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Abstract: The heuristic homogenization approach is intensively employed to characterize electromag-
netic metamaterials (MMs). The effective parameters are extracted within this framework using the
Nicolson–Ross–Weir (NRW) method. Special attention must be devoted to handling this procedure
because of the branch ambiguity issue affecting it, i.e., the lack of uniqueness in the evaluation of the
effective refractive index ne f f rooted in the use of the multivalued complex logarithm to invert the
Airy–Fresnel relation. Over the years, several techniques based on the phase-unwrapping approach
have been introduced, but without any theoretical justification. In this paper, we aim to clarify the
theoretical connection between the phase unwrapping method and the analytic continuation theory
framework. Furthermore, three-phase-unwrapping approaches, which descend directly from the
theory we discussed, are compared to identify which approach is best suited to reconstruct the
complex refractive index of metamaterials when the NRW method is applicable.

Keywords: phase unwrapping; scattering parameters; metamaterials

1. Introduction

Retrieving the electromagnetic parameters of materials is a task of primary importance
in many research fields, such as microwave engineering, electromagnetic compatibility,
and bioelectromagnetics, to name a few [1–3]. In the last decade, researchers have shown
great interest in developing particular three-dimensional artificial materials, usually made
up of a lattice of metallic resonant inclusions arranged in a dielectric host medium called
metamaterials (MMs), given obtaining devices endowed with exceptional operating per-
formances [4]. To characterize MMs, the so-called heuristic homogenization approach,
developed for the first time in [5,6], is the procedure most commonly employed by practi-
tioners and researchers in the field [7–14]. In this peculiar framework, it is assumed that
an MM, within its operating frequency range, can be considered analogous to a homoge-
neous medium, called the effective medium, for which the electromagnetic properties are
described by an effective electric permittivity ϵe f f and magnetic permeability µe f f [5,6].
Such effective permittivities are extracted by processing the numerical or measured scatter-
ing parameters of the MM at hand by using the Nicolson–Ross–Weir (NRW) method [5].
Despite the intrinsic plainness of the NRW method, this recovering procedure often results
in nonlocal ϵe f f and µe f f [15,16], and this poses severe problems regarding its scope of
applicability [15,16]. Nonetheless, the complex refractive index Ne f f provided by the NRW
approach can still be used for recovering the effective parameters for one particular class
of MMs, called Bloch lattices [15–17]. For these MMs, the effective parameters recovered
by using Ne f f in conjunction with the concept of the Bloch impedance ZB are consistent,
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obeying the locality constraints [17]. More precisely, for this class of structures, the descrip-
tion in terms of ϵe f f and µe f f can be extended far beyond the quasi-static limit, reaching
the frequency range in which the MM operates [17]. To evaluate Ne f f correctly, special
attention has to be devoted to its recovering to provide correct results because of the branch
ambiguity issue affecting the NRW method, i.e., the lack of uniqueness of Re[Ne f f ], and
the effective refractive index ne f f , which is rooted in the use of the multivalued complex
logarithm LOG(·) to invert the Airy–Fresnel relation [18]. In the literature, to face this
ambiguity problem, several strategies grounded on the phase-unwrapping approach have
been introduced [19–21], although without providing any theoretical justification for their
use [22]. Only recently, the link between phase unwrapping and the operation of analytic
continuation of holomorphic functions has been demonstrated [22]. Following a previous
couple of works [22,23], in this study, we aim to better clarify the connection between the
phase unwrapping method and the analytic continuation framework and identify which
way is best suited to reconstruct the refractive index of metamaterial structures. The pa-
per is organized as follows: Section 2 provides the elements of theory needed to relate
analytic continuation and phase unwrapping. In particular, in Section 2.1, we summarize
the NRW approach; in Section 2.2, we discuss the link between phase unwrapping and
the analytic continuation theory and how the branch issue problem affecting the NRW
method can be overcome using the phase-unwrapping approach. In Section 2.3, we connect
the Kramers–Kronig integrals to phase unwrapping using the concept of the Riemann
surface. In Section 3, the numerical performances of the phase-unwrapping procedures
introduced in the above subsections are investigated. To this end, three different samples
of a µ-negative MM composite realized via a three-dimensional array of LiTaO3 spheres
embedded in the free space have been considered. A numerical comparison of the phase
unwrapping findings with those provided by the K-K relations and the Maxwell–Garnett
theory is performed to rank the methods. Finally, in Section 4, conclusions are drawn.

