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A B S T R A C T   

The agri-food sector is more complex than the industrial sector due to different climatic, geomorphologic and 
cultivation practice factors. Agriculture operations can significantly affect phenomena, such as erosion and 
leaching, and generate different types of emissions into the environment. These aspects should be considered 
when performing a Life Cycle Assessment (LCA) study on agri-food products, mainly because these elements are 
influenced by both natural and human factors that generate negative health and ecotoxicological impacts. The 
“Swiss Agricultural Life Cycle Assessment - heavy metals (SALCA-HM)” allows for calculating heavy metal 
emissions at the life cycle inventory level as part of LCA at a regional level. This study aims to customise the 
SALCA-HM for five Italian agricultural products (i.e., durum and common wheat, grapes, olives, and citrus 
fruits), using region- and crop-specific data. The results showed that, even though all the factors relating to 
cultivation techniques are constant, the use of site-specific data makes it possible to highlight the influence of the 
orographic characteristics of the territory. Therefore, the high variability of the results can be perceived as a 
strength of this regionalised approach, thus overcoming several limitations by using national average data 
instead. More effort is needed to enable greater data availability both for policy and the scientific community.   

1. Introduction 

Life Cycle Assessment (LCA) (compliance to ISO 14040:2006 and ISO 
14044:2006) (ISO, 2006a; ISO, 2006b) allows for considering all inputs 
and outputs related to the whole life cycle of products, processes and 
services, taking into account geographical, temporal, and technological 
aspects. Even though LCA has been increasingly used to estimate the 
potential environmental impacts, several issues remain unsolved. One is 
the lack of secondary data to build appropriate Life Cycle Inventories 
(LCIs). Among the production activities that most need specific in
ventory data is the agri-food sector, where production is closely inter
linked with the biological characteristic of the farming system and, 
therefore, highly dependent on the specific conditions occurring in a 
given territory. It is, therefore, necessary to promote extensive 
data-collecting activities that can represent the geographical and 

technological characteristics of regional agri-food productions (Nota
rnicola et al., 2022a; Mondello et al., 2022; Vono et al., 2022; Nota
rnicola et al., 2017; D’Eusanio et al., 2022). Indeed, the primary data 
collection is often integrated with secondary data for modelling the 
background data inventory taken from the scientific literature or com
mercial databases, such as GaBi (Kupfer et al., 2021) and Ecoinvent 
(FitzGerald and Sonderegger, 2022). Such data are often not generally 
applicable to all product systems, especially concerning the agri-food 
sector, which is characterised by the extreme complexity of several 
factors, such as geographical territoriality, climatic conditions, soil types 
and different cultivation practices. Indeed, these databases do not al
ways provide fully representative data on the site-specificity of the 
analysed agri-food products (Notarnicola et al., 2017). 

In this framework, developing specific agri-food databases that 
would consider the territorial peculiarities of the involved agri-food 
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supply chains becomes essential. Several countries have developed 
specific inventory databases for agri-food supply chains (e.g., Agriba
lyse; LCA Food DK; Agri footprint) (Notarnicola et al., 2022b) in order to 
improve the quality of the available data and to represent the pecu
liarities of their products as well as the processes of the supply chain in a 
better way (Morais et al., 2016). To date, the LCA studies that consider 
Italian agri-food product systems mainly have used secondary data from 
international databases (Notarnicola et al., 2017), such as Ecoinvent 
(FitzGerald and Sonderegger, 2022) or GaBi (Kupfer et al., 2021). To this 
end, “PRIN 2017 - Project of Relevant National Interest”, entitled 
“Promoting Agri-Food Sustainability: Development of an Italian Life 
Cycle Inventory Database of Agri-Food Products (ILCIDAF)”, aims at 
creating a regionalised Italian database for the agri-food products that 
would capture these peculiarities. The ILCIDAF database will be built for 
the wine, olive oil, citrus and wheat-derived product supply chains, with 
a system boundary starting from the agricultural phase to the 
product-use phase and the final waste disposal (end of life). 

Agricultural operations significantly affect natural phenomena, such 
as erosion and leaching, and generate different kinds of emissions into 
the environment (Gulisano et al., 2018). The effects on the environment 
of the combustion of fuels, the application of plant protection products 
and fertilisers, the removal of grass tissue and various soil management 
techniques are widely studied by developing several estimation models. 
However, some critical aspects of estimating emissions from agricultural 
activities remain open. Indeed, when performing an LCA study on 
agri-food products, quantifying data related to heavy metals present 
many criticalities because these elements are affected by both natural 
and anthropic sources that generate serious negative health and eco
toxicological impacts (Filote et al., 2021). The “Swiss Agricultural Life 
Cycle Assessment - heavy metals (SALCA-HM)” model (Freiermuth, 
2006), which is functional to the agri-food databases, is typically used 
for calculating heavy metals emissions (Notarnicola et al., 2022a) at the 
life cycle inventory level as part of LCA (Freiermuth, 2006). This model 
is limited to estimating the heavy metal flows into agriculture soil, 
groundwater, and surface waters, taking into account both natural 
phenomena (i.e., erosion and leaching) and anthropic products (e.g., 
seeds, fertilisers, plant-protection products, etc.) (Freiermuth, 2006). 

Often, however, the application of the model is carried out using data 
not specific to the area under study, using Swiss agriculture data. 
Indeed, in many cases, the SALCA model has been implemented using 
national average data (e.g., Ecoinvent or World Food LCA), through 
which it is impossible to represent the area’s specificities. This is a 
fundamental criterion for agricultural production, where the link with 
the territory where the agricultural activities are carried out is 
unavoidable. 

In fact, heavy metals emissions are strongly influenced by 
geographical factors such as the orography of the territory, the type of 
soil, and exposure to atmospheric events that can increase or decrease 
the atmospheric deposition of these metals; so, referring to Italian 
agriculture, the link with the territory becomes even stronger, given the 
high heterogeneity of the Italian orography due to the complex 
geological and climatic evolution that this territory has undergone. 
From a purely geological point of view, the physical conformation of the 
peninsula has been determined by the collision of the African and 
Eurasian plates, generating, in particular, the Alpine and Apennine 
Mountain, which extend throughout the territory. Amplifying the ter
ritorial and landscape heterogeneity is also the great variety of lith
otypes (Marchetti et al., 2017). The different altitudinal ranges (from 
0 to over 4,800m), the presence of the sea along almost all of the 
country’s boundaries and the great latitudinal extension strongly in
fluence the climatic conditions of the Italian regions and cities (Fratianni 
et al., 2017). Based on the overview just described, it is essential to 
define an approach for estimating heavy metal emissions that considers 
this great variability in regions of Italy. 

Therefore, the study aims to customise the SALCA-HM model 
(Freiermuth, 2006) for estimating emissions from Italian agricultural 

production processes, highlighting the use of region- and crop-specific 
data. In particular, the SALCA-HM model will be applied to the five 
most representative agri-food chains of the Italian food sector (i.e., 
durum and common wheat, olives, grapes, and citrus fruits) by 
describing how to identify the data and highlighting the variability of 
the results on a regional scale. 

2. Material and methods 

The following section provides i) a brief description of the widely 
used SALCA–HM model, ii) the procedure developed for selecting data 
for the Italian regions, and iii) the description of five agri-food products 
to which the methodology is applied. 

2.1. Brief description of the SALCA-HM 

The SALCA-HM model (Freiermuth, 2006) is applied to estimate 
heavy metal emissions in ILCIDAF agricultural datasets. The heavy 
metals considered by the SALCA model are Chromium (Cr), Cadmium 
(Cd), Lead (Pb), Nickel (Ni), Copper (Cu), Zinc (Zn) and Mercury (Hg) 
(Freiermuth, 2006). A simplified representation of the processes 
considered by the SALCA-HM model is summarised in Fig. 1. 

The model allows for calculating three types of emissions: i) leaching 
of heavy metals to groundwater (Mleach), ii) run-offs of heavy metals into 
surface waters through erosion phenomena (Merosion), and iii) emissions 
to the agricultural soil resulting from the mass balance of heavy metals 
(Msoil). These contributions are weighed for an allocation factor (Ai) that 
allows for evaluating only the direct contributions of agricultural ac
tivities. It is calculated as the share of agricultural inputs (seed, fertiliser, 
pesticides, and other substances reversed on soil) in the total inputs 
(agricultural input plus atmospheric deposition). 

Indeed, the leaching phenomenon releases heavy metals into deep 
water, provided the soil is not drained. This parameter is calculated as 
average amounts of heavy metals leached (mleach,i) for kilograms of soil. 
This factor depends on soil structure, crop planting, type and application 
rates of fertilisers and other factors such as irrigation and rain. 

While the erosion phenomenon releases the heavy metal removed 
from soil that can be attributed to cultivation, it is the function of 
different factors that are affected by soil characteristics and human 
intervention. It is calculated following the USLE model (Freiermuth, 
2006; Alewell et al., 2019), then multiplied for three factors that 
describe: i) the concentration of heavy metals in the soil (Ctot,i), ii) the 
distance from water sources (fErosion,i), and iii) the enrichment of heavy 
metals on the more easily eroded clay-humus complexes (a). In partic
ular, the main factors that depend on geographic locations and that 
affect this phenomenon are:  

● R (MJ mm h− 1 ha− 1 yr− 1) is the rainfall-runoff erosivity factor that 
captures the energy and amount of precipitation,  

● k (Mg h MJ− 1 mm− 1) is the soil erodibility factor that, accounting for 
the soil parameters, determines erosion potential,  

● LS (dimensionless) is the slope length and steepness factor,  
● C (dimensionless) is the land cover and management factor that 

describes the vegetation cover and management,  
● P (dimensionless) is the soil conservation or prevention practices 

factor that delineates human management intervention,  
● Ctot,i (mg kg− 1) is the concentration of heavy metals in the soil, 

generally estimated through chemical soil analysis. 

Finally, the latter quantified emission is the amount of heavy metals 
released into the soil. It, resulting in positive or negative contributions, 
is calculated as a balance among the mass of heavy metals of agricultural 
activities in input and that loss through leaching, erosion, and plant 
harvesting. Only the amounts of heavy metal uptaken from products and 
by-products that leave the soil are accounted for the latter. All the 
equations used to estimate heavy metal emissions (Freiermuth, 2006) 
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are listed in the supplementary materials (SM). 
As mentioned above, the factors used in the model are highly 

dependent on soil and climatic characteristics as well as on geographic, 
temporal, and technological features of agricultural activities. Their 
representativeness is crucial for consistently applying the model and, 
consequently, being correct and geographically representative of po
tential heavy metal emissions. In addition, agricultural operations 
depend on the type of crop and the orographic of the land (whether 
predominantly flat or hilly). The agricultural substances applied to the 
soil vary as the crop varies, but also over time and for a given area/re
gion (Notarnicola et al., 2022a). Therefore, for the Italian case studies 
application, almost all the factors involved in the SALCA-HM model are 
specific for the regions and per crop type. Additional details are reported 
in the section below. 

2.2. Selection of data for the Italian regions 

Given the presence of complex orographic systems and the high 
variability of climate conditions in Italy (Khan and Chiti, 2022), to 
provide affordable data and create representative LCI for the Italian 
agri-food sector is necessary to evaluate the heavy metals emissions 
throughout agriculture activities using site-specific regional data. 
Therefore, the available heavy metals and soil properties databases have 
been searched to extract these data. Combining all these files allows for 

identifying average values for region and cultivar. The methodology 
used in this study to extract and collect data and calculate heavy metal 
emissions could be entailed in five steps, summarised in Fig. 2. 

2.2.1. Geospatial data on cropland types 
Considering that the scope of the study is strictly connected to the 

ILCIDAF project, it was necessary to identify data representing the 
geographic locations of different croplands in the Italian regions to 
evaluate their average soil characteristics specific (when possible) for 
cultivars. 

For this purpose, the database LUCAS (Land Use and Coverage Area 
frame Survey) topsoil (Orgiazzi et al., 2018) is used. It provides infor
mation on the spatial distribution of different crop types for different soil 
point data in Europe, representing one of the biggest integrated 
continental-scale soil inventories due to the various characteristics 
examined (Orgiazzi et al., 2018; Panagos et al., 2021). The collected 
data comprise stratified random samples, classified based on their 
theoretical geographic coordinates (latitude and longitude) (Ballabio 
et al., 2021). The database is downloaded in both shapefile and MS Excel 
format because the first contains only the LUCAS 2018 POINTID, while 
the second also includes information on soil type, the nomenclature of 
territorial units for statistics formats (NUTS3), main land cover class (e. 
g., forest land, cropland, etc.) and detailed land cover class description. 

Focusing on the cropland cover class, LUCAS hosted 32 sub-classes: 

Fig. 1. A simplified representation of heavy metal flows through the soil.  

Fig. 2. Workflow of extracting site-specific data on heavy metals.  
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from cereal to fruit trees. For Italy, LUCAS includes 628 samples in the 
class cropland, as reported in Fig. 3. 

In addition, LUCAS is also a fully accessible repository tool that 
contains data from the European Soil Data Centre (ESDAC) that is freely 
available (Panagos et al., 2022). ESDAC represents the focal point for 
soil data for supporting policy making and awareness raising for the 
European Union (EU), currently hosting 88 datasets, 6000 maps, 6 
atlases, 500 scientific publications, and a copious amount of soil-related 
material (Panagos et al., 2022). 

2.2.2. Heavy metals concentration and soil characteristics 
To collect heavy metals data and soil properties, it is necessary to 

identify different databases that provide at least data at the regional 
level (e.g., raster maps). Therefore, the soil and heavy metal datasets 
developed by the European Commission (European Commission, 2022), 
JRC (Panagos et al., 2022), the European Environmental Agency (EEA) 
(EEA, 2020; EEA. CORINE, 2022), and the National Institute for 

Environmental Protection and Research (ISPRA) (Italian, 2021) are 
investigated. From these datasets, it is possible to identify specific data 
(such as heavy metals soil concentration, leaching or atmospheric 
deposition) at the regional level and for crop types, then used to estimate 
heavy metals leaching and run-offs due to soil erosion processes. 

In particular, concerning the erosion process, most of the data are 
extracted from the ESDAC database. As mentioned above, ESDAC con
tains datasets and maps related to heavy metals concentration in soil, 
and other soil properties developed complementary to the LUCAS 
database and Corine datasets (Panagos et al., 2022). Regarding heavy 
metals, it includes data on the concentration in the soil of the following 
elements: Arsenic (As), Cadmium (Cd), Cobalt (Co), Chromium (Cr), 
Copper (Cu), Iron (Fe), Mercury (Hg), Magnesium (Mg), Manganese 
(Mn), Nickel (Ni), Lead (Pb), and Antimony (Sb) (Panagos et al., 2021). 
Only the maps for six metals (i.e., Cd, Cu, Cr, Hg, Ni, and Pb) are 
downloaded for the ILCIDAF project in Raster format after compiling a 
request form on the ESDAC website. However, no data was found for Zn 

Fig. 3. Number of samples in LUCAS for regions and cropland sub-classes.  
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in the ESDAC database. In this case, the concentration of Zn in the soil at 
the regional level is extracted from the datasets proposed by the EEA on 
concentrations of heavy metals in European agricultural soils (EEA, 
2020). They all represent the parameter called concentration of ith 
heavy metal in the soil (CTOT,i) (Tóth et al., 2016). Instead, concerning 
the soil properties, the ESDAC database provides datasets on some pa
rameters of erosion calculation, such as LS-Factor, C-factor, or R-Factor. 
Table 1 (section 2.2.5) summarises other details on sources used. 

Considering the leaching process, it was necessary to identify the 
amount of heavy metal leaching for each region and crop (mLeach,i). The 
datasets proposed by the EEA are used for this purpose, as made for Zn 
concentration in soil (EEA, 2020). This data collection involves infor
mation on current and critical metal concentrations in topsoil, metal 
inputs to and outputs from soils (i.e., uptake, accumulation, and leach
ing) and the impacts of exceeding critical metal inputs. However, the 
leached metals included in this dataset are Cd, Cu, Pb and Zn, and no 
other datasets at the European level have been identified on it. Thus, the 
missing metals are assumed from (Freiermuth, 2006; Wolfensberger and 
Dinkel, 1997), in which no Ni data is available. 

The atmospheric deposition of heavy metals represents the balance 
of anthropogenic emissions and secondary emissions (wind re- 

suspension of dust particles containing heavy metals) received from 
activities inside and outside the country or transferred to other countries 
(Ilyin et al., 2021). Due to missing data on atmospheric deposition 
temporal and geographic representation of the actual Italian regional 
situation (Ilyin et al., 2021; EMEP, 2021), the heavy metal deposition 
amounts are assumed to be the heavy metal emissions estimated by 
ISPRA at regional scales for 2019 (Italian, 2021) and totally deposited on 
regional soil. This assumption allows for accounting that heavy metal 
emissions have been strongly reduced since 1990 in all the Europe and 
that Italy is characterised by a very diversified emission context at the 
territorial level (e.g., Lombardy originates the largest shares of emis
sions of all metals except for arsenic, deriving for the most part from 
Puglia). 

2.2.3. Merging attributes and extracting site-specific data 
The datasets downloaded from ESDAC and EEA and the LUCAS soil 

data points vector are read through QGIS software to collect site-specific 
data. QGIS is an Open Source Geographic Information System that 
provides common GIS functions and features such as data capture, 
advanced GIS analysis, map presentations, atlases and reports, and 
supporting raster and vector data formats (QGIS v3.28, 2021). The 
software allows for extracting and merging attributes using the 
following functions:  

1. for raster files (ESDAC maps), the “sample raster values” function is 
used to extract for any point the attributes contained by the raster 
pixel value at the location of the point reported in LUCAS,  

2. for vector files, the “join attributes by location” function is used to 
extract the average values for data that intersect, are contained, or 
touch the location of the point reported in LUCAS. 

The resulting attributes are extracted and copied into an MS Excel 
worksheet, in which any point is associated with the different classes 
reported on LUCAS (MS Excel file). Then, using pivot tables, it was 
possible to calculate quickly the average values divided for regions and 
crops, excluding all the Italian data on, e.g. forest or artificial land. 

2.2.4. Collecting heavy metals and mass data on biomass, nutrient and 
pesticides 

Although all previously mentioned data have been collected ac
counting for region soil characteristics and cropland management, the 
concentration of heavy metals in biomass products, nutrients and pes
ticides is based on (Freiermuth, 2006; Nemecek et al., 2019; Koch and 
Salou, 2016). Despite this, it was necessary to collect some data from the 
literature to account for all the agri-food products included in the 
ILCIDAF project. In particular:  

● the concentration of heavy metals in olives is taken from (Luka and 
Akun, 2019), and missing data for Hg and Zn are assumed as grapes 
values in Agribalyse (Koch and Salou, 2016),  

● the concentration of heavy metals in citrus fruit is taken from (Özcan 
et al., 2012), and missing data for Hg and Cd is taken from (Khudair, 
2021), 

● considering no mercury is reported for mineral fertiliser in (Freier
muth, 2006), the mercury concentration in nutrient NPK is taken 
from the analysis conducted by the Washington State Department of 
Agriculture (WSDA) (METALS, 2018),  

● while no additional data are added to compensate for insufficient 
data on heavy metals for pesticides, only limited data on Cu and Zn 
concentration are included (Freiermuth, 2006). 

Indeed, the kilograms of inputs and outputs through the system 
boundaries (soil) must be collected for crops, respecting yield produc
tion and admitted nutrients and pesticides for hectares of cultivated 
land. Other information on collecting these inventory data in practices 
for Italian agri-food products is reported in section 2.3. 

Table 1 
Summary of data collection for heavy metals emissions calculation.  

Data types Unit Data specific for Sources 

Geospatial data 
Cropland 

point 
- Latitude and longitude 

for regional and crops 
points 

Orgiazzi et al. (2018) 

Erosion 
LS-factor – Regional and crops (Panagos et al., 

2015a, 2022) 
C-factor – Regional and crops (Panagos et al., 

2015b, 2022) 
k and k 

stoniness 
factor 

[(t•h)/ 
(MJ•mm)] 

Regional and crops (Panagos et al., 2014, 
2022) 

Ctot,i [mg/kg] (1) Regional and crops for 
metals 

(Panagos et al., 2022;  
EEA, 2020; Tóth 
et al., 2016) c 

R factor [(MJ•mm)/ 
(ha•h•yr)] 

Regional and crops level Panagos et al. (2015c) 

P-factor – Regional and crops level (Panagos et al., 2020, 
2022) 

fErosion,i – Default value (0.20) (Freiermuth, 2006;  
Koch and Salou, 
2016) 

A – Default value (1.86) Prasuhn (2006) 
Leaching 
mleach,i [kg/(ha•yr)] Metals for regions and 

crops 
(Freiermuth, 2006;  
EEA, 2020)d 

Plant and agro actives 
cPlant,i, cseeds, 

i 

[mg/kg] a Metals for crops, seeds (Freiermuth, 2006;  
Koch and Salou, 2016; 
Özcan et al., 2012) 

cFertiliser,i [mg/kg] a Metals for fertiliser (Freiermuth, 2006;  
Koch and Salou, 
2016) 

cPesticides,i [mg/kg] b Metals for pesticides (Freiermuth, 2006;  
Koch and Salou, 
2016) 

F – Percentage of active 
substance transported 
from pruning and 
harvesting (5%) 

(Freiermuth, 2006;  
Koch and Salou, 
2016) 

mDeposition  Metals emitted for 
regions 

Italian (2021)  

a Concentration of heavy metals for dry matter. 
b Concentration of heavy metals for active substances. 
c Concentration of Zn into the soil from EEA. 
d Concentration of leached heavy metals (Cr, Cu) from SALCA and the others 

from EEA report. 
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2.2.5. Data management and application of the SALCA method 
All the equations of the method SALCA for Italian agri-food products 

are currently implemented as a set of almost fully automated MS Excel 
spreadsheets, in which all the data collected are organised in tables for 
each parameter. All the data types and sources are summarised in 
Table 1. 

Indeed, manual operations are needed for entering the inventory 
data that affects heavy metals in input (i.e., mineral and organic fertil
iser, pesticides, seeds, and eventually, other biomass distributed on soil) 
and in output (i.e., biomass such as wood pruned and agri-food prod
ucts). At the same time, the other operation is strictly linked to selecting 
cropland sub-classes from lists. This action allows the selection of 
different parameters specific for crops to be applied to all regions; thus, 
the heavy metals leaching, run-off for erosion and emitted in the soil are 
automatically calculated. So far, the calculations are applied to Italian 
crops (i.e., olives, citrus, grapes, common and durum wheat), showing 
easy applicability and saving time for future applications. In addition, in 
case of missing specific regional data for some crops, data could be in
tegrated with regional average data without crop detail or national 
average data for crops. 

2.3. Cases studies application 

The above methodology is applied to five Italian agricultural prod
ucts (durum and common wheat, grapes, olives, and citrus) to observe 
the variability of heavy metal emissions generated by crops and regions’ 
soil characteristics. The following data are required for calculating 
heavy metals: seeds, fertilisers, and pesticides as input to soil and pro
duction yields as output from the soil. 

The datasets for each crop are elaborated by combining statistical 
and secondary data provided by: i) the Italian statistical database 
(ISTAT, 2021), ii) Integrated Production Regulations (IPR) (MASAF, 
2022), and iii) a technical handbook of agriculture (Ribaudo, 2017). 

In particular, the data obtained from the ISTAT database includes the 
cultivated land and the amount of produced agricultural products be
tween 2015 and 2020. These data on productivity allow for considering 
medium-long-term values for reducing the influence (negative or posi
tive) caused by the yearly fluctuation. Instead, IPR recommendations are 
used to calculate the quantity of fertiliser applied per hectare. For the 
study, only mineral fertilisers are accounted for analysis. Instead, from 
Ribaudo (2017), data on pesticides are extracted for each crop. How
ever, considering that differences exist between crop yields resulting 
from ISTAT and that reported in (MASAF, 2022; Ribaudo, 2017), fer
tilisers and pesticides are linearly scaled to account for that. 

These data have been first calculated as “one cultivated hectare 
during one season” for permanent fruit (i.e., olive tree, vineyards, and 
citrus tree) and “one cultivated hectare during one growing season” for 
annual crops (durum and common wheat grain). Then, the functional 
unit “1 kg of product” is used to show the analysis results. 

Relative to some SALCA-HM factors, the following assumptions are 
made: i) the erodibility factor is assumed to be equal to k-stoniness 
specific for regions and crops, ii) the cover management factor is 
assumed to include all the reductions made from tillage activities spe
cific for crops and regions, iii) all factors are assumed specific for regions 
and crops, and iv) when data missing, the gaps are covered using na
tional average data for the specific crop. A limitation of this approach is 
the case of oranges. In fact, for these crops, specific data are available for 
only one region that also coincides with the national average, as this is 
obtained from a single value (see Fig. 2). 

In order to show the variability of results among regions, statistical 
analyses are applied to each crop. In particular, the MS Excel function 
“descriptive statistical analysis” is applied to calculate the mean, stan
dard error, median, standard deviation, sample variance, range, mini
mum and maximum values, sum, count and confidence level (95%). To 
evaluate the variability magnitude of results for HM and type of crop, a 
variability index (VI) is calculated as in equation (1). 

i, n=
i, n
ˆ

Eq. 1  

where:  

• StD is the standard deviations calculated for i-th crop product and n- 
th heavy metals;  

• Mean is the mean values calculated for i-th crop product and n-th 
heavy metals. 

Furthermore, a sensitivity analysis is conducted to highlight the 
factors’ variability at the regional level, maintaining constant input and 
outputs for all scenarios. More details are reported in section 3.2. 

3. Results and discussion 

This section presents the calculated heavy metal emissions for the 
five studied crops, showing first the contribution of each heavy metal to 
the global masses emitted for leaching, run-offs and balance to the soil, 
then the variability of data at the regional level for each crop. The 
quantitative results of applying the SALCA model to the Italian regions 
are presented in SM. Furthermore, the last section illustrates the chal
lenge and limits of this study. 

3.1. Variability for regions 

3.1.1. Durum wheat 
Fig. 4 shows the estimated contributions of each heavy metal eroded, 

leached and emitted to the soil per 1 kg of durum wheat produced in 17 
Italian regions (excluding Aosta valley, Trentino South Tyrol and Ligu
ria). As it is possible to observe, the results show that the regional scale 
variability is significant. Full data in MS (Tables 1,2, 3). 

Focusing on total eroded heavy metals, the highest quantity of HM 
per kg of durum wheat occurs in Marche (0.406 g), Tuscany (0.334 g), 
and Calabria (0.306 g). Among these regions, Zn represents the highest 
contribution with an average percentage value of 29.7%, and in 8 re
gions, its contribution is over 30%. At the same time, the second highest 
contribution (27.6%) is generated by Cr (in 10 regions, this value ranges 
from 25.6% to 39.2%). Then, Ni, Cu, and Pb contribute respectively with 
20.5%, 16.3% and 5.9%, while Cd and Hg represent the lowest mass 
contribution. 

For leached heavy metals, the highest value occurs in Campania 
(0.02 g), followed, as for erosion, by Tuscany (0.017 g) and Calabria 
(0.015 g). The largest contribution to this process is Cr, with an average 
percentage of 52.4%. Also, in this case, it is highly variable among re
gions. In fact, the range varies from a maximum of 86.9% for Sicily to a 
minimum of 26.3% for Veneto. In general, for 12 regions, the percentage 
contribution is over 40.0%, while in 5 regions, it is over 60.0%. Cu and 
Zn also contribute significantly and with a very similar average per
centage contribution of 21.3% and 21.0%, respectively. For Cu, 11 re
gions have a value greater than 20.5%, while for Zn, the regions rise to 
12. Even the range of values is comparable (6.4%–33.2% for Cu and 
5.4%–35.6% for Zn). Lead contributes, on average, 4.6%, while Cd and 
Hg have a contribution below the percentage value. Considering the soil 
balance of heavy metals, common wheat and durum wheat are globally 
negative in all regions and for almost all metals. 

Fig. 5 shows the results of the descriptive analysis for the 17 Italian 
regions mentioned above, focusing on the three contributions (erosion, 
leaching and soil). Greater variability is obtained for Hg emitted to soil 
and leached with a percentage value of 785.9% and 141.3%, respec
tively. This high variability is due to the modelling approach used for the 
durum wheat, which, given their seasonality, differs from the other 
crops under study. Indeed, the quantity of seeds (with their heavy metal 
content) is provided as input, while straw is provided as output in 
addition to wheat. The highest yield variability for regions strongly 
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Fig. 4. Contribution analysis of heavy metals emissions for 1 kg of durum wheat among 17 Italian regions.  

Fig. 5. Box Plot of heavy metals emissions for 1 kg of durum wheat among 17 Italian regions.  

Fig. 6. Contribution analysis of heavy metals emissions for 1 kg of common wheat among 20 Italian regions.  
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affects the soil balance results and the allocation factor, Ai. The latter 
factor for mercury strongly varies for regional scale ranging from 2% in 
Lombardy to 54% in Marche, while Ai has a lower variability for the 
other metals. 

The lowest variability in all phenomena is obtained for leached Cr 
(27.0%), while the other metals vary from 53.3% to 92.4%. 

3.1.2. Common wheat 
Tables 4, 5 and 6 in the SM show the results of heavy metal emissions 

per kg of harvested common wheat in 20 Italian regions for erosion, 
leaching and soil balance processes. The results show a high variability 
on a regional scale. Considering the erosion phenomenon, Liguria is the 
region for which the highest amount of total heavy metals per kg of 
harvested common wheat is obtained (0.311 g), followed by Calabria 
(0.259 g) and Campania (0.258 g). Fig. 6 graphically represents the 
quantities of eroded, leached, and to soil heavy metal for each region for 
common wheat production. The metal that contributes most to this 
process is Cr (30.3%–40.0% in 8 regions) and Zn (greater than 25.4% in 
13 regions). It is followed by Ni (22.5% on average), Cu (14.0% on 
average) and Pb (6.9% on average). Cd and Hg contribute an average 
percentage of less than 1%. Considering the leaching phenomenon, the 
region with the highest amount of total heavy metals leached in Sicily, 
with a value of 0.039 g per 1 kg of wheat, followed by Sardinia (0.037 g) 
and Basilicata and Calabria (0.035 g). The highest contributions for this 
process are attributed to Zn (average value of 38.2% and in 9 regions 
with a value greater than 40%), Cu (average value of 28.9% and in 11 
regions with a contribution between 28.1% and 39.7%) and Cr (average 
value of slightly less than 25.2% and in 6 regions with a contribution 
greater than 25%). They are followed by Pb and Cd (with an average 
value of 6.5% and 1.2%, respectively); while the contribution of Hg is 
less than 1%. On the contrary, the heavy metal balance in the soil is 
negative overall in all regions and for almost all metals. The highest 
value is obtained for Lombardy, while the lowest value (highest in ab
solute value) is in Liguria and Calabria. 

Analysing the individual heavy metals, Fig. 7 shows the results of the 
descriptive analysis of heavy metal emissions per kg of wheat for all 
Italian regions considering the three contributions (erosion, leaching 
and soil). High variability of the results is obtained. The greatest vari
ability is observed for mercury emitted in soil, with a ratio of standard 
deviation to mean of about − 719.8% of the mean value, followed by 
eroded Hg (98.2%). For common wheat, the results lead to observations 
similar to those described above for durum wheat. The lowest variability 
is recorded for leached heavy metals, such as Cr (30.9%), Cd (38.1%), 
and Cu (39.9%). All other parameters vary between 45.8% and 80.6%. 

3.1.3. Grapes 
Fig. 8 and Table 3 (SM) show the mass of heavy metal emissions per 

kg of grapes for all 20 Italian regions regarding erosion, leaching and 

soil. The analysis demonstrated that for those deriving from soil erosion 
due to run-off, the Umbria region is achieving the highest values (0.48 g 
of heavy metals/kg of grapes), followed by Piedmont (0.4386 g of heavy 
metals/kg of grapes). The region of Apulia seems to achieve the lowest 
values for all heavy. On the other hand, the highest values for erosion 
(SM) can be attributed to Umbria (Cr, Cu, Ni), Piedmont (Cd, Pb, Zn), 
and Marche (Hg). In terms of the heavy metals themselves, Cr reaches 
the highest values (26.4% of the total), followed by Zn (26.3%), whilst 
the lowest values refer to Hg and Cd (less than 0.1%). 

When it comes to leaching (SM), it is the region of Trentino South 
Tyrol that reports the highest emissions (0.021 g of heavy metals/kg of 
grapes), followed by Piedmont (0.011 g of heavy metals/kg of grapes). 
Furthermore, the lowest values of heavy metals emissions refer to Sicily 
(Cd, Pb, Cu, Zn), Friuli Venezia Giulia (Hg) and Lombardy (Cr), whilst 
the highest to Trentino South Tyrol (Cd, Cr, Cu), Marche (Hg), Piedmont 
(Zn), and Veneto (Pb). In terms of the heavy metals themselves, Cr 
reaches the highest values (40.3% of the total), followed by Zn (29.3%), 
whilst the lowest values refer to Hg (less than 0.1%) and Cd (1.2%); Ni 
emissions are zero due to missing data. 

Finally, focusing on the mass balance of the soil, most of the results 
appear to be negative. It means that the heavy metals introduced on the 
soil as input (i.e., fertilisers, pesticides) are less than that lost as output 
through harvesting processes of plants as well as leaching and erosion 
processes attributed to agriculture activities. Indeed, concerning soil, 
the region of Apulia reports the highest emissions (− 0.0045 g of heavy 
metals/kg of grapes). Furthermore, it is Piedmont to receive the lowest 
scores Cd, Pb, Zn), Umbria (Cr; Ni), Marche (Hg) and Trentino South 
Tyrol (Cu), whilst it is Apulia to receive the highest scores (Cr, Cu, Ni, 
Zn), Emilia Romagna (Cd, Pb) and Friuli Venezia Giulia (Hg). In terms of 
the heavy metals themselves, Cr reaches the highest values (28.2% of the 
total), followed by Zn (26.8%), whilst the lowest values refer to Hg (less 
than 0.1%) and Cd (− 0.3%). 

Furthermore, Fig. 9 and SM show the mass of heavy metals emissions 
per kg of grapes amongst the 20 Italian regions for erosion, leaching and 
soil, demonstrating that such emissions varied significantly across re
gions. In particular, the highest variability for erosion and leaching is 
observed for Hg, in which the standard deviation is circa 147% of the 
mean value (erosion) and 104% (for leaching), whilst for the soil, it is 
related to Cd reaching circa 265%. 

3.1.4. Olives 
Fig. 10 reports the quantities of heavy metals emitted to rivers, 

groundwater, and soil, referring to one kg of olives. The heavy metal 
results refer to 19 Italian regions (Aosta Valley is excluded from the 
sample due to a lack of statistical data), showing high variability from 
region to region through the three phenomena. 

In particular, concerning the erosion phenomena, the analysis shows 
that the highest amounts of heavy metals are emitted in Tuscany (0.93 g 

Fig. 7. Box Plot of heavy metals emissions for 1 kg of common wheat among 20 Italian regions.  
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of heavy metals/kg of olives), followed by Calabria and Piedmont 
(respectively 0.54 and 0.50 g of heavy metals/kg of olives). The region 
with the lowest overall eroded metals is Liguria, with only 0.004 g of 
heavy metals/kg of olives. This result is associated with the small 
amounts of eroded soil affected, in this case, by support practices and 
cover management factors that are smaller than in other regions. In 
addition, the relatively low allocation factor (influenced by small yield 
production and nutrient used per hectare compared to atmospheric 
deposition) contributes to that result. Instead, for the other regions, the 
heavy metal run-offs from erosion phenomena are less than 0.45 g 
(Marche). On average, the largest contribution to erosion phenomena 
for olives is made by Cr, Zn and Ni, which account respectively for about 
31.0%, 27.2% and 20.7% of emissions. While Pb and Cu emissions 
contribute 11.1% and 9.9%, Cd and Hg account for a significantly lower 
share (less than 0.1%) of total eroded heavy metals. 

Focusing on the leaching phenomena, the highest emissions to the 
groundwater occur in Piedmont and Trentino South Tyrol, with 0.055 
and 0.050 g for a kg of olives, while in the other regions, the heavy metal 
leached is less than 0.039 g for a kg of olives (Calabria). Considering that 

concentrations of heavy metals leached are almost homogeneous among 
regions for metals, the high variability is strongly affected by the allo
cation factor, for which the highest values are calculated for Piedmont 
and Trentino South Tyrol in almost all metals. On average, the largest 
contribution to leach phenomena for olives is made by Cr and Zn, rep
resenting about 46.0% and 30.4% of heavy metals leached in almost all 
the regions. Accounting for the high variability of results, an exception 
to these metals exists for Friuli Venezia Giulia, for which Cu contributes 
31.9% of its total heavy metals leached. 

Focusing on the balance of heavy metals in the soil, results are 
globally negative in all regions and for almost all metals. However, ex
ceptions are Cd for 3 regions (Apulia, Sicily, and Molise) and Hg for 8. 
Although their contributions increase the heavy metal globally added to 
the soil, their low values do not change the globally negative effects 
generated in regions soil (e.g., the balance of heavy metals for Apulia is 
− 0.02 g/kg of olives). Therefore, the highest heavy metals reduction is 
generated in Tuscany with − 0.96 g/kg of olive, while the other regions 
are affected by a reduction lower than − 0.56 g/kg of olive. In this case, 
the highest amounts of heavy metal reductions on average are Cr 

Fig. 8. Contribution analysis of heavy metals emissions for 1 kg of grapes among 20 Italian regions.  

Fig. 9. Box Plot of heavy metals emissions for 1 kg of grapes among 20 Italian regions.  

B. Notarnicola et al.                                                                                                                                                                                                                            



Cleaner Environmental Systems 9 (2023) 100122

10

(36.6%) and Zn (25.3%) since these heavy metals losses for leaching and 
erosion phenomena are more than that introduced in input with fertil
isers and pesticides. To this balance, it also contributes the heavy metals 
adsorbed by harvested products, representing about 16% of global 
heavy metals reversed on soil for agricultural activities, ranging from 1 
to 181%. 

Focusing on the individual heavy metals, Fig. 11 shows the vari
ability of heavy metal emissions per kg of olives among the 19 Italian 
regions for the three phenomena. As mentioned above, the heavy metal 
emissions vary significantly across regions for olive groves. In particular, 
the highest variability is observed for Cd emitted in the soil, in which the 
standard deviation is about 225.5% of the mean value, followed by Hg 
(196.8%) emitted in the soil. Indeed, the lowest variability is shown in 
Cr leached (49.8%). All the other resulting heavy metal emissions varied 
from 59.2% (Cu leached) to 133.5% (Hg run-offs). Other statistical data 
for olives are reported in Table 4 (SM). 

3.1.5. Oranges 
Fig. 12 shows the quantities of heavy metals emitted to rivers, 

groundwater and soil, referring to one kg of oranges. The data refer to 11 
Italian regions with statistically significant oranges production. The 
three emission compartments are analysed separately (Fig. 12 and SM 

Table 5). From the analysis, it emerges that, for those deriving from soil 
erosion as a result of run-off, the Liguria region has the highest values 
(0.11 g of heavy metals/kg of oranges), followed by Latium and Cam
pania (respectively 0.0922 g of heavy metals/kg of oranges and 0.0583 g 
of heavy metals/kg of oranges). The region with the lowest overall 
emissions is Apulia, with only 0.0209 g of heavy metals/kg of oranges. 
Based on productivity data extrapolated from official statistical sources, 
this region has the highest production yields per hectare, contributing to 
lower emission levels per unit of mass. In general, the largest contri
bution of heavy metals generated by the orange production process to 
the river is made by Cr, Zn and Ni, which all account for over 80% of 
total emissions on average for all regions. Pb and Cu emissions provide 
minor contributions (together, less than 20%), while Cd and Hg account 
for a significantly lower share of heavy metals emitted to the river 
(together, less than 1%). 

A different picture is represented when heavy metal leaching is 
analysed (Fig. 12 and SM). In this case, Latium is the region where the 
highest emissions occur (0.0050 g of heavy metals/kg of oranges), fol
lowed by Liguria (0.0048 g of heavy metals/kg of oranges) and Abruzzo 
(0.0038 g of heavy metals/kg of oranges). Instead, the lowest emissions 
are recorded in Basilicata and Apulia (0.0013 and 0.0015 g of heavy 
metals/kg of oranges, respectively), while in the other regions, total 

Fig. 10. Contribution analysis of heavy metals emissions for 1 kg of olives among 19 Italian regions.  

Fig. 11. Box Plot of heavy metals emissions for 1 kg of olives among 19 Italian regions.  
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emissions are around 0.0020 g of heavy metals/kg of oranges. Cr and Zn 
are the most emitted metals, reaching more than 92% (together) of the 
total emissions, while the sum of Pb and Cu account for just 7% of the 
total. Cd and Hg emissions are almost insignificant. 

Focusing on the mass balance of the soil, except for Cd, the results are 
always negative. It means that the heavy metals introduced on the soil as 
input (i.e., fertilisers, pesticides) are less than that loss as output through 
harvesting processes of plants (i.e., oranges collected) as well as leaching 
and erosion processes attributed to agriculture activities. 

In order to assess how regionalised data could affect the heavy metal 
results, the results of descriptive statistical analysis applied to heavy 
metals for oranges are reported in Fig. 13 and SM (Table 5), showing the 
graphical representation of the distribution of data and the tabular 
statistical data calculated, respectively. The analysis highlights high 
variability for oranges produced in different regions for the three phe
nomena and the seven heavy metals. In particular, by calculating the 
coefficient of variation (standard deviation/mean), it emerges that in 
the case of erosion emissions, the variability is rather high for all metals 

(e.g., 70.8% for Hg, 63.2% for Zn and 63.2% for Cd). Very high vari
ability values are also found in emissions by leaching. In particular, Hg 
has a variability of 73.6% and Zn of 49.9%. The highest values, however, 
are found in the ground-level balance of heavy metals, where Hg has a 
variability of 139.9%, Pb 75.9% and Zn 69.6%. 

3.2. Sensitivity analysis 

As highlighted above, each crop is characterised by specific culti
vation processes, varying from fertilisation processes to tillage and 
management of soil. Although these data influence heavy metal emis
sions, showing high variability except in some cases (e.g., Zn and Cr are 
generally the highest emissions contributions in leaching and erosions 
phenomena, while Hg and Cd are the lowest), the site-specific data 
extracted for each region and crop strongly affect their breadth. A 
sensitivity analysis is carried out to show the influences of orographic 
systems and the factor variation for crops, varying the SALCA factors for 
the 5 studied crops and the region’s average profiles, accounting for the 

Fig. 12. Contribution analysis of heavy metals emissions for 1 kg of oranges among 11 Italian regions.  

Fig. 13. Box Plot of heavy metals emissions for 1 kg of oranges among 11 Italian regions.  
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same data in input and output for each region. In particular, a generic 
agricultural product is considered as output (4000 kg/ha), and generic N 
fertiliser (120 kg/ha), generic P fertiliser (50 kg/ha), generic K fertiliser 
(120 kg/ha), and copper pesticides (4 kg/ha) as input. All the concen
trations of HM are taken from (Koch and Salou, 2016). The results are 
reported in Fig. 14 for 1 ha, divided into six scenarios: 1) Durum wheat, 
2) Common wheat, 3) Grapes, 4) Olives, 5) Oranges, and 6) Regional 
average. In this Figure, the minimum value is represented by the first 
line, whilst the maximum value by the last line. The lower quartile refers 
to the start of the box, whilst the upper quartile to the end of the box. The 
median corresponds to the line inside the box. Finally, the external 
points (outliers) are anormal values of the distribution. Instead, all the 
results of the descriptive analysis are reported in SM. 

As expected, heavy metal emissions vary from scenario to scenario. 
In particular, the highest mean variabilities are observed for grapes and 
average regional scenarios for almost heavy metals. While the lowest 
variabilities are generated in citrus scenarios, for which only one sample 
point exists in the LUCAS database, generating a small variability in 
emissions. In addition, for the wheat scenarios, the highest variability of 
heavy metals is generated for the erosion phenomenon of durum wheat 
(81.2%). This analysis strongly highlights the importance of site-specific 
data to obtain more representative inventory data in LCA, increasing 
data quality, especially for the agri-food sector. 

3.3. Challenges and limits 

The results provide an opportunity to reflect on the data, generally 
used for estimating heavy metal emissions in LCI of agri-food products. 
The proposed approach provides novel insights into the quantification of 
heavy metals loss for agricultural activities. The estimations of this study 
allow for considering the limits of data and the usefulness of the existing 
models. However, the methodological and data gaps and uncertainties 
are acknowledged. Heavy metal concentration in agri-food products, 
fertilisers, and pesticides represents one of the main issues. It is widely 
known that heavy metal concentration data reporting on agri-food 
products is still limited in the literature. 

For this reason, many existing LCA databases refer to Swiss data 
provided by (Freiermuth, 2006) instead of primary data extracted from 
laboratory tests. In addition, the continuous updating of the approved 
inputs list in agriculture (e.g., fertilisers, pesticides etc.) and the simul
taneous release of new input on the market do not provide clear and 
up-to-date information on the content of heavy metals in agricultural 
inputs. The labelling regulations for such agricultural inputs should be 
revised to include a requirement to declare the heavy metal content. 

In addition, the data reported on SALCA is limited due to a need for 
geo-referenced data on crop composition and soil properties. Using geo- 
referenced data for soil properties increases the geographical, temporal, 
and technological representativeness of agri-foods datasets, especially 

Fig. 14. Box plot of heavy metals emissions for 1 ha for production of generic product among 20 Italian regions and different crops factors.  
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for Italian case studies. Indeed, applying the SALCA model using specific 
Italian factors for representing leaching and erosion processes allows for 
considering Italy’s complex orographic systems (Khan and Chiti, 2022) 
and reducing the uncertainty in LCIs. 

In fact, extracting data for specific arable land and permanent crops 
(using LUCAS soil point) allows selecting average regional data, 
excluding the effects generated on soil from artificial land or forest. For 
example, as highlighted by (Panagos et al., 2015b), the C-factor could be 
totally different from forest to arable lands. The mean C-factor in Italy is 
estimated to be 0.13, with an extremely high variability; forests have the 
lowest mean C-factor (0.0013), and vineyards and olive lands are the 
highest (0.3454 and 0.2163, respectively). Contrarily, the mean 
LS-factor for Italy is 3.63 ± 4.86; forests have the highest mean LS-factor 
(6.64), and Arable land and Permanent crops the lowest (0.99 and 1.80, 
respectively) (Panagos et al., 2015a). Similar trends have also been 
noticed for the other factors (see (Panagos et al., 2014; Panagos et al., 
2020)). 

However, as mentioned above and reported in Fig. 3, although 
LUCAS includes 628 samples in the class cropland for Italy, for some 
crops (such as orange and citrus) and some Italian regions (such as Aosta 
valley and Liguria), this database does not provide the sufficient sample 
of points to provide reliable average site-specific data. 

Another limitation relates to the atmospheric deposition, assumed 
for this approach equal to the heavy metal emissions (Italian, 2021). 
Unfortunately, as mentioned above, no spatial data distribution was 
found for Italy for this parameter. The only data available refer to the 
heavy metal depositions reported by Nicholson et al. (2003) and EMEP 
(EMEP, 2021). However, the HM atmospheric deposition reported in the 
first document (Nicholson et al., 2003), although it seems the most 
coherent dataset regarding parameters and the number of heavy metals 
evaluated, refers to one rural area in 1997. These data cannot be 
accounted for in the study’s aim since heavy metal emissions have been 
strongly reduced since 1990 in all the Europe, affecting atmospheric 
deposition and making the data not representative of the current situ
ation. Indeed, the report proposed by EMEP calculated the atmospheric 
deposition of heavy metals among Europe countries. The report is 
limited to three heavy metals (Cd, Pb, and Hg) and provides only data at 
the national level. However, considering that Italy is characterised by a 
very diversified emission context at the territorial level (e.g., Lombardy 
originates the largest shares of emissions of all metals except for arsenic, 
deriving for the most part from Apulia), also these data could not be 
accounted representative for each Italian region. In addition, from the 
data reported in the EMEP report, it should be noted that the emission 
sources of Italy contribute from 58% to 81% of total depositions, and the 
other part comes from other countries. Instead, heavy metals emitted 
from Italy are 1.21–1.47 times that of deposition. Despite this, no ho
mogenous trend was observed among heavy metal depositions and 
emissions to estimate an eventual scaling factor. 

4. Conclusions 

The implementation of regionalised data in the SALCA model was 
aimed at bridging the existing gap regarding the use of heavy metal 
emission models suitable for representing the diversity of the Italian 
territory. Following the objectives of the ILCIDAF project, this study 
aimed to define a generalisable approach for estimating heavy metal 
emissions using site-specific and regionalised data. The model was then 
applied by using specific data for the agricultural productions of the four 
supply chains under study in the ILCIDAF project: the cereal, wine, olive 
oil and oranges supply chains. 

Using site- and crop-specific data in the SALCA model made it 
possible to assess heavy metal emissions caused by erosion, leaching and 
heavy metal balance in the soil. However, the most important aspect 
highlighted by the study was the variability of the data, which repre
sents the prowess of a regionalised approach to characterising the di
versity of the Italian territory through the SALCA model. 

All in all, even though the sensitivity analysis, where all the factors 
relating to the cultivation technique were kept constant, the use of site- 
specific data makes it possible to highlight the influence of the 
orographic characteristics of the territory. Therefore, the high vari
ability in the results is to be considered the strong point of this region
alised approach, which makes it possible to overcome some limits that 
the use of national average data would instead accentuate. Undoubtedly, 
further efforts are needed by the scientific community and public 
decision-makers to enable greater data availability. 

The continuation of the research will aim to enrich the database used 
for the regionalised SALCA model, in particular by integrating data on 
most of the crops grown in Italy, in order to make the model useable by 
the entire national scientific community. 
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