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Abstract
The main objective of the paper is to analyze how policymakers influence the ran-
dom oligopolistic market equilibrium problem. To this purpose, random optimal 
control equilibrium conditions are introduced. Since the random optimal regulatory 
tax is characterized by a stochastic inverse variational inequality, existence and well-
posedness results on such an inequality are proved. At last a numerical example is 
discussed.

Keywords  Random optimal control equilibrium problem · Stochastic inverse 
variational inequalities · Existence results · Well-posedness analysis

1  Introduction

Over the last few decades, random equilibrium problems have focused the interest of 
many scholars [see for example (Gwinner et al. 2021) and references cited therein]. 
The definition of random conditions in which the data are affected by a certain 
degree of uncertainty allows to model and analyze socio-physical phenomena 
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in a more realistic way. The study of random problems has had a remarkable 
development because the scholars have relevated that the constraints or data of real 
phenomena are often variable over time in a non-regular and unpredictable manner. 
Examples in which that happens are unpredictable events or sudden accidents. For 
these reasons, we propose an oligopolistic market equilibrium model capable of 
managing random constraints.

In the early 1950s, Nash (1950, 1951) presented the so-called non-cooperative 
game. In Dafermos and Nagurney (1987), Nagurney (1998a, 1998b), Nagurney et al. 
(1994), the problem was addressed in the static case by using a finite dimensional 
variational approach. Barbagallo et  al. (2009), considered the time dependence in 
the model obtaining its evolutionary variational equivalent formulation. Moreover 
the market has been described making use of the Lagrange multipliers in Barbagallo 
and Maugeri (2011). In Barbagallo and Mauro (2012a, 2012b), the dynamic model 
has been improved by considering production excesses and both production and 
demand excesses, respectively. In order to find approximate equilibrium solutions, a 
numerical method is analyzed in Barbagallo (2012). Then, in Barbagallo and Mauro 
(2014), the authors left the point of view of the producer whose aim is to maximize 
his profit, analyzing the policymaker one whose aim is to control exports of goods 
by imposing taxes or incentives. The optimal control model is characterized by an 
inverse variational inequality. In addition Barbagallo et al. (2013, 2016), considered 
the model in which the set of constraints depends on the expected equilibrium dis-
tribution. Such a problem is called elastic or with set adaptive constraint. In particu-
lar, in this model, the capacity constraint set is defined by means of a multifunction 
and the equilibrium conditions are expressed by an evolutionary quasi-variational 
inequality. Finally, in Barbagallo et al. (2021, 2023), the uncertainty in the oligopo-
listic market equilibrium problem is taken into account thanks to the introduction 
of random constraints. The random firms’ point of view is governed by a random 
Nash principle which is expressed by a stochastic variational inequality in a Hilbert 
space setting. Thanks to the variational formulation the existence and the unique-
ness of the equilibrium solution has been investigated [see also Dorta-González 
et al. (2004); Muu et al. (2008); Xian et al. (2004); Zhou et al. (2005)]. Furthermore, 
in Barbagallo et al. (2021), the random optimal control problem is introduced and 
characterized by a stochastic inverse variational inequality.

Now we are interested to study the existence and well-posedness of the random 
optimal control equilibirum problem. In particular, we present the producer’s point 
of view of the random oligopolistic market equilibrium problem in presence of pro-
duction excesses. We underline that the production excesses occur when, in a period 
of economic crisis, the firms cannot sell all the amounts of the commodity producted 
to the demand markets. The equilibrium condition of such a problem is expressed 
by a stochastic variational inequality. After that, the policymaker’s point of view is 
discussed. In particular, control policies are considered by imposing higher taxes or 
subsidies in order to reduce or encourage the commodity exportations in a stochastic 
framework. Therefore, this model is a policymaker optimization problem and, in this 
setting, we establish the equivalence between the random taxes system that controls 
the commodity exportations and a stochastic inverse variational inequality. Thanks 
to this characterization, we show under which assumptions the random optimal 
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control regulatory tax exists. Since the equivalence between the stochastic inverse 
variational inequality and a standard stochastic variational inequality is established, 
it is worth introducing a numerical scheme for solving the last one.

Numerical methods for variational inequalities in the deterministic setting have 
been extensively studied [see, for instance, Facchinei and Pang (2003)]. If the 
expected value of the operator is completly available, then stochastic variational ine-
qualities can be solved by these methods. On the contrary, when such a value is not 
available, the sampling of the random variable and the use of values of the operator 
given a sample (the procedure is called a “stochastic oracle” call) are requested. In 
this situation, there are two methodologies for solving stochastic variational inequal-
ities: sample average approximation and stochastic approximation. In this paper, we 
consider the stochastic approximation approach. The stochastic approximation meth-
odology is a projection-type method where the exact mean of the expected value 
of the operator is replaced along the iterations by a random sample of the operator. 
This method causes a stochastic error in the trajectory of the method. We stress that 
the generated sequence is a stochastic process which updates iteratively according to 
the chosen projection algorithm and the sampling information used in each iteration. 
Therefore, asymptotic convergence of the stochastic approximation method guaran-
tees a solution with total probability. The first analysis of the stochastic approxima-
tion approach has been recently carried out in Jiang and Xu (2008). The stochastic 
approximation methodology has been first proposed by Robbins and Monro (1951) 
for stochastic equations. After this fundamental work, such a  methodology has 
been used by several scholars for solving stochastic variational inequalities [see, for 
instance, Juditsky et al. (2011), Koshal et al. (2013), Wang and Bertsekas (2016)]. 
In this paper, we propose a new stochastic approximation methodology which gen-
erates a sequence updating iteratively according to the projected reflected gradient 
algorithm and the sampling fixed in every iteration. Such a projection algorithm has 
been studied by Malitsky in the deterministic framework [see Malitsky (2015)]. In 
addition, starting form the convergence analysis in Malitsky (2015), we deduce that 
our numerical method has a solution with total probability.

 Another purpose of the paper is to generalize the notion of well-posedness for 
a variational inequality, introduced in Lucchetti and Patrone (1981), to the class of 
stochastic inverse variational inequalities which express the random elastic oligopo-
listic market equilibrium conditions. The well-posedness has a crucial role in the 
study of optimization problems. The first scholar who introduced the concept of 
well-posedness was Tykhonov in Tykhonov (1966) for a global minimization prob-
lem, well-known as well-posedness. The well-posedness of a global minimization 
problem requires the existence and uniqueness of minimizer, and the convergence of 
every minimizing sequence to the unique minimizer. The concept of well-posedness 
can also be used in a constrained minimization problem in an abstract way. We high-
light that the well-posedness of a constrained minimization problem requires that 
every minimizing sequence should be cointained in the constraint set. This sequence 
is called a generalized minimizing sequence for constrained minimization problems. 
Since a minimization problem is equivalent to a variational inequality under convex-
ity and differentiability assumptions, it worth studing the well-posedness also for 
variational inequalities. Here, the stochastic formulation of generalized minimizing 
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sequence is given. In addition, the concept of well-posedness to a stochastic inverse 
variational inequality is presented and some metric characterizations are established. 
Under suitable conditions, the equivalence between the well-posedness of a stochas-
tic inverse variational inequality and the existence and uniqueness of its solution is 
proved. Finally, the well-posedness of a stochastic inverse variational inequality is 
characterized with the well-posedness of a suitable classical stochastic variational 
inequality.

The paper is organized as follows. In Sect.  2, the random oligopolistic market 
equilibrium model is presented. In particular, the equivalence between the ran-
dom Nash equilibrium condition and a stochastic variational inequality is shown. 
Furthermore, the random optimal control problem is studied by using a stochastic 
inverse variational inequality. In Sect. 3 an existence result of the random optimal 
regulatory tax is proved. Section 4 is devoted to the well-posedness of the stochastic 
inverse variational inequality. Finally, in Sect. 5 a numerical example is provided.

2 � The random optimal control equilibrium model

This section aims to explore the random optimal control equilibrium problem. 
Before going into the specific problem, let us first present in detail the firms’ point of 
view of the oligopolistic market equilibrium problem in which the data are affected 
by a certain degree of uncertainty and production excesses occur.

Let (Ω,A,ℙ) be a probability space. Let L2(Ω,ℝk,ℙ) be the Hilbert space of ran-
dom vectors v ∶ Ω → ℝ

k such that the expectation

is finite. We introduce the bilinear form on (L2(Ω,ℝk,ℙ))∗ × L2(Ω,ℝk,ℙ) as

where � ∈ (L2(Ω,ℝk,ℙ))∗ = L2(Ω,ℝk,ℙ), w ∈ L2(Ω,ℝk,ℙ) and

We consider m firms Pi , i = 1,… ,m , which produce a homogeneous commod-
ity and n demand markets Qj , j = 1,… , n, which are generally spatially separated. 
Assume that the homogeneous commodity, produced by the m firms and consumed 
by the n markets, depends on random variables. We denote:

•	 the random variable expressing the nonnegative commodity output produced by 
the firm Pi by pi = pi(�) , � ∈ Ω , i = 1,… ,m;

𝔼‖v‖2 = ∫Ω

‖v(�)‖2dℙ

≪ 𝜙,w ≫
𝔼
= ∫Ω

⟨𝜙(𝜔),w(𝜔)⟩dℙ,

⟨�(�),w(�)⟩ =
k�

l=1

�l(�)wl(�).
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•	 the random variable expressing the nonnegative demand for the commodity of 
the demand market Qj by qj = qj(�), � ∈ Ω , j = 1,… , n;

•	 the random variable expressing the nonnegative commodity shipment between 
the supply producer Pi and the demand market Qj by xij = xij(�) , � ∈ Ω , 
i = 1,… ,m , j = 1,… , n;

•	 the random variable expressing the nonnegative strategy of the firm Pi by 
xi(�) = (xi1(�),… , xin(�)) , � ∈ Ω, i = 1,… ,m;

•	 the random variable expressing the nonnegative production excess for the 
commodity of the firm Pi by �i = �i(�) , � ∈ Ω , i = 1,… ,m.

For technical reasons, we assume that the random commodities belong to the Hil-
bert space L2(Ω,ℝmn

+
,ℙ).

We suppose that the following feasibility conditions hold:

Thus the random quantity produced by each firm Pi has to be equal to the random 
commodity shipments from that firm to all the demand markets plus the random 
production excesses.

Since the random production excesses are nonnegative, we can rewrite (1), as

Moreover, we assume that there exist two nonnegative random variables 
x, x ∈ L2(Ω,ℝmn

+
,ℙ) such that

Hence, the set of feasible distributions x ∈ L2(Ω,ℝmn
+
,ℙ) is

which is a convex closed bounded subset of L2(Ω,ℝmn
+
,ℙ).

We introduce:

•	 the random variable fi denoting the production cost for each firm Pi , such that 
fi = fi(�, x(�)) , � ∈ Ω, i = 1,… ,m;

•	 the random variable dj denoting the demand price of the commodity for each 
demand market Qj, such that dj = dj(�, x(�)) , � ∈ Ω, j = 1,… , n;

(1)pi(�) =

n∑
j=1

xij(�) + �i(�), i = 1,… ,m, ℙ − a.s.,

(2)
n∑
j=1

xij(�) ≤ pi(�), i = 1,… ,m, ℙ − a.s.

(3)0 ≤ x
ij
(�) ≤ xij(�) ≤ xij(�), ∀i = 1,… ,m, ∀j = 1,… , n, ℙ − a.s.

(4)

𝕂
∗ =

{
x ∈ L2(Ω,ℝmn

+
,ℙ) ∶ 0 ≤ x

ij
(�) ≤ xij(�) ≤ xij(�),

∀i = 1,… ,m, ∀j = 1,… , n, ℙ − a.s.,
n∑
j=1

xij(�) ≤ pi(�), i = 1,… ,m, ℙ − a.s.

}
,
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•	 the random variable gi expressing the storage cost of the commodity produced by 
the firm Pi , such that gi = gi(�, x(�)) , � ∈ Ω, i = 1,… ,m;

•	 the random variable cij expressing the transaction cost, which includes the trans-
portation cost associated with trading the commodity between the firm Pi and the 
demand market Qj , such that cij = cij(�, x(�)) , � ∈ Ω, i = 1,… ,m , j = 1,… , n;

•	 the random variable �ij expressing the supply or resource tax imposed on 
the supply market Pi for the transaction with the demand market Qj , such that 
�ij = �ij(�) , � ∈ Ω, i = 1,… ,m , j = 1,… , n;

•	 the random variable �ij expressing the incentive pay imposed on the supply 
market Pi for the transaction with the demand market Qj , such that �ij = �ij(�) , 
� ∈ Ω, i = 1,… ,m , j = 1,… , n;

•	 the random variable hij expressing the difference between the supply tax and 
the incentive pay imposed on the supply market Pi for the transaction with the 
demand market Qj , namely hij = hij(�) = �ij(�) − �ij(�) , � ∈ Ω, i = 1,… ,m , 
j = 1,… , n.

We underline that �, � ∈ L2(Ω,ℝmn
+
,ℙ) and, hence, also h ∈ L2(Ω,ℝmn,ℙ).

The profit vi of the firm Pi is, then, given by

namely it is equal to the price which the demand markets are disposed to pay minus 
the production cost, the transportation cost, the storage cost and the taxes. These 
kind of costs all together determine the total cost must be considered.

Assuming that the profit function vi is continuously differentiable for each 

i = 1,… ,m , let us indicate with ∇Dv =

(
�vi

�xij

)
i = 1,… ,m

j = 1,… , n

 . Let us assume that: 

1.	 ∇Dv is a Carathéodory mapping and there exists b ∈ L2(Ω,ℝmn
+
,ℙ) such that 

2.	 vi is pseudoconcave1 with respect to the variables xi, i = 1,… ,m.
The firms supply the commodity in a noncooperative fashion, namely each one tries 
to maximize its own profit function considered the optimal distribution pattern for 
the other firms. Hence, we state the random equilibrium condition by means of the 
random Nash principle.

vi(�, x(�)) =

n∑
j=1

dj(�, x(�))xij(�) − fi(�, x(�)) −

n∑
j=1

cij(�, x(�))xij(�)

− gi(�, x(�)) −

n∑
j=1

hij(�)xij(�), i = 1,… ,m, ℙ − a.s.,

��∇Dv(�, x(�))
�� ≤ b(�)‖x(�)‖, ∀x ∈ L2(Ω,ℝmn

+
,ℙ), ℙ − a.s. ;

1  A function vi , continuously differentiable, is called pseudoconcave with respect to xi, i = 1,… ,m , [see 
Mangasarian (1965)] if and only if

⟨

�vi
�xi

(x1,… , xi,… , xm), xi − yi

⟩

≥ 0 ⇒ vi(x1,… , xi,… , xm) ≥ vi(x1,… , yi,… , xm).
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Definition 1  The feasible mapping x∗ ∈ � is a random oligopolistic market 
equilibrium distribution if and only if for each i = 1,… ,m and ℙ-a.s. it results

where x∗
−i
(�) = (x∗

1
(�),… , x∗

i−1
(�), x∗

i+1
(�),… , x∗

m
(�)) , i = 1,… ,m , ℙ-a.s., and 

xi(�) = (xi1(�),… , xin(�)) , i = 1,… ,m , ℙ-a.s.

It is possible to prove that under Assumptions 1 and 2, Definition 1 is equiva-
lently expressed by the following stochastic variational inequality [see Barbagallo 
et al. (2021)]

namely

In the sequel we present the random optimal control problem. Let us start to remark 
that here the random variable h has a different meaning. Precisely, while h is a fixed 
parameter in the producers’ perspective, it is a variable in the policymaker’s one.

Let x(h) = x(�, h(�)) be the random function of regulatory taxes, with 
h ∈ L2(Ω,ℝmn,ℙ) , ℙ-a.s. We assume that 

(a)	 x ∶ Ω × L2(Ω,ℝmn,ℙ) → L2(Ω,ℝmn,ℙ) is a Carathéodory function and there 
exists a function � ∈ L2(Ω,ℙ) such that 

The set of feasible states is given by

Definition 2  A random regulatory tax h∗ ∈ L2(Ω,ℝmn,ℙ) is a random optimal 
regulatory tax if x(h∗) ∈ W and, for i = 1,… ,m , j = 1,… , n , ℙ-a.s., the following 
implications hold:

(5)vi(�, x
∗(�)) ≥ vi(�, xi(�), x

∗
−i
(�)),

(6)Find x∗ ∈ � ∶ ≪ −∇Dv(x
∗), x − x∗ ≫

�
≥ 0, ∀x ∈ �,

Find x∗ ∈ 𝕂 ∶ �Ω

m∑
i=1

n∑
j=1

�vi(�, x
∗(�))

�xij

(
xij(�) − x∗(�)

)
dℙ ≥ 0, ∀x ∈ 𝕂.

(7)‖x(�, h(�))‖ ≤ �(�) + ‖h(�)‖, ∀h ∈ L2(Ω,ℝmn,ℙ), ℙ − a.s.

(8)
W =

{
w ∈ L2(Ω,ℝmn,ℙ) ∶ 0 ≤ x

ij
(�) ≤ wij(�) ≤ xij(�),

∀i = 1,… ,m, ∀j = 1,… , n, ℙ − a.s.

}
.

xij(𝜔, h
∗(𝜔)) = x

ij
(𝜔) ⇒ h∗

ij
(𝜔) ≤ 0,

x
ij
(𝜔) < xij(𝜔, h

∗(𝜔)) < xij(𝜔) ⇒ h∗
ij
(𝜔) = 0,

xij(𝜔, h
∗(𝜔)) = xij(𝜔) ⇒ h∗

ij
(𝜔) ≥ 0.
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Definition 2 means that the random optimal regulatory tax h∗ is such that the 
corresponding state x(h∗) has to satisfy capacity constraints, namely x(h∗) ∈ W  . 
Furthermore if xij(�, h∗(�)) = x

ij
(�) , then the random exportations must be 

encouraged, namely the random taxes must be less than or equal to the random 
incentive pays. If xij(�, h∗(�)) = xij(�), then the random exportations must be 
reduced, hence the random taxes must be greater than or equal to the random 
incentive pays. At last if x

ij
(𝜔) < xij(t, h

∗(𝜔)) < xij(𝜔) is satisfied, so the random 
taxes must be equal to the random incentive pays.

Definition 2 is characterized by the following stochastic inverse variational 
inequality [see Barbagallo et al. (2021)]

Let us set Z = L2(Ω,ℝmn,ℙ) ×W and indicate with

Therefore, we consider the mapping F ∶ Ω × Z → L2(Ω,ℝ2mn,ℙ) , defined as

we note that Z is a closed convex and unbounded subset of L2(Ω,ℝ2mn,ℙ). The fol-
lowing result holds (see Barbagallo et al. (2021)).

Theorem  1  The stochastic inverse variational inequality (9) is equivalent to the 
following stochastic variational inequality

3 � Existence results

In this section we show an existence result for the stochastic inverse variational 
inequality (9). For this purpose, we suppose that 

(b)	 x ∶ Ω × L2(Ω,ℝmn,ℙ) → L2(Ω,ℝmn,ℙ) is anti-monotone with respect to h, 
namely 

(9)

Find h∗ ∈ L2(Ω,ℝmn,ℙ) ∶ x(h∗) ∈ W,

�Ω

m∑
i=1

n∑
j=1

(
wij(�) − xij(�, h

∗(�))
)
h∗
ij
(�)dℙ ≤ 0, ∀w ∈ W.

z(�) =

(
h(�)

w(�)

)
∈ Z.

F(�, z(�)) =

(
w(�) − x(�, h(�))

−h(�)

)
, ∀z ∈ Z, ℙ − a.s.

(10)

Find z∗ ∈ Z ∶ �Ω

2m∑
r=1

n∑
s=1

Frs(�, z
∗(�))

(
zrs(�) − z∗

rs
(�)

)
dℙ ≥ 0, ∀z ∈ Z.
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(c)	 There exists a constant M > 0 such that for any h ∈ L2(Ω,ℝmn,ℙ) , with 
‖h‖L2(Ω,ℝmn,ℙ) > M , it results 

 where wproj

0
 is the projection of w0(�) = x(�, 0) into the feasible set W, namely 

Assumption (11) implies that if we assume the random price large enough ( w0(�) 
positive enough for w0(�) ≤ x and negative enough for w0(�) ≤ x ), then the resulted 
load curve x(�, h(�)) will be strictly controlled in the interior of the feasible set W. 
More precisely, since x(h) is nonincreasing with respect to h, which is a result of the 
market law, if we take hij < 0 for those i with w0

ij
≥ xij , certainly xij(h) ≥ xij will not 

be changed; if we increase hij from 0 to a value large enough, then xij(h) ≤ xij will 
happen. As such, we assume reasonably that there exists M > 0 such that if 
abs (hij) > M then it holds that hij(xij − xij(h)) ≥ 0 , for every i = 1,… ,m , 
j = 1,… , n , with w0

ij
≥ xij . Similarly, for those i and j with w0

ij
≤ x

ij
 , if we take 

hij > 0 , then xij(h) ≤ x
ij
 will not vary; if hij is decreased from zero to a sufficiently 

negative value, then xij(h) ≥ x
ij
 will happen. In this case, we may assume that there 

exists M > 0 such that if abs (hij) > M then it holds that hij(xij − xij(h)) ≥ 0 , for 
every i = 1,… ,m , j = 1,… , n , with w0

ij
≤ x

ij
 . For those i and j such that 

x
ij
< w0

ij
< xij , considering the monotonicity of x(h) with respect to h, it is obvious 

that hij(w0
ij
− xij(h)) ≥ 0.

Making use of Theorem 3 in Barbagallo and Guarino Lo Bianco (2023), we can 
establish the following existence result.

Theorem 2  Let us suppose that conditions (a), (b) and (c) hold. Then the stochastic 
inverse variational inequality (9) admits a solution.

3.1 � Stochastic approximation method

Since Theorem  1 establishes the equivalence between the stochastic inverse vari-
ational inequality (9) and the stochastic variational inequality (10), it is also worth 
investigating on (10).

⟨h1(�) − h2(�), x(�, h1(�)) − x(�, h2(�))⟩ ≤ 0,

∀h1, h2 ∈ L2(Ω,ℝmn,ℙ), ℙ − a.s.;

(11)�Ω

⟨h(�),wproj

0
(�) − x(�, h(�))⟩dℙ ≥ 0,

w
proj

0
(𝜔) =

⎧
⎪⎨⎪⎩

x(𝜔), if w0(𝜔) ≤ x(𝜔), ℙ − a.s.,

w0(𝜔), if x(𝜔) < w0(𝜔) < x(𝜔), ℙ − a.s.,

x(𝜔), if w0(𝜔) ≥ x(𝜔), ℙ − a.s.
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Stochastic variational inequalities have been studied not only for the theoreti-
cal point of view but also for what concerns numerical aspects. The first stochastic 
approximation methods was proposed by Jiang and Xu (2008). The algorithm itera-
tively updates zn according to the formula:

where PZ is the Euclidean projection operator onto K, {zn} is an approxima-
tion of x and {�n} is a sequence of positive stepsizes. If A is strongly monotone or 
strictly monotone, L-Lipschitz continuous and the stepsizes satisfy 

∑
n �n = ∞ , ∑

n 𝛼
2
n
< ∞ (with 0 < 𝛼n < 2𝜈∕L2 in the case where A is �-strongly monotone) 

and an unbiased oracle with uniform variance (namely there exists 𝜎 > 0 such 
that �

�‖F(�, z) − �[F(�, z)]‖2� ≤ �2 , for all z ∈ Z ), then the method determines a 
sequence almost surely convergent. Later many scholars analyzed different stochas-
tic approximation methods based on the projection operator, see for instance (Judit-
sky et al. 2011; Koshal et al. 2013; Wang and Bertsekas 2016).

Now, we introduce a new projection method for monotone and Lipschitz-continu-
ous mapping with constant L > 0 . More precisely, it is a projected reflected gradient 
algorithm with a constant stepsize which requires only one projection onto the fea-
sible set and only one value of the mapping per iteration. The method for the deter-
ministic case was studied in Malitsky (2015). Let us denote the residual function by

Now we formally state our iterative scheme.

3.2 � Algorithm

1.	 Choose z0 = y0 ∈ Z , �0 ∈ Ω and � ∈
�
0,

√
2−1

L

�
.

2.	 Given zn , yn and �n , compute 

3.	 If R(zn, yn) = 0 then stop: zn = yn = zn+1 is a solution. Otherwise compute 

 set n = n + 1 and return to step 2.
Assuming that the mapping A is monotone and Lipschitz continuous with constant 
L > 0 , and the unbiased oracle has uniform variance, the algorithm generates a 
sequence {zn} weakly convergent to a solution to the stochastic variational inequality.

4 � Well‑posedness conditions

The purpose of this section is to investigate on the well-posedness of the random 
optimal control problem.

zn+1 = PZ[zn − �nF(�n, zn)],

R(z, y) = ‖y − PZ(z − �F(�, y))‖ + ‖z − y‖.

zn+1 = PZ(zn − �F(�n, yn)).

yn+1 = 2zn+1 − zn,
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We say that a sequence {hn} ⊂ L2(Ω,ℝmn,ℙ) is an approximating sequence for (9) 
if and only if there exists a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , as 
n → +∞ , such that

Definition 3  The stochastic inverse variational inequality (9) is well-posed if and 
only if (9) has a unique solution and every approximating sequence converges to the 
unique solution.

Proceeding with the same arguments of Theorem 4 in Barbagallo and Guarino Lo 
Bianco (2023), the next well-posedness result can be proved.

Theorem 3  Let x ∶ Ω × L2(Ω,ℝmn,ℙ) → L2(Ω,ℝmn,ℙ) be an hemicontinuous along 
line segments and anti-monotone mapping. Then, (9) is well-posed if and only if it 
has a unique solution.

The well-posedness for the stochastic variational inequality (10) can be intro-
duced following analogous statements as in Definition 3. More precisely, a sequence 
{zn} ⊂ L2(Ω,ℝmn,ℙ) is called an approximating sequence for (10), if and only if there 
exists a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , as n → +∞ , such 
that

In addition, we say that (10) is well-posed if and only if (10) has a unique solution 
and every approximating sequence converges to the unique solution.

We can establish the bridge between the well-posedness of (10) and the one of (10), 
following the same technique used to prove Theorem 5 in Barbagallo and Guarino Lo 
Bianco (2023).

Theorem  4  Let x ∶ Ω × L2(Ω,ℝmn,ℙ) → L2(Ω,ℝmn,ℙ) be a continuous mapping. 
Then, (9) is well-posed if and only if (10) is well-posed.

Let 𝛼 > 0 . A sequence {hn} ⊂ L2(Ω,ℝmn,ℙ) is said to be an �-approximating 
sequence for the stochastic inverse variational inequality (9) if and only if there exists a 
sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , as n → +∞ , such that

Definition 4  We say that the stochastic inverse variational inequality (9) is �
-well-posed in the generalized sense if and only if it has a nonempty solution set 

�Ω

⟨hn(�),w(�) − x(�, hn(�))⟩ dℙ ≤ �n, ∀w ∈ W, ∀n ∈ ℕ.

�Ω

⟨F(�, zn(�)), zn(�) − z(�)⟩ dℙ ≤ �n, ∀z ∈ Z, ∀n ∈ ℕ.

�Ω

⟨hn(�),w(�) − x(�, hn(�))⟩dℙ ≤ �

2
‖w − x(hn)‖2 + �n, ∀w ∈ W, ∀n ∈ ℕ.
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S and every �-approximating sequence has some subsequence which converges to 
an element of S. If the solution set S has only one element, we say that (9) is �
-well-posed.

In the following, 0-well-posedness in the generalized sense is simply said as 
well-posedness in the generalized sense, similarly for the 0-well-posedness. To 
prove our main results, we first establish the following lemma.

Lemma 5  Let W be a nonempty convex subset of L2(Ω,ℝmn,ℙ) . Let � ≥ 0 and 
h∗ ∈ L2(Ω,ℝmn,ℙ) . Then h∗ is a solution to (9) if and only if

Proof  The necessary condition is trivial. Let us fix w ∈ W . For the convexity of W, 
we have that x(�, h∗(�)) + t(w − x(�, h∗(�))) ∈ W . Thus, it results

Then the claim follows by passing to the limit as t → 0 . 	�  ◻

Likewise, a sequence {zn} ⊂ L2(Ω,ℝmn,ℙ) is called �-approximating sequence 
for the stochastic variational inequality (10) if and only if there exists a sequence 
{�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , as n → +∞ , such that

Definition 5  The stochastic variational inequality (10) is said well-posed in the 
generalized sense if and only if (10) has a nonempty solution set S and every 
approximating sequence has a subsequence which converges to an element of S.

By using the same arguments proposed in the proof of Theorem 5 in Barba-
gallo and Guarino Lo Bianco (2023), we can obtain the following result.

Theorem  6  Let W be a closed subset of L2([0, T],ℝmn,ℙ) and let 
x ∶ Ω × L2([0, T],ℝmn,ℙ) → L2([0, T],ℝmn,ℙ) be a continuous mapping. Then, 

�Ω

m�
i=1

n�
j=1

h∗(�)(wij(�) − xij(�, h
∗(�))) dℙ ≤ �

2
‖w − x(�, h∗(�))‖2, ∀w ∈ W.

�Ω

m�
i=1

m�
j=1

(wij(�) − xij(�, h
∗(�)))h∗

ij
(�) dℙ

= �Ω

m�
i=1

m�
j=1

(wij(�) − t(wij(�) − xij(�, h
∗(�))))h∗

ij
(�) dℙ

≤ �

2
‖t(wij(�) − xij(�, h

∗(�)))‖2

=
�t2

2
‖wij(�) − xij(�, h

∗(�))‖2.

�Ω

⟨F(�, zn(�)), zn(�) − z(�)⟩ dℙ ≤ �

2
‖zn − z‖ + �n, ∀z ∈ Z, ∀n ∈ ℕ.
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(9) is well-posed in the generalized sense if and only if (10) is well-posed in the 
generalized sense.

Let W be a nonempty closed convex subset of L2([0, T],ℝmn,ℙ) . The �-approx-
imating solution set T�(�) of (9), for every 𝜀 > 0 , is defined as

To state the results of well-posedness it is necessary to introduce a measure of non-
compactness, that is, a measure that associates zero to each compact set and a posi-
tive number to each other set according to “how far" they are from the compactness. 
There are at least two possible measures of noncompactness. In this paper we con-
sider the Kuratovski one [see Kuratowski (1968)].

Definition 6  Let W be a nonempty subset of L2(Ω,ℝmn,ℙ) . The (Kuratovski) 
noncompactness measure � of the set W is

where every {Wi}i=1,…,n , is a finite covering of the set W.

We recall the definition of the Hausdorff distance.

Definition 7  Let W1 and W2 be two nonempty subsets of L2(Ω,ℝmn,ℙ) . We define 
the surplus of W1 over W2 as

The Hausdorff distance between W1 and W2 is given by

In the following we show a metric characterization of the �-well-posedness 
of (9) in terms of the diameter of the set T�(�) . A similar result for inverse ten-
sor variational inequalities is obtained in Anceschi et  al. (2023). Since we are 
studing stochastic inverse variational inequalities, and so we have to consider the 
inner product in the probability space L2(Ω,ℝmn,ℙ) , we prove the metric charac-
terization in detail. Therefore, by using the same arguments of the proof of Theo-
rem 4.1 in Anceschi et al. (2023), we can obtain the following result.

Theorem  7  Let W be a nonempty closed convex subset of L2(Ω,ℝmn,ℙ) . Let 
x ∶ Ω × L2(Ω,ℝmn,ℙ) → L2(Ω,ℝmn,ℙ) be a continuous mapping. Then (9) is �
-well-posed if and only if

T�(�) =
�
h ∈ L2(Ω,ℝmn,ℙ) ∶ x(h) ∈ W,

�Ω

⟨h(�),w(�) − x(�, h(�))⟩ dℙ ≤ �

2
‖w − x(h)‖2 + �, ∀w ∈ W

�

𝜇(W) = inf
{
𝜀 > 0 ∶ W ⊂ ∪n

i=1
Wi, diamWi < 𝜀, i = 1,… , n

}
,

e(W1,W2) = sup
{
d(A,W2) ∶ A ∈ W1

}
.

ℍ(W1,W2) = max
{
e(W1,W2), e(W2,W1)

}
.
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Proof  We start assuming that (9) is �-well-posed. Hence, (9) has a unique solution h∗ 
and, in particular, h∗ ∈ T�(�) for every 𝜀 > 0 . By contradiction, if diam T�(�) ↛ 0 , 
as � → 0 , there exist l > 0 , a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , �n → 0 , as 
n → +∞ , and un, vn ∈ T�(�n) , for every n ∈ ℕ , such that

Since un, vn ∈ T�(�n) , for every n ∈ ℕ , both {un} and {vn} are �-approximating 
sequences for (9). By the assumption of �-well-posedness, both two sequences con-
verge to the unique solution h∗ to (9), which is in contradiction with (13).

Vice versa, we assume that (12) holds. Let {hn} ⊂ L2(Ω,ℝmn,ℙ) be an �-approxi-
mating sequence for (9). Then there exists a sequence {�n} , with 𝜀n > 0 , for every 
n ∈ ℕ , and �n → 0 , as n → +∞ , such that x(hn) ∈ W , for every n ∈ ℕ , and

Consequently hn ∈ T�(�n) , for every n ∈ ℕ , and by (12), {hn} is a Cauchy sequence 
which converges to an element h ∈ L2(Ω,ℝmn,ℙ) . Being x continuous and W a 
closed set, we deduce x(h) ∈ W and

By using Lemma 5, we have that h is a solution to (9). In order to conclude the 
proof, we must show that (9) has a unique solution. Indeed, assuming by contradic-
tion that the problem has two distinct solutions h1 and h2 . As a consequence, it fol-
lows that h1, h2 ∈ T�(�) , for every 𝜀 > 0 , and, then 0 < ‖h1 − h2‖ ≤ diam T𝛼(𝜀) , in 
contradiction with (12). 	�  ◻

Now we establish the metric characterization of the �-well-posedness in the 
generalized sense of (9) in terms of the measure of noncompactness of the set 
T�(�) . An anologous result for inverse tensor variational inequalities is proved 
in Anceschi et  al. (2023). However, for the reader’s convenience, we report the 
proof details to highlight the differences in the stochastic setting. Thus, by using 
the same arguments of the proof of Theorem 4.2 in Anceschi et al. (2023), we can 
obtain the following result.

Theorem  8  Let W be a nonempty closed convex subset of L2(Ω,ℝmn,ℙ) . Let 
x ∶ Ω × L2(Ω,ℝmn,ℙ) → L2(Ω,ℝmn,ℙ) be a continuous mapping. Then (9) is �
-well-posed in the generalized sense if and only if

(12)T𝛼(𝜀) ≠ �, ∀𝜀 > 0, and diam T𝛼(𝜀) → 0, as 𝜀 → 0.

(13)‖vn − un‖ > l, ∀n ∈ ℕ.

(14)
�Ω

⟨hn(�),w(�) − x(�, hn(�))⟩ dℙ ≤ �

2
‖w − x(hn)‖2 + �n, ∀w ∈ W, ∀n ∈ ℕ.

�Ω

⟨h(�),w(�) − x(�, h(�))⟩dℙ ≤ �

2
‖w − x(h)‖2, ∀w ∈ W.

(15)T𝛼(𝜀) ≠ �, ∀𝜀 > 0, and 𝜇
(
T𝛼(𝜀)

)
→ 0, as 𝜀 → 0.
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Proof  At first, we suppose that (9) is �-well-posed in the generalized sense. Then 
its solution set S is nonempty and compact. Indeed, if {hn} is a sequence in S, then 
it is an �-approximating sequence for (9). By virtue of the �-well-posedness in the 
generalized sense, we deduce that {hn} has a subsequence which converges to an 
element of S. Thus, S is compact. In addition, it results that � ≠ S ⊂ T𝛼(𝜀) , for every 
𝜀 > 0 . Consequently, it follows

Hence, by using the compactness of S, we have

We argue by contradiction, assuming that e(T�(�), S) ↛ 0 , as � → 0 . Therefore, 
there exist l > 0 , a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , �n → 0 , as n → +∞ , 
and hn ∈ T�(�n) , for every n ∈ ℕ , such that

where B(0,  l) is the closed ball centered at zero with radius l in the space 
L2(Ω,ℝmn,ℙ) . Since hn ∈ T�(�) , for every n ∈ ℕ , {hn} is an �-approximating 
sequence for (9). Therefore, there exists a subsequence {hnk} which converges to an 
element of S. Hence, it is a contradiction with (16).

Vice versa, we assume that (15) holds. Being x continuous and W a closed set, it 
follows that T�(�) is closed and nonempty, for every 𝜀 > 0 . We consider

Taking into account of Lemma 5, we deduce S� = S.
By assumption (15) and making use of Theorem of p. 412 of Kuratowski (1968), 

we can conclude that S is nonempty compact and e(T�(�), S) = ℍ(T�(�), S) → 0 , as 
� → 0.

Let {gn} ⊂ L2(Ω,ℝmn,ℙ) be an �-approximating sequence for (9). Then, there 
exists a sequence {�n} , with 𝜀n > 0 , for every n ∈ ℕ , and �n → 0 , as n → +∞ , such 
that x(gn) ∈ W , for every n ∈ ℕ , and

As a consequence, gn ∈ T�(�n) , for every n ∈ ℕ , and, hence, we have 
d(gn, S) ≤ e(T�(�n), S) → 0 . Since S is compact, there exists hn ∈ S such that 
‖gn − hn‖ = d(gn, S) → 0, as n → +∞ . By the same assumption, we also deduce 
that the sequence {hn} has a subsequence which converges to h ∈ S . Therefore, 

ℍ(T𝛼(𝜀), S) = max
{
e(T𝛼(𝜀), S), e(S, T𝛼(𝜀))

}
= e(T𝛼(𝜀), S), ∀𝜀 > 0.

�(T�(�)) ≤ 2ℍ(T�(�), S) + �(S) = 2e(T�(�), S).

(16)hn ∉ S + B(0, l), ∀n ∈ ℕ,

S� = ∩𝜀>0 T𝛼(𝜀)

=
�
h ∈ L2(Ω,ℝmn

+
,ℙ) ∶ x(h) ∈ W,

�Ω

⟨h(𝜔),w(𝜔) − x(𝜔, h(𝜔))⟩dℙ ≤ 𝛼

2
‖w − x(h)‖2

�
.

�Ω

⟨gn(�),w(�) − f (�, gn(�))⟩dℙ ≤ �

2
‖w − x(gn)‖2 + �n, ∀w ∈ W, ∀n ∈ ℕ.
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the corresponding subsequence {gnk} converges to h . Thus, the claim is completely 
achieved. 	�  ◻

5 � Numerical example

In this section, we provide a numerical example concerning a random oligopolis-
tic market equilibrium problem in order to verify the applicability of the proposed 
model to real situations. For this purpose, we consider a simple economic network 
done of two firms and two demand markets, as Fig. 1 shows. Let us assume that the 
following capacity constraints:

hold, where the random variables xij , i = 1, 2 , j = 1, 2 , are uniformly distributed 
with probability density functions:

0 ≤ xij(�) ≤ xij, ∀i = 1, 2, ∀j = 1, 2, ℙ − a.s.,

fx11 (t) =

⎧
⎪⎨⎪⎩

1

50
, if 50 ≤ t ≤ 100,

0, elsewhere,

fx12 (t) =

⎧⎪⎨⎪⎩

1

60
, 90 ≤ t ≤ 150,

0, elsewhere,

fx21 (t) =

⎧⎪⎨⎪⎩

1

30
, 10 ≤ t ≤ 40,

0, elsewhere,

fx22 (t) =

⎧⎪⎨⎪⎩

1

30
, 70 ≤ t ≤ 100,

0, elsewhere.

Fig. 1   Numerical random 
oligopolistic market network
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Furthermore, let pi be the random variables expressing the commodity production of 
the firm Pi , i = 1, 2 , so that the commodity shipments have to satisfy:

where the random variables pi , i = 1, 2 , are uniformly distributed with probability 
density functions:

As a consequence, the set of feasible distributions:

Now let us consider the profit function vi for the firms Pi, i = 1, 2 , as

Let us compute the operator ∇Dv:

The equilibrium distribution is a solution to the following governing stochastic vari-
ational inequality:

We compute the equilibrium solution by using the direct method [see Barbagallo 
et al. (2021)]. Therefore, solving the following system

x11(�) + x12(�) ≤ p1(�),ℙ − a.s.,

x21(�) + x22(�) ≤ p2(�),ℙ − a.s.

fp1 (t) =

⎧
⎪⎨⎪⎩

1

200
, if 300 ≤ t ≤ 500,

0, otherwise,

fp2 (t) =

⎧
⎪⎨⎪⎩

1

200
, if 500 ≤ t ≤ 700,

0, otherwise.

𝕂 =

{
x ∈ L2(Ω,ℝ4,ℙ) ∶ 0 ≤ xij(�) ≤ xij, ∀i = 1, 2, ∀j = 1, 2, ℙ − a.s.,

x11(�) + x12(�) ≤ p1(�), ℙ − a.s.,

x21(�) + x22(�) ≤ p2(�), ℙ − a.s.

}
.

v1(�, x(�)) =
3

2
x2
11
(�) + x2

12
(�) − x11(�)x22(�) − 4x12(�)x21(�)

− h11(�)x11(�) − h12(�)x12(�), , ℙ − a.s.,

v2(�, x(�)) = x2
21
(�) + 2x2

22
(�) − h21(�)x21(�) − h22(�)x22(�), ℙ − a.s.

∇Dv(�, x(�)) =

(
3x11(�) − x22(�) − h11(�) 2x12(�) − 4x21(�) − h12(�)

2x21(�) − h21(�) 4x22(�) − h22(�)

)
,

ℙ − a.s.

(17)≪ −∇Dv(x
∗), x − x∗ ≫

�
≥ 0, ∀x ∈ �.
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we obtain that the following solution

Let us start to analyze the random optimal control problem in order to investigate 
how the policymarker influence the strategy choise of the firms. To this aim, we 
consider the set of feasible states

and the following stochastic inverse variational inquality

For w(�) = w∗(�) , ℙ-a.s., we solve the following system

We obtain the following solution

To compute the solution to (19), we consider, for example, that the random variables 
w∗
1j

 , j = 1, 2 , are uniformly distribuited in the interval [50, 100], while w∗
2j

 , j = 1, 2 , 
in the interval [70, 100]. Therefore, the random variables h∗

21
 and h∗

22
 are uniformly 

distribuited with probability density functions:

(18)

⎧
⎪⎨⎪⎩

− 3x∗
11
(�) + x∗

22
(�) + h11(�) = 0

− 2x∗
12
(�) + 4x∗

21
(�) + h12(�) = 0

− 2x∗
21
(�) + h21(�) = 0

− 4x∗
22
(�) + h22(�) = 0

x∗(�) =

⎛
⎜⎜⎝

1

3
h11(�) +

1

12
h22(�)

1

2
h12(�) + h21(�)

1

2
h21(�)

1

4
h22(�)

⎞
⎟⎟⎠
, ℙ − a.s.

W =
{
w ∈ L2(Ω,ℝ4,ℙ) ∶ 0 ≤ wij(�) ≤ xij(�), ∀i = 1, 2, ∀j = 1, 2, ℙ − a.s.

}
.

(19)
≪ w − x(h∗), h − h∗ ≫

𝔼
− ≪ h∗,w − w∗ ≫

𝔼
≥ 0,

∀(h,w) ∈ L2(Ω,ℝmn,ℙ) ×W.

⎧⎪⎨⎪⎩

12w∗
11
(�) − 4h∗

11
(�) − h∗

22
(�) = 0

2w∗
12
(�) − h∗

12
(�) − 2h∗

21
(�) = 0

2w∗
21
(�) − h∗

21
(�) = 0

4w∗
22
(�) − h∗

22
(�) = 0

h∗(�) =

(
3w∗

11
(�) − w∗

22
(�) 2w∗

12
(�) − 4w∗

21
(�)

2w∗
21
(�) 4w∗

22
(�)

)
, ℙ − a.s.

fh∗
21

(x) =

⎧
⎪⎨⎪⎩

1

60
, if 20 ≤ x ≤ 80,

0, elsewhere,

fh∗
22

(x) =

⎧⎪⎨⎪⎩

1

120
, if 280 ≤ x ≤ 400,

0, elsewhere,
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whereas the others are distribuited in trapezoidal manner with probability density 
functions:

In the same way, we can analyze other states.
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fh∗
11
(x) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x − 50

4500
, if 50 ≤ x < 80,

1

150
, if 80 ≤ x ≤ 200,

230 − x

4500
, if 200 < x ≤ 230,

0, elsewhere,

fh∗
12
(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

x − 20

14400
, if 20 ≤ x ≤ 140,

260 − x

14400
, if 140 < x ≤ 260,

0, elsewhere.
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