from 0.9 to 0.835) results
in a relevant improvement in performance. Observe that, these
three probability values correspond to an average path length
of 3, 7, and 11, respectively.

As expected, the latency increases linearly with the RTT.
Concerning the pf , a higher pf corresponds to a higher latency.
This is coherent with the results obtained in Section VIII-C.

For completeness, we repeated the same experiment with
QoS 2 and reported the results in the plots of Figure 10b.
Clearly, the trend of the latency as a function of the RTT is the
same (i.e., linear) but the absolute values are slightly higher.
Again, this is coherent with the results of Section VIII-C.

Concerning the goodput, we report the results obtained with
sending rate 1 KBytes/s and QoS 0 and 2, in Figures 11a and
11b, respectively. Again, we plot the goodput as a function of
the RTT for three different values of pf .

As expected, a higher RTT corresponds to a lower value
of goodput. We observe that, with a high value of RTT, the
results are less stable (high standard deviation). However, the
trend is clearly downward with the RTT. In the worst case (i.e,
QoS 2 and pf =0.9) the goodput is about 65% of the sending
rate.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 13

(a) Goodput with sending rate 1 KBytes/s and QoS level 0. (b) Goodput with sending rate 10 KBytes/s and QoS level 0.

(c) Goodput with sending rate 100 KBytes/s and QoS level 0. (d) Goodput with sending rate 1 KBytes/s and QoS level 2.

(e) Goodput with sending rate 10 KBytes/s and QoS level 2. (f) Goodput with sending rate 100 KBytes/s and QoS level 2.

Fig. 7: Goodput.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 14

Fig. 8: Goodput with pf = 0.67 and sending rate 10 KBytes/s.

From this analysis, it results, that according to the network
conditions (RTT), security requirements (pf ), and QoS, our
solution may be not always applicable (e.g., in the case of
hard real-time applications).

To better investigate this point, in the following, we show
how to set the maximum value of pf to support different
applications (with different requirements in terms of maximum
tolerable latency). We used as a reference source the paper
[51] to: (1) identify the type of applications, and (2) derive,
for each type of application, an upper-bound value for latency.
For each type of application, once the upper bound value is
set, we obtain the maximum tolerated probability pf for this
type of application.

The three applications are the following (Table 6, in [51]):

1) Highly-Reliable WSN: supporting a latency of 3.090
seconds.

2) Default WSN: supporting a latency of 2.115 seconds.
3) Low-Latency WSN: supporting a latency of 0.336 sec-

onds.

The results are reported in Figures 12a and 12b, for QoS
0 and 2, respectively. In the plots, we report the maximum
pf , given the latency requirement, for each application and
a given value of RTT (representing the network condition).
We consider pf in the interval [0.5, 0.9]. As above discussed,
values lower than 0.5 does not meet any security requirement.
Then, we report pf =0 to denote that no probability higher
than 0.5 can support the considered application. Similarly,
higher values than 0.9 do not introduce any security advantage.
Therefore, even if higher pf values than 0.9 can support the
considered application, we set pf to 0.9.

Concerning the Low-Latency WSN (continuous green line),
we observe that this application can be implemented through
MQTT-A only with good network performance (low RTT).
The maximum tolerable value of pf depends on the RTT
and the QoS level. In advantageous conditions (QoS 0 and
RTT=40ms), we can set pf until 0.842.

On the other hand, the Highly-Reliable WSN (red line)
can be implemented through MQTT-A in all the network

conditions. Moreover, also the forward probability can be set
to a high value. Observe that only in the extreme case of Qos
2 and RTT=260 ms, the maximum acceptable pf is less than
0.9 (i.e., 0.873).

Finally, regarding the Default WSN (blue line), again
MQTT-A is supported in all the network conditions with high
pf . However, we notice a slight worsening of the pf value
(compared to the case of High-Reliable WSN) in the case of
RTT=260 ms both in QoS 0 and QoS 2.

Specifically, in this case, the maximum acceptable pf (per
RTT) is lower than the case of the Highly-Reliable WSN (but
it still ranges between 0.8 and 0.9). Then, we can conclude
that MQTT-A is fully supported also for the Default WSN
application.

We would like to stress an important point. The values so
far reported are obtained considering both sender and recipient
anonymity. If we relax this condition requiring just one of the
two properties, also the Low-Latency WSN application can
be implemented through MQTT-A with higher values of RTT.
In Figures 12a and 12b, we report the associated pf for this
application represented through a dashed green line.

To conclude this section, we report explicitly the trade-
off between security and efficiency of MQTT-A. Specifically,
according to Equation 2 of Section IX, in a network of n
nodes, to resist against c colluding nodes, we have to set
pf ≥

1
2

1− c
n− 1

n

≃
1
2

1− c
n

(by assuming n >> 1).
On the other hand, as shown in Section VIII-C, as pf

increases, the total latency increases too. Then a trade-off on
pf exists.

In Figures 13a and 13b, we report the latency obtained in
correspondence with the forward probability allowing us to
resist against the fraction c

n of malicious brokers in the P2P
network. The two figures consider QoS level 0 and QoS level
2, respectively, and include five plots, for different RTT values.

