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Abstract: The purpose of the research is the study of a nonconstant gradient constrained problem for
nonlinear monotone operators. In particular, we study a stationary variational inequality, defined
by a strongly monotone operator, in a convex set of gradient-type constraints. We investigate the
relationship between the nonconstant gradient constrained problem and a suitable double obstacle
problem, where the obstacles are the viscosity solutions to a Hamilton–Jacobi equation, and we show
the equivalence between the two variational problems. To obtain the equivalence, we prove that a
suitable constraint qualification condition, Assumption S, is fulfilled at the solution of the double
obstacle problem. It allows us to apply a strong duality theory, holding under Assumption S. Then,
we also provide the proof of existence of Lagrange multipliers. The elements in question can be not
only functions in L2, but also measures.

Keywords: variational inequalities; non-constant gradient constraints; obstacle problem; nonlinear
monotone operators; Lagrange multipliers
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1. Introduction

A very interesting problem, which has attracted much interest for many decades
because of its simple formulation in terms of differential equations, is the elastic–plastic
torsion problem, namely, the problem of minimizing the functional

1
2

∫
Ω
(|Dv|2 − hv)dx (1)

on the class of functions {v ∈ H1
0(Ω) : |Dv| ≤ 1}.

The elastic–plastic torsion problem arises when a long elastic bar with cross section Ω
is twisted by an angle. In particular, the formulation due to R. von Mises (see [1]) of the
elastic–plastic torsion problem of a cylindrical bar is the following one:

“Find a function u(x), which vanishes on ∂Ω and is continuous, together with its first
derivatives on Ω; on Ω the gradient of u, Du, must have an absolute value less than or
equal to a given positive constant t; whenever, in Ω, |Du| < t, the function u must satisfy
the differential equation ∆u = −2να, where the positive constants ν and α denote the
shearing modulus and the angle of twist per unit length respectively”.

The plastic region, P, refers to the range of deformation in which the material exhibits
significant plastic or irreversible behavior. It is the region beyond the elastic limit where the
material undergoes permanent changes in shape, and the deformation is not recoverable.
When a material is loaded within its elastic limit, it deforms elastically, meaning that it can
return to its original shape once the load is removed. However, beyond the elastic limit, the
material enters the plastic region, and plastic deformation occurs. In particular, the set

E = {x ∈ Ω : |Du(x)| < t}
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is the set of points where the cross section still remains elastic, namely the elastic set, and
the set

P = {x ∈ Ω : |Du(x)| = t},

is the set of points where the material has become plastic due to the torsion, namely the
plastic set.

The ridge R of Ω is, by definition, the set of points in Ω where dist(x, ∂Ω) is not C1,1,
whereas the part of ∂E, which is contained in Ω, is called the free boundary (see [2]).

For the derivation of the variational inequality from the physical problem see [3].
Ting [4] investigated problem (1) for n = 2, whereas the existence of a Lagrange

multiplier formulation for (1) (and hence of a corresponding system of partial differential
equations) was proved for constant h in [5] by Brézis.

Glowinski et al. [6] studied the numerical aspects; for results on the elastic and plastic
sets E and P and on the free boundary we refer to Caffarelli and Friedman [2]. In [7] Brezis
and Sibony proved that the elastic–plastic torsion problem is equivalent to an obstacle-type
problem, in which the distance function represents the obstacle. Moreover, they proposed
two numerical methods for the obstacle problem.

In [8] Chiadò Piat and Percivale proved the existence of measure-type Lagrange
multipliers under more general assumptions on the operator and on h.

Daniele et al. [9] obtained similar results, solving a problem unsolved for a long time
by using a new infinite dimensional duality theory. They show, for a class of problems
including Problem (1), the existence of an L∞ Lagrange multiplier, if the problem admits
solution and a constraint qualification condition is fulfilled at this solution (see Section 3).
The Lagrange multiplier is the solution to a dual problem (see also [10–12] for other results
related to linear and nonlinear monotone operators).

Many other studies in the past years are related to the problem when the gradient
constraints are no longer constant, since it models many interesting physical and biological
phenomena (see [13] for an overview of constrained and unconstrained free boundary
problems).

Studying variational problems with gradient constraints involves techniques from
the calculus of variations and constrained optimization. Some common methods include:
Lagrange multipliers, penalty methods, augmented Lagrangian methods, and projection
methods. As is well known, Lagrange multipliers introduce additional unknowns and
allow the constraints to be incorporated into the objective function through a modified
Lagrangian. The resulting problem can then be solved using variational methods or
numerical optimization techniques.

Relevant issues related to the problem with gradient constraints are existence and reg-
ularity of the solution, existence of Lagrange multipliers, connection with double obstacle
problem, and numerical aspects.

Regarding the existence and regularity of the solution, we refer to L. Evans in [14], who
studied general linear elliptic equations with a non-constant gradient constraint g(x) ∈
C2(Ω), and proved that there exists a unique solution in the space W2,p

loc (Ω) ∩W1,∞
0 (Ω),

with 1 < p < ∞ (see also [15–18] for other regularity results).
The conditions required for the existence of a Lagrange multiplier are typically re-

lated to the regularity of the problem, such as the smoothness of the objective function
and constraints.

One of the important conditions for the existence of a Lagrange multiplier is the
constraint qualification. There are different types of constraint qualifications, such as the
linear independence constraint qualification (LICQ), the Mangasarian–Fromovitz constraint
qualification (MFCQ), and Slater’s condition (see Theorem 4).

If the qualification condition is satisfied, then according to the Lagrange multiplier
theorem, there exists a Lagrange multiplier associated with the optimal solution. The
Lagrange multiplier, generally, provides information about the sensitivity of the objective
function to changes in the constraints.
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However, let us stress that the existence of a Lagrange multiplier does not guarantee a
unique solution to the optimization problem. It only indicates the existence of a necessary
condition for an optimum.

A very interesting property of variational problems with gradient constraints is the
relationship with double obstacle problems. Let us remark that the equivalence is not
always true, as observed in [14] (see also [19,20]). Equivalence results between the two
problems associated to the Laplacian or to a linear operator are contained in [19–21]
(see also [22]).

The equivalence also holds for the problem associated to a nonlinear strongly mono-
tone operator a(Du) with nonconstant gradient constraint of type G(Du) ≤ M, where G is
a strictly convex function (see [23]).

Let us note that monotone operators play a fundamental role in various branches of
mathematics, including optimization theory, to analyze several mathematical problems
involving nonlinear operators. Monotone operators are extensively used in the study of
variational inequalities too (see [24]).

The paper adds to the literature on nonconstant gradient constrained problem further
results related to the relationship with double obstacle problem and the existence of La-
grange multipliers. Here we investigate the problem associated to a nonlinear strongly
monotone operator as in [23], but we consider the nonconstant gradient constraint of type
|Du| ≤ g(x), with g(x) ∈ C2(Ω), g(x) > 0. We also prove the existence of L2 Lagrange
multipliers and, under less restrective assumptions, an existence result of measure-type
Lagrange multipliers. Let us note that the existence of Lagrange multipliers as measures is
not proved for gradient contraints of type G(Du) ≤ M.

In particular, the problem under consideration is

Find u ∈ Kg =

{
v ∈ H1,2

0 (Ω) : |Dv|2 =
n

∑
i=1

(Div)
2 ≤ g(x), a.e. in Ω

}
such that:∫

Ω

n

∑
i=1

ai(Du)(Div− Diu) dx ≥
∫

Ω
f (v− u)dx, ∀v ∈ Kg, (2)

where a(p) : Rn → Rn is a strongly monotone operator of class C2 (see (6)).
Let us note that it follows from classical results in the literature that there exists a

unique solution to problem (2) (see [25]).
In the first result of the paper (Theorem 1) we show that, under a condition on the

gradient constraint g, problem (2) is equivalent to the following double obstacle problem
Find u ∈ K such that:∫

Ω

n

∑
i=1

ai(Du)(Div− Diu) dx ≥
∫

Ω
f (v− u) dx, ∀v ∈ K, (3)

where K =
{

v ∈ H1,2
0 (Ω) : w1(x) ≤ v(x) ≤ w2(x) a.e. in Ω

}
, and

w1 = inf
v∈K

v(x), w2 = sup
v∈K

v(x).

From Theorem 5.1 in [26] (see also [20]), w2 ∈ H1,∞(Ω) is the viscosity solution to the
Hamilton–Jacobi equation {

|Du| =
√

g(x) a.e. in Ω
u = 0 on ∂Ω

(4)

and
w2(x) = in fx0∈∂ΩL(x, x0) (5)

where
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L(x, x0) =

in f
{∫ T0

0

√
g(ξ(s))ds : ξ : [0, T0]→ Ω, ξ(0) = x, ξ(T0) = x0, |ξ ′(s)| ≤ 1 a.e. in [0, T0]

}
w1 can be calculated analagously.

It is important to note that the regularity of these obstacles follows from the theory of
the viscosity solutions to Hamilton–Jacobi equations (see [17], p. 31), even if the solutions
to the Hamilton–Jacobi equations are, in general, not smooth.

As already recalled, the problems are, generally, not equivalent, but a condition on the
sign of the second derivatives of g is required.

Before proving the equivalence, in Section 3 we achieve a regularity result for solutions
to (3) (Theorem 8), that we need in the sequel.

Then, thanks to the equivalence, it is possible to prove that Lagrange multipliers exist
in L2 (Theorem 2).

Finally, an existence result of Lagrange multipliers as Radon measures holds, under
less restrictive assumptions (Theorem 3).

The results are obtained following variational arguments and the strong duality theory.
Let us remark, that, during the past several decades, the variational methods have

played a key role in solving many problems arising in nonlinear analysis and optimiza-
tion theory such as differential hemivariational inequalities systems (see [27]), monotone
bilevel equilibrium problems, generalized global fractional-order composite dynamical
systems, generalized time-dependent hemivariational inequalities systems, optimal control
of feedback control system, and so on.

Moreover, let us emphasize that real-life applications have been investigated on the
basis of the theory of variational inequalities with operators of monotone type (see [28–30]
for mathematical models describing flows of Bingham-type fluids and flows of an Oldroyd
type by means of a variational inequality approach).

Finally, let us stress that the problem under consideration is strictly connected to the
Monge–Kantorovich mass transfer problem. In particular, in [31] the authors study the
integrability of the Lagrange multiplier, assuming that f belongs to Lp(Ω) in the case of con-
stant gradient constraint (see also [32] for variable constraint g). The Monge–Kantorovich
mass transfer problem has applications in diverse fields such as economics, image pro-
cessing, computer vision, transportation planning, and statistical physics. It provides a
mathematical framework for studying the optimal flow of mass, resources, or information
between different distributions or regions.

The paper is organized as follows: in Section 2 we state our main results of equivalence
between the variational problems and existence of Lagrange multipliers, in Section 3 we
provide a preliminary regularity result and some results of the theory of strong duality
are recalled. In Section 4 we prove Theorem 1 and Section 5 is devoted to the proofs
of Theorems 2 and 3. Finally, in Section 6 we provide our conclusions and suggest new
problems that may be of interest for future research.

2. Results

The main results of the paper are presented in this section.
In what follows we assume that Ω is an open bounded convex subset of Rn and the

boundary ∂Ω is of class C2.
Moreover, the operator a is of class C2, with a(0) = 0.
In the first two results, we assume that a is a strongly monotone operator, that is, there

exists λ > 0, such that

(a(p)− a(q), p− q) ≥ λ‖p− q‖2 ∀p, q ∈ Rn, p 6= q. (6)
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Theorem 1. Assuming that a satisfies assumption (6), f ≡ constant > 0, and the following
condition is fulfilled

−
n

∑
i,j=1

∂

∂xi

(
∂ai
∂pj

∂g
∂xj

)
≥ 0 in Ω, (7)

then, the solution u to problem (2) is also the solution to problem (3).
Moreover, the following coincidence of sets holds:

P = {x ∈ Ω : |Du|2 = g(x)} = I = {x ∈ Ω : u(x) = w1(x) or u(x) = w2(x)}.

Regarding the Lagrange multipliers, we prove the existence in two different cases. In
the first one, the Lagrange multipliers are L2 functions, whereas, in the second one, under
less restrictive assumptions, they are measures.

Let us stress that the second result (Theorem 3) holds under assumption of strictly
monotonicity on the operator a, namely

(a(P)− a(Q), P−Q) > 0 ∀P, Q ∈ Rn, P 6= Q. (8)

Theorem 2. Under the same assumptions as in Theorem 1, if u ∈ Kg ∩W2,p(Ω) solves problem (2),
then, there exists a Lagrange multiplier ν ∈ L2(Ω), ν ≥ 0 a.e. in Ω, that is

ν

(
n

∑
i=1

(Diu)2 − g(x)

)
= 0 a.e. in Ω

n

∑
i=1

∂ai(Du)
∂xi

+ f = ν a.e. in Ω.
(9)

Theorem 3. Assume that a satisfies assumption (8) and f ∈ Lp(Ω), p > 1. If u ∈ Kg solves
problem (2), then there exists a Lagrange multiplier µ∗ ∈ (L∞(Ω))∗, that is

〈µ∗, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;

〈µ∗,
n

∑
i=1

(
Diu)2 − g(x)

)
〉 = 0;

∫
Ω

{
n

∑
i=1

ai(Du)
∂ϕ

∂xi
− f ϕ

}
dx = 〈µ∗,−2

n

∑
i=1

∂u
∂xi

∂ϕ

∂xi
〉 ∀ϕ ∈ H1,∞

0 (Ω).

(10)

3. Preliminary Results

This section is devoted to some preliminary results that we need to prove our theorems.
In particular, first we recall the strong duality theory and, then, we prove a regularity

result for the solution to the double obstacle problem (3) that we need to apply in Section 4
a maximum principle.

For the sake of clarity, here we provide the main results of classical strong duality
theory and a new strong duality theory, obtained using new separation theorems based on
the notion of quasi-relative interior.

For the classical results of strong duality theory we refer to ([33], Theorems 6.7 and 6.11).
It is important to note that strong duality has important implications in optimization

theory. It allows us to obtain lower bounds on the optimal value of the primal problem
by solving the dual problem. It also provides a way to assess optimality and obtain
dual solutions that can provide additional information about the primal problem, such as
shadow prices or sensitivity analysis.

The framework, in which the classical theory works, is the following one: X is a real
linear space and S ⊂ X is a nonempty subset; (Y, ‖ · ‖) is a partially ordered real normed
space with ordering cone C, and C∗ = {λ ∈ Y∗ : 〈λ, y〉 ≥ 0 ∀y ∈ C} is the dual cone
of C, whereas Y∗ is the topological dual of Y. Moreover, F : S → R is a given objective
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functional, G : S → Y is a given constraint mapping and the constraint set is given as
K := {v ∈ S : G(v) ∈ −C}.

We consider the primal problem

min
G(v)∈−C

v∈S

F(v) (11)

and the dual problem
max
λ∈C∗

inf
v∈S

[F(v) + λ(G(v))], (12)

where λ is the Lagrange multiplier associated with the sign constraints.
As is well known (see [33]), the weak duality always holds, namely,

max
λ∈C∗

inf
v∈S

[F(v) + λ(G(v))] ≤ min
G(v)∈−C

v∈S

F(v) (13)

Moerover, if problem (11) is solvable and in (13) the equality holds, the strong duality
between the primal problem (11) and the dual problem (12) holds.

Theorem 4 (classical strong duality property [33]). Assume that the composite mapping (F, G) :
S → R× Y is convex-like with respect to product cone R+ × C in R× Y, K is nonempty and
the ordering cone C has a nonempty interior int(C). If the primal problem (11) is solvable and
the generalized Slater condition is satisfied, namely there is a vector v̄ ∈ S with G(v̄) ∈ −int(C),
then the dual problem (12) is also solvable and the extremal values of the two problems are equal.
Moreover, if u is the optimal solution to problem (11) and ν ∈ C∗ is a solution to problem (12),
it follows that

ν(G(u)) = 0. (14)

Moreover, if
L(v, ν) = F(v) + ν(G(v)),

is the Lagrange functional, then the following relationship with the saddle points of
L(v, ν) holds.

Theorem 5 (see [33]). Under the same assumptions as in Theorem 4, if the ordering cone C is
closed, then a point (u, ν) ∈ S× C∗ is a saddle point of the Lagrange functional L(v, ν), namely

L(u, ν) ≤ L(u, ν) ≤ L(v, ν), ∀v ∈ S, ∀ν ∈ C∗,

if and only if u is a solution to the primal problem (11), ν is a solution to the dual problem (12) and
the extremal values of the two problems are equal.

Let us stress that we apply classical strong duality theory to prove Theorem 3, whereas
we need a new theory (see [9]) to obtain the other results. Indeed, in our framework, as in
many applications in infinite dimensional settings, the classical theory does not work, since
the assumption of nonemptiness of the ordering cone is not fulfilled.

Here, we recall the new strong duality theory in its complete version, namely in the
case of inequality and equality constraints.

The assumptions read as follows:
Let (X, ‖ · ‖X), (Y, ‖ · ‖Y), (Z, ‖ · ‖Z) be real normed spaces with Y∗, Z∗ topological

dual of Y and Z, respectively; Y is partially ordered by a convex cone C, C∗ = {µ ∈ Y∗ :
〈µ, y〉 ≥ 0 ∀y ∈ C} is the dual cone of C. S is a nonempty subset of X, and F : S → R,
G : S→ Y, H : S→ Z are three functions.

Moreover, we define the feasible set

K = {v ∈ S : G(v) ∈ −C, H(v) = θZ}.
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We recall the definition of tangent cone to S∗ ⊂ X at a point v ∈ X:

TS∗(v) :=
{

l ∈ X : l = lim
n

µn(vn − v), µn > 0, vn ∈ S∗ ∀n ∈ N, lim
n

vn = v
}

We introduce the following constraint qualification assumption: we say that Assump-
tion S is satisfied at a point v0 ∈ K if

TÑ(0, θY, θZ) ∩
(
]−∞, 0[×{θY} × {θZ}

)
= ∅, (15)

where

Ñ = {(F(v)− F(v0) + α, G(v) + w, H(v)) : v ∈ S \K, α ≥ 0, w ∈ C}.

Under Assumption S the following strong duality property holds (see [9]).

Theorem 6. Let us assume that F and G are convex functions, H is an affine-linear mapping and
v0 ∈ K is a solution to the primal problem

min
v∈K

F(v). (16)

Then, if Assumption S is fulfilled at v0, the dual problem

max
λ∈C∗
µ∈Z∗

inf
v∈S
{F(v) + 〈λ, G(v)〉+ 〈µ, H(v)〉} (17)

is also solvable and the extreme values of the primal problem and of the dual problem coincide.
Moreover, if (v0, λ∗, µ∗) ∈ K× C∗ × Z∗ solves problem (17), then 〈λ∗, G(v0)〉 = 0.

Moreover, if
L(v, λ, µ) = F(v) + 〈λ, G(v)〉+ 〈µ, H(v)〉

is the Lagrange functional, then the following result on the saddle points of the Lagrange
functional holds.

Theorem 7 ([9]). Under the same assumptions as in Theorem 6, v0 ∈ K solves problem (16) if
and only if there exist λ∗ ∈ C∗ and µ∗ ∈ Z∗ such that (x0, λ∗, µ∗) is a saddle point of the Lagrange
functional, namely

L(v0, λ, µ) ≤ L(v0, λ∗, µ∗) ≤ L(v, λ∗, µ∗), ∀v ∈ S, λ ∈ C∗, µ ∈ Z∗.

Now, we prove the following regularity result, that we will use in Section 4.

Theorem 8. Let the assumptions of Theorem 1 be satisfied and u be the solution to problem (3).
Then, u ∈W2,p(Ω). In particular, if p > n, Du ∈ C0,α(Ω).

Proof. The first goal is an estimate for

|u|1 = sup
{
|u(x)− u(y)|
|x− y| : x, y,∈ Ω, x 6= y

}
,

obtained using similar arguments as in [34].
Let u be the solution to (3), we set ũ the extension by zero of u to Rn and

uh(x) = max{ũ(x + h)− ũ(x)−M|h|, 0} ∀x, h ∈ Rn, (18)

where M = max{|w1|1, |w2|1}.
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Defining

u1(x) = max{ũ(x), ũ(x + h)−M |h|} = ũ(x) + uh(x),

u2(x) = min{ũ(x), ũ(x− h) + M |h|} = ũ(x)− uh(x− h).

as in [19,23], we have u1/Ω, u2/Ω ∈ K and

w̃1(x) ≤ u2(x) ≤ u1(x) ≤ w̃2(x) a.e. in Ω.

Following the same arguments as in [12], we get

∫
Rn

n

∑
i=1

(ai(Dũ(x + h))− ai(Dũ(x)))Diuh(x)dx ≤ 0. (19)

Setting X+
h = {x ∈ Rn : ũ(x + h)− ũ(x)−M |h| ≥ 0}, from (18) and (19) it follows

that ∫
X+

h

n

∑
i=1

(ai(Dũ(x + h))− ai(Dũ(x)))(Di ũ(x + h)− Diũ(x))dx ≤ 0. (20)

Thanks to strong monotonicity assumption (6) and to inequality (20), we may conclude
that uh = 0 in X+

h and then

ũ(x + h)− ũ(x)−M |h| ≤ 0 ∀x, h ∈ Rn,

namely,
|u|1 ≤ M

and
|Du| ≤ M a.e. in Ω. (21)

To conclude, we consider the following elastic–plastic torsion problem
Find w ∈ KM = K ∩ {v ∈ H1

0 : |Dv| ≤ M a.e. in Ω} such that:

∫
Ω

n

∑
i=1

ai(Dw)(Div− Diw) dx ≥
∫

Ω
f (v− w)dx, ∀v ∈ KM. (22)

Since the feasible set KM is a bounded, closed, and convex set, from classical results
(see [35]), the unique solution u ∈ KM to the variational inequality (22) belongs to W2,p(Ω).
Then, the thesis is achieved.

4. The Equivalence of the Two Variational Problems

Now, we may prove Theorem 1.
Obviously,

Kg ⊆ K. (23)

Then, to prove the equivalence of the two problems, we have to show that if u ∈ K is
the solution to (3), then u belongs to Kg.

To this aim, setting

F(v) =
∫

Ω

{
n

∑
i=1

ai(Du)(Div− Diu)− f (v− u)

}
dx

we note that problem (3) may be rewritten as the optimization problem

min
v∈K

F(v), (24)

which satisfies Assumption S.
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Indeed, if we set

X = S = L2(Ω), Y = L2(Ω)× L2(Ω),

C = C∗ =
{
(a(x), b(x)) ∈ L2(Ω)× L2(Ω) : a(x), b(x) ≥ 0 a.e. in Ω

}
,

G(v) = (G1(v), G2(v)) = (w1 − v, v− w2),

we have

Ñ = {(F(v) + α, w1 − v + a, v− w2 + b), v ∈ L2 \ K, α ≥ 0, y = (a, b) ∈ C}.

Following similar arguments as in [23,36] we may show that, if(
l, θL2(Ω), θL2(Ω)

)
= lim

n
[µn(F(vn) + αn, w1 − vn + an, vn − w2 + bn)],

with µn > 0, limn(F(vn) + αn) = 0, αn ≥ 0, vn ∈ L2(Ω) \ K, limn µn(w1 − vn + an) =
θL2(Ω), limn µn(vn − w2 + bn) = θL2(Ω), yn = (an, bn) ∈ C, then

l ≥ 0,

namely, Assumption S is fulfilled at the solution to problem (24).
Then, if we consider the Lagrange functional

L(v, λ, µ) = (25)

=
∫

Ω
(−

n

∑
i=1

∂ai(Du)
∂xi

− f )(v− u) dx +
∫

Ω
λ(w1(x)− v(x)) dx +

∫
Ω

µ(v(x)− w2(x)) dx,

thanks to Theorem 7, there exists a saddle point (λ∗, µ∗) ∈ C, namely,

L(u, λ, µ) ≤ L(u, λ∗, µ∗) ≤ L(v, λ∗, µ∗) ∀v ∈ L2(Ω), ∀(λ, µ) ∈ C, (26)

and ∫
Ω

λ∗(w1(x)− u(x)) dx = 0,
∫

Ω
µ∗(u(x)− w2(x)) dx = 0, (27)

that is,

λ∗(w1(x)− u(x)) = 0, µ∗(u(x)− w2(x)) = 0, a.e. in Ω. (28)

Using variational arguments (see [12]), it follows

−
n

∑
i=1

∂ai(Du)
∂xi

− f − λ∗ + µ∗ = 0 a.e. in Ω. (29)

Now, we consider the coincidence set I = {x ∈ Ω : u(x) = w1(x) or u(x) = w2(x)}
and the non-coincidence set N = {x ∈ Ω : w1(x) < u(x) < w2(x)}.

From [26], Theorem 5.1, we have that |Dw1(x)| = |Dw2(x)| =
√

g(x) a.e. in Ω, then

|Du| =
√

g(x) in I. (30)

Moreover, from (28) and (29) it follows that λ∗ = µ∗ = 0 a.e. in N and

−
n

∑
i=1

∂ai(Du)
∂xi

= f a.e. in N. (31)
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Thanks to the regularity of u, stated in Theorem 8, and since f is a constant function,
we follow the same steps used in [35], Lemma III.10. We differentiate (31) with respect to
xk, multiply it by ∂u

∂xk
and sum it with respect to k. Then, it follows that

n

∑
i,j,k=1

∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

∂u
∂xk

+
n

∑
i,j,k=1

∂ai(Du)
∂pj

∂3u
∂xj∂xi∂xk

∂u
∂xk

= 0. (32)

It follows that

1
2

∂

∂xi

[
n

∑
j=1

∂ai(Du)
∂pj

∂

∂xj

(
|Du|2 − g(x)

)]
=

n

∑
i,j,k=1

∂

∂xi

(
∂ai(Du)

∂pj

)
∂u
∂xk

∂2u
∂xk∂xj

+
n

∑
i,j,k=1

∂ai(Du)
∂pj

∂2u
∂xk∂xj

∂2u
∂xk∂xi

+
n

∑
i,j,k=1

∂ai(Du)
∂pj

∂u
∂xk

∂3u
∂xj∂xi∂xk

−1
2

n

∑
i,j=1

∂

∂xi

(
∂ai(Du)

∂pj

∂g(x)
∂xj

)
.

(33)

From assumptions (6) and (7), we have

1
2

∂

∂xi

[
n

∑
j=1

∂ai(Du)
∂pj

∂

∂xj

(
|Du|2 − g(x)

)]

≥
n

∑
i,j,k=1

[
∂

∂xi

(
∂ai(Du)

∂pj

)
∂2u

∂xk∂xj
− ∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

]
∂u
∂xk

=
n

∑
i,j,k=1

[
n

∑
l=1

∂2ai(Du)
∂pj∂pl

∂2u
∂xl∂xi

∂2u
∂xk∂xj

−
n

∑
l=1

∂2ai(Du)
∂pj∂pl

∂2u
∂xk∂xl

∂2u
∂xj∂xi

]
∂u
∂xk

= 0.

(34)

Finally, since the coefficients are bounded, N is an open set, applying the maximum
principle to the operator

−A(ϕ) = −1
2

n

∑
i,j=1

∂

∂xi

(
∂ai
∂pj

∂ϕ

∂xj

)
,

acting on |Du|2 − g(x) on N, we have

|Du(x)| <
√

g(x) a.e. ∈ N. (35)

From (30) and (35) it follows that, if u ∈ K is a solution to (3), then

|Du(x)| ≤
√

g(x) a.e. ∈ Ω. (36)

Taking into account the uniqueness of the solution, we may conclude that the solution
to (3) is also the solution to (2) and Theorem 1 is proved.

Finally, the following interesting coincidence of sets follows from (30) and (35)

E = {x ∈ Ω : |Du| <
√

g(x)} = N.

5. Lagrange Multipliers

In this section we provide the proofs of the existence of Lagrange multipliers.
A first result, the existence of L2 Lagrange multipliers, holds under the assumption

f ≡ constant > 0 and a strongly monotone operator. It follows from (28) and (29) as in the
proof of Theorem 1.
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The second result holds assuming that f ∈ Lp(Ω), p > 1, and the operator a is strictly
monotone. In this case the Lagrange multipliers exist in the dual of L∞.

Indeed, we set

X = S = W1,∞
0 (Ω); C = {v ∈ L∞(Ω) : v(x) ≥ 0 a.e. in Ω}.

In this case C has a nonempty interior, then we may apply the classical strong duality
theory (see [33]).

We may rewrite problem (2) as

Find u ∈ K1 =

{
v ∈ H1,∞

0 (Ω) :
n

∑
i=1

(
∂v
∂xi

)2
≤ g(x), a.e. on Ω

}
such that:

∫
Ω

{
n

∑
i=1

ai(Du)(Div− Diu)− f (v− u)

}
dx ≥ 0, ∀v ∈ K1. (37)

Following the same steps as in [19], we may prove that C is closed and the generalized
Slater condition is verified. Moreover, since F and G are convex, then the composite
mapping (F, G) is convex-like, namely all the assumptions of Theorems 6.7 and 6.11 in [33]
are fulfilled.

Then, it follows that there exists µ∗ ∈ C∗ solution to the dual problem

max
µ∈C∗

inf
v∈S

[F(v) + 〈µ, G(v)〉], (38)

with

F(v) =
∫

Ω

{
n

∑
i=1

ai(Du)(Div− Diu)− f (v− u)

}
dx (39)

and
G(v) = |Dv|2 − g(x).

Moreover, (u, µ∗) is a saddle point of the Lagrange functional

L(v, µ) = F(v) + 〈µ, G(v)〉, ∀v ∈ H1,∞
0 (Ω), ∀µ ∈ C∗,

that is
L(u, µ) ≤ L(u, µ∗) ≤ L(v, µ∗), ∀v ∈ H1,∞

0 (Ω), ∀µ ∈ C∗. (40)

Using variational arguments as in [19], we obtain that µ∗ ∈ (L∞(Ω))∗ satisfies
conditions (10).

6. Discussions

The paper adds to the already existing literature on nonconstant gradient constrained
problem further results related to the relationship with double obstacle problem and the
existence of Lagrange multipