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Abstract: Contemporary consumers demonstrate an increasing preference for foods formulated 
with sustainable ingredients and health-promoting benefits. In this study, both demands were ad-
dressed by formulating enriched pasta using by-products derived from the processing of bergamot, 
a typical Calabrian citrus fruit. Wheat flour was replaced with different percentages of exhausted 
bergamot pomace flour (BPF: 1.5%, 2.5%, and 5%). The results indicated that bergamot pomace is a 
source of various phytochemical compounds, such as minerals, fibers, and polyphenols, which are 
beneficial to human health. The enriched pasta samples showed a significant increase in antioxidant 
properties, measured as a total polyphenol and flavonoid content and through chromatographic 
analysis. From the latter, it emerged that phenolic compounds, particularly flavonoids, were re-
sistant to cooking. The best qualitative characteristics were shown by the sample formulated with 
2.5% BPF, as also confirmed by the sensory analysis; indeed, sample C exhibited a similar level of 
acceptability to the control sample (A) in terms of general acceptability by the panelists. Hence, BPF 
can be considered as a functional ingredient for the formulation of pasta, enhancing the product’s 
functionality, or as an addition as flour in gluten-free products. 

Keywords: bergamot pomace; bioactive compounds; circular economy; citrus bergamia; citrus pomace 
fiber; citrus pomace flour; new formulated food; pasta; zero waste 
 

1. Introduction 
In the context of environmental sustainability and the development of strategies useful 

to the circular economy, it is crucial to reduce waste and generate reusable resources [1]. 
Agri-food waste comprises wastewater and solid residue resulting from industrial 

processing. The sector produces a significant number of cellulosic by-products [2], with 
fruit and vegetable pomace consisting largely of raw and fresh materials. For instance, in 
the case of citrus, pomace weight represents about 40–50% of the total processed fruits [3]. 
Citrus pomace (CP) constitutes a promising source of high-value compounds, including 
fiber, pectin, polyphenols, organic acids, cellulose, hemicellulose, macro and micro min-
erals, and various other products [4,5]. In recent years, the changes in environmental pol-
icy have oriented industry and research in the search for alternative solutions, combining 
recovery, circular economy, and resource optimization and emphasizing the added values 
of these by-products. This new challenge is at the heart of the 2030 Agenda [6]. 

Some researchers have proposed utilizing citrus residues as biomass for the produc-
tion of biogas, bioethanol, and bioenergy, as a strategy to reduce the environmental 
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impact of their disposal [7–9]. In line with the sustainable development goals of the 2030 
Agenda, the extraction of compounds from fruit processing waste is assumed as a key re-
search line [10]. Citrus fruits are rich in fiber, polysaccharides, and phenolic components, of 
which insoluble dietary fiber is the main component [11]. Citrus fiber is of superior quality 
compared to cereal fiber, having a higher content of total dietary fiber and better features 
like water holding capacity and water swelling capacity due to the presence of hydroxyl 
groups in cellulose creating stable hydrogen bonds with water [12]. Citrus fiber can be di-
vided in two groups: insoluble and soluble dietary fiber. The insoluble fraction is constituted 
by lignin, hemicellulose, and cellulose, and the soluble fraction by non-cellulosic and hemi-
cellulose polysaccharides as well as pectin. In recent years, several innovative and green 
fiber extraction techniques, such as enzyme-assisted extractions [13,14], steam explosion 
[15], extrusion, and high hydrostatic pressures [16] have been investigated, highlighting bet-
ter release, accessibility, and improved extraction efficiency. The European Food Safety Au-
thority (EFSA) and the Food and Agriculture Organization of the United Nations (FAO) rec-
ommend a daily fiber intake of 25 g per day [17] due to its importance in human health, for 
instance in controlling hypertension and cardiovascular and glycemic disease [18,19] and 
for lowering cholesterol levels and blood pressure [20]. Moreover, fiber intake promotes in-
testinal microbiota activity [21], acting as prebiotics [22]. Furthermore, fiber increases the 
bio-accessibility of polyphenols through the binding of phenols, protecting them during di-
gestion [23]. 