We chose these five values of RTT (40 ms, 55 ms, 140 ms,
180 ms, and 260 ms) since they cover a wide range of realistic
network conditions when bridge brokers are distributed world-
wide. Specifically, we obtained these values by deploying the
brokers in different countries as explained in Section VIII-A.

These plots allow us to set the probability pf taking into
account latency constraints, network conditions, and security
requirements. We would like to highlight that the growth of the
latency is very slow as the fraction c

n increases, until a given
value, then it increases exponentially. We observe that with no
significant price in terms of latency, MQTT-A can tolerate up
to 33% of nodes in the P2P network to be malicious.

IX. THREAT MODEL AND SECURITY ANALYSIS

Since our anonymity protocol is based on [39], we consider
the threat model of the original paper. However, a very
significant difference exists. In [39], the recipient of the
communication to protect is an end server that in our solution
corresponds to a public broker. Anyway, such a public broker
is not the actual recipient. Instead, the actual recipient is a
subscriber to a topic on this public broker. Then, this difference
has to be taken into account in our analysis. For example,
in Table 1 of [39], when considering the protection of the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 15

(a) Latency with packet size of 100 bytes. (b) Latency with packet size of 1000 bytes.

(c) Latency with packet size of 10000 bytes. (d) Latency with pf = 0.67 and packet size of 100 bytes.

Fig. 9: End-to-End Latency.

(a) Latency with QoS level 0. (b) Latency with QoS level 2.

Fig. 10: End-to-End Latency.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 16

(a) Goodput with QoS level 0. (b) Goodput with QoS level 2.

Fig. 11: Goodput.

(a) QoS level 0. (b) QoS level 2.

Fig. 12: Maximum probability for each application type, considering different RTT values.

recipient against the end server as an attacker, it results in
N/A since the recipient is the end server itself. On the other
hand, in our solution, it is not true anymore.

We now describe the considered threat model.
We consider the same adversaries and security properties of

[39]. Clearly, they are properly adapted (and contextualized)
to our approach to take into account the fact that the recipient
of the communication is not a central server (i.e., the public
broker), but a subscriber connected to a bridge broker partic-
ipating in the P2P network.
Attackers.

• Local Eavesdropper: An attacker that compromises the
bridge broker directly connected to a publisher or sub-
scriber.

• Collaborating bridge brokers: A set of bridge brokers,
participating in the P2P network, that collaborate to
identify publishers and subscribers.

• Public broker: The public broker hosting the actual
topics that MQTT clients are interested in. It represents
the end server of [39].

Clearly, as [39], our proposal is not oriented to the pro-
tection against a global adversary able to observe the entire
flow of messages exchanged in the network. As a matter of
fact, MQTT (and our proposal too) is designed for wide-
area networks, in which the existence of a global adversary
is unrealistic.
Security properties [37].

• Sender Anonymity: The identity of the publishers is
hidden.

• Recipient Anonymity: The identity of the subscribers is
hidden.

• Relationship Anonymity: The attacker cannot discover
that a publisher and a subscriber are communicating with
each other.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 17

(a) QoS level 0. (b) QoS level 2.

Fig. 13: Trade-off between security and latency.

According to [37], it is sufficient to guarantee either
sender anonymity or recipient anonymity to obtain relationship
anonymity.

Now, we analyze how the attackers perform against the
security properties. To do this, we consider the following
scenario.

We have a publisher p directly connected to a bridge broker
Bp

R that publishes data to the topic TA hosted by the public
broker BP . Similarly, we consider a subscriber s directly
connected to a bridge broker Bs

R interested in the topic TA

hosted by BP .
In favor of security, we neglect the low level of anonymity

introduced natively by the bridging mechanism and assume
that sender anonymity is broken when the adversary identifies
Bp

R (in place of p). Similarly, we assume that recipient
anonymity is broken when the adversary identifies Bs

R (in
place of s).
Resistance against the local eavesdropper. In this case, the
attacker compromises either Bp

R or Bs
R. When the attacker is

Bp
R, it can observe directly the incoming publish messages

coming from p, then sender anonymity is not achieved. How-
ever, Bp

R is not able to identify the subscriber s interested
in the offered topic. Indeed, even in the case in which Bp

R

receives a subscribe message to forward towards BP with the
same topic, it cannot distinguish Bs

R from the other bridge
brokers of the network. Therefore, if the P2P network is
big enough recipient anonymity is guaranteed and then also
relationship anonymity.

Similar considerations can be applied when the attacker is
Bs

R. In this case, since it can observe directly the incoming
subscribe messages coming from s, then recipient anonymity
is not achieved. However, Bp

R cannot be identified by Bs
R, thus

preserving sender anonymity and then relationship anonymity.
Resistance against collaborating bridge brokers. Regarding
this type of adversary, [39] provides a detailed probabilistic
analysis that can be applied also to our solution. For the sake
of presentation, we report directly the two main results of the

analysis and do not repeat the calculations.
The first result is that, given n nodes forming the peer

network, we obtain probable innocence with respect to sender
anonymity against c collaborators, if

n ≥ pf

pf − 1
2

(c+ 1), where pf ≥ 1

2
(2)

Probable innocence means that, from the point of view
of the attacker, the sender appears no more likely to be the
originator of a message than to not be the originator.

