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Antonino Simone Spanò a,b, Giovanni Malara a, Felice Arena a,* 

a Natural Ocean Engineering Laboratory NOEL, “Mediterranea” University of Reggio Calabria, Via Zehender - Loc. Feo di Vito, 89122, Reggio Calabria, Italy 
b University School of Advanced Studies, IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy   

A R T I C L E  I N F O   

Keywords: 
Wave energy 
Oscillating water column 
Vertical cylinder 
Analytical solution 
Eigenfunction expansion 

A B S T R A C T   

This paper develops a semi-analytical solution of a water waves problem concerning the interaction between 
linear waves and an Oscillating Water Column (OWC) embedded into a circular platform. Unlike similar studies 
available in the literature, the proposed investigation concerns a realistic situation involving the use of an OWC 
having limited angular width. Such a configuration is likely to be employed in the arrangement of platforms in 
which the use of a large OWC is neither efficient nor feasible. 

The proposed solution is developed in the framework of the linear potential flow theory. The solution relies on 
the use of a domain decomposition approach involving eigen-function expansions of velocity potentials with 
unknown coefficients, which are calculated via a matching technique. The solution is utilized for conducting 
relevant parameter studies concerning the effects of the main geometrical parameters on the overall system 
performance and on the system hydrodynamic parameters.   

1. Introduction 

The need to address climate change has become quite urgent due to 
the evidence that it is associated with the occurrence of natural disasters 
(Banholzer et al., 2014). In this context, the role of renewable energy 
sources is pivotal. Indeed, they may contribute remarkably to reducing 
CO2 emissions through the replacement of traditional fossil fuels. 

Ocean energy, specifically sea wave energy, can play a significant 
role in this transition, as the available global wave power is 29.5 PWh/ 
year (Hecke et al., 2020), which is enough for supplying the world en-
ergy demand (Mørk et al., 2010). A number of devices to harvest wave 
energy have been proposed, studied and tested (Falcão, 2010; Lehmann 
et al., 2017; López et al., 2013). However, only a limited number of them 
demonstrated a potential for large scale commercial applications. 
Oscillating Water Column (OWC) is certainly one of those. Its working 
principle is based on the oscillation of a water column located into a 
semi submerged structure with an open bottom. Such oscillation leads to 
a time-varying air pressure inside a closed air chamber with a small 
orifice placed at the top of the water column, which, in turn, generates 
an air flow rate through the orifice where a self-rectifying turbine 
(Falcão and Henriques, 2016) is installed to produce electricity. The 
strengths of these devices are: its reliability due to the simple and solid 

infrastructure; the lack of moving elements into the water; and the sig-
nificant energy-wise performance (Babarit, 2015). Nowadays, OWCs 
have reached a high technology readiness level (TRL), as some devices 
have reached TRL 8 (Magagna et al., 2016). Moreover, they found 
various applications by the integration into major marine structures like 
breakwaters and harbor dams (Arena et al., 2013; Falcão et al., 2020; 
Ibarra-Berastegi et al., 2018; Mustapa et al., 2017). 

Within the OWC category, offshore devices are gaining growing 
attention. This relates to the fact that by moving from nearshore to 
offshore locations a larger energy resource is available, because typical 
dissipation mechanisms arising during the offshore-nearshore wave 
propagation do not occur (Holthuijsen, 2007). However, this positive 
feature is counterbalanced by the higher costs associated with the more 
severe environmental conditions and the need of ensuring energy 
transfer from the OWC installation site to the shore. For compensating 
this drawback, integration of multiple systems is key to reducing, among 
the others, construction, mooring, maintenance costs and it led to the 
development of multipurpose platforms (Abhinav et al., 2020). 

A vast literature has been produced during the last decades in this 
sector. Evans and Porter (1995) developed an analytical solution for a 
2D thin vertical surface-piercing barrier to compute the hydrodynamic 
coefficients of a simple OWC device. Following the method of 
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eigenfunction expansions and integral equations, Martins-rivas and Mei 
(2009) studied a cylindrical OWC installed at the tip of a breakwater and 
demonstrated the major advantage of a circular device due to the in-
dependence on the incidence angle in terms of absorption efficiency. 
Zheng et al. (2019b) developed a theoretical model for a circular coast 
breakwater integrated OWC considering the thickness of the vertical 
outer wall. Moving from nearshore to offshore, further investigations 
were conducted to maximize the energy production by circular OWC. 
Fixed on shallow water, a concentric cylindrical OWC is designed and 
investigated by Zhou et al. (2018). A novel cylindrical OWC with double 
chambers characterized by an internal monopile and two concentric 
shells achieving a broader frequency bandwidth was studied by Ning 
et al. (2018). Circular OWCs were deeply analyzed in combination with 
offshore wind turbines (both fixed and floating) to enhance the power 
production. Based on the experimental campaign of a hybrid wind-wave 
energy converter by Perez-Collazo et al. (2018) to investigate the hy-
drodynamics response of the novel device, Michele et al. (2019) devel-
oped the analytical model of the hybrid wind-wave energy system in 
which the internal cylinder represents the pile of the wind turbine, and 
the outer cylinder is provided with a skirt. In terms of integration be-
tween OWC and circular structure, Zheng et al. (2020) considered an 
OWC into a vertical mono-pile, investigating the size and the position of 
the opening. 

From a methodological point of view, there are various techniques to 
address the problem of wave-structure interaction. The problem is 
commonly posed in the framework of the linear potential flow theory, 

whose solutions are categorized as analytical, semi-analytical, and nu-
merical (Linton and McIver, 2001). A well-known method is the eigen-
function expansion matching method, which is based on solving the 
continuity equation (Laplace equation) through separation of variables 
and representing the solution via eigenfunction expansions. This method 
is useful for obtaining closed form solutions accommodating the effi-
cient run of extensive parameter studies. However, a significant limi-
tation of this approach is its applicability only to simple geometries, 
where the boundaries coincide with lines or surfaces. To overcome this 
limitation, the multipole expansion method can be utilized for repre-
senting the potential as a sum of singularities known as multipoles (Li 
et al., 2022). For quite complex geometries, numerical methods must be 
used. In this context, established Boundary Element Methods are the 
state of the art in the solution of linear water wave problems (Mei C 
et al., 2005). However, considering the significant advancements due to 
the improved PC performance, Computational Fluid Dynamics (CFD) is 
also considered as an attractive option for including in the computation 
viscosity and compressibility effects (Dai et al., 2019). 

This article considers an OWC system integrated in a circular floating 
structure. Specifically, this work focuses on the integration of a OWC 
chamber spanning a limited circle sector into a cylindrical structure. 
This specific geometric configuration has not been considered in pre-
vious research studies, despite its natural collocation into existing in-
frastructures. For instance, such a configuration can be employed in 
conjunction with offshore wind farms or being embedded into floating 
platforms. In this regard, note that the use of OWCs spanning limited 

Fig. 1. Geometrical configuration of the OWC: (a) three dimensional view; (b) top view; (c) side view.  
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circle sectors naturally arises in the context of very large floating plat-
forms, where the use of only one OWC would give rise to extremely large 
chambers unable to produce profitably electrical energy due to the onset 
of sloshing effects. In addition to that, the OWC system investigated in 
this article accommodates the realization of OWCs arrays obtained 
through the simultaneous operation of nearby chambers. 

The article focuses on parametric analyses elucidating the effects of 
the system geometrical parameters in terms of hydrodynamic charac-
teristics and energy production. The purpose is to show the advantages 
of the OWC integration into an offshore pile construction (such as a 
floating wind turbine or another offshore structure) and to maximize the 
energy production by varying the inner angle of the chamber. 

Based on the linear potential theory, through the method of matched 
eigenfunctions expansion (Linton and McIver, 2001), an analytical so-
lution to the scattering and radiation problem is formulated under the 
assumption that the structure is in finite water depths. The amount of 
energy production is determined by assuming a linear power take off 
model. Multiple parametric analyses are performed to determine the 
energy-wise optimal size of each component. 

2. Mathematical model 

The OWC is embedded into a cylindrical floating structure, which is 
studied in a cylindrical coordinate system Orθz having origin on the still 
water level, at the centre of the cylinder, and the vertical axis pointing 
upwards. This system is installed in a constant water depth d. As shown 
in Fig. 1, the geometry of the cylinder is characterized by an external 
radius R3 and a total height h3. The OWC chamber, totally embedded 
into the structure, has an angular width Δθ symmetric with respect to 
the x-axis, and radius Δr enclosed between R1 and R2. The inner 
chamber is connected to the open wave field through a vertical opening 
of angular width Δθ and given height hl = h2 − h1 such that the opening 
is fully submerged. 

The proposed mathematical model is developed within the linearized 
potential flow theory framework. In this context, the fluid is considered 
inviscid and incompressible. Furthermore, the water particle motion is 
irrotational, so that a scalar velocity potential Φ (r, θ, z, t) can be used for 
determining the water particle kinematics. Time dependence is removed 
by considering a time-harmonic motion. Therefore, 

Φ(r, θ, z, t)=Re
{

Φ (r, θ, z) e− iωt}, (1)  

in which ω is the angular wave frequency; Re{ • } denotes the real part of 
a complex number; i is the imaginary unit; and t is the time variable. 

Following the method described by Evans and Porter (1995), the 
wave field arising from the interaction between this structure and 
incident waves is represented by the superposition of diffracted and 
radiated waves, so that the velocity potential is given by the equation, 

φ=φS + φR. (2)  

where the spatial dependence is omitted for conciseness. 
The scattered waves are the superposition of incident and diffracted 

waves according to the equation, 

φS =φI + φD, (3)  

where the incident potential φI, representing the incident waves moving 
towards the negative direction of x-axis, is given by the equation (Linton 
and McIver, 2001), 

ΦI = −
igA
ω ek0r cos θχ0(z)= −

igA
ω

∑+∞

m=0
ϵm(− im)cos(mθ) Jm(kr) χ0(z), (4)  

where A is the wave amplitude, ϵm is the Neumann symbol (1 if m = 0; 2 
if m > 0), Jm(kr) is the Bessel function of the first kind of order m, k is the 
wavenumber that satisfies the following dispersion relation: 

kn tan(knd)= −
ω2

g
, (5)  

in which k0 denotes the propagating mode, and kn with n > 0 the 
evanescent modes. In this regard, note that the propagating wave 
number has the complex form k0 = − ik. Finally, χ0(z) is the normalized 
vertical eigenfunction given by the equation, 

χ0(z)= cos[k0(z+ d)]
{

1
2

[

1 +
sin(2k0d)

2k0d

]}− 0.5

. (6)  

In the following sections the diffraction and radiation boundary value 
problems are posed and solved through matching of eigenfunction ex-
pansions. 

2.1. Boundary value problem 

For posing the boundary value problem, the fluid domain is parti-
tioned in four sub-domains: 

Ω1(r, θ, z)=
{

r∈ [R3; +∞); z∈ [− d; 0]; θ∈ [0;2π]
}

Ω2(r, θ, z)= {r∈ [0; R3] ; z∈ [− d; − h3]; θ∈ [0;2π]}

Ω3(r, θ, z)=
{

r∈ [R1; R2] ; z∈ [− h2; 0]; θ∈
[

−
Δθ
2

;
Δθ
2

]}

Ω4(r, θ, z)=
{

r∈ [R2; R3] ; z∈ [− h2; − h1]; θ∈
[

−
Δθ
2

;
Δθ
2

]}

.

In this manner, various potentials φλ,i, where λ = S,R denotes either 
scattered or radiated potential and i denotes the domain Ωi associated 
with each domain, can be defined and determined by considering that 
they must satisfy the boundary value problem posed by the following 
equations: 

∇2φλ,i (x, y, z)=0 (7)  

∂φλ,i

∂z
−

ω2

g
φλ,i =0 in Ω1, z = 0, (8)  

∂φλ,i

∂z
−

ω2

g
φλ,i =

⎧
⎪⎨

⎪⎩

0 in Ω3, z = 0, λ = S
iωP
ρg

in Ω3, z = 0, λ = R
(9)  

∂φλ,i

∂n
=0 on the structural solid boundary and on the seabed (10)  

lim
kr →∞

̅̅
r

√
(∂φλ,1

∂z
− ikφλ,1

)

= 0 (11)  

where n is the unit vector normal to the solid boundary, P is the air 
pressure inside the chamber, g is the gravitational acceleration and ρ is 
the water density. Finally, a radiation condition, eq. (11), is utilized for 
ensuring the boundness of the diffracted and radiated waves propa-
gating away from the structure (see §1.3.1 in Linton and McIver, 2001). 

2.2. Velocity potential associated with each region 

The potential φλ,i in each region is calculated by resorting to the 
eigen-function expansion technique employed in the solution of linear 
partial differential equations (Linton and McIver, 2001). 

By this approach, the velocity potentials in Ω1 can be represented 
through the eigen-function expansion, 
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φλ,1(r, θ, z) =
(

−
igA
ω δλS −

iP
ρωδλR

)

⎡

⎣
∑∞

m=0

∑∞

n=0
α(λ,1)

mn

Km

(
k(1)

n r
)

Km

(
k(1)

n R3

) cos(mθ)χ(1)
n (z) + φIδλS

⎤

⎦,

(12)  

Where P is the pressure amplitude into the chamber, α(λ,1)
mn are unknown 

coefficients; and Km is the modified Bessel function of the second kind of 
order m. Note that δλS (δλR) is the Kronecker delta function, which is used 
for representing both the diffracted velocity potential (δSS = 1) and the 
radiated potential (δRS = 0). In eq. (12) χ(1)n (z) is the normalized vertical 
eigenfunction: 

χ(1)
n (z)= cos

[
k(1)

n (z+ d)
]
{

1
2

[

1 +
sin

(
2k(1)

n d
)

2k(1)
n d

]}− 0.5

, (13)  

being k(1)
n wave numbers pertaining to the domain Ω1, that are computed 

by solving the linear dispersion relationship (eq. (5). 
The potential in Ω2 is given by the equation, 

φλ,2(r, θ, z) =
(

−
igA
ω δλS −

iP
ρωδλR

)

⋅

∑∞

m=0

∑∞

n=0
α(λ,2)

mn F(2)
mn(r) cos(mθ)χ(2)

n (z)
(14)  

where α(λ,2)
mn are unknown coefficients, and F(2)

mn(r) are functions depen-
dent on modified Bessel functions of the first kind of order m, Im, by the 
equations, 

F(2)
mn(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
r

R3

)m

, n = 0

Im

(
k(2)

n r
)

Im

(
k(2)

n R3

), n > 0
(15)  

In this context, the wave numbers k(2)
n are computed by the equation, 

k(2)
n =

nπ
d − h3

, (16)  

which are determined by enforcing the boundary condition (10). Then, 
the normalized vertical eigenfunction pertaining to the domain Ω2 is 
determined by the equation: 

χ(2)
n (z)= cos

[
k(2)

n (z+ d)
]
Ψn, (17)  

where Ψn is a normalizing parameter, such that Ψ0 = 1, and Ψn =
̅̅̅̅̅̅̅̅̅̅
1/2

√

for n > 0. 
The velocity potential in Ω3 accounts for the kinematic boundary 

condition (10) posed on the lateral walls of the inner chamber and on the 
surface r = R1. Specifically, it is given by the equation, 

φλ,3(r, θ, z) =
(

−
igA
ω δλS −

iP
ρωδλR

)

⋅

∑∞

m=0

∑∞

n=0
α(λ,3)

mn F(3)
mn(r) cos

[

mβ
(

θ +
Δθ
2

)]

χ(3)
n (z) −

iP
ρωδλR

(18)  

where α(λ,3)
mn are unknown coefficients; β = π

Δθ is a coefficient involving 

the angular chamber width, χ(3)n (z) represents the normalized vertical 
eigenfunction concerning the Ω3 domain: 

χ(3)
n (z)= cos

[
k(3)

n (z+ h2)
]
{

1
2

[

1 +
sin

(
2k(3)

n h2

)

2k(3)
n h2

]}− 0.5

(19)  

and the wave number and the r-dependent function F(3)
mn(r) are given by 

the equations, 

k(3)
n tan

(
k(3)

n h2

)
= −

ω2

g
, (20)  

and 

F(3)
mn(r)=

[
Imβ

(
k(3)

n r
)

Imβ

(
k(3)

n R2

) −
Kmβ

(
k(3)

n r
)

Iʹmβ

(
k(3)

n R1

)

Imβ

(
k(3)

n R2

)
Kʹ

mβ

(
k(3)

n R1

)

]

. (21)  

Finally, the velocity potential in Ω4 is given by the equation, 

φλ,4(r, θ, z) =
(

−
igA
ω δλS −

iP
ρωδλR

)

⋅

∑∞

m=0

∑∞

n=0

[
α(λ,4.A)

mn F(4,A)
mn (r) + α(λ,4.B)

mn F(4,B)
mn (r)

]
cos

[

mβ
(

θ +
Δθ
2

)]

χ(4)
n (z)

(22)  

α(λ,4.A)
mn and α(λ,4.B)

mn being unknown coefficients; and F(4,A)
mn (r) and F(4,B)

mn (r)
being radius dependent functions determined through the computation 
of the vertical eigen-function χ(4)n (z) and the associated wave number k(4)

n 
given by the equations, 

χ(4)
n (z)= cos

[
k(4)

n (z+ h2)
]
{

1
2

[

1 +
sin

(
2k(4)

n h2

)

2k(4)
n h2

]}− 0.5

, (23)  

and 

k(4)
n =

nπ
h2 − h1

. (24)  

That is, 

F(4,A)
mn (r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
r

R3

)m

n = 0

Imβ

(
k(4)

n r
)

Imβ

(
k(4)

n R3

) n > 0
(25)  

and 

F(4,B)
mn (r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
(

r
R2

)

+ 1 n = m = 0

(
r

R2

)− m

n = 0; m > 0

Kmβ

(
k(4)

n r
)

Kmβ

(
k(4)

n R2

) n > 0;m > 0

(26)  

2.3. Matching of the vertical eigen-functions 

The unknown coefficients, introduced in the previous section, are 
determined by matching the eigenfunction expansions over the common 
boundaries (Linton and McIver, 2001). Specifically, they are computed 
by enforcing the continuity of pressures and of horizontal velocities 
across their boundaries. That is: 
(
φλ,1

)

r=R3
=
(
φλ,2

)

r=R3
z∈ [− d; − h3]; θ ∈ [0;2π] (27)  

(
φλ,1

)

r=R3
=
(
φλ,4

)

r=R3
z∈ [ − h2; − h1]; θ ∈

[

−
Δθ
2
;

Δθ
2

]

(28)  

(
φλ,3

)

r=R2
=
(
φλ,4

)

r=R2
z∈ [ − h2; − h1]; θ ∈

[

−
Δθ
2
;

Δθ
2

]