Polyphenols are present in the diet as individual or complex molecules, based on the 
degree of polymerization, and can be glycosylated or in combination with lipids, phenols, 
acids, or amines [24]. The effect of these compounds on human health is well known and 
studied. Indeed, numerous effects have been studied and reported in the literature, such as 
neuro and cardio protective, antidiabetic, antiaging, and anticancer effects, among others 
[25].  

Due to these health benefits, citrus by-products are considered a potential natural 
source of high added value compounds with significant biological activity. Therefore, con-
sumers’ interest in eating foods rich in these compounds has recently grown. Polyphenols 
and fiber have been studied as ingredients in the formulation of functional foods. 

In this context, research on the use of natural compounds and components with func-
tional properties in various food types has significantly increased. This is of great interest to 
the food industry, enabling the production of unique products with high added value [26–28]. 
In addition, fiber has been considered as a functional ingredient; for example, citrus fiber has 
been used due to its capacity to bind water in low-fat meat products, has been suggested as 
fat alternative [12,29], has been used in ice cream and biscuits due to its technological and 
physicochemical properties [30,31], and has been an ingredient in gluten-free bread, increas-
ing water holding capacity (WHC) and resulting in a subsequent reduction in firmness [32].  

The objective of this work is to create value from bergamot pomace (BP), a by-product 
resulting from the processing of bergamot (Citrus bergamia Risso) fruit. The growing interest 
in this fruit has led to an increase in its production, and industrial processing of this fruit 
has resulted in large amounts of waste. This research adopts a perspective of total recovery 
and circular economy. While antioxidant compounds can be extracted from bergamot pom-
ace [33] and used as natural antioxidants in various applications, the remaining solid residue 
still represents a significant amount of waste, which could be valorized for other potential 
uses within the food system. Consequently, this study explores the possibility to transform 
bergamot pomace into a flour, to use as ingredient, by leveraging the functional and tech-
nological potential of its fiber and antioxidant compounds in pasta production. 

2. Materials and Methods 
2.1. Raw Materials  

Bergamot pomace (BP) was gathered from a local citrus processing facility located in 
Reggio Calabria (Calabria, Italy). BP was transferred to the Agricultural Department at 
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the Food technology laboratory of the University of Reggio Calabria and immediately 
dried to 13% moisture content in a tangential air-flow cabinet (Scirocco model, produced 
by Società Italiana Essicatoi, Milan, Italy) equipped with an automatic air moisture and 
temperature control system. Dried BP was ground into bergamot pomace flour (BPF), 
which was then sieved with 0.8 mm sieves (Figure 1). 

 
Figure 1. Schematic overview of experimental plan. 

2.2. Pasta Preparation 
Four formulations of pasta were produced (Table 1 and Figure 1). The control sample 

(A) was prepared by kneading durum wheat flour (DWF—labelled as follows: protein 11 
g; fats 1.0 g; carbohydrates 70 g; sugars 1.0 g; fiber 2.5 g) and water in a kneading machine 
(Sigma, model CHEF 20, Torbole Casaglia (Bs)—Italy). In the other three formulations, 5, 
2.5, and 1.5% (DWF basis) BPF was added to the B, C, and D formulations, respectively. 
The dough was kept in the refrigerator for 30 min and then rolled out to a thickness of 2 
mm using an electric dough sheeter (Sigma, vertical dough sheeter T50, Torbole Casaglia 
(Bs)—Italy) and cut into pieces measuring 7 cm in length and 3 cm in width. The pasta 
was cooked in a pot in boiling water with a ratio of dough/water of 1:10 (w/w). The cooking 
method was optimized in the laboratory; pasta samples during cooked were monitored 
every 30 s until the disappearance of the white core of the pasta.  

Table 1. Pasta sample formulation. 

Samples DWF (g) H2O (g) BPF (g) 
A 500 210 - 
B 475 210 25 
C 487.5 210 12.5 
D 492.5 210 7.5 

2.3. Characterization of Bergamot Pomace Flour (BPF) 
2.3.1. Determination of Color, pH, Moisture Content (MC), and Water Activity (aw) 

Color was determined using a Minolta CM-700d (Minolta, Osaka, Japan) spectropho-
tometer, with measurements based on the CIE L* a* b* color space (where L* indicates 
brightness, a* denotes redness for positive values and greenness for negative values, and 
b* represents yellowness for positive values and blueness for negative values). Measure-
ments were taken directly on the flour. These coordinates were then utilized to calculate 
Chroma (C*) and hue angle (h°). Chroma (C*) indicates color saturation, while hue angle 
(h°) is defined as follows: 0°/360° for red/magenta, 90° for yellow, 180° for green, and 270° 
for blue or purple, thus illustrating the proportional distribution of red and yellow hues.  

C* and h° were calculated as follows: 
C* = (a2 + b2)1/2 
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h° = arctan (b*/a*) 
The pH was analyzed following the AACC International Method [34], which in-

volved mixing 15 g of BP with 10 mL of distilled water for 30 min and then allowing it to 
stand for 10 additional minutes at room temperature. pH measurement was performed 
on the supernatant using a pH meter Crison Basic 20 (Crison Barcelona, Barcelona, Spain). 

The moisture content (MC) was determined on 5 g of BP in a Sartorius Moisture An-
alyzer MA37 thermal balance at 105 °C. The results were expressed as % of MC.  

aw was determined at room temperature (25 °C) with a hygrometer (Aqualab LITE, 
Decagon, Nelson Court, Pullman, Washington, DC, USA), placing the sample into a con-
tainer and then in the cell of the instrument for the analysis. 

2.3.2. Determination of Nutritional Profile and Oxidative Properties of BPF 
The determination of the fiber fraction was conducted by analyzing neutral detergent 

fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) content following 
the method reported by Van Soest et al. [35]. Neutral detergent soluble (NDS) was esti-
mated as the difference between 100 and the NDF. Hemicellulose (HE) content was calcu-
lated by subtracting the NDF from the ADF, and cellulose (CE) content by taking the dif-
ference between the ADF and the residue remaining after digestion according to Trujillo 
et al. [36]. Crude protein (CP) was also determined following the AOAC method 984.13 
[37]. 

Mineral content analysis was performed with inductively coupled plasma mass spec-
trometry (ICP-MS), using model Shimadzu MS-2030 (Shimadzu, Kyoto, Japan), as de-
scribed by Botella-Martínez et al. [38]. Briefly, the calibration of single elements in the ICP-
MS was conducted for mineral analysis in BPF. The operating conditions were 0.70 L min−1 
of carrier gas, 9.0 L min−1 of plasma gas, and 1.10 L min−1 of auxiliary gas, using a radio 
frequency of 1.2 kW and an energy filter of 7.0 V. 

The oxidative stability of BPF was studied with a OXITEST system (Accelerated Stor-
age Test) following the method reported by Gattuso et al. [39]. A total of 45 g of BPF was 
submitted to an oxidation test (oxygen at 6 bar pressure; reactor temperature at 90 °C) in 
the OXITEST reactor to detect the Induction Period, reported as IP. IP measures the time 
to attain an oxidation endpoint associated with an identifiable rancidity or change in oxi-
dation rate. The procedure was performed as described by the AOCS International Stand-
ard Procedure [40] for the determination of the oxidation stability of food, fats, and oils. 

2.4. Characterization of the Physicochemical Properties of Pasta Samples  
Except for the sensory analysis, all the analyses in this section were conducted on 

samples both before (raw) and after cooking (cooked). 
Color parameters (L*, a*, b*, C*, and h°), MC, pH, and aw were determined as reported in 

Section 2.3.1. Color measurements were carried out directly on the surface of the pasta at 
twenty casual points. For pH determination, 15 g of the product was homogenized with 100 
mL of deionized water and stirred for 30 min at room temperature. Subsequently, the suspen-
sion was allowed to stand for fifteen minutes until a visible phase separation occurred. 

2.5. Sensorial Analysis 
The sensory analysis was conducted in accordance with ISO 13299:2003 [41] in order 

to assess differences among the different functionalized samples compared to the control 
(A sample). The test was carried out in a sensory laboratory according to ISO 8589:2007 [42] 
by 18 judges composed of 10 females and 8 males, with ages ranging between 25–55 years, 
recruited among researchers and workers of the Agricultural Department of the Univer-
sity of Reggio Calabria. All panelists agreed to the principles of the Declaration of Hel-
sinki, refraining from smoking, and ingesting food and drink, excluding water, prior to 
the test. Pasta samples were served in white polyethylene dishes, with a secret code to 
identify the sample, in different orders and at different times. Pasta was cooked in salt 
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water and was scored considering different descriptors for appearance (color intensity, 
presence of stains, surface integrity, and internal homogeneity per section), aroma (citrus, 
cooked, off-odors, alcoholic, and oily), flavor (vegetable, pasty, bitter, salty), texture (sticki-
ness, nerve, tooth/alto adhesiveness, granularity). In addition, other attributes such as attrac-
tiveness, harmony, and general acceptability were evaluated. The descriptors were evaluated 
using a nine-point intensity scale. Data were collected and elaborated by calculating the me-
dian of results. 

2.6. Antioxidant Properties and Phenolic Composition (UHPLC-DAD) of Pasta Samples 
The phenolic extraction method for raw and cooked samples was performed as de-

scribed by Imeneo et al. [43]. In brief, 5 g of sample was mixed with methanol (20 mL), 
distilled water (2.5 mL), and hydrochloric acid (0.25 mL). The prepared mixtures were 
sonicated at 30 °C with 20 kHz ± 500 Hz of frequency in a Sonoplus ultrasonic bath (Series 
2000.2, HD 2200.2—BANDELIN, Berlin, Germany). After 60 min of sonification, the ex-
tract was centrifuged for 8 min at 7000 rpm in a refrigerated centrifuge (Sigma 3-16KL, 
Osterode am Harz, Germany). The supernatant was recovered, filtered (Whatman n. 4 
filter), and used to make up the volume in a 25 mL flask with a methanol/water mixture 
(1:10). 

The total polyphenols content (TPC) was determined according to González-Molina et 
al. [44]. Briefly, 1 mL of the extract was added to 5 mL of deionized water and 1 mL of Folin-
Ciocalteu reagent. Then, after 8 min of incubation, 10 mL of sodium carbonate (20%) was 
added, and the solution was made up to volume (25 mL) with distilled water. A blank was 
prepared, replacing the amount of sample with deionized water. The prepared samples were 
kept in dark conditions for two hours at room temperature. A double-beam Agilent 8453 di-
ode-array UV–Visible spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) was 
used to measure the sample’s absorbance at 765 nm. Results were expressed as mg of gallic 
acid equivalent (GAE) per 100 g−1 of dry weight (mg GAE 100 g−1 dw). 

Total Flavonoid Content (FC) was detected using the technique described by De 
Bruno et al. [45]. In short, in a flask (5 mL), 150 µL of NaNO2 (5%, w/v) solution, 1000 µL 
of water, and 300 µL of AlCl3 (10%, w/v) were mixed. After 6 min, 2000 µL of NaOH (1N) 
was added and kept for 6 min. Thus, the solution was made up to volume with deionized 
water. At the same time, a blank without sample was prepared, and the absorbance at 510 
nm was detected. Data were expressed as milligrams of catechin equivalents per 100 g−1 
of dry weight (mg CE 100 g−1 dw). 

The extract was also analyzed with the liquid chromatographic technique in a 
UHPLC-DAD system following the method reported by Gattuso et al. [46] for identifying 
and quantifying the main phenolic compounds. A UPLC PLATINblue (Knauer, Berlin, 
Germany) equipped with a Photo Diode Array Detector PLATINblue (Knauer, Berlin, 
Germany) and column C18 (1.8 µm, 100 × 2 mm) at 30 °C was used to evaluate the extract 
(2 µL) phenolic composition. The flow rate was set at 0.4 mL min−1. The eluents were water 
(UHPLC grade) acidified with formic acid (pH 3.10) A) and acetonitrile (B). The applied 
elution gradient is reported in Table 2. 