According to this result, a higher probability pf allows us
to resist a higher number of corrupted nodes.

The second result is that if n is sufficiently high, we obtain
absolute privacy for sender anonymity with a probability
approaching 1. However, the growth of probability can be slow
if pf is large since it is more likely to involve a corrupted
node in the path. Therefore, there exists a security trade-off
regarding the value of the probability pf .

Absolute sender privacy against an attacker means that the
attacker cannot in any way distinguish the situations in which
a potential sender actually sent communication from those in
which it did not.

Clearly, in our application, the role of the sender considered
in [39] is played both from Bp

R and Bs
R. As a consequence,

if we have a sufficiently high number of bridge brokers, then
our solution offers both sender and recipient anonymity and
then relationship anonymity.
Resistance against the public broker. In this case, the
attacker is BP . Similarly to [39], sender anonymity is achieved
since the publish message sent by Bp

R cannot be distinguished
by BP from a publish message originated from any other
bridge broker. Unlike the previous adversary, this result does
not depend on the probability pf .

Regarding recipient anonymity, while in [39] it is not appli-
cable since the recipient is the server itself, in our application
we can consider the recipient from the point of view of
BP simply as a sender of a subscribe message. Then, by

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 18

applying the same reasoning done for Bp
R, also Bs

R cannot
be distinguished from any other bridge broker.

Then, we obtain sender, recipient, and relationship
anonymity against this adversary.

A. Beyond Anonymity: Active Attacks

The goal of this work is to propose a protocol able to
guarantee anonymity to MQTT clients. Therefore, in previous
analyses, we focused on adversaries eavesdropping on network
messages (possibly colluding with each other) with the aim of
identifying their senders and recipients.

Through this section, we discuss some other aspects which
can be considered out of the scope of this paper since they do
not affect the anonymity guarantees offered by MQTT-A. We
stress that the issues that will be addressed in the following
regard the standard MQTT protocol, as well as MQTT-A.

The first aspect we would like to address regards message
confidentiality and integrity. To guarantee them, MQTT (as
well as MQTT-A) should be used over TLS/SSL. However,
this solution provides message confidentiality and integrity
only between clients and brokers (or between brokers). Unfor-
tunately, no standard end-to-end (i.e., between clients) solution
exists for the MQTT protocol. This implies that a malicious
broker could read the content of any MQTT message in the
clear or modify it without authorization.

To counter such attacks, clients should exchange keys be-
tween them, possibly through other protocols. Obviously, con-
cerning our protocol, if clients require to be anonymous only
with respect to brokers (thus not needing to be anonymous
with respect to each other) the above-mentioned approach can
be applied to MQTT-A. However, if this is not the case, clients
should be able to exchange keys in an anonymous form. This
is currently an open problem also in standard MQTT.

Concerning the lack of message integrity, some other rele-
vant attacks are possible. In particular, a malicious broker may
tamper with the correct message order, by either replaying
messages multiple times or by simply delaying or discarding
messages. A way clients can detect the occurrence of such
attacks is by including a counter within each message (see
Section VI). Nevertheless, this solution requires that message
integrity is (end-to-end) preserved, otherwise a malicious
broker can easily change the counter, thus making the attack
undetectable.

However, even in the absence of a solution that ensures the
end-to-end integrity of messages, MQTT-A clients can take a
trivial countermeasure to detect whether they are victims of
active attacks. For instance, a publisher can (anonymously)
subscribe to the public broker, hosting the topic to which
it is publishing, to detect the presence of any unauthorized
tampering attempts in the path from the publisher to the public
broker. Obviously, this subscription can be done multiple
times. Indeed, because of the probability pf and the random
choice of peer brokers, each time the subscription path would
be different. This way, if the publisher sees the same messages,
that it published before, coming from at least one of the
subscription paths, then it can conclude that it is not a victim
of active attacks. Obviously, a similar solution can be also

employed by subscribers to detect attempts of active attacks
in the path from the public broker to themselves. Again, the
subscriber can make more than one subscription to the same
topic (thus exploiting different paths for each subscription).
This way, by comparing the received messages, it can detect
whether it is a victim of active attacks.

X. RELATED WORK

Security in MQTT is an open problem [52]–[54]. On the
one hand, implementing security mechanisms is crucial to
protect end-to-end clients. On the other hand, since MQTT is
adopted when constrained devices are involved [55], complex
security solutions cannot be applied. Therefore, MQTT does
not provide any built-in security mechanism.

A first issue regards confidentiality. The basic approach
consists of using TLS to establish secure channels [56].
However, it has a negative impact on performance and energy
consumption [57]. Therefore, more advanced solutions have
been proposed in the literature [14], [58]–[64].