(29)  
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(∂φλ,1

∂r

)

r=R3

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(∂φλ,2

∂r

)

r=R3

z ∈ [ − d; − h3]; θ ∈ [0; 2π]

(∂φλ,4

∂r

)

r=R3

z ∈ [ − h2; − h1 ]; θ ∈

[

−
Δθ
2
;

Δθ
2

]

0 z ∈ [ − h1; 0 ]; θ ∈ [0;2π]

(30)  

and 

(∂φλ,3

∂r

)

r=R2

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂φλ,4

∂r

)

r=R2

z ∈ [ − h2; − h1]; θ ∈

[

−
Δθ
2
;

Δθ
2

]

0 z ∈ [− h1; 0]; θ ∈

[

−
Δθ
2
;

Δθ
2

] (31)  

By projecting eq. (27)–(31) in the space of vertical eigen-functions and 
of trigonometric functions, the unknown constants are computed 
numerically by solving a related linear system of algebraic equations 
obtained via truncation of the infinite series expansions seen in eqs. (12), 
(14), (18) and (22). 

2.4. OWC modelling 

The air chamber thermodynamics is investigated by resorting to the 
uniform pressure distribution model (Falcão et al., 2016). A linear 
relationship between the volume flow rate and the pressure is consid-
ered due to the fact that they are both sinusoidally time-varying with a 
phase difference. 

The volume flow rate inside the chamber is expressed as the sum of 
radiation, qR(t), and excitation, qE(t), volume flow rates, 

q(t)= qR(t) + qE(t). (32) 

Considering the linear power take off model described by Falcão 
et al. (2016), 

q(t)=
V0

ν patm

dp
dt

+ CPTOp(t), (33)  

where V0 is the air volume inside the chamber, ν is a polytropic term 
introduced to define the air chamber thermodynamics and is related to 
the average efficiency of the turbine. The properties of the turbine are 
encapsulated into the coefficient CPTO = Ξ D

ρatmσ which depends on the 
dimensionless, turbine model dependent, parameter Ξ, the diameter D, 
the atmospheric air density ρatm and the rotational speed σ. Considering 
a large rotational inertia so that CPTO and σ are independent of time 
(Falcão et al., 2016), the problem can be solved in frequency domain. 
Therefore, 

{q(t), qE(t), qR(t), p(t)}=Re{Q,QE,QR,P}e− iωt (34)  

where the excitation and radiation flow rate amplitudes are, 

QE =

∫
Δθ
2

−
Δθ
2

∫R2

R1

(∂φD,3

∂z

)

z=0
r drdθ (35)  

and 

QR =

∫
Δθ
2

−
Δθ
2

∫R2

R1

(∂φR,3

∂z

)

z=0
r drdθ (36) 

Substituting eq. (32) into eq. (33) and considering that QR = − (C −

iMADD)P (Lovas et al., 2010; Zheng et al., 2019a), where C and MADD are 
the radiation damping and added mass coefficients computed from eq. 
(36), relation between the air pressure complex amplitudes and the 
excitation air flow rate complex amplitudes is obtained: 

P=Λ QE (37)  

in which, 

Λ= [CPTO + C − i(MPTO + MADD)]
− 1 (38)  

where MPTO = ωV0
ν patm

. 
Given the air pressure P, the mean air power available to the turbine 

is readily calculated as, 

Pm =
CPTO

2
|P|2 (39) 

For maximizing the power absorption, the optimal PTO radiation 
damping is introduced as described by Michele et al. (2019): 

CPTO =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2 + (MPTO + MADD)
2

√

(40) 

For assessing the energy – wise performance of the system, the 
capture width ratio (Babarit, 2015), computed as the ratio between the 
mean air power available to the turbine and the incident wave energy is 
used: 

CWR=
Pm

DK Pin
(41)  

where DK denotes the characteristic length of the device. The incident 
wave power is calculated by the equation, 

Pin =
1
2

ρgCgA2 (42)  

Cg being the wave group celerity and A is the incident wave amplitude. 

3. Results and discussions 

This section analyses the performance of the system by conducting 
relevant parameter studies. For obtaining reliable estimates, preliminary 
convergence studies were carried out for identifying an optimal trun-
cation threshold of the eigen-function expansions by considering a 
trade-off between computational efficiency and solution accuracy. The 
geometrical configuration shown in Table 1 is considered. 

As reported by Ning et al. (2018), the numerical studies showed that 
reliable results are achieved with N > 18 and M > 8. Hereinafter, the 
series expansions are truncated after N = 20 and M = 10 as these values 
ensure reliable estimates over all input frequencies (see Fig. 2). In 
passing, note that a similar convergence study has been conducted by 
varying the number M of eigenfunctions. However, the numerical data 
showed that convergence is achieved even by retaining just two modes. 
Therefore, the calculations have been pursued with M = 10 consistently 
with similar numerical studies available in the literature. 