2. Theory
2.1. The NRW Approach for Recovering the Complex Refractive Index

The Nicolson–Ross–Weir (NRW) method is a standard technique for recovering the
permittivity and permeability of linear, isotropic, and homogeneous electromagnetic me-
dia [24] through closed-form relations derived considering the reflection–transmission
phenomenon involving a plane wave normally incident on a slab of material with thickness
d, placed in free space. Due to its inherent conceptual simplicity, the NRW method has
also been applied as a homogenization method for metamaterials, as discussed extensively
in [5,6]. According to this approach, the complex effective refraction index Ne f f of an MM
can be recovered by solving the following relation (the time-dependence convention e−iωt

is adopted) [22,24]:

eiNe f f k0d =
S21

1 − S11R
, (1)

where k0, S11, and S21 are the the free space wave number, and the S-parameters of the
MM under study. The reflection coefficient between the effective medium slab and the free
space, R, appearing in relation (1) is as follows:

R =
z − 1
z + 1

with z = ±

√
(1 + S11)2 − S2

21
(1 − S11)2 − S2

21
, (2)

where z represents the MM effective intrinsic impedance. Using the complex logarithm
LOG(·) = log(·) + 2pπi to solve (1), in which the term log(·) denotes the principal log-
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arithm [25], and the integer p ∈ Z represents the branch index, we obtain the complex
refractive index Ne f f as follows:

Ne f f (ω) =
i

k0d

[
log
(

S21

1 − S11R

)
+ 2pπi

]
. (3)

From (3), the expressions of the effective extinction factor κe f f , the effective refractive
index, and ne f f read as follows:

κe f f = − 1
k0d

Re
[

log
(

S21

1 − S11R

)]
(4)

ne f f =
1

k0d
Im
[

log
(

S21

1 − S11R

)
+ 2pπ

]
. (5)

2.2. Analyticity and Phase Unwrapping

To avoid the lack of unicity of the refractive index ne f f , when solving (1), it is necessary
to take into account some preliminary considerations about the invertibility of the complex
exponential function e(·). More precisely, relation (1) will be invertible, and its inverse will
be unique if and only if e(·) is univalent [22,25]. Unfortunately, this property is related to
the term iNe f f k0d, which is the unknown of the problem at hand. Accordingly, we must
treat e(·) as not univalent, and since the inverse function does not exist in this case, we have
to solve (1), computing its right inverse [22]. The following theorem provides us with a
method for its evaluation [22]:

Theorem 1: Let γ : [a, b] → Ċ be a continuous path. There exists a unique analytic logarithm L(·)
such that:

eL(z) = z ∀z ∈ γ(t) t ∈ [a, b], (6)

fulfilling the constraint condition Im(L(γ(a))) = θ0 with θ0 ∈ R and eiθ0 = γ(a)
|γ(a)| .

The detailed proof of the above theorem is given in [22]. In the following, we will
summarize the rationale and highlight the most essential points. First, the solution of
the equation is calculated by superimposing the path γ(t) with a series of disks, thus
realizing the so-called path covering [25]. Each disk is the domain of an appropriate
analytic logarithm. In this way, the analytic continuation operation is set up. Second,
the analytic logarithm solution of (6) results as the appropriate superposition of the analytic
logarithms defined within each disk, for which the phase term is made appropriately
continuous as it passes from one disk to another. The operation essentially entails the
restoration of the continuity of the imaginary part of L(·) that, as an important consequence
of Theorem 1, can be obtained through a phase-unwrapping approach. In the particular case
of Equation (1), when e(·) is right-inverted using the above result, it is fundamental to use a
suitable constraint condition to obtain a unique significant solution from a physical point of
view. Considering that γ(t) ≜ S21/(1 − S11R) with t = ω, the constraint Im(L(γ(a))) = θ0
has to be specialized as follows:

Im
[
L
(

S21

1 − S11R

)]∣∣∣∣
a=ω0=0

= 0, (7)

which ensures the causality of the refractive index [22]. In fact, this choice ensures that
Im[L(γ(t))] is an odd function. In this way, we have that L(·) results as the Fourier transform
of a time-domain causal physical quantity [22], and that the principal logarithm log(·) can
be used as a first element of the chain of analytic function elements realizing L(·). Having
calculated the right inverse L(·), Ne f f is given by the following:
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Ne f f =
1

ik0d
L
(

S21

1 − S11R

)
. (8)

The computational results provided by Theorem 1, summarized in Algorithm 1, justify
rigorously the use of this type of approach in the literature, usually implemented by using
the Oppenheim and Schafer algorithm exploited in the signal processing field [26] (see
Appendix A for more details on this point), for recovering the MM’s electromagnetic pa-
rameters [22]. An algorithm derived from the phase-unwrapping procedure of Oppenheim
and Schafer that, in principle, can locate and identify the crossings between γ(t) and the
principal logarithm branch cut in a more precise way has been developed in [27]. Its
pseudo-code is reported in Algorithm 2. A sampled version of γ(t) ≜ S21/(1 − S11R),
[γ(t)] is given as its input. The algorithm checks if [γ(t)] crosses the branch cut of log(·),
comparing the position of the points [γ(t)]j−1 and [γ(t)]j in the complex plane C − 0.
The algorithm updates the branch index p accordingly, and computes the numerical value
of [L(γ(t)j)] = log([γ(t)]j) + i2πp at point [γ(t)]j. If an ambiguity arises, the algorithm
stops, the path is re-sampled, using N = 2np+1 points to this end, and the procedure is
performed again.

Algorithm 1 Phase unwrapping
1: a := 0;
2: argα0 (·) := argπ(·);
3: γt0 := S21(a)

1−S11(a)R(a) ;
4: [L(γt)]k=0 = ln|γ(a)|+ i argα0 (γ(a));
5: for k:=1 to n do;
6: tk := ωk ;
7: γtk := S21(tk)

1−S11(tk)R(tk)
;

8: pk := (argαk−1 (γtk ))− argαk (γtk ))/2π;
9: argαk (·) := argαk (·) + 2πpk ;

10: [L(γt))]k := ln|γtk )|+ i argαk (γtk ));
11: end for

Algorithm 2 Plane phase unwrapping
1: a := 0;
2: [γt]0 := S21(a)

1−S11(a)R(a) ;
3: [ut]0 := Re([γt]0);
4: [vt]0 := Im([γt]0);
5: for k:=1 to n do;
6: tk := ωk ;
7: [γt]k := S21(tk)

1−S11(tk)R(tk)
;

8: [ut]k := Re([γt]k);
9: [vt]k := Im([γt]k);

10: end for
11: p := 0;
12: s_s:=¬false;
13: for k:=1 to n do;
14: [L[γt]]k := log([γt]k−1) + i2πp;
15: if [vt]k−1[vt]k < 0 then
16: if [ut]k−1 ≤ 0 ∧ [ut]k ≤ 0 then
17: p = p − sgn([vt]k−1)
18: else if ([ut]k−1 ≤ 0 ∧ [ut]k ≥ 0) ∨ ([ut]k−1 ≥ 0 ∧ [ut]k ≤ 0) then
19: s_s:=¬true;
20: Stop and Re-execute;
21: end if
22: end if
23: end for
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2.3. Riemann Surfaces and Phase Unwrapping

An alternate and more commonly employed method to overcome the ambiguity
afflicting ne f f is to resort to the Kramers–Kronig relations [28–30]. Because in any physical
system the cause cannot precede the effect, the effective permittivities ϵe f f and µe f f must
obey the causality principle [31,32]. However, the complex refractive index is defined as
follows:

Ne f f =
√

ϵe f f µe f f , (9)

in which at a first glance it could seem that Ne f f lacks analyticity, because of the presence
of branch points in the upper half-plane (UHP) of C due to the zeros of the terms ϵe f f and
µe f f in this region. Despite this, as demonstrated in [31,32], the term (9) does not have any
branch point in the UHP in the case of passive media. This fact allows relating the real and
the imaginary parts of Ne f f (ω) via K-K relations and since the term κe f f (ω) is uniquely
determined from relation (4), it allows to determine ne f f (ω) without ambiguity as follows:

ne f f (ω)− 1 =
2
π
P
∫ +∞

0

ω′κe f f (ω
′)

ω′2 − ω2 dω′. (10)

To understand how the relation (9) can be exploited in a phase-unwrapping scheme, we
have to reconsider the NWR Equation (1) from a more abstract point of view. As discussed
in [23], the set of all the analytic logarithms L(·) of (6) makes up a special mathematical
object called a global analytic logarithm L. A particular domain of definition is related to L:
the Riemann surface S(L) [23]. Its structure is composed of a numerable set of replies of
Ċ, Sp(L), overlayed on top of each other and sorted by the ascending index p, suspended
above Ċ, and glued to each other along the slit extending from 0 to −∞, which each sheet
owns [23], as shown in Figure 1. If z′ is a point of Ċ and z̆ is the point belonging to Sq(L),
for the q-th sheet of S(L), which lies above the point z′ of Ċ, the value taken by L on z̆, Lz̆′ ,
is given by [23]:

Lz̆ = ln|z′|+ i[argπ(z′) + 2πq]. (11)

Based on the above, if γ̆ is the copy on S(L) of the path γ(t) lying in Ċ, we have from
(11) that between the values taken by L(·) at z′ ∈ γ(t) and the values assumed by L at
z̆ ∈ γ̆, the following relation must hold [23]:

L(z′) = ln|z′|+ i[argπ(z′) + 2πp], (12)

where, for each z̆ ∈ γ̆, the value assigned to the integer parameter p is the index q of
the Riemann sheet Sq(L) on which z̆ lies. Relation (12) can be used to compute L(·) on
γ(t) ≜ S21/(1 − S11R). Substituting (8) into (12), we have the following:

Im
[
L
(

S21

1 − S11R

)]
=

[
argπ

(
S21

1 − S11R

)
+ 2πq

]
. (13)

The unknown indexes q that localize the Riemann sheetsSq(L)where the term S21/(1− S11R)
lies can be evaluated considering that from (8) we have the following:

ne f f k0d =

[
argπ

(
S21

1 − S11R

)
+ 2πq

]
(14)

Inserting (10) into (14), we obtain for the q values as follows:

q =
1

2π

[
k0d

(
1 − 2

π
P
∫ +∞

0

ω′κe f f (ω
′)

ω′2 − ω2 dω′
)
− argπ

(
S21

1 − S11R

)]
. (15)
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Figure 1. A portion of the Riemann surface S(L) suspended on the unitary disk D ∈ Ċ.

However , from a computational point of view, considering the unavoidable numerical
errors that are carried out in the evaluation of the K-K integral (10), the evaluation of the q
values is better accomplished through the following minimization problem [26]:

q̂ = argmin
q∈Z

ϵerr (16)

ϵerr =

∣∣∣∣∣argπ

(
S21

1 − S11R

)
+ 2πq −

(
1 − 2

π
P
∫ +∞

0

ω′κe f f (ω
′)

ω′2 − ω2 dω′
)

k0d

∣∣∣∣∣ (17)

in which the q integers are those minimizing the error, ϵerr, in the absolute value of the
difference between the argument of the principal logarithm and the term ne f f k0d. The two
Equations (16) and (17) can be regarded as a numerical integration-like phase-unwrapping
approach [26]. As a matter of fact, the above q values can be recognized as the integers
that allow the phase term argπ(S21/1 − S11R) to be continuous, i.e., to unwrap the ar-
gument of the principal logarithm, and thus provide the determination of the argument
of L(S21/1 − S11R), the imaginary part of the right-inverse of which we are searching.
Algorithm 3 reports its pseudo-code.

Algorithm 3 Numerical integration-like phase unwrapping

1: a := 0;
2: argα0(·) := argπ(·);
3: γt0 := S21(a)

1−S11(a)R(a) ;
4: [L(γt)]k=0 = ln|γ(a)|+ i argα0(γ(a));
5: for k:=1 to n do;
6: tk := ωk;
7: γtk := S21(tk)

1−S11(tk)R(tk)
;

8: argα := Func_Kramers_Kronig_Integral
9: pk := Func_Minimize(argα, argα0(γtk ));

10: argαk (·) := argα0(·) + 2πpk;
11: [L(γt))]k := ln|γtk |+ i argαk (γtk ));
12: end for

3. Numerical Results

To compare the performance of the phase-unwrapping approaches described in
Sections 2.2 and 2.3 (denoted as Alg1 (phase unwrapping), Alg2 (plane phase unwrap-
ping), and Alg3 (numerical integration-like phase unwrapping), respectively), we have
considered the recovering of ne f f for a composite realized by a three-dimensional array of
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lithium tantalate (LiTaO3) spheres, considered infinitely large along the x− y axis, and with
finite thickness along z, embedded in free space [33]. This is a µ-negative MM for which
effective parameters can be analytically checked using the Maxwell–Garnett rules from
mixtures [33]. The geometry of the array is reported in Figure 2. Three structures, char-
acterized by a different thickness d (which is an integer multiple of the cell size s; see
Figure 2), were numerically simulated using the software Ansys HFSS, running on an
Intel Xeon DP E5405 Quad Core-based workstation. The radius of the LiTaO3 spheres was
r0 = 4 µm, and the unit cell size was s = 10 µm [33]. The phase-unwrapping methods
were programmed using MATLAB R2023b. The computation of the K-K integral (9) was
implemented using the Euler–Maclaurin method described in [34] (the method is denoted
as KK(B) in all figures and tables). Figure 3 shows the results for the case d = 30 µm.
The rapid change of the plot of the phase of the S-parameters sampled with ns = 512
equispaced sampling points in the band (0, 5) THz, shown in the top left part of Figure 3,
suggests that ne f f is affected by the branch ambiguity. This consideration is confirmed by
the behavior of argπ(·), reported in the top left part of the same figure, which is clearly
discontinuous, and needs to be unwrapped to compute the above parameter. Furthermore,
the top right part of Figure 3 shows the comparison between the refraction index ne f f com-
puted (i) using the Maxwell–Garnett theory [33], (ii) using the K-K integral, and (iii) using
the phase-unwrapping procedures introduced above. We point out that all the considered
phase-unwrapping procedures agree with each other and provide results that are close
to the ne f f obtained by applying the Maxwell–Garnett theory. By contrast, the Kroenig–
Kramers integral method reconstructed a refractive index profile that is not comparable
with the result provided by the unwrapping methods (see the bottom left part of Figure 3
for details on this point).

Figure 2. An array of LiTaO3 spheres embedded in free space: (a) sketch of the considered geometry;
(b) unit cell containing a single LiTaO3 sphere (s, cell size; r0, sphere radius).



Sensors 2024, 24, 912 8 of 13

0 1 2 3 4 5

Frequency (THz)

-200

-150

-100

-50

0

50

100

150

200

P
h

a
s
e

 (
d

e
g

.)

Phase(S
11

)

Phase(S
21

)

0 1 2 3 4 5

Frequency (THz)

-3

-2

-1

0

1

2

3

n
e
ff

arg
π

MG

Alg1

Alg2

Alg3

KK(B)

2 2.2 2.4 2.6 2.8 3

Frequency (THz)

0

0.5

1

1.5

2

2.5

3

n
e
ff

arg
π

MG

Alg1

Alg2

Alg3

KK(B)

0 1 2 3 4 5

Frequency (THz)

0

1

q

Figure 3. Arrays of LiTaO3 spheres, d = 30 µm; top-left: phase of the S-parameters; top-right: plot
of ne f f ; bottom-left: magnification of ne f f over the (2, 3) THz band; bottom-right Riemann sheets’
q-values.

In the bottom-right part of Figure 3, the values assumed by the index q are reported as
a function of the frequency. From these data, we can see that the Riemann sheets involved
in the unwrapping process are S0(L) and S1(L). Table 1 reports the CPU time needed
for each method for the considered case. The results show no particular superiority in
terms of this parameter of one method over another. In Figure 4 are reported the results
for the case d = 70 µm. As this structure is thicker than the previous one, we expect the
term S21/1 − S11R to cross the branching line of the principal logarithm a more significant
number of times than in the previous case. This fact is confirmed by the behavior of the
phase of the S parameters, in this case sampled with ns = 1024 equispaced sampling
points in the band (0, 5) THz. In fact, we can observe that it varies more rapidly than
in the previous case. As a consequence, the term argπ(·) results to be more wrapped
with respect to the case of d = 30 µm (see the top-left part of Figure 4. The unwrapping
procedures provide results that agree with each other and with those provided for the
previously considered less-thick structure (in fact, the refractive index of an assigned media
is independent of its thickness). Also, in this case, the result provided by the K-K integral is
less accurate (characterized by an oscillatory behavior) than that of the phase-unwrapping
approaches provided, as clearly shown in Figure 4, in its bottom-left part, where the
magnification of all curves in the (2, 3) THz frequency range is reported. S0(L), S1(L),
and S2(L) are the Riemann sheets involved. The data reported in Table 2 show that the
performances of the CPU time are comparable among methods. Finally, we considered an
even thicker structure, with d = 130 µm. The number of sampling points used in this case
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was ns = 8046. The behavior of the argument of the S-parameters and of the argument of
the principal logarithm, argπ(·), resulted in a more wrapped result than in the previous
cases with d = 30 µm and d = 70 µm, as expected (see the top-left and the top-right parts
of Figure 5, respectively). For this latter case, the results given by the phase-unwrapping
procedures Alg1 and Alg2 are still in good agreement between them and close to the ne f f
calculated using the Maxwell–Garnett mixing formulas. Regarding the Alg3 procedure, it
can be noticed that the provided result is characterized by a discontinuity around f = 4.8
THz, a numerical error probably due to the fact that the KK integral is, for the considered
case, affected by a large ripple, as shown in the bottom right of Figure 5. Nevertheless,
the correction effect offered by the phase-unwrapping algorithm Alg3 on the poor result
obtained by calculating the Kramers–Kronig integral is remarkable, as shown in the bottom-
left part of Figure 5. S0(L), S1(L), S2(L), and S3(L) are the Riemann sheets involved in this
last case. In terms of CPU time, the Alg3 results are more beneficial compared to the other
methods. This result in terms of CPU time can certainly be attributed to the characteristics
of this particular method, described in Section 2.2, and is now evident because of the more
significant number of ns points used compared to previous cases (see Table 3).
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Figure 4. Arrays of LiTaO3 spheres, d = 70 µm; top-left: phase of the S-parameters; top-right: plot
of ne f f ; bottom-left: magnification of ne f f over the (2, 3) THz band; bottom-right Riemann sheets’
q-values.



Sensors 2024, 24, 912 10 of 13

0 1 2 3 4 5

Frequency (THz)

-200

-150

-100

-50

0

50

100

150

200

P
h

a
s
e

 (
d

e
g

.)

phase(S
11

)

phase(S
21

)

0 1 2 3 4 5

Frequency (THz)

-3

-2

-1

0

1

2

3

n
e
ff

arg
π

MG

Alg1

Alg2

Alg3

KK(B)

2 2.2 2.4 2.6 2.8 3

Frequency (THz)

0

0.5

1

1.5

2

2.5

3

n
e
ff

arg
π

MG

Alg1

Alg2

Alg3

KK(B)

0 1 2 3 4 5

Frequency (THz)

0

1

2

3

q

Figure 5. Arraysof LiTaO3 spheres, d = 130 µm; top-left: phase of the S-parameters; top-right: plot
of ne f f ; bottom-left: magnification of ne f f over the (2, 3) THz band; bottom-right Riemann sheets’ q
values.

Table 1. CPU time (s), d = 30 µm.

ns Alg1 Alg2 Alg3 K-K(B)

512 0.329 0.329 0.349 0.297

Table 2. CPU time (s), d = 70 µm.

ns Alg1 Alg2 Alg3 K-K(B)

1024 0.362 0.343 0.501 0.4981

Table 3. CPU time (s), d = 130 µm.

ns Alg1 Alg2 Alg3 K-K(B)

8192 0.446 0.2936 4.027 3.955

4. Conclusions

Based on previous works [22,23], in this paper, after clarifying the connection between
the phase unwrapping method and the analytic continuation theory, we have investigated
the performances of different phase-unwrapping procedures. To this aim, we have con-
ducted numerical experiments considering a µ-negative MM composite realized with a
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three-dimensional array of LiTaO3 spheres, an artificial composite, intensively considered
in the MM literature, for which effective parameters can be analytically checked using the
Maxwell–Garnett theory. Numerical results show that the methods based on the simple un-
wrapping of the phase of the principal logarithm are adequate for all the considered cases,
where the unwrapping method based on using the K-K integral can fail if the MM at hand
is quite thick. However, this last method has the characteristic of correcting the numerical
ne f f provided by the K-K integral relation (10), and this is a remarkable result. Regarding
CPU time, all unwrapping methods are competitive, although the Alg3 method seems more
advantageous for thicker structures. To conclude, we point out that the phase-unwrapping
methods, already introduced in the MM literature [19–21] but without any theoretical
justification, are well grounded in the analytic continuation theory and can be used without
them being considered simply empirical techniques for the MM characterization.

Author Contributions: Conceptualization, G.A. and M.V.; methodology, G.A.; software, G.A.; vali-
dation, S.C., M.V. and P.D.B.; formal analysis, G.A.; investigation, M.V.; resources, S.C.; data, P.D.B.;
writing—original draft preparation, G.A., M.V. and S.C.; writing—review and editing, S.C.; visualiza-
tion, S.C.; supervision, G.A. and M.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following symbols are used in this manuscript:

ϵe f f Effecive electric permittivity;
µe f f Effective magnetic permeability;
Ne f f Complex refractive index;
ne f f Effective refractive index;
k0 Free space wavenumber;
d MM thickness;
R Reflection coefficient;
z Effective impedance;
S11, S21 Scattering parameters;
LOG(·) Complex logarithm;
log(·) Principal logarithm function;
ln(·) Natural logarithm function;
| · | Absolute value function;
argπ(·) Principal argument function;
p Branch index;
e(·) Complex exponential function;
L(·) Right inverse function;
L Global analytic logarithm;
P Cauchy principal value;
C Complex plane;
Ċ Complex punctured plane;
S(L) Riemann surface of L.



Sensors 2024, 24, 912 12 of 13

Appendix A. Analytic Continuation, Phase Unwrapping, and Homomorphic Systems

In the homomorphic signal processing scope, Oppenheim and Schafer introduced
phase unwrapping to make the homomorphic filtering operation possible [35]. Homo-
morphic filtering is founded on the concept of generalized linear superposition, which is
defined as follows:

ϕS
(
c ⊙ ξi(τ)⊕ ξ j(τ)

)
= c ⊡ ϕS (ξi(τ))⊞ ϕS (ξ j(τ)) (A1)

where:
ϕS (·) = (ϕH′′ ◦ ϕH′)(·) (A2)

are proper input–output functions. The set [⊙,⊕] is made up of an input generalized sum,
which takes places between a pair of valid input elements ξi(τ), ξ j(τ), and by an input
generalized multiplication, which is made between a scalar c and an input element ξi(τ).
The second set, [⊡,⊞], in a symmetrical way, is composed of an output-generalized sum
and an output-generalized multiplication. They operate on scalars c and output function
elements ϕS(ξi(τ)), ϕS(ξ j(τ)). In the framework of the homomorphic filtering, the (A1)
specializes as follows:

e(ln((ξi(τ))
c ·ln(ξ j(τ)))) = (ξi(τ))

c · (ξ j(τ)) (A3)

where [⊕,⊙] = [⊡,⊞] = [·, (·)c] and ϕH′′ = e(·); ϕH′ = ln(·). In this case, the uniqueness
and the correctness of the input–output operations are guaranteed by the fact that ln(·)
is the inverse of e(·). To guarantee the same in the case where c ∈ C and ξi(τ), ξ j(τ) are
complex-valued functions, Oppenheim and Schafer developed a procedure to restore the
continuity of the argument of the principal logarithm log(·) = ln| · |+ i[argπ(·)], avoiding
the jumps caused by the crosses with the R− semi-axis, through the computation of the
integer parameters p needed to compensate these discontinuities [26,35]. Considering
the results provided by Theorem 1, we can understand that their procedure is exactly the
analytic continuation defined by this theorem, which guarantees the uniqueness of the
output operations of a multiplicative homomorphic system by ensuring that the function
ϕH′(·) avoids the jumps of [argπ(·)] caused by crosses with the log(·) branch-cut, which is
an admissible right-inverse function l(·) for the complex exponential function e(·).
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