Often, the confidentiality mechanisms are adopted to reach
also authorization (with a focus on access control) [65], [66].
A lot of works pursuing both authorization and confidentiality
are based on CP-ABE or KP-ABE [67]–[70]. Clearly, these
schemes differ from the standard ABE schemes since they are
tailored for being used by constrained devices.

Another security feature investigated in MQTT is au-
thentication [71]–[73]. For example, in [74], a multi-factor
blockchain-based solution for authenticating clients is pro-
vided.

The problem of privacy in MQTT [75], [76] is more related
to our work. An interesting solution aimed to obfuscate the
topics when public brokers are involved is provided in [77].
However, it requires pre-shared keys between clients making
this solution not compliant with more general scenarios (such
as that described in this paper) in which publishers and
subscribers do not know each other. The same consideration
applies for [76]. In principle, the above techniques aim to
protect the content of communication, while our proposal
is devoted to protecting peer identities. Clearly, the two
approaches are not in contrast and could be combined to obtain
a higher level of privacy.

The approaches so far described are all designed for an
MQTT-based scenario. There are some other approaches that,
even though not directly applicable to MQTT (but to the IoT
domain in general), are worth mentioning since they are related
to our proposal.

[78]–[80] belong to both privacy and access control cat-
egories. For example, [78] proposes a lightweight policy-
based privacy-preserving scheme that aims at giving users
control over their privacy by setting their own criteria for data
collection.

[81]–[83] belong to both privacy and authentication cat-
egories. Specifically, they propose an enhancement of the
authentication mechanism enabling the cloud server to au-
thenticate devices anonymously. However, unlike our proposal,
these solutions do not focus directly on the identification of
clients through network metadata, such as the IP address.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 19

TABLE III: Summary of the related literature

Categories References
Confidentiality [14], [56]–[64]

Authorization (access control) [65]–[70]
Authentication [71]–[74]

Privacy [75]–[83]
Anonymity [84] and our proposal

We would like to point out that, even though the above
solutions achieve different goals from ours, in principle, they
may be used in conjunction with MQTT-A to strengthen the
privacy protection offered to users. This will be the object of
future work.

The exact context in which our paper falls is anonymity,
in which the aim is to prevent the identification of clients
publishing or subscribing to some topics.

In the literature, to the best of our knowledge, no relevant
and complete proposal is available in this direction. The only
approach that presents some similarities with our proposal is
[84]. Therein, a Tor-like [34] solution is designed in which
clients connect to brokers through a path of intermediate
brokers that forward messages encrypted in Onion fashion.
Different from standard Tor, this approach does not require a
set-up phase to build a tunnel of brokers. Thus, the message
has to include the next broker (along with a Diffie-Hellman
(DH) parameter) in each layer of encryption. This may result
in a not negligible overhead in terms of the size of the packet.
Moreover, [84] assumes that the public DH parameter of each
broker is known in advance by MQTT clients. This is not
a trivial task, so a proper discovery protocol (similar to the
one proposed in this paper) should be provided. Finally, the
approach proposed in [84] suffers from high computational
overhead, as reported in the introduction (for standard Tor
and I2P), because of the layered encryption. Indeed, it may be
not acceptable for resource-constrained MQTT clients. Such
aspects have not been considered in [84]. Indeed, in the short
paper, only the rough idea of the approach is presented with-
out providing any implementation or experimental validation.
Furthermore, no discovery protocol and no security analysis
are included.

We summarize the literature mentioned in this section in
Table III.

XI. CONCLUSIONS

Nowadays collecting IoT data allows companies to improve
the service they offer to their customers. To this aim, for in-
stance, companies can massively collect data from smart home
devices. However, this also allows companies to track and
profile users since IoT devices may reveal their behaviors and
preferences. Of course, this represents an important privacy
issue. One way to ensure users’ privacy, while preserving the
right of companies to collect data, is to have users’ IoT devices
communicate with companies anonymously.

This is exactly the contribution of this paper. Specifically,
our work regards the MQTT protocol, since it is very often
employed in collecting users’ personal data via resource-

TABLE IV: Abbreviation Table

Abbreviation Definition
AWS Amazon Web Services

CP-ABE Cypher-Policy Attribute-Based Encryption
DH Diffie-Hellman

IP address Internet Protocol address
KP-ABE Key-Policy Attribute-Based Encryption
MQTT Message Queue Telemetry Transport

MQTT-A Anonymous Message Queue Telemetry Transport
P2P Peer to Peer
QoS Quality of Service
RTT Round-Trip Time
WSN Wireless Sensor Network

constrained devices in various contexts such as smart homes,
and smart cities.