The height of the air chamber is zc = 10 m in all the subsequent 
numerical studies. 

Herein, the analyses were conducted by considering a constant depth 
d = 10 m in order to obtain data that are comparable to the ones 
available in similar studies. The incident waves are of unitary amplitude. 
Note that the proposed solution has been developed without the thin- 

Table 1 
Geometric values utilized to investigate 
the convergence values of N and M.  

d 10 [m] 

R1/d 0.001 
R2/d 0.45 
R3/d 0.5 
h1/d 0.2 
h2/d 0.6 
h3/d 0.65  
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wall assumption. Instead, most of the previous works in literature were 
performed without considering the thickness of the OWC chamber wall. 
Thus, the associated velocity potentials were represented as expansions 
of Chebyshev polynomials in order to deals with singularities at the 
continuity surfaces (Martins-rivas and Mei, 2009). For characterizing 
the OWC response to the incident waves, the next sub-paragraphs will 
represent the modulus of wave excitation volume flux QE, the radiation 
damping C, the added mass MADD, and the capture width ratio CWR in 
frequency domain. The main target is to investigate the overall energy 
performance of the device. The characteristic dimension used to eval-
uate the CWR is the outer radius DK = 2R3. The normalized parameters 
are defined as follows (Lovas et al., 2010): 

QE =

̅̅̅̅̅̅̅̅̅
g/d

√

A d g
QE

(C, MADD, CPTO, MPTO) =
ρ

̅̅̅̅̅̅̅̅̅
g/d

√

d
(C, MADD, CPTO, MPTO)

(43) 

An additional validation of the model was performed by utilizing the 

Haskind relations, through which hydrodynamic parameters can be 
obtained as a function of the diffracted potential. 

C=
k

8πρgcgA2

∫2π

0

|QE(β)|
2dβ (44)  

where β represents the incident wave direction. Comparing these values 
with those obtained through the solution of the radiated potential allows 
validating the analytical model. Using the geometric data given in 
Table 1, a comparison was made as shown in Fig. 3. It is seen a perfect 
agreement between the radiation damping values, which assesses the 
reliability of the proposed solution. 

3.1. Effects of the inner chamber width 

For investigating the effect of the inner chamber width on the OWC 
performance, the geometrical configuration shown in Table 2 is 
considered. 

Fig. 2. Convergence study with respect to N for a fixed geometry and a single frequency ω = 1.5. Left to right is shown the volume excitation flux, radiation damping 
and the added mass. 

Fig. 3. Radiation damping, comparison between analytical solution and Haskind relation.  

A.S. Spanò et al.                                                                                                                                                                                                                                



Ocean Engineering 309 (2024) 118389

7

The outer radius is set by enforcing that the chamber width (R3–R2)/ 
d = 0.05. The angle is initially set as Δθ = 2π. 

The first numerical example concerns the case of a OWC chamber 
spanning the whole full circle. That is, Δθ = 2π. Such a numerical 

example resembles the configuration investigated, for instance, by 
Michele et al. (2019), and is used for checking the consistency of the 
numerical results against other state-of-the-art models and the differ-
ences observed by adopting the proposed configuration, Fig. 4 shows 
three cases produced by varying the radius R2/d. Despite the geomet-
rical differences with the configuration investigated by Michele et al. 
(2019), the dashed lines show an excellent agreement with their results. 
It may be considered as a reliability and accuracy indicator of the pre-
sent model. As the radius increases, the peak of all the plots move to a 
lower frequency and gains intensity. All the curves have just one heave 
peak motion mode, only one sloshing mode occurs for the major radius 
considered and represented by the dotted line. These variations lead to a 
reduction of the wave capture factor for increasing values of the 
chamber width and a shifting towards lower frequencies: the peaks are 

Table 2 
Geometric values to investigate the effect 
of the inner chamber width.  

d 10 [m] 

R1/d 0.001 
h1/d 0.2 
h2/d 0.6 
h3/d 0.65  

Fig. 4. Comparison between different radii R2/d of the OWC chamber considering a very thin R1/d inner radius. (Continuous line: R2/d = 0.3; dashed line: R2/d =
0.5; dotted line: R2/d = 0.7; circle: Michele et al. (2019)). 

Fig. 5. Effect of the presence of a vertical cylinder inside the chamber. (Continuous line: R1/d = 0.001; dashed line: R1/d = 0.15; dotted line: R1/d = 0.35).  
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also identified by the intersection between the added mass and the −
MPTO grey lines plotted. Overall, it is seen that the ratio R2/d should be 
selected by maximizing the frequency bandwidth, that is maximal for 
smaller R2/d values. 

Fig. 5 shows that the presence of an internal cylinder, characterized 
by small dimensions compared to the internal chamber, does not result 
in excessive variations in energy efficiency. Moreover, it ensures struc-
tural safety. It offers the additional advantage of avoiding the creation of 
a sharp corner when reducing the internal angle of the chamber, as 
investigated in the subsequent analyses. Considering a modest-sized 
internal radius of R1/d = 0.15, it does not modify the overall hydrody-
namic parameters and the curve is mostly similar to the continuous line 
representing the approximation of a chamber without that. Increasing 

the dimensions, the efficiency of the device reduces, all the peaks move 
towards higher frequencies with lower peak values. Added mass and 
radiation damping gain intensity, but the volume excitation flow rate 
shows an opposite behaviour. These results suggest that a small inner 
radius may not affect the overall performance of the device, even if a 
larger inner radius might help tuning the system over higher 
frequencies. 

3.2. Effects of the angular width 

The effect of the chamber angular width is investigated by consid-
ering the geometrical configuration with R1/d = 0.15 and R2/d = 0.5. 
Specifically, the three configurations with Δθ = 2π, Δθ = π and Δθ = π/3 

Fig. 6. Comparison between different angular amplitude of the OWC chamber. (Continuous line: Δθ = 2 π; dashed line: Δθ = π; dotted line: Δθ = π/3).  

Fig. 7. - Comparison between different heights of the opening side. (Continuous line: h2/d= 0.4; dashed line: h2/d= 0.6; dotted line: h2 = 0.8).  
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are studied. The numerical results in Fig. 6 show that the angular width 
does not affect the frequency domain distribution of excitation, hydro-
dynamic parameters and capture factor. Instead, nearly constant mag-
nifications or reductions are observed. Compared to the case Δθ = 2π, it 
is seen that the peak of the wave excitation volume flow rate increases 
for Δθ = π, while it reduces for the case Δθ = π/3. This suggests the 
existence of an optimal angular chamber width, which is not necessarily 
associated with the case of a single chamber spanning the full circle. 
Both radiation damping and added mass depict a flattering of the curves 
as the angular amplitude decreases. These changes impact on the overall 
performance of the system, as shown by the capture width ratio plot. 
Indeed, it is seen that a reduction of the angular width significantly 
enhances the efficiency of the device. Interestingly, by comparing the 
case Δθ = π and Δθ = π/3, it is seen that similar value of the CWR can be 
obtained by using a three times smaller angular chamber (CWR is at least 
20% lower), while ensuring more structural stability with an angular 
chamber of Δθ = π/3 and allowing the presence of multi-chambers to 
harvest the wave energy from the main dominant directions. These re-
sults suggest that using several chambers might be preferred to the case 
of a single one. 

3.3. Effects of the OWC opening height 

The effect of the OWC opening height (h2-h1)/d is investigated by 
ensuring that the draft of the vertical wall h1/d = 0.2 and the thickness 
(h3-h2)/d = 0.05. Further, the angular chamber width Δθ = π. As shown 
in Fig. 7, three different configurations are plotted. The peak of the wave 
excitation volume flow rate does not show significant differences in 
terms of amplitude, while maintaining its overall frequency distribution. 
Similarly, marginal variations are seen in the added mass and in the 
radiation damping. Specifically, the last one presents an increment of 
the peak while moving towards higher frequencies. The capture width 
ratio is affected by the variation of the opening, as it leads to its 
reduction. Fig. 7 shows that the stretching of the structure through the 
bottom leads to similar curves: the curves representing the case h2/d =
0.6 and h2/d = 0.8 are mostly the same, similar results might be ob-
tained while continuing to stretch downward the structure. This result 
emphasizes the fact that a wide opening is neither necessary nor 

convenient from an energy – wise perspective. The design of the lower 
submerged part might be carried out taking into account exclusively the 
stability conditions and ballasting needs. 

3.4. Effects of the wall thickness 

The effect of the wall thickness (R3–R2)/d is shown in Fig. 8. Main-
taining the previous geometry of the inner chamber, R1/d = 0.15, R2/d =
0.5 and Δθ = π, three different case studies are investigated by 
increasing the value of thickness R3/d, starting from the condition of 
very-thin wall. The peak of the wave excitation volume flow rate moves 
to lower frequencies, while becoming narrower and higher. The same 
variation is observed in the hydrodynamic parameters, especially for the 
radiation damping. Those changes to the hydrodynamic parameters lead 
to a variation of the capture width ratio that reduces its bandwidth. 

3.5. Irregular waves 

Further analyses have been conducted to examine energy production 
by comparing regular and irregular wave cases. A JONSWAP-type 
spectrum was considered for describing the incident wave field (Has-
selmann et al., 1973): 

E(ω)=Ag2ω− 5 exp

[

− 1.25
(

ω
ωP

)− 4
]

exp

{

log(ξ1)exp

[

−
(ω − ωP)

2

2ξ2
2ωp2

]}

,

(45)  

where: 

ξ1 =3.3 (46)  

and 

ξ2 =

{
0.07 ω < ωP
0.09 ω ≥ ωP

(47) 

As described by Michele et al. (2019), the averaged wave generated 
power and the incident wave power can be written as follows: 

Fig. 8. - Comparison between different thickness of the vertical wall. (Continuous line: R1/d= 0.51; dashed line: R1/d= 0.6; dotted line: R1/d= 0.7).  
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Pm IRR =CPTO ρAIR

∫

E(ω) RAO2(ω) dω, (48)  

and 

Pin IRR =

∫

ρgCg(ω) E(ω) dω (49) 

The capture width ratio is calculated as the ratio between the pre-
vious terms: 

CWR IRR =
Pm IRR

DK Pin IRR
, (50) 

The effects of irregular waves have been investigated by considering 
the geometric values reported in Table 3. The CPTO has been calculated 
using the optimal value for a fixed frequency ω = 1 rad/s. The charac-
teristic length DK = 2R3. Results are shown in Fig. 9. 

4. Concluding remarks 

In this paper an analytical solution, based on the linear potential flow 
theory, is derived to solve the diffraction and radiation problem of a 
vertical cylinder embodying an OWC chamber for harvesting wave en-
ergy. Compared to similar studies available in the open literature, this 
article considered a configuration in which the OWC width spans a small 
portion of the cylindrical structure. The effects of the main geometrical 
parameters on the converter performance are investigated. Specifically, 
the article focused on the variability of excitation volume flow rate, of 
radiation damping, of added mass, and of the capture width ratio. 

The paper has shown that, the inner chamber width is the main 
geometrical parameter controlling the frequency domain distribution of 
all parameters. Further, it is seen that the internal cylinder, if small 
compared to the internal chamber width, does not lead to significant 

variations in energy efficiency. The angular chamber width is the main 
parameter significantly enhancing the efficiency of the device. Indeed, it 
allows reaching at least three times the capture width ratio associated 
with the case of a single chamber spanning the full circle. Therefore, the 
results show that lower chamber widths are associated with larger ef-
ficiency values. This fact suggests that the use of multiple chambers can 
ensure quite large efficiency values compared to similar plants equipped 
with only one chamber. 

Extending the structure towards the bottom does not provide bene-
fits. Indeed, after a certain level, the OWC opening height marginally 
affects the system performance. Thus, the bottom structural element 
might be designed based on stability and ballasting needs. The wall 
thickness effects were investigated, as well. In this regard, the article has 
shown that increasing the OWC wall thickness leads to narrower capture 
width ratio bandwidths in frequency domain. 

Overall, the proposed study may serve as a guide for the design of 
platforms embodying OWC systems. Specifically, this study and the so-
lution developed in the previous sections can be utilized for the pre-
liminary design of OWCs in the context of systems embedded in wide 
platforms, where the OWCs are expected to be employed in arrays. 

Future studies will concern the development of more realistic 
models. Indeed, the proposed study neglected the effects of viscosity and 
compressibility by considering an irrotational fluid motion that, 
commonly, overestimates the results. For this purpose, CFD numerical 
models and experimental data will be necessary for producing a reliable 
numerical model. In addition to numerical developments, new studies 
will involve the analysis of a cylindrical system including multiple 
chambers and the quantification of the overall system efficiency. 
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Table 3 
Geometric values to investigate the ef-
fect of irregular waves.  

R1/d 0.001 

R2/d 0.5 
R3/d 0.55 
dθ π 
h1/d 0.2 
h2/d 0.6 
h3/d 0.65  

Fig. 9. Capture width ratio in irregular waves.  
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Ibarra-Berastegi, G., Sáenz, J., Ulazia, A., Serras, P., Esnaola, G., Garcia-Soto, C., 2018. 
Electricity production, capacity factor, and plant efficiency index at the Mutriku 
wave farm (2014–2016). Ocean. Eng. 147, 20–29. https://doi.org/10.1016/J. 
OCEANENG.2017.10.018. 

Lehmann, M., Karimpour, F., Goudey, C.A., Jacobson, P.T., Alam, M.R., 2017. Ocean 
wave energy in the United States: current status and future perspectives. Renew. 
Sustain. Energy Rev. 74, 1300–1313. https://doi.org/10.1016/J.RSER.2016.11.101. 

Li, A., jun, Liu, Y., Wang, X. yu, 2022. Hydrodynamic performance of a horizontal 
cylinder wave energy converter in front of a partially reflecting vertical wall. Renew. 
Energy 194, 1034–1047. https://doi.org/10.1016/J.RENENE.2022.05.161. 

Linton, C.M., McIver, P., 2001. Handbook of mathematical techniques for wave/ 
structure interactions, handbook of mathematical techniques for wave/structure 
interactions. https://doi.org/10.1201/9781420036060. 
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