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ABSTRACT

Nonlinear dynamic analyses are a state-of-the-art tool to assess the performance of earthquake-
resistant structures. Inevitably, the validity of the predicted seismic response depends on the fidelity
of the computational model to the actual structural behavior and the representativeness of the time
histories of ground acceleration as realizations of the seismic hazard for the site under consideration.
The generation of artificial time histories is generally allowed by international seismic codes and
represents a valid alternative to recorded accelerograms, provided that the key features in the expected
seismic input are preserved in the generated signals. Different stochastic generation methods of fully
non-stationary accelerograms have been proposed in the literature. Two alternative randomization
strategies are compared in this paper, based on i) wavelets analysis and ii) evolutionary power spectral
density (PSD) functions. The analyses are focused on the aleatory variability observed in the generated
elastic and inelastic response spectra in relation to different modelling choices, offering qualitative and

quantitative information to designers using stochastically generated accelerograms.

1. Introduction

The definition of the seismic action plays a fundamental role
in the analysis of earthquake-resistant structures, especially
if they are designed to exceed the linear-elastic range when
exposed to severe ground motions. Typically, earthquake
engineering codes provide the elastic and inelastic response
spectra to quantify the seismic action for various return peri-
ods, importance classes and soil conditions (e.g., [1]). While
the elastic spectra at the “damage limitation requirement”
(DLR) depend on the equivalent viscous damping ratio,
inelastic spectra at the “no-collapse requirement” (NCR)
are derived for a chosen value of the ductility demand (or,
alternatively, the “behavior” or “reduction” factor).
Response spectrum analyses are widely recognized as
the reference method for the seismic design of conventional
structures (e.g., [2]). However, time-history analyses are of-
ten preferable to better understand and quantify the nonlinear
behavior of structures under seismic events of increasing
intensity, especially in the case of non-conventional architec-
tural forms and lateral-resisting systems. When performing
nonlinear seismic analyses, the selection of a representative
set of accelerograms is a crucial issue as it is influenced
by multiple sources of uncertainties related to the definition
of the seismic hazard (e.g., [3]). Generally, the selection
is based on three different types of time histories, namely:
i) linearly scaled accelerograms recorded on sites with simi-
lar soil conditions; i) artificial or synthetic signals, “compat-
ible” with a target response spectrum, e.g., using a “uniform
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hazard spectrum”; iii) artificial accelerograms generated
from a “parent signal” that is deemed to be representative
of the seismic hazard at the site of interest.

The increasing availability of strong-motion records
makes linearly scaled records an attractive option for defin-
ing the seismic excitation in several design situations. Differ-
ent procedures for selecting proper sets of recorded accelero-
grams are available in the literature (e.g., [4]). However,
there are cases in which it is not possible to obtain the
minimum number of accelerograms required by the seismic
codes without applying large scale factors to each record,
which in turn may distort the salient characteristics of the
recorded accelerogram. It has been shown (e.g., [5-10])
that the bias introduced by the scaling depends on the
type of structure and type of seismic performance under
investigation.

The use of spectrum-compatible artificial accelerograms
instead of linearly scaled recorded ground motions is par-
ticularly appealing in many regions of the world where
recorded accelerograms are scarce [11]. Starting from the
pioneering work by Vanmarcke and Gasparini [12], sev-
eral methods have been proposed to generate stationary,
spectrum-compatible Gaussian processes [13-21]. How-
ever, artificial accelerograms generated through stationary
models tend to have a disproportionate number of cycles
and, therefore, their energy content tends to be excessively
high [6].

Moreover, recorded accelerograms could be better rep-
resented mathematically as samples of fully non-stationary
stochastic processes, with variations in both time and fre-
quency domains. In this context, temporal non-stationarity
refers to the variation in the rate of change of the intensity
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Stochastic generation of fully non-stationary accelerograms

of the ground motion over time; in contrast, spectral non-
stationarity refers to the variation of the frequency content
over time (e.g., [22-24]). Both variations are important
and can dramatically affect the seismic response, especially
when dealing with nonlinear structures. Several studies, in-
cluding those reported in references [25-32], have addressed
various theoretical and practical challenges associated with
the joint time-frequency non-stationarity in recorded and
stochastically generated accelerograms. These include the
phenomenon of “moving resonance”, the validity of pseudo-
acceleration spectral ordinates as intensity measure of seis-
mic ground motions compared to earthquake moment mag-
nitude M, and the distance R;z from the seismic source
to system site, the usefulness of fragilities based on ground
accelerations scaled to have the same intensity measure,
the sensitivities of seismic risk to different ground motion
models. Furthermore, the availability of a detailed proba-
bilistic model for the ground motion acceleration enables
the application of random vibration methods to quantify
the seismic response of amplitude- and frequency-dependent
dynamic systems (e.g., [33-36]).

The simplest way to achieve temporal non-stationarity
of spectrum-compatible accelerograms is by multiplying
stationary samples by a conveniently selected modulating
function. Less straightforward is the mathematical character-
ization of the artificial accelerograms as fully non-stationary
random processes. Various methods have been proposed
that modify recorded accelerograms so that the resulting
response spectrum is somehow “compatible” with a target
one. These methods are mainly based on the evaluation of a
target evolutionary power spectral density (EPSD) function
by means of recorded accelerograms (e.g., [37-40]) or by the
decomposition of a recorded accelerogram into a number of
wavelets (e.g., [41-43]).

A further class of stochastic approaches has been pro-
posed by Spanos and associates (e.g., [44—46]), which does
not require recorded accelerograms to define the temporal
and spectral variation of the artificial accelerograms. Addi-
tionally, generalized harmonic wavelets have been utilized in
an iterative procedure to improve the agreement of the mean
response spectrum with the target one [47].

Many studies (e.g., [48—52]) have shown the importance
of accurately modeling the non-stationary characteristics
of ground motions to reliably assess the seismic response
of nonlinear structures. In fact, an inaccurate estimate of
the spectral contents may lead to severely underestimating
or overestimating the expected level of dynamic response
amplitudes. Comparatively, less attention has been paid to
the effects that the generation of artificial accelerograms
has on the variability of linear and nonlinear seismic re-
sponses. In fact, when artificial accelerograms are gener-
ated, two competing objectives should ideally be pursued:
first, a target measure of the seismic action needs to be
achieved “on average” (e.g., +10% difference between the
mean response spectrum and the target response spectrum);
second, “just enough” sample-to-sample variability should

be achieved, so that the generated suit of accelerograms
covers the aleatory uncertainty of actual seismic events.

Motivated by the above considerations, this paper in-
vestigates the aleatory variability of linear and nonlinear
seismic responses for two alternative strategies of stochas-
tic simulation of artificial accelerograms. In both cases,
a recorded accelerogram is assumed as a “parent signal”,
i.e., a random realization of a zero-mean Gaussian process,
representative of the seismic action, from which a set of
“child signals” can be generated.

In the first approach, the circular wavelet transform
(CWT) is used to decompose the recorded accelerogram
into the superposition of complex-valued harmonic wavelets
with complex-valued combination coefficients, which are
then randomized through a generalization of the well-known
Shinozuka’s formula [53-55]. In this case, different mod-
elling choices operated in the frequency domain simulta-
neously affect the time-domain features of the generated
accelerograms, and vice versa. Notwithstanding this, the
wavelets’ time- and frequency-localization capabilities can
be used to efficiently manipulate a discrete signal. As an
example, Cecini and Palmeri [42, 56] have used the CWT
approach and the concept of the “time of maximum” (ToM)
spectrum to devise a systematic procedure to match a target
earthquake spectrum through iterative corrections that target
specific frequency bands and time intervals.

In the second approach, the EPSD function is evaluated
using the procedure recently proposed by Muscolino et
al. [57], in which the time and frequency characteristics of
the ground shaking model are calibrated separately. Further-
more, the present paper introduces a new, iterative stage to
match the ordinates of a given earthquake spectrum.

Both methods treat parent and child signals as samples of
arandom process solely defined by the chosen parent signal;
however, the two methods result in alternative definitions of
the random process, and different choices in applying each
technique tend to produce different results.

While the practical consequences of different mod-
elling options are illustrated with a recorded accelerogram
caused by a tectonic earthquake, the different methods of
stochastic generations lend themselves to applications in
other engineering fields where: i) the relevant time se-
ries are affected by compounded time and frequency non-
stationarities; and ii) only a relatively small number of
representative samples is available, e.g., non-synoptic winds
gusts [58, 59], fracking-induced earthquakes [60], turbulent
liquid flows [61, 62], heights of ocean waves [63], stress
cycles in random fatigue processes [64, 65], etcetera.

Elastic and constant-ductility inelastic response spectra
are used to illustrate the variations and offer practical guid-
ance to designers.

The key underpinning concepts and computational stages
of the two stochastic generation methods are summarized
in Sections 2 and 3), so to make the present paper self-
contained. Furthermore, the practical applications of these
methods is facilitated and improved by a new set of wavelet-
based generation formulae (see Egs. (4) to (6)), a more
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straightforward calibration of the slowly varying amplitude
in the EPSD-based method (see Appendix 5), and an addi-
tional spectrum-compatibilization procedure for the EPSD-
based approach (see Subsection 3.2).

It is also worth emphasizing here that this paper’s goal is
not to compare the variability in terms of elastic and inelastic
spectral ordinates coming from natural accelerograms with
that achieved with artificial ones (e.g., [66]). Instead, the
focus is on the inherent effects of two stochastic generation
strategies that are somehow representative of two different
and complementary approaches.

2. Wavelet-based generation of artificial
accelerograms

The wavelet analysis consists of the mathematical repre-
sentation of a given signal in terms of “wavelets”, i.e.,
families of wave-like oscillating functions obtained by scal-
ing and shifting a chosen function called “mother wavelet”
(e.g., [67]). The “harmonic” and “musical” wavelets pro-
posed by Newland [68—71] are particularly convenient for
structural dynamics applications as their Fourier transform
results in box-shaped functions. This property allows oper-
ating on a given frequency band of a signal without affecting
other frequencies and makes wavelets particularly appealing
in the seismic analysis of linear and nonlinear structures, e.g,
in the case of base-isolated systems such as buildings, [72,
73], rigid blocks, [73], water storage thanks [74], and nuclear
reactor containment structures [75].

Let f(¢) be a non-periodic signal describing the ground
acceleration over the finite time interval [0, 74]; and let A7 =
tq/ (2N) be the sampling time, such that the seismic signal is
known at 2N + 1 discrete time instants t, = £ At, with £ =
1,2,---,2N; furthermore, wy = 27 N /1, is the Nyquist’s
frequency and Aw = 2z /t, is the discretisation step in the
frequency domain.

A “circular” version of Newland’s musical wavelets can
be used [70] for the analysis of the parent signal f(7).
Circular wavelets are “wrapped” around the time interval
of interest (without loss of generality, a unitary duration is
assumed in Newland’s original formulation). The seismic
record f(t,) can then be expressed as the superposition of
the complex-valued circular wavelets ¥; , , and associated
combination coefficients d; ;:

M bj-1

f)=2Re| Y D a ¥l (1

j=1 k=0

in which the function Re[-] returns the real value of the
quantity within square brackets; M is the number of bands in
which the frequency domain has been partitioned; b; is the
number of wavelets in the jth frequency band (correspond-
ing to the number of discrete frequencies in the jth frequency
band).

The generic wavelet appearing in the right-hand side of
Eq. (1) can be expressed as:

ni—1

Ve = bl Z exp [ln(2s+ 1) (% - b£>] .2

J s=m; J

It can be shown that ¥; , , occupies the frequency band
[27m; /14, 27 n;/14], with O < m; < n; < 14/ (2 A1), and
is centered at time 7;, = kit4/b;, with b; = n; — m;.
Furthermore, 1 = \/—_1 is the imaginary unit and k =
0, -~~,bj — 1 is a time index.

The combination coefficients a;  are calculated through
a discrete convolution (e.g., [42]):

p. 2N
b= 50 2O s 3)
=0

where the superscripted asterisk means complex conjugate.
The randomization of the seismic signal f(f,) can be
pursued through a generalization of the well-known Shi-
nozuka’s formula [54-56, 76]. Accordingly, the rth child
sample of the ground acceleration can be generated as:

M | bj—l
7(r) - —
U =225 X,
j=1"J k=0

I’lj—

]

—_

4 k A
2 cos [ﬂ(2s+1) <E_b_> +9j’k+¢5.f,)<] ,
s=m; J

“

where qﬁﬂ is the rth realization of a random variable

uniformly distributed over the interval [0, 2z[ and ik =
arg {& j,k} is the corresponding deterministic phase of the
complex-valued coefficient of the parent signal.

Eq. 4 particularizes into the classical Shinozuka’s for-
mula for M = N, which implies by = b, = ... by =1 (i.e.,
each frequency band consists of a single discrete frequency),
m; = j— 1, n; =j and k = 0 (i.e., there is no time
localisation, as there is only one wavelet in each frequency

band). Accordingly, one obtains:

U a,) =

N
_ . : 4 A )
=2 2‘1 ’aj’0| Ccos |:7'L'(2j - l) (m) +0j,0 +¢j,0
j:

v

A; cos (a);‘ t, + CD;.r)) ,

~
I

&)

where 4; = 2a;o| @} = (= 0.5) Ao and B = 8,5 +
(,b% are the amplitude, circular frequency and random phase
for the jth harmonic function, respectively.

The opposite choice in terms of possible trade-off be-

tween the fidelity of the non-stationary characteristics of
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the parent signal in the time and frequency domains would
result in the use of a single frequency band. In this case, the
particularization of Eq. (4) for M = 1 leads to:

5 NZINZI
U a,) = ~ > D lan
k=0 j=0
, £ k\ . 4 "
X COS [H(ZJ +1) <ﬁ - F) + 61k +¢1,k] :

(6)

It is worth emphasizing here that the Shinozuka’s for-
mula of Eq. (5) delivers samples of a stationary colored
process, whose time-independent PSD function is entirely
defined by the amplitude coefficients A;; that is, the fre-
quency content is fully preserved in the child samples but
their amplitude is constant over time. On the contrary, it can
be shown that the formula of Eq. (6) generates samples of
an amplitude-modulated white noise, with cut-off frequency
@y ; that is, the time variation of the amplitude of the signal
is preserved in the child signal, but no information is retained
in the frequency domain (apart from the average intensity of
the parent signal).

The generation formula of Eq. 4 is more general because
it enables the user to retain partial information on the time
and frequency domains. The implications of different par-
titioning of the frequency domain, i.e. different choices of
the frequency bands bj, with j = 1,...,M < N, will be
explored in the numerical applications. It is important to note
here that, because of the so-called Heisenberg’s uncertainty
principle (e.g., [67]), the more the time domain detail is
enhanced in the wavelet representation of a discrete signal,
the more the frequency one becomes poor, rising the need to
find a compromise.

3. Generation via spectrum-compatible
evolutionary PSD function

An alternative method for generating random samples of
spectrum-compatible fully non-stationary zero-mean Gaus-
sian processes has been recently proposed by Muscolino et
al. [57] and is based on the use of a conveniently defined
EPSD (evolutionary power spectral density) function. The
main steps of this technique are summarized in the following
subsections.

3.1. Evolutionary model of artificial
accelerograms
Similar to the wavelet-based technique discussed in the
previous section, Muscolino et al. [57] assume that a given
recorded accelerogram is one of the infinite realizations of a
fully non-stationary model of earthquake ground motion.
Mathematically, the latter is defined as the sum of zero-
mean Gaussian uniformly modulated random processes.
Each of these processes consists of the product of a non-
negative deterministic modulating function, A(¢) > 0, and a
stationary zero-mean Gaussian filtered sub-process, X (f).

The function A(#) has the units of an acceleration, e.g.,
[m/ 52] while the sub-process X (¢) is dimensionless.

The sought fully non-stationary stochastic process, U,()
is then obtained by dividing the time interval [O, td] into M
contiguous sub-intervals of amplitude AT}, = s, —s;_;, with
k=1,2,.--, M, requiring that in each time interval the sub-
process X (f) possesses a uni-modal PSD function; ! that is:

M
Uy(t) = AWM Y, X, () Wi(0), (7)
k=1

where W (t) is a deterministic window function, defined as:

l,ifsk_1§I<Sk;
W, (t) = 8
K {O, otherwise . ®)

The resulting EPSD function of the piece-wise uniformly
modulated random process is:

M

Gy (@,1) = A2(1) ), Wi(t) G(w), ©)
k=1

where the kth sub-process X (¢) in the time interval [s;_;, s; |
is characterized by the following one-sided PSD func-
tion [57]:

w? “’ik (CP)
Gy (w) = e -, G, (o), (10)

Hk Lk

in which wy ; and wy, are the kth frequency control of the
second-order low-pass and first-order high-pass Butterworth
filters, respectively.

Furthermore, G;{CP) (w) is the uni-modal one-sided PSD
function of the stationary random process introduced by
Conte and Peng [77], which can be viewed as the linear
combination of the displacement and velocity responses of
a second-order SDoF (single degree of freedom) oscillator
subjected to two statistically independent Gaussian white
noise processes:

1 _+ 1
i+ (0+Q)" pr+ (0-Q)

G\ () = 5. (1D

where the parameters p, and Q; are measures of the fre-
quency bandwidth and “predominant” circular frequency of
the kth stationary sub-process, respectively.

It can be shown that the peak of the PSD function
G?{CP) (w) occurs at:

! The symbol M used in the wavelet-based generation (see Egs. (1) and
(4)) has a different meaning with respect to the one in the evolutionary PSD
function (see Eq. (9)). In the first case, M is the number of frequency bands;
in the second case, M is the number of uniformly modulated sub-processes.
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(12)

with Q, > Q, .

Furthermore, the coefficient g, introduced in Eq. (10)
ensures that the stationary sub-process X (¢) possesses unit
variance, i.e.:

+0oo
E(X; () =0, = / G (@ do=1,  (13)
0
and can be calculated as:

_ M (wilk + a)ik) ék Bk

B = e —— (14)
T (,Uik (ck+dk+ek)
in which:
~ 2 2\4 4 202 4\ 4 8 .
a, = (p; +Q7) +2(p} — 60, Q +Q;) o], +o;, 5 (152)

by = Pi + Zpi (lec - “’%Ik) + (Qi + w%k)z ; (15b)

Go=-2a pom oy R+ -wy): (150

dy = { (7 + 912()2 () — 60790 + Q) + ;)
— opy (7 =) [(pi +Q§)2+wik]} (15d)
x 201 (o + o)) ;
e = \/EB/( P
x {wik (0f = @fy) (@f, + oy =20, 4 —3)

+ (o +of,) [of +90+390 0} (5] +5)

+ol (7 -393)] }.
(15¢e)

It is worth mentioning here that in Egs. (7) and (9), the
deterministic function A(z) is implicitely assumed to “slowly
varying” compared with the stationary sub-processes X (¢)
(see, e.g., [78]); that is, the Fourier transform of the ampli-
tude A(?) is expected to have energy content concentrated
at frequencies that are much less than the predominant
frequencies Q, of the sub-processes X ().

A satisfactory resemblance between the rth sample of
the fully non-stationary stochastic process, U g(r)(tf) and the
recorded “parent signal”, f(t,), can be achieved by sepa-
rately fine-tuning the modulating function and the frequency
content of the process Ug(t). This is a crucial difference
with respect to the wavelet-based procedure summarized
in the previous section, where an intervention in the time
domain also affects the frequency domain, and vice versa.
Appendixes A and B detail the procedures that can be used
to calibrate the parameters of the sub-processes X (f) (Ap-
pendix A) and the modulating function A(¢) (Appendix B).

3.2. Generation of spectrum-compatible
accelerograms

Once all the parameters characterizing the fully non-stationary

zero-mean Gaussian process, Ug(t), defined in Eq. (7), are

estimated (see Appendixes A and B), the rth sample can be

generated as:

Ug(’)(t) = A(NV2Aw

M N
x Y W) Y, /Gy (j Ao cos (j Awt + 95”) ,
k=1 i=1
(16)

in which, similarly to the previous section, Aw = 27z /t4 is
the discretisation step in the frequency domain and wpy =
/At is the upper cut-off circular frequency, equal to the
Nyquist’s frequency. > Furthermore, N is the number of the
harmonic terms in the right-hand side of Eq. (16), given by
N = oy/Aw = t3/(2 At), and the random phase angles,
49(.”, are statistically independent and uniformly distributed
over the interval [0, 2x[.

The procedure summarized in the previous subsections
returns samples of a fully non-stationary random process,
U, g(r)(t), such that, in statistical sense, their cumulative inten-

sity function Il(.g(t) (related to the evolutionary amplitude

of the process) and zero-level up-crossing rate dZ;;(r)(t) /dt

(related to the evolutionary frequency content of the process)
closely match those of the parent signal, f(¢). In this respect,
the parent signal can be viewed as a “credible’” sample of the
random process U, (1).

However, the functions I, Ug(t) and dZ;; (t)/dt are not

always sufficient to satisfactorily characterize the dynamic
action for engineering applications. Instead, given the ac-
celerogram f(¢), its elastic response spectrum in terms of
displacements S((jf )(Tj,CO) (or, equivalently, in terms of

pseudo-accelerations S (T}, o) = (27 /Tj)2 ST 600
is commonly utilized to characterize the seismic input for
analysis and design purposes.

Mathematically, the response spectrum is defined as the
maximum absolute response of an SDoF quiescent oscillator
with equivalent damping ratio ¢, (typically, {; = 0.05)
and undamped natural circular frequency w; (or undamped
natural period T; = 27 /w;); that is:

SO o =max {lo,0|. 0<r<n ). (7a)

where Q;(#) is the solution of the following second-order
differential equation:

0,0 +280; 0,0+’ Q) =~f(1).  (I7b)

In the case of the random process Ug(t), if R samples
are randomly simulated via Eq. (16), the mean generated

2 As for the wavelet-based approach described in Section 2, the total
number of discrete points in the time domain is 2N +1, such that the signal’s
duration is #; = 2N At and the Nyquist’s frequency is oy = N Aw.
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spectrum can be defined as:

R
—(R) 1
Sy (T =5 X 8T 4.

r=1

(18a)

where the superscript (R) reminds that the mean spectrum
is calculated over R samples. The rth spectrum in the right-
hand side of Eq. (18a) is given by:

S§’>(Tj,§0)=max{|Q§’)(t)|, OStStd}, (18b)

in which QE’)(I) is the dynamic response to the rth sample of

the random process Ug(t):

0P +28 0,070 +w] Q1) = ~UP®). (180)

In general, a gap exists between the elastic response
spectrum of the parent signal, S((lf ) (Tj, &o) (see Eq. (17a)),

—(R
and the mean generated spectrum, .S s )(T», o) (see Eq. (18a));
that is:
=R
ST ) =Sy (T L) =€ (19)
The discrepancy function appearing in the right-hand
side of Eq. (19) can be reduced through an iterative proce-
dure that modifies the frequency content of the stationary
sub-processes X (?) (e.g., [12]). Specifically, at the nth iter-
ation, the kth PSD function becomes:

chn) (wj) =g (“’;) Gg’_l) (“’) ’

; (20a)

where the non-dimensional function g (w j) is a corrective
term given by:

& (@) =" (0) | g |

S (TG

(20b)

. .. oRn) . .
in which S pa (T}, {o) is the mean generated spectrum in
terms of pseudo-accelerations as evaluated at the nth itera-
tion. The iterative procedure begins with:

g9 (w;) =1, Q1a)
0) _
G, (o)) = Gy (@;) . (21b)
and
<(RO) _ a=®
Spa (T“VCO)_CUJ Sd (T‘J,Co) (210)

The method then proceeds with as many iterations as
required to achieved the sought condition of spectrum com-
patibility. Very few iterations are usually needed to reduce
the discrepancy function to an acceptable level for the fre-
quencies (or periods) of interests, i.e.:

—(R.n)

(Rm) _ S((lf)(Tj,gO) =S, (T;,%)

J

€
(22)

< tolerance ;

usually, no more than four iterations are required.
At the nth iteration, the samples of the non-stationary
process are evaluated as:

M
Ui = AnV280 2 W, (1)
k=l 23)

N
= . ®
x Y 4/G! UAw)cos<JAwt+9j )
=

Once the iterative procedure is terminated, the samples
U é”’)(t) are baseline corrected (e.g., [79-82]). Specifically, a
best-fit polynomial curve of order > 2 is determined for each
child sample through a least-squares regression analysis and
is then subtracted from the acceleration time history, so that:
i) the end ground velocity is zero, i.e., Uér’")(td) = 0; and
ii) any physically inconsistent “trends” in the slowly varying
moving-average of the ground displacement time history is
removed.

In general, the fully non-stationary process so obtained
after n iterations does not simultaneously satisfy the com-
patibility in terms of cumulative intensity function I/(7),
zero-level up-crossing rate dZ}'(t) /dt and elastic response

spectrum S((jf )(Tj, $o); however, it delivers a satisfactory
compromise for engineering applications.

In fact, the spectrum-compatibilization procedure has
been summarized in this subsection to demonstrate the po-
tential of the EPSD-based method to generate child samples
that match a target spectrum while simultaneously preserv-
ing some of the joint time-frequency characteristics of a
recorded accelerogram. As the present study focuses on
comparing two different stochastic generation techniques,
entering the details of which spectra should the child signals
be compatibilized to is behind the scope of the paper. How-
ever, potential applications include cases of forensic earth-
quake engineering [83, 84], the seismic performance assess-
ment of structures under a maximum credible event [85],
the generation of artificial accelerograms compatible with
conditional earthquake spectra [86-92], etcetera.

4. Results and discussion

This section compares the performance of the two generation
methods presented in the previous two sections.

Results are presented and discussed first for the EPSD-
based stochastic generation method (Section 3), as this ap-
proach has two main parameters that independently control
the smoothness of the amplitude function of the ground ac-
celeration, A(f) (via the moving-average window width Et),
and the number M of uniformly modulated sub-processes
X, (t). Thus, a great degree of versatility is evidenced.

By contrast, the results of the wavelet-based method
depend on a single choice, i.e., the subdivision of the fre-
quency domain in a number M of frequency bands. For the
sake of simplicity, the formulation presented in Section 2
entails frequency bands with an equal number of discrete
frequencies b;.
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Figure 1: Case-study accelerogram (i.e., the “parent signal”):
1983 Trinidad offshore earthquake

Table 1
Main time and frequency properties of the case-study accelero-
gram

14 At N Wy Aw
[s] [s] [rad/s] [rad/s]
21.44 0.005 2144 628.32 0.29

In addition to the cumulative intensity, zero-level up-
crossing rate and elastic response spectra, the last part of this
section compares the generated samples in terms of inelastic
response spectra, so to quantify the effects of different meth-
ods and different generation parameters on the nonlinear
seismic response of structures.

4.1. Case-study accelerogram

For both generation methods, the “parent signal” has been
chosen as the first horizontal component (azimuth angle= 0°)
of the ground acceleration recorded at the “Rio Dell Over-
pass, E Ground” station during the 1983 Trinidad offshore
earthquake. The selected signal, depicted in Figure 1, has
been downloaded from the PEER database [93] and is
characterized by moment magnitude M,, = 5.7 and a
Joyner-Boore site-to-source distance Rjg = 68.02km. The
main time and frequency properties of the signal are shown
in Table 1.

4.2. Evolutionary PSD method

As described in Section 3, this method of stochastic gener-
ation defines the fully non-stationary process Ug(t) as the
sum of M time-windowed uniformly modulated Gaussian
processes, each one given by a deterministic modulating
function, A(f), multiplied by a stationary zero-mean sub-
process, X (?).

4.2.1. Modulating function A(t)

The time variation of the amplitude of the generated samples

is obtained through an appropriate estimation of the modu-

lating function A(¢), which in turn depends on the cumulative

intensity I ;(¢) of the parent signal (see Egs. (B.3) to (B.5)).
Different modulating functions can be obtained by vary-

ing the moving time window At = 2p At in Eq. (B.5). In

1.6 Al
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Figure 2: Absolute value of the parent accelerogram (grey line)
compared with: (a) modulating functions A(t) obtained for five
different time windows Ar; (b) cumulative intensity I(t) of
the recorded accelerogram (i.e., the “parent”, red line) and
cumulative intensities for the five time windows I ,(7)

the chosen case-study application, five different values of At
have been assumed, varying between 0.25 and 4.00 s and
corresponding to a number of 2 p time intervals between 50
and 800. The resulting modulating functions are shown in
Figure 2(a) together with the absolute value of the parent
signal (grey line).

In Figure 2(b), the cumulative intensity of the parent sig-
nal, I 4() (see Eq. (B.1)), is compared against the cumulative
intensity of the modulating function, i.e., the integral of the
squared modulating function, 1 4(¢), so defined:

t
I1,(t) = / A%(7)dr, (24)
0

The smaller the value of the moving time window Z\t,
the closer the match between 1(r) and 1,(?), as the two

curves tend to coincide for A7 — 0. Noticeably, while
differences between I f(t) and I ,(¢) are clearly discernible

for At > 2.00s, the final values always coincide, i.e., I I (ty)=

1 ,4(ty) irrespectively of the value of Al meaning that the
total energy of the parent signal is preserved regardless of
the smoothing applied to its intensity function.

For the sake of clarity, Figure 3 further illustrates the
effects of choosing a relatively small moving time window
(i.e., At =025 s) and arelatively large one (i.e., At = 4.00 s)
by plotting against each other i) the absolute values of the
parent accelerogram |f(¢)| (light gray solid lines), ii) its
cumulative intensity, I f(t) (red lines), iii) the modulating

F Genovese et al.: Preprint submitted to Elsevier
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Figure 3: Modulating function A(7), cumulative intensity of the
parent signal I,(f) and cumulative intensity of the modulating
function I,(1) for the time windows (a) A7 = 0.25s and
(b) A = 4.00s — The absolute value of the parent signal,
|£(®)], is plotted with a light-gray solid line

Elinctions A(?) (solid lines, black for At = 0.25s and pink for
At = 4.005s), and iv) the corresponding cumulative intensi-
ties, I 4(¢) (dashed lines, again black and pink depending on
the value of the moving time window AAt). It can be observed
that:

e For A7 = 0.25s, ie. p = 25 (Figure 3(a)), 1,()
closely matches 1 ! (t) as the two lines are almost indis-
tinguishable; the downside is that the associated mod-
ulating function A(#) of the random process Ug(t) is
not smooth, showing several “high-frequency” fluctu-
ations. This is undesirable, as a clear separation should
occur between the frequency contents of the random
process Ug(t) and its “slowly varying” modulating
function A(¢), as this is the assumption underpinning
the definition of the piecewise uniformly modulated
random process Ug(t) via Egs. (7) and (9).

e On the contrary, for At = 4.00 s, i.e., p = 400
(Figure 3(b))), the modulating function A(f) appears

smooth and does not show any apparent high-frequency

fluctuations; on the adverse side, however, the sharp
peak at about + = 8.50s has disappeared from the
modulating function, meaning that no significant con-
centration of energy occurs around that time instant;
rather, the energy is spread almost uniformly between
4.50 and 12.50 s, meaning that highly nonlinear
structures, e.g. rocking or sliding systems, might
experience completely different dynamic responses
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Figure 4: One-sided PSD functions of the case-study accelero-
grams for (a) only one time interval and (b) M = 42 time
intervals

when exposed to the parent signal f(¢) or any of the
child signals Ué,r)(t).

4.2.2. Spectral parameters of the sub-processes X, (t)
According to Muscolino et al. [57], the evolutionary fre-
quency content of the model detailed in Section 3 (see
Egs. (10) and (11)) can be calibrated by using readily avail-
able data such as the number of peaks, Pfk, and zero-
level up-crossings, Z; , in the kth time interval AT, (see
Egs. (A.1) and (A.2)).

The larger the number M of the time intervals AT}, the
closer the resulting random process Ug(t) will closely match,
on average, the salient frequency characteristics of the parent
signal f(¢).

To illustrate this point and, more generally, to investi-
gate the effects of subdividing the duration of the parent
accelerogram into different numbers of time intervals, two
extreme conditions have been considered for the case-study
accelerogram, namely:

e M = 1, ie., a single sub-process X|(¢) is used for
the whole duration of the signal (AT = t;), meaning
that the whole random process Ug(t) is uniformly
modulated; and

e M = 42, corresponding to time intervals with equal
duration AT, = 0.5s for k < M — 1 and AT, =
tq— (M —1) AT, = 0.94 s, which allow tracking very
closely the evolutionary energy content of the parent
signal.
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Figure 5: Joint time-frequency representation of the evolutionary PSD functions obtaineg\varying the time window;:t for the
modulating function A(#) and the subdivision of the parent signal in M time intervals: (a) Ar =4.00s and M = 1; (b) At =4.00s
and M =42; (c) Ar=0.25sand M =1; (d) Ar=0.25sand M =42

Table 2

Model parameters of the one-sided PSD function G, (w) for M =1 and AT, =14, =21.44s

k Z;k Py AT, Q P Dpy, @y B
[s] [rad/s] [rad/s] [rad/s] [rad/s]

1 101 173 21.44 29.6 14.6 2.9 41.3 8.2

The parameters required for the characterization of the
one-sided PSD functions G, (w) are reported in Table 2 and
3for M =1 and M = 42, respectively. The resulting plots
are shown in Figures 4(a) and (b), respectively.

4.2.3. Fully non-stationary samples

In the previous subsections, the role played by moving
time window A7 and number of time subdivision intervals
M in the mathematical definition of the EPSD function
for the case-study accelerogram has been discussed. In the
following, the compound effects arising from a combination
of different choices for these two modeling parameters are
investigated. Specifically, four cases have been analyzed,
corresponding to the combination of extreme cases, as de-
tailed below:

a) Modulating function A(#) with moving time window
At = 4.00s and only one sub-process X (¢),i.e., M =1
and AT} = 21.44s;

b) same modulating function as in the previous case, i.e.,
At = 4.00 s, and forty-two sub-process X, (1), i.e., M =
42, AT, = AT, = --- AT,; = 0.50s and ATy, = 0.94s
(see Table 3);

¢) modulating function with At =025sand M = 1;
d) modulating function with At =025sand M = 42.

Figure 5 allows a visual comparison of the EPSD func-
tions returned by the application of Eq. (9) for the four
cases listed above. In particular, Figures 5(a) and (c) show
that, for M = 1, each cross-section of the EPSD function
Gy, (@, 1) taken orthogonality to the time axis 7 is “self
similar” to the PSD function depicted in Figure 4(a), with
all the ordinates proportionally scaled by the deterministic
function A(#), which in turn depends on the width of the
time smoothing window At. Accordingly, at any time instant
1 € [0,14], the energy content is maximum around the same

frequency 51 = 29.4 rad/s. Conversely, the EPSD functions
in Figures 5(b) and (d), obtained for M = 42, show that the
frequency ﬁk changes significantly over time.

Once all the parameters characterizing the fully non-
stationary Gaussian process Ug(t) are estimated, Eq. (16)
can be used to generate the required samples. Importantly,
that the rth realization of the jth random phase angle 0;.')
appearing in Eq. (16) is the same for all time intervals
AT, that is, there are no sudden jumps in the phase of the
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Table 3
Model parameters of the one-sided PSD function G, (w) for M =42
k Z}rk Py AT, Q Pi WOy W By
[s] [rad/s] [rad/s] [rad/s] [rad/s]
1 4 8 0.50 50.3 26.9 5.0 71.8 15.2
2 3 7 0.50 37.7 215 3.8 54.9 12.2
3 3 5 0.50 37.7 18.3 3.8 52.3 10.3
4 3 7 0.50 37.7 215 3.8 54.9 12.2
5 2 6 0.50 25.1 15.6 25 37.6 8.8
6 3 6 0.50 37.7 20.2 3.8 53.8 11.4
7 2 7 0.50 25.1 16.1 2.5 38.1 9.2
8 4 7 0.50 50.3 25.1 5.0 70.4 141
9 2 4 0.50 25.1 135 25 35.9 7.6
10 4 8 0.50 50.3 26.9 5.0 71.8 15.2
11 6 6 0.50 75.4 215 7.5 92.6 12.0
12 4 8 0.50 50.3 26.9 5.0 71.8 15.2
13 1 6 0.50 12.6 8.8 1.3 19.6 5.1
14 1 8 0.50 12.6 9.1 1.3 19.8 5.2
15 1 4 0.50 12.6 8.3 1.3 19.2 4.7
16 3 4 0.50 37.7 155 3.8 50.1 8.6
17 1 4 0.50 12.6 8.3 1.3 19.2 4.7
18 3 6 0.50 37.7 20.2 3.8 53.8 11.4
19 4 6 0.50 50.3 22.7 5.0 68.4 12.7
20 4 5 0.50 50.3 19.4 5.0 65.8 10.8
21 2 5 0.50 25.1 14.7 2.5 36.9 8.3
22 3 5 0.50 37.7 18.3 3.8 52.3 10.3
23 3 5 0.50 377 18.3 3.8 52.3 10.3
24 4 7 0.50 50.3 25.1 5.0 70.4 141
25 2 3 0.50 25.1 11.4 25 34.2 6.4
26 1 5 0.50 12.6 8.6 13 19.5 4.9
27 2 4 0.50 25.1 13.5 2.5 35.9 7.6
28 1 3 0.50 12.6 7.8 1.3 18.8 4.4
29 2 6 0.50 25.1 15.6 25 37.6 8.8
30 2 5 0.50 25.1 14.7 2.5 36.9 8.3
31 1 5 0.50 12.6 8.6 1.3 19.5 4.9
32 1 6 0.50 12.6 8.8 13 19.6 5.1
33 2 5 0.50 25.1 14.7 2.5 36.9 8.3
34 2 3 0.50 25.1 11.4 25 34.2 6.4
35 2 5 0.50 25.1 14.7 25 36.9 8.3
36 2 4 0.50 25.1 135 2.5 35.9 7.6
37 2 4 0.50 25.1 135 25 35.9 7.6
38 1 7 0.50 12.6 9.0 1.3 19.7 51
39 2 7 0.50 25.1 16.1 2.5 38.1 9.2
40 1 4 0.50 12.6 8.3 1.3 19.2 4.7
41 2 5 0.50 25.1 14.7 25 36.9 8.3
42 3 4 0.94 20.1 8.2 2.0 26.6 4.6
harmonic contributions to the generic sample Ug(r)(t) atthe  thatis:

interface between two consecutive time intervals AT) and
ATyyr-

Using this approach, a set of R = 100 samples has been
generated for each of the four modelling cases. Figure 6
compares the cumulative intensity function I,(7) of the
parent signal (red line) against those of the child signals.
Specifically, the black dashed lines are the mean value of

the functions Ig;(t) obtained for the R generated samples;

_ R Rt 2
T =5 X100 =2 /O 00@)] de. @5)
r=1 r=1

Furthermore, the black solid lines define the empirical confi-
dence intervals for mean plus/minus one standard deviation;
finally, the grey shadowed areas define the envelope of the
R random realizations.

In Figures 6(a) and (b), the trend of the mean cumulative
intensity functions, E(t), evaluated with a moving window

At = 4.00s, shows significant differences with respect to
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Ar=4.00 s, M=1

1.6

At=4.00 s, M=42

Figure 6: Cumulative intensity functions I () of the parent signal (red line) and child signals for different combinations of moving

time window A7 and number M of time subdivisions (mean value, black dashed line; mean + one standard deviation, black solid
lines; envelope of maximum and minimum values for whole set of generated signals, grey shaded area)

the deterministic one for the parent signal, /,(¢). However,
the final values at t+ = ¢4 are very close to each other.
Furthermore, Figures 6(c). and (d) show that reducing the
moving time window to At = 0.25 s has the effect to close
the gap between the functions E(t) and [ ! ®).

For the same four modeling choices, a similar set of
comparisons as in Figure 6 is offered in Figure 7, this time
in terms of the zero-level up-crossings. In Figures 7(a) and
(c), a linear trend can be observed for the mean function

Zgg(t), defined as the mean value of the realizations of

the cumulative up-crossing functions for the generated child
signals; that is:

R
L +(r)
zp 0= Z{ Z; 0. (26)

The observed linear trend is consistent with the adoption
of a single time subdivision, i.e., M = 1, in Eq. (16),
meaning that the same expected zero-level up-crossing rate
is assumed for the whole duration of the signal. This linear
trend is significantly different with respect to deterministic
function evaluated for the parent signal (red lines). The plots

of the functions Zgg(t) (mean for the child signals) and

Z}'(t) (parent signal) appear closer in Figures 7(b) and 7(d),
where the results are presented for the subdivision of the time
duration #; in M = 42 intervals.

4.2.4. Spectrum-compatible fully non-stationary
samples

To satisfy the spectrum compatibility between the mean

elastic response spectrum for the artificially generated ac-

—(R) .
celerograms, Spa (TJ-,CO), and the elastic response spec-

trum of the parent accelerogram, Ség)(Tj,CO), the com-
patibilization procedure summarized in Section 3.2 has
been applied with n = 3 iterations. Four different sets
of spectrum-adjusted accelerograms have been generated
through Eq. (23), i.e., one for each of the four combinations
of moving time window At and number of time subdivisions
M analyzed above. In all cases, the viscous damping ratio
¢y = 0.05 has been assumed.

Figure 8 compares the parent signal (red line) with

generic child samples for each of the four combinations
of the governing parameters {Z\t, M } The comparison

is shown for both: i) the samples Ué’)(t), generated via
Eq. (16) and plotted with gray lines; and ii) the spectrum-
compatibilized samples Ug(r’")(t), generated for n = 3 via
Eq. (23) and plotted with black lines. As expected, the
A =025s,M = 42} (Figure 8(d)) are
remarkably similar to the parent signal (more than all the
other cases). Furthermore, the amplitudes of the spectrum-
adjusted samples (black lines) tend to be higher than those
generated at the Oth iteration (gray lines). This happens be-
cause, typically, energy is added to the child signals through
the iterations required to achieve the compatibility with the
target spectrum.

child samples for
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Figure 7: Cumulative zero level up-crossings Z;f(t) of the parent signal (red line) and child signals for different combinations of

moving time window At and number M of time subdivisions (mean value, black dashed line; mean + one standard deviation,

black solid lines; envelope of maximum and minimum values for whole set of generated signals, grey shaded area)
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Figure 8: Comparison among the parent accelerogram (red line) and the rth generated sample by the proposed EPSD-based
method, considering different combinations of moving time window Ar and number M of time subdivisions — Oth iteration (gray

line), and 3rd spectrum-compatibilization iteration (black line)

The mean values of the cumulative intensity functions,
1 Ug(t), and cumulative zero-level up-crossing functions,

Z[.JT] (1), of the spectrum-adjusted samples are depicted in

Figures 9(a) and 9(b), respectively, and compared against

their deterministic counterparts for the parent signal (red
lines).

Interestingly (see Figure 9(a)), the spectrum-compatibili-
zation procedure increases the cumulative intensity of the
child signals, as more energy is required to match the
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spectrum-compatibilization; each set is obtained for a different combination of moving time window Az and number M of time
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Figure 10: Effects of the spectrum-compatibilization on the child signals obtained for different combinations of At and M. The
mean values of the pseudo-acceleration response spectra at the Oth (dashed black line) and 3rd iteration (solid black line) have

been calculated with R = 100 child samples

response spectrum of the parent signal. Furthermore, the
adoption of a large moving time window At results in a
disproportionate increase in the cumulative intensity of the
child signals; that is, for At = 4.00s the final value of the
cumulative intensity is such that IUg(td) > 214(tg) . The

overshooting of I f(td) is much less for At = 0.25ss.

In Figure 10, the average spectra of the initial sets of ar-
tificial accelerograms are plotted (Oth iteration, black dashed
lines; 3rd iteration, black solid lines) and compared against
the deterministic spectrum of the parent accelerogram (red
l/il\les). It can be observed that for all the four combinations of
At and number of time subdivisions M, the elastic response
spectrum at the third compatibilization iteration is in very
good agreement with the parent one.

4.3. Wavelet-based generation
By using the wavelet-based method described in Section 2,
three different randomization schemes have been investi-
gated to highlight how the trade-off between localizations in
time and frequency domains plays a fundamental role for the
purpose of generating meaningful time histories of ground
accelerations. The three selected schemes correspond to
M = 1,42, and 2144 frequency bands of equal bandwidth.
Figure 11 compares three generic child signals obtained
through Eq. (4) (black lines) with the parent signal (red
lines). As the number M of frequency bands increases, the
fidelity in mimicking the frequency content of the parent
signal improves but at the same time, due to Heisenberg’s
uncertainty principle, the accuracy in preserving the evolu-
tionary amplitude of the parent signal deteriorates.
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Figure 11: Comparison among the parent accelerogram (red line) and the rth generated sample by the proposed wavelets-based
method, considering a subdivision of the frequency domain into (a) M =1, (b) M =42, and (c) M = 2144 frequencies bands

It can be shown that for the limiting case M = 1 (Fig-
ure 11(a)) corresponds to a white noise uniformly modulated
by the amplitude of the parent signal (i.e., no information
preserved in the frequency domain), while the opposite
limiting case M = 2144 (Figure 11(c)) corresponds to
a stationary colored noise with the same PSD function as
the parent signal (i.e., no information preserved in the time
domain).

In Figures 12 to 14, a comparison is presented in terms of
cumulative intensity functions I g(t), cumulative zero-level
up-crossing functions Zgg(t) and elastic response spectra

in terms of acceleration, S,(7},{y); the latter quantity is
defined as the maximum absolute value of the absolute
acceleration of a linear SDoF oscillator with period of vi-
bration 7 and viscous damping ration ¢, = 0.05; that is:

ST, &) =max{|Qj(t)+f(t) L0<i< td}

27
~ ST ),

where reference is made to the notation adopted in Subsec-

tion (3.2).

In detail, Figures 12(a), 13(a) and 14(a) compares the
parent and mean generated functions for the three subdivi-
sions of the frequency domain, i.e., M = 1,42 and 2144. For
each subdivisions, R = 100 child signals have been gener-
ated. The intermediate number of frequency bands, M = 42,
has been chosen because the corresponding bandwidth of
the resulting frequency bands is wy/M = 628.3/42 =~
15 rad/s, which provides enough granularity in the frequency
domain. The other Sub-figures (b), (c) and (d) deepen the
comparison by plotting each deterministic function Iy, (1),

Z[.";g(t) and S,(T;, &) against the corresponding statistics,

namely: i) mean value (dashed lines); ii) bounds of the
confidence interval corresponding to mean plus/minus one
standard deviation (solid lines); iii) maximum-minimum
envelope of the generated signals (shadowed areas).

For the first limiting case, i.e., M = 1, the cumulative
intensity function (black line in Figure 12(a)) is in very good
agreement with the parent one (red line) while the zero-level
up-crossing function (black line in Figure 13(a)) heavily
overestimate the parent one (red line). In fact, with a single
frequency band, the child signals are uniformly modulated
samples of a white noise, with a far larger number of high-
frequency fluctuations.

The opposite situation occurs in the second limiting case,
i.e., M = 2144 (grey dotted lines in Figure 12(a) and 13(a)).
In fact, with a single discrete frequency in each frequency
band, no time localizations are possible, meaning that the
child signals are samples of a stationary random process with
an expected linear trend in the cumulative intensity function.

If follows that an intermediate case, e.g., M = 42, should
be used to generate child signals whose characteristics are
sufficiently close to those of the parent signal in both the
time domain and the frequency domain.

This consideration is confirmed by the elastic response
spectra plotted in Figure 14. Among the three schemes con-
sidered in this numerical application, only the case M = 42
delivers a set of response spectra that are in a good agreement
with that of the parent accelerogram (see Figure 14(c)).
Incidentally, it is worth mentioning here that while in the
wavelet-based method there is only one parameter control-
ling the characteristics of the generated samples, i.e. the
number of frequency bands M, with direct implications on
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both the time and the frequency domain, the EPSD-based
method has two independent parameters that can be used to
fine-tune the generation, i.e., the moving time window At
(mainly affecting the time domain) and the number of time
subdivisions M (mainly affecting the frequency domain).

4.4. Nonlinear dynamic analyses

In this subsection, inelastic response spectra have been com-
puted to investigate the effects of the two generation methods
(wavelet- and EPSD-based) on the seismic response on
nonlinear structural systems. Specifically, the case of elastic-
perfectly plastic SDoF oscillators has been considered. All
the nonlinear spectra have been computed using the commer-
cial software SeismoSpect 2022, assuming viscous damping
ratio {, = 0.05 and ductility factor demand y = 5.

In Figures 15 and 16, the inelastic acceleration spectrum
of the parent signal (red lines) is plotted against the spectra
obtained with seven sets of R = 100 child signals each (four
sets for the EPSD-based method, corresponding to different
combinations of moving time window Af and number M of
time subdivisions; three sets for the wavelet-based method,
corresponding to M = 1, 42 and 2144). These figures show
that generation method and choice of the governing param-
eters can have profound effects on the nonlinear seismic
responses to the generated child signals. Furthermore, the
magnitude of these effects can be higher than in the case of
linear seismic response.

For the EPSD-based method, the choice of governing pa-
rameters appears to be particularly important for the inelastic
response spectra of fairly “rigid” structures (i.e., with period
of vibration T less than 0.40 s, see Figure 15). Furthermore,
at least for the selected case-study earthquake record, the
results are more influenced by the moving time window At
than by the number M of sub-processes. This is also because
the procedure of spectrum compatibilization tends to apply
similar modifications to the frequency content of the child
signals independently of the number M of subdivisions (see
Egs. (20) to (23)).

For the wavelet-based method, it appears that only an
intermediate value of the number of frequency bands, e.g.,
M = 42, can deliver credible statistics in terms of nonlinear
seismic responses. In fact, the two limiting cases M = 1 and
M = 2144 produce inelastic spectra that are very far from
the parent one.

5. Conclusions

The definition of the seismic action plays a fundamental
role in the analysis of earthquake-resistant structures, es-
pecially if they are designed to exceed the linear-elastic
range under severe ground motions. It follows that any com-
putational model of seismic excitation adopted in practice
should be as realistic as possible, therefore including the
effects of time-varying intensity and frequency content of
the ground shaking. In practice, it is necessary to implement
stochastic excitation models that explicitly account for the
full non-stationary characteristics observed in recorded ac-
celerograms.

In this paper, the effects of time-varying intensity and
frequency content on the elastic and inelastic spectra of
artificially generated earthquake ground motions are in-
vestigated. Two alternative stochastic methods are used to
generate sets of artificial accelerograms with temporal and
spectral non-stationarity similar to those of a recorded sig-
nal, i.e., a “parent signal”, deemed to be representative of the
seismic hazard.

The wavelet-based method, presented in Section 2, ex-
ploits the wavelet transform and consists of random phase
angle rotations of the circular wavelets used to represent the
parent signal. This approach enables the generation of fully
non-stationary “child” samples without the need to define
the evolutionary power spectral density (EPSD) function of
the ground acceleration. The other method, on the contrary,
requires the EPSD evaluation of the parent signal by means
the procedure recently proposed by Muscolino et al. [57],
appropriately modified in this paper.

The numerical results have evidenced that the most
crucial step in the wavelet-based method is a suitable choice
of the bands to divide the frequency domain. It has been
shown that using too few or too many frequency bands
leads to child signals totally different from the parent one.
This is due to the loss of fidelity in either the time or
frequency domain, thus confirming the importance of accu-
rately representing the seismic input in both domains. For
the chosen case-study signal, a division of the frequency
domain into M = 42 bands provides an acceptable accuracy
in both domains. Importantly, improving the accuracy in the
frequency domain by using a larger number of frequency
bands for the circular wavelets results in a simultaneous loss
of accuracy in the time domain. The opposite happens when
the number of the frequency bands reduces. In the present
paper, the frequency domain has been uniformly partitioned
into intervals of equal bandwidth. Current investigations are
looking at the increased efficiency that can be achieved when
frequency intervals of different bandwidths are used, e.g.,
partitioning the frequency domain into interval possessing
the same energy.

By contrast, the application of iterative corrections in the
so-called EPSD-based method allows the recorded acceler-
ation spectrum to fall into the confidence interval evaluated
as the mean value plus/minus one standard deviation of the
generated samples. It has also been shown that the choice
of the modulating function, strictly related to the variation
in time of the intensity of the case-study accelerogram, is
particularly significative for both the elastic and elastoplastic
response spectra.

Further research is needed to ascertain the effects of
other governing parameters on the generation of child sam-
ples, e.g., the adoption of a correlation structure for the
random phases utilized in the wavelet-based method (in the
present study, all the random phases are assumed to be
statistically independent). Additional types of nonlinearities
should also be considered, including the cases of rocking and
sliding systems. Finally, the generation methods should be
tested for a range of recorded accelerograms with different
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characteristics, e.g., in terms of magnitude of the seismic
event, distance to the source and soil type, so to quantify the
expected sample-to-sample variability in the child signals
generated in various circumstances.

Appendix A - Calibration of the spectral
parameters of the sub-processes X, (t)

Once the time interval duration of the recorded accelero-
gram, [0,14], is divided in n contiguous time intervals (not
necessarily of the same duration AT} = t4/n), the one-sided
PSD function G;(w) of the stationary sub-process X ()

F Genovese et al.: Preprint submitted to Elsevier

Page 16 of 21



Stochastic generation of fully non-stationary accelerograms

10 — e pArent
F M=1

8 = - — — M=4
r e M=2144

Sa(T, Co) [m/sQ]

Sa(T, Co) [m/sQ]

Sa(T, o) [m/s2]

(b)

T [s]

10 — M=2144

Sa(T, Co) [m/sz]

! !
0 0.2 0.4 0.6 038 1
T [s]

Figure 14: Wavelet-based generation — Parent elastic response spectrum (viscous damping ratio: {, = 0.05) in terms of absolute
accelerations, SY)(T') (red line) , compared against mean spectra for an increasing number M of frequency bands (a) and against
further statistics (b, ¢, d); mean value, dashed line; mean value + one standard deviation, solid lines; minimum-maximum envelope,

shaded areas

can be characterised by defining its predominant circular
frequency and circular frequency bandwidth as:

27 Z*

= —15 (A.la)
AT,
nZ7t zt

o= —L5 \n -2 LA (A.1b)

where Z;k and Py, are the number of zero-level up-
crossings and the number of peaks of the parent signal f(¢)
in the time intervals, [sk_l,sk [, with s = 0, 5, = f4 and
8 = 8;_1 +AT,. Furthermore, the control frequencies of the
kth pair of Butterworth filters in the time interval [s k1> Sk [
are given by:

@y = Qk + 0.8 Pk - (A2b)

Appendix B - Calibration of the modulating
function A(7)

First, the deterministic cumulative intensity function of the
parent accelerogram, f(¢), is evaluated as:

t
Ip(t) = / f2(r)dr, (B.1)
0

with0 <t <1,.

Owing to the unit variance of the stationary sub-process
X, (1), the expected cumulative intensity of the fully non-
stationary stochastic process U, (7) can be evaluated as:

t t
[E<IUg(t)>=/0 E(U20) c1¢=/0 o2 (D dz

t
= / A%(r)dr
0

A least-square fitting can be used to calibrate the sought
amplitude A(¢) [57].

An alternative approach is proposed here, based on the
following assumption:

(B.2)

Ir(t) = E (Iyg®) (B.3)

i.e., that the deterministic function I ! (t) coincides with
the mean value of the cumulative intensity function of the
piecewise uniformly modulated random process Iy, (1), fully
defined by Eq. (7).

Substituting Eq. (B.2) into Eq. (B.3) and differentiating
both sides with respect to the time ¢, one obtains an explicit
relationship between the modulating function A(?) and the
intensity of the cumulative intensity function of the parent
signal:

A(t) = \/%If(t).

In practical applications, the (continuous-time) deriva-
tive under the square root in the right-hand side of Eq. (B.4)

(B.4)
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Figure 15: EPSD-based method — Parent inelastic response spectrum (viscous damping ratio: ¢, = 0.05; ductility demand: y = 5)
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can be replaced with the (discrete-time) difference quotient,
i.e., the average rate of change of 1 +(#) over a smoothing time
interval of centre 1, = ¢ At and width At =2 p At, where
p > 1 is the integer representing the number of time steps
At in half of the discrete-time width A7. This approximation
leads to:

Iy (zf +Z\t/2> -1 (tf —Z?/Z)

At

(B.5)

where a linear interpolation can be assumed between the
amplitudes values A, and A, at two consecutive discrete
times 7, and t,,; = t, + At. To avoid inconsistent results,
the conditions A(0) = 0 must be satisfied.
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