In this paper, we proposed a P2P anonymous network
to prevent the identification of MQTT clients. The idea is
to propagate publish/subscribe messages through a random
path of intermediate bridge brokers so that the final public
broker cannot identify the actual sender. An important feature
achieved in this proposal is that all the messages are ex-
changed by following the standard MQTT protocol in bridging
mode. This allows us to apply our solution without requiring
infrastructure changes to the standard MQTT architecture.
The experimental validation shows that there exists a trade-
off between security and latency. Moreover, no relevant price
has to be paid in terms of goodput in case of good network
conditions. The above anonymity goal is reached in the paper
also by providing a discovery protocol allowing clients to
know the public brokers and the topics they offer. This is very
important when anonymity of clients is pursued since they
cannot expose their interest in topics. Again, also this protocol
is performed entirely using the standard MQTT primitives.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] OASIS, “MQTT version 3.1.1,” vol. 1, 2014. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3

[3] H. AP and K. Kanagasabai, “Secure-MQTT: an efficient fuzzy logic-
based approach to detect DoS attack in MQTT protocol for internet of
things,” EURASIP Journal on Wireless Communications and Network-
ing, vol. 2019, no. 1, pp. 1–15, 2019.

[4] R. K. Kodali and S. Soratkal, “MQTT based home automation system
using ESP8266,” in 2016 IEEE Region 10 Humanitarian Technology
Conference (R10-HTC). IEEE, 2016, pp. 1–5.

[5] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S—A
publish/subscribe protocol for Wireless Sensor Networks,” in 2008 3rd
International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE’08). IEEE, 2008, pp. 791–
798.

[6] C.-S. Yeh, S.-L. Chen, and I.-C. Li, “Implementation of MQTT pro-
tocol based network architecture for smart factory,” Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, vol. 235, no. 13, pp. 2132–2142, 2021.

[7] A. Lachtar, T. Val, and A. Kachouri, “Elderly monitoring system in a
smart city environment using LoRa and MQTT,” IET Wireless Sensor
Systems, vol. 10, no. 2, pp. 70–77, 2020.

[8] L. Zhang, “Building Facebook Messenger,” https://www.facebook.com/
notes/10158791547142200/, accessed: 2022-05-04.

[9] L. Nastase, “Security in the Internet of Things: A Survey on Application
Layer Protocols,” in 2017 21st international conference on control
systems and computer science (CSCS). IEEE, 2017, pp. 659–666.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 20

[10] K. M. Alam and A. Akram, “A Survey on MQTT Protocol for the
Internet of Things,” Khulna University, Dept. of Computer Science and
Engineering (CSE), 2016.

[11] S. Nazir and M. Kaleem, “Reliable Image Notifications for Smart Home
Security with MQTT,” in 2019 International Conference on Information
Science and Communication Technology (ICISCT). IEEE, 2019, pp. 1–
5.

[12] H. C. Hwang, J. Park, and J. G. Shon, “Design and implementation of a
reliable message transmission system based on MQTT protocol in IoT,”
Wireless Personal Communications, vol. 91, no. 4, pp. 1765–1777, 2016.

[13] M. Ammar, G. Russello, and B. Crispo, “Internet of Things: A survey
on the security of IoT frameworks,” Journal of Information Security and
Applications, vol. 38, pp. 8–27, 2018.

[14] S. Shin, K. Kobara, C.-C. Chuang, and W. Huang, “A security framework
for MQTT,” in 2016 IEEE Conference on Communications and Network
Security (CNS), 2016, pp. 432–436.

[15] M. A. A. da Cruz, J. J. P. C. Rodrigues, P. Lorenz, V. V. Korotaev, and
V. H. C. de Albuquerque, “In.IoT—A New Middleware for Internet of
Things,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7902–7911,
2021.

[16] D. Uroz and R. J. Rodrı́guez, “Characterization and Evaluation of IoT
Protocols for Data Exfiltration,” IEEE Internet of Things Journal, pp.
1–1, 2022.

[17] B. B. Gupta and M. Quamara, “An overview of Internet of Things (IoT):
architectural aspects, challenges, and protocols,” Concurrency and Com-
putation: Practice and Experience, vol. 32, no. 21, p. e4946, 2020.

[18] A. Tewari and B. B. Gupta, “Security, privacy and trust of different layers
in Internet-of-Things (IoTs) framework,” Future generation computer
systems, vol. 108, pp. 909–920, 2020.

[19] ——, “Cryptanalysis of a novel ultra-lightweight mutual authentication
protocol for IoT devices using RFID tags,” The Journal of Supercom-
puting, vol. 73, no. 3, pp. 1085–1102, 2017.

[20] J. Srinivas, S. Mukhopadhyay, and D. Mishra, “Secure and efficient user
authentication scheme for multi-gateway wireless sensor networks,” Ad
Hoc Networks, vol. 54, pp. 147–169, 2017.

[21] Y. Qiu and M. Ma, “A mutual authentication and key establishment
scheme for M2M communication in 6LoWPAN networks,” IEEE trans-
actions on industrial informatics, vol. 12, no. 6, pp. 2074–2085, 2016.

[22] F. Wu, X. Li, L. Xu, S. Kumari, M. Karuppiah, and J. Shen, “A
lightweight and privacy-preserving mutual authentication scheme for
wearable devices assisted by cloud server,” Computers & Electrical
Engineering, vol. 63, pp. 168–181, 2017.

[23] A. Ukil, S. Bandyopadhyay, and A. Pal, “IoT-privacy: To be private or
not to be private,” in 2014 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS). IEEE, 2014, pp. 123–124.

[24] P. Emami-Naeini, Y. Agarwal, L. F. Cranor, and H. Hibshi, “Ask the
experts: What should be on an IoT privacy and security label?” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 447–
464.

[25] R. Chow, “The last mile for IoT privacy,” IEEE Security & Privacy,
vol. 15, no. 6, pp. 73–76, 2017.

[26] P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov, and A. V.
Vasilakos, “The quest for privacy in the internet of things,” IEEE Cloud
Computing, vol. 3, no. 2, pp. 36–45, 2016.

[27] M. Chanson, A. Bogner, D. Bilgeri, E. Fleisch, and F. Wortmann,
“Blockchain for the IoT: privacy-preserving protection of sensor data,”
Journal of the Association for Information Systems, vol. 20, no. 9, pp.
1274–1309, 2019.

[28] A. Al-Qerem, M. Alauthman, A. Almomani, and B. B. Gupta, “IoT
transaction processing through cooperative concurrency control on fog–
cloud computing environment,” Soft Computing, vol. 24, no. 8, pp. 5695–
5711, 2020.

[29] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power IoT edge
devices,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-
IoT). IEEE, 2016, pp. 7–12.

[30] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Con-
solidate IoT edge computing with lightweight virtualization,” IEEE
Network, vol. 32, no. 1, pp. 102–111, 2018.

[31] A. Ioannis, C. Chrysostomos, and H. George, “Internet of things:
Security vulnerabilities and challenges,” in 2015 IEEE symposium on
computers and communication (ISCC). IEEE, 2015, pp. 180–187.

[32] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella,
“IoT: Internet of threats? a survey of practical security vulnerabilities
in real IoT devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8182–8201, 2019.

[33] K. Chen, S. Zhang, Z. Li, Y. Zhang, Q. Deng, S. Ray, and Y. Jin,
“Internet-of-things security and vulnerabilities: Taxonomy, challenges,
and practice,” Journal of Hardware and Systems Security, vol. 2, no. 2,
pp. 97–110, 2018.

[34] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, Tech.
Rep., 2004.

[35] B. Zantout, R. Haraty et al., “I2P data communication system,” in
Proceedings of ICN. Citeseer, 2011, pp. 401–409.

[36] G. Danezis and C. Diaz, “A survey of anonymous communication
channels,” Technical Report MSR-TR-2008-35, Microsoft Research,
Tech. Rep., 2008.

[37] A. Pfitzmann and M. Hansen, “A terminology
for talking about privacy by data minimization:
Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management,” http://dud.inf.tu-
dresden.de/literatur/Anon Terminology v0.34.pdf, Aug. 2010, v0.34.
[Online]. Available: http://dud.inf.tu-dresden.de/literatur/Anon\
Terminology\ v0.34.pdf

[38] A. Hue, G. Sharma, and J.-M. Dricot, “Privacy-Enhanced MQTT
Protocol for Massive IoT,” Electronics, vol. 11, no. 1, 2022. [Online].
Available: https://www.mdpi.com/2079-9292/11/1/70

[39] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM transactions on information and system security (TISSEC),
vol. 1, no. 1, pp. 66–92, 1998.

[40] A. Stanford-Clark and H. L. Truong, “MQTT for sensor networks
(MQTT-SN) protocol specification,” International business machines
(IBM) Corporation version, vol. 1, no. 2, pp. 1–28, 2013.

[41] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC
UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry
4.0 Protocols,” in 2019 IEEE International Conference on Industrial
Technology (ICIT), 2019, pp. 955–962.

[42] G. Kim, S. Kang, J. Park, and K. Chung, “An MQTT-Based Context-
Aware Autonomous System in oneM2M Architecture,” IEEE Internet of
Things Journal, vol. 6, no. 5, pp. 8519–8528, 2019.

[43] T. C. Piller, D. M. Merz, and A. Khelil, “MQTT-4EST: RulE-basEd
WEb Editor for Semantic-aware Topic Naming in MQTT,” in 2022 IEEE
19th Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 2022, pp. 1–8.

[44] T. Dalenius, “Finding a needle in a haystack or identifying anonymous
census records,” Journal of official statistics, vol. 2, no. 3, p. 329, 1986.

[45] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, pp. 3–es, 2007.

[46] E. Longo, A. E. Redondi, M. Cesana, and P. Manzoni, “BORDER:
a Benchmarking Framework for Distributed MQTT Brokers,” IEEE
Internet of Things Journal, pp. 1–1, 2022.

[47] R. Soua, M. R. Palattella, A. Stemper, and T. Engel, “MQTT-MFA:
a Message Filter Aggregator to Support Massive IoT Traffic Over
Satellite,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[48] HiveMQ, “Hive MQ Community Edition,” https://github.com/hivemq/
hivemq-community-edition/wiki, 2022, last checked: 14/11/2022.

[49] Digital Ocean, “Digital Ocean Cloud platform,” https://docs.
digitalocean.com/, 2022, last checked: 14/11/2022.

[50] HiveMQ, “HiveMQ MQTT Client,” https://hivemq.github.io/
hivemq-mqtt-client/, 2022, last checked: 14/11/2022.

[51] S. Scanzio, M. G. Vakili, G. Cena, C. G. Demartini, B. Montrucchio,
A. Valenzano, and C. Zunino, “Wireless sensor networks and TSCH: A
compromise between reliability, power consumption, and latency,” IEEE
Access, vol. 8, pp. 167 042–167 058, 2020.

[52] C. Patel and N. Doshi, “A novel MQTT security framework in generic
IoT model,” Procedia Computer Science, vol. 171, pp. 1399–1408, 2020.

[53] G. Perrone, M. Vecchio, R. Pecori, R. Giaffreda et al., “The Day After
Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-
attack Carried Out through an Army of IoT Devices.” in IoTBDS, 2017,
pp. 246–253.

[54] D. Mendez Mena, I. Papapanagiotou, and B. Yang, “Internet of things:
Survey on security,” Information Security Journal: A Global Perspective,
vol. 27, no. 3, pp. 162–182, 2018.

[55] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Perfor-
mance evaluation of MQTT and CoAP via a common middleware,” in
2014 IEEE ninth international conference on intelligent sensors, sensor
networks and information processing (ISSNIP). IEEE, 2014, pp. 1–6.

[56] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC, vol.
2246, pp. 1–80, 1999.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE INTERNET OF THINGS JOURNAL, VOL.X, NO.Y 21

[57] T. Prantl, L. Iffländer, S. Herrnleben, S. Engel, S. Kounev, and
C. Krupitzer, “Performance impact analysis of securing MQTT using
TLS,” in Proceedings of the ACM/SPEC International Conference on
Performance Engineering, 2021, pp. 241–248.

[58] S. P. Mathews and R. R. Gondkar, “Protocol Recommendation for
Message Encryption in MQTT,” in 2019 International Conference on
Data Science and Communication (IconDSC), 2019, pp. 1–5.

[59] W.-T. Su, W.-C. Chen, and C.-C. Chen, “An Extensible and Transparent
Thing-to-Thing Security Enhancement for MQTT Protocol in IoT
Environment,” in 2019 Global IoT Summit (GIoTS), 2019, pp. 1–4.

[60] J. Ahamed, M. Zahid, M. Omar, and K. Ahmad, “AES and MQTT
based security system in the internet of things,” Journal of Discrete
Mathematical Sciences and Cryptography, vol. 22, no. 8, pp. 1589–
1598, 2019.

[61] O. Sadio, I. Ngom, and C. Lishou, “Lightweight Security Scheme for
MQTT/MQTT-SN Protocol,” in 2019 Sixth International Conference on
Internet of Things: Systems, Management and Security (IOTSMS), 2019,
pp. 119–123.

[62] D. Dinculeană and X. Cheng, “Vulnerabilities and Limitations of MQTT
Protocol Used between IoT Devices,” Applied Sciences, vol. 9, no. 5,
2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/5/848

[63] A. Oak and R. Daruwala, “Assessment of Message Queue Telemetry
and Transport (MQTT) protocol with Symmetric Encryption,” in 2018
First International Conference on Secure Cyber Computing and Com-
munication (ICSCCC), 2018, pp. 5–8.

[64] S. Iyer, G. V. Bansod, P. N. V, and S. Garg, “Implementation and
Evaluation of Lightweight Ciphers in MQTT Environment,” in 2018
International Conference on Electrical, Electronics, Communication,
Computer, and Optimization Techniques (ICEECCOT), 2018, pp. 276–
281.

[65] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P. Aium-
supucgul, and A. Panya, “Authorization mechanism for MQTT-based
Internet of Things,” in 2016 IEEE International Conference on Commu-
nications Workshops (ICC). IEEE, 2016, pp. 290–295.

[66] M. Michaelides, C. Sengul, and P. Patras, “An Experimental Evaluation
of MQTT Authentication and Authorization in IoT,” in Proceedings of
the 15th ACM Workshop on Wireless Network Testbeds, Experimental
evaluation & CHaracterization, 2022, pp. 69–76.

[67] V. Gupta, S. Khera, and N. Turk, “MQTT protocol employing IOT
based home safety system with ABE encryption,” Multimedia Tools and
Applications, vol. 80, no. 2, pp. 2931–2949, 2021.

[68] L. Bisne and M. Parmar, “Composite secure MQTT for Internet of
Things using ABE and dynamic S-box AES,” in 2017 Innovations in
Power and Advanced Computing Technologies (i-PACT). IEEE, 2017,
pp. 1–5.

[69] F. Mendoza-Cardenas, R. S. Leon-Aguilar, and J. L. Quiroz-Arroyo,
“CP-ABE encryption over MQTT for an IoT system with Raspberry Pi,”
in 2022 56th Annual Conference on Information Sciences and Systems
(CISS), 2022, pp. 236–239.

[70] T.-L. Liao, H.-R. Lin, P.-Y. Wan, and J.-J. Yan, “Improved Attribute-
Based Encryption Using Chaos Synchronization and Its Application
to MQTT Security,” Applied Sciences, vol. 9, no. 20, 2019. [Online].
Available: https://www.mdpi.com/2076-3417/9/20/4454

[71] M. Calabretta, R. Pecori, M. Vecchio, and L. Veltri, “MQTT-Auth: A
token-based solution to endow MQTT with authentication and autho-
rization capabilities,” Journal of Communications Software and Systems,
vol. 14, no. 4, pp. 320–331, 2018.

[72] A. Bhawiyuga, M. Data, and A. Warda, “Architectural design of token
based authentication of MQTT protocol in constrained IoT device,”
in 2017 11th International Conference on Telecommunication Systems
Services and Applications (TSSA). IEEE, 2017, pp. 1–4.

[73] R. S. Bali, F. Jaafar, and P. Zavarasky, “Lightweight authentication for
MQTT to improve the security of IoT communication,” in Proceedings
of the 3rd International Conference on Cryptography Security, and
Privacy, 2019, pp. 6–12.

[74] F. Buccafurri, V. De Angelis, and R. Nardone, “Securing MQTT by
blockchain-based OTP authentication,” Sensors, vol. 20, no. 7, p. 2002,
2020.

[75] J. J. Anthraper and J. Kotak, “Security, privacy and forensic concern
of MQTT protocol,” in Proceedings of International Conference on
Sustainable Computing in Science, Technology and Management (SUS-
COM), Amity University Rajasthan, Jaipur-India, 2019.

[76] A. Hue, G. Sharma, and J.-M. Dricot, “Privacy-Enhanced MQTT
Protocol for Massive IoT,” Electronics, vol. 11, no. 1, p. 70, 2021.

[77] M. Fischer, D. Kümper, and R. Tönjes, “Towards improving the Privacy
in the MQTT protocol,” in 2019 Global IoT Summit (GIoTS). IEEE,
2019, pp. 1–6.

[78] M. Chehab and A. Mourad, “Towards a Lightweight Policy-Based
Privacy Enforcing Approach for IoT,” in 2018 International Confer-
ence on Computational Science and Computational Intelligence (CSCI).
IEEE, 2018, pp. 984–989.

[79] K. Fan, H. Xu, L. Gao, H. Li, and Y. Yang, “Efficient and privacy pre-
serving access control scheme for fog-enabled IoT,” Future Generation
Computer Systems, vol. 99, pp. 134–142, 2019.

[80] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, “Towards a novel
privacy-preserving access control model based on blockchain technology
in IoT,” in Europe and MENA cooperation advances in information and
communication technologies. Springer, 2017, pp. 523–533.

[81] R. Vinoth, L. J. Deborah, P. Vijayakumar, and B. B. Gupta,
“An Anonymous Pre-Authentication and Post-Authentication Scheme
Assisted by Cloud for Medical IoT environments,” IEEE Transactions
on Network Science and Engineering, 2022.

[82] A. K. Singh, A. Nayyar, and A. Garg, “A secure elliptic curve based
anonymous authentication and key establishment mechanism for IoT and
cloud,” Multimedia Tools and Applications, pp. 1–52, 2022.

[83] A. Rasheed, R. R. Hashemi, A. Bagabas, J. Young, C. Badri, and
K. Patel, “Configurable anonymous authentication schemes for the
Internet of Things (IoT),” in 2019 IEEE International Conference on
RFID (RFID). IEEE, 2019, pp. 1–8.

[84] Y. Protskaya and L. Veltri, “Broker Bridging Mechanism for Providing
Anonymity in MQTT,” in 2019 10th International Conference on
Networks of the Future (NoF), 2019, pp. 110–113.

Francesco Buccafurri. Full professor of computer
science at the University Mediterranea of Reggio
Calabria, Italy. In 1995 he took the PhD degree in
CS at the University of Calabria. In 1996 he was vis-
iting researcher at Vienna University of Technology.
His research interests include cybersecurity, privacy,
social networks, e-government, and P2P systems.
He has published more than 160 papers in top-
level journals and conference proceedings. He serves
as a referee for international journals and he is a
member of several conference PCs. He is Associate

Editor of Information Sciences (Elsevier) and IEEE Transactions on Industrial
Informatics and played the role of PC chair and PC member in many
international conferences. He is member of the IEEE computer society.

Vincenzo De Angelis. PhD student in information
engineering at the University Mediterranea of Reg-
gio Calabria, Italy. He received the BS degree in
information engineering and the Master’s degree in
telecommunication engineering in 2017 and 2019,
respectively. His research interests include informa-
tion security, blockchain, cloud, and applied cryptog-
raphy. He is author of a number of papers published
in international journals and conference proceedings.
He was PC member of a number of conferences and
Guest Editor of a special issue in an international

Journal.

Sara Lazzaro. PhD student in information engi-
neering at the University Mediterranea of Reggio
Calabria, Italy. She received the Master’s degree
in telecommunication engineering in 2021. Her re-
search interests include information security and pri-
vacy. She is author of a number of papers published
in international journals and international conference
proceedings.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3264019

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