Table 2. Elution gradient in chromatographic analysis. 

 
Time 
(min) 

A 
(%) 

B 
(%) 

Flow 
(mL min−1) 

1 0.00 95.00 5.00 0.400 
2 3.00 95.00 5.00 0.400 
3 15.00 60.00 40.00 0.400 
4 15.50 0.00 100.00 0.400 
5 20.00 95.00 5.00 0.400 
6 22.00 95.00 5.00 0.400 
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External standards (1–100 mg L−1) were used for the quantification of phenolic com-
pounds. The method was validated by evaluating the limit of quantification (LOQ = SD × 
3.3) and the limit of detection (LOD = SD × 10), defined as the lowest concentration in the 
standard solution with the percentage of the relative standard deviation (% RSD) ≤ 10%. 
The results were expressed as milligrams per 100 g−1 of dry weight (mg 100 g−1 dw). 

2.7. Data Statistical Analysis 
Data are reported as mean value ± standard deviation of data. The statistical analysis 

to assess the variance was one-way ANOVA, conducted by SPSS Software (Version 15.0, 
SPSS Inc., Chicago, IL, USA), applying the Tukey post hoc test at p < 0.05. 

3. Results and Discussions 
3.1. Bergamot Pomace Flour (BPF) Characterization 

The physicochemical composition of BPF was determined, and the main results are 
reported in Tables 3 and 4. Regarding the color parameters, the BPF color parameters were 
76.53 for L*, 4.49 for a*, 27.66 for b*, and 28.03 for C*, and the h° value was 80.84, indicating 
a yellow nuance. The pH value was 3.46, MC% was 13%, and aw was 0.407. These results 
were similar to those reported by Belluco et al. [47] for orange albedo [Citrus sinensis (L.) 
Osbeck] flour used as a functional ingredient.  

The results of BPF fiber characterization are reported in Table 3 and are in accordance 
with values similar to other citrus fruit studied in the literature [48–50]. Fiber’s fraction, 
expressed as % dw, showed the following percentages: 17.79 for NDF, 10.68 for ADF, 2.27 
for ADL, 82.21 for NDS, 7.11 for HE, 8.41 for CE, and 7.79 for CP. 

The mineral composition of BPF (Table 3) showed the highest concentrations in K 
(10.8 mg g−1 dw) and Ca (7.11 mg g−1 dw). It is worth noting the absence of the toxic heavy 
metals As, Cd, Pb, and Hg, as reported by Rahman and Singh [51]. Minerals are essential 
elements for humans, and their content in fruits depends on several factors, including soil 
composition, ripening period, and agronomic cultivation practices. However, the main 
relevant minerals (Ca, K, and Mg) presented values within the ranges reported for other 
citrus species [52–55]. 

Table 3. Fiber and mineral composition of Bergamot pomace flour. 

Fiber Composition * 

% dw 

NDF 17.79 ± 1.55 
ADF 10.68 ± 0.83 
ADL 2.27 ± 0.03 
NDS 82.21 ± 7.64 
HE 7.11 ± 0.54 
CE 8.41 ± 0.61 
CP 7.79 ± 0.89 

Mineral Composition 

mg g−1 dw 

Ca 7.11 ± 0.09 
Cu na 
Fe 0.02 ± 0 
K 10.8 ± 0.13 

Mg 1.05 ± 0.01 
Mn 0.02 ± 0 
Na 0.65 ± 0.03 
Zn 0.14 ± 0.01 

µg g−1 dw 
As na 
Cd na 
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Cr 0.14 ± 0.06 
Hg na 
Ni na 
Pb na 
Se na 

* NDF: neutral detergent fiber; ADF: acid detergent fiber; ADL: acid detergent lignin; NDS: Neutral de-
tergent soluble; HE: hemicellulose; CE: cellulose; CP: crude protein; na: not available. 

3.2. Pasta Characterization 
Physicochemical parameters were evaluated on the pasta samples both before and after 

cooking. Table 4 shows the color coordinate values of pasta samples. L* values were higher 
in the raw samples but tended to decrease significantly after thermal treatment. A statisti-
cally significant change was observed in all samples, indicating a darkening effect after the 
cooking, especially in the samples. This could be due to Maillard reactions. Regarding the 
a* parameter, the pasta samples containing BP (B to C) showed no significant changes after 
cooking, unlike the control, which showed a decrease in this parameter after cooking. For 
the yellowness coordinate (b*), a decrease was observed in all pasta formulations after cook-
ing, resulting in a lighter yellow color. The results suggest that the cooking process affected 
the color intensity (C*) of the pasta, leading to a reduction. The hue of pasta samples (h°) 
did not change after cooking. In general, the findings demonstrated that the cooking process 
and the addition of BPF led to slight changes in the color parameters. 

Table 4. Physicochemical parameters of pasta samples. 

 Samples A B C D Sign 

L* 
Raw 78.77 ± 0.29 c 81.03 ± 0.67 a 81.06 ± 0.48 a 80.28 ± 0.69 b ** 

Cooked 76.57 ± 0.4 a 72.45 ± 0.67 c 74.64 ± 0.84 b 74.49 ± 0.4 b ** 
Sign ** ** ** **  

a* 
Raw 2.01 ± 0.07 a 1.5 ± 0.14 c 1.55 ± 0.14 c 1.89 ± 0.1 b ** 

Cooked 1.54 ± 0.07 c 1.82 ± 0.1 a 1.68 ± 0.21 b 1.52 ± 0.11 c ** 
Sign ** ns ns ns  

b* 
Raw 24.04 ± 0.66 a 19.55 ± 1.21 c 18.68 ± 0.67 c 21.55 ± 0.69 b ** 

Cooked 19.88 ± 0.81 a 17.67 ± 0.65 b 15.84 ± 0.5 d 16.51 ± 0.74 cd ** 
Sign ** ** ** **  

C* 
Raw 24.13 ± 0.66 a 19.6 ± 1.22 c 18.74 ± 0.67 c 21.63 ± 0.7 b ** 

Cooked 19.94 ± 0.81 a 17.77 ± 0.65 b 15.93 ± 0.5 d 16.58 ± 0.74 cd ** 
Sign ** ** ** **  

h° 
Raw 85.27 ± 0.22 b 85.64 ± 0.97 a 85.31 ± 0.85 b 85.04 ± 0.19 b ** 

Cooked 85.62 ± 0.34 a 84.15 ± 0.73 c 84.01 ± 0.78 c 84.78 ± 0.44 b ** 
Sign ns ns ns ns  

MC % 
Raw 35.41 ± 0.38 b 36.18 ± 0.22 ab 36.67 ± 0.18 a 36.15 ± 0.1 ab * 

Cooked 53.84 ± 0.4 bc 54.23 ± 0.29 a 53.21 ± 0.18 c 53.56 ± 0.23 bc ns 
Sign ** ** ** **  

pH 
Raw 6.45 ± 0.04 a 4.66 ± 0 d 5.09 ± 0.03 c 5.73 ± 0.04 b ** 

Cooked 6.24 ± 0.11 a 4.57 ± 0.09 d 4.95 ± 0 c 5.5 ± 0.03 b ** 
Sign ns ns * *  

aw 
Raw 0.963 ± 0.011 0.956 ± 0.009 0.953 ± 0.008 0.953 ± 0.007 ns 

Cooked 0.975 ± 0.003 0.973 ± 0.003 0.975 ± 0.006 0.971 ± 0.005 ns 
Sign ns ns ns ns  

Data are presented as means ± SD (n = 3). Means within a column with different letters are signifi-
cantly different by Tukey’s post hoc test. Abbreviation: L*: brightness; a*: red/green value; b*: 
blue/yellow value; C*: chroma; h*: hue angle; ns, not significant, ** Significance at p < 0.01, * Signifi-
cance at p < 0.05. 
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Regarding the MC values, the pasta samples naturally incorporated water after the 
cooking process (Table 4). It was observed that MC was significant (p < 0.05) among the 
raw samples but not significant after cooking (p > 0.05). The addition of BPF affected the 
pH value of the pasta, causing significant acidification in all samples, which was related 
to the amount of bergamot flour added to the formulation. Water activity is an important 
factor in food products because it can strongly influence their shelf life. The results of aw 
did not showed differences (ns) among raw and cooked samples. These results suggested 
that aw was not influenced by the addition of the by-product. The addition of BPF at dif-
ferent concentrations, regardless of the percentage used, does not markedly affect aw, in-
dicating a similarity with MC% in showing no statistical difference among the cooked 
samples. As a result of cooking, aw increased slightly due to the higher moisture content, 
evenly between the different formulations but without showing statistical differences. 

The sensory characteristics of the pasta samples were determined by a group of 
trained panelists, and the sensory attributes are presented in Figure 2. The fortified pasta 
samples differed from the control sample (A). Color intensity was higher in sample B, 
which contained a higher percentage of BPF. Regarding other appearance attributes, sam-
ples C and D scored about six, which was better than B in terms of surface integrity and 
internal homogeneity (these samples deviated by only one point from the control sample). 
The presence of stains was significantly higher in B. In terms of aromatic evaluations (Fig-
ure 2), a citrus scent was recorded with scalar values in B (5), C (3), and D (2), which cov-
ered, in part, the scent of baked, which was equal for all enriched samples. Flavor attribute 
data indicated the highest perception of vegetable, pasty, and bitterness notes in sample 
B, which contained the largest amount of BPF. Except for vegetable, for all the other char-
acteristics, samples C and D showed similar values. No differences in saltiness were found 
among the samples. Among the textural attributes, scores of nerves, stickiness, and 
tooth/alto adhesiveness were higher in enriched samples. Granularity was slightly per-
ceived in B and more in samples C and D but was not perceived in A. 

 

Figure 2. Sensorial attributes of pasta samples. 

Moreover, the judges were asked for an evaluation based on hedonistic descriptors 
(attractiveness, harmony, general acceptability) (Figure 3). Even if the scores were accepta-
ble for all samples, results clearly indicated that the sample with 1.5% BPF (D) had similar 
results to A. 
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Figure 3. Hedonistic descriptors. 

The Total Polyphenol Content reported in Table 5 revealed significant statistical differ-
ences (p < 0.01), both among the various raw and cooked pasta samples and for the same 
sample before and after cooking. The TPC values were statistically higher in the samples 
formulated with the addition of BPF compared to the control sample. The results indicated 
similar TPC values in raw pasta for samples formulated with a low amount of BPF (C and 
D). However, after cooking, all samples exhibited a substantial loss in TPC. This could be 
due to main factors such as the solubility of some phenolic compounds in water, especially 
at high temperatures, thermal degradation, oxidation reactions, or leaching into water 
[56,57]. 

Regarding TFC (Table 5) the highest content was found in enriched samples, with 
similar values among them. After cooking, except for sample E, no changes in TFC were 
detected, showing good stability. 

Table 5. Antioxidant properties (TPC and TFC) of pasta samples. 

 TPC  TFC  
(mg GAE 100 g−1 dw) (mg CE 100 g−1 dw) 

 Raw Cooked Sign Raw Cooked Sign 
A 36.58 ± 1.34 c 30.6 ± 0.55 d ** 12.52 ± 1.75 b 15.13 ± 2.99 c ns 
B 62.79 ± 2.92 a 50.03 ± 0.81 a ** 26.49 ± 3.52 a 28.06 ± 1.51 a ns 
C 48.62 ± 2.1 b 41.82 ± 2.24 b ** 22.73 ± 3.96 a 25.24 ± 1.66 a ns 
D 44.02 ± 1.54 b 35.08 ± 1 c ** 21.37 ± 4.03 a 21.85 ± 0.43 b ns 

Sign ** **  ** **  

Data are presented as means ± SD (n = 3). Means within a column with different letters are signifi-
cantly different by Tukey’s post hoc test. Abbreviation: ns, not significant, ** Significance at p < 0.01. 

After quantifying total flavonoids, we proceeded to analyze individual compounds us-
ing UHPLC. The main flavonoids detected were eriocitrin, neoeriocitrin, naringin, neohe-
speridin, melitidin, and brutieridin (Table 6), in accordance with those reported by Gattuso 
et al. [39]. The chromatographic analysis revealed the same trend reported for TFC. Specifi-
cally, after cooking, no significant changes among the flavonoids detected were observed, 
except in sample D for eriocitrin, melitidin, and brutieridin. All raw samples showed an 
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increased percentage of individual flavonoids, proportional to the added concentration of 
BPF. Although in most cases the increase was not significant, there was a slight rise in indi-
vidual flavonoid concentrations after cooking, likely due to improved extractability. 

Table 6. Individual flavonoid content of pasta samples (mg 100 g−1 dw). 

 Eriocitrin Neoeriocitrin Naringin 
Samples Raw Cooked Sign Raw Cooked Sign Raw Cooked Sign 

B 0.62 ± 0.17 a 0.83 ± 0.14 a ns 28.86 ± 3.93 a 35.66 ± 3.88 a ns 28.09 ± 3.29 a 33.84 ± 3 a ns 
C 0.45 ± 0.08 b 0.62 ± 0.17 a ns 14.18 ± 0.55 b 16.01 ± 0.34 b ns 14.93 ± 0.4 b 15.92 ± 0.97 b ns 
D 0.29 ± 0 c 0.45 ± 0.02 b ** 7.04 ± 0.22 c 7.13 ± 0.28 c ns 7.74 ± 0.02 c 8.19 ± 0.27 c ns 

Sign ** **  ** **  ** **  

Samples Neohesperidin Melitidin Brutieridin 
B 13.66 ± 1.69 a 16.48 ± 1.49 a ns 6.33 ± 0.31 a 7.06 ± 0.45 a ns 13.21 ± 2.84 a 16.06 ± 0.39 a ns 
C 6.15 ± 0.01 b 6.49 ± 0.22 b ns 2.99 ± 0.13 b 3.53 ± 0.02 b * 5.70 ± 0.23 b 6.35 ± 0.23 b ns 
D 3.14 ± 0.02 c 3.1 ± 0.03 c ns 1.49 ± 0.04 c 1.8 ± 0.04 c * 2.62 ± 0.18 c 3.47 ± 0.01 c * 

Sign ** **  ** **  ** **  

Data are presented as means ± SD (n = 3). Means within a column with different letters are signifi-
cantly different by Tukey’s post hoc test. Abbreviation: ns, not significant, ** Significance at p < 0.01, 
* Significance at p < 0.05. 

4. Conclusions 
In this research, the effect of the addition of BPF in the quality characteristics of pasta was 

studied. The physicochemical characteristics (fiber, minerals) of BPF highlighted in this work, 
coupled with other health-promoting compounds (polyphenols, essential oil, organic acids) 
support its potential use in the food industry to improve the nutritional and nutraceutical 
properties. The addition of BPF in a food formulation such as pasta led to a natural acidifica-
tion of the product, lowering the pH. This affected the sensorial and appearance attributes, 
particularly in the perception of the nerve and tooth/alto adhesiveness. Regarding the general 
acceptability preference of panelists, the results that emerged from the sensory analysis 
showed that the dough formulated with 2.5% BPF (C) had a similar level of acceptability to 
the control (A). Moreover, the antioxidant properties were improved in all the formulations 
considered in the experimentation. The exhausted flour also showed good values of TPC and 
TFC. The contribution of BPF to the dough was confirmed by chromatographic analysis 
(UHPLC-DAD), whereby the major flavonoids were identified and quantified. 

Hence, BPF can be considered as a functional ingredient for the formulation of pasta, 
increasing the functionality of the product or being considered for addition as flour in 
gluten-free products. 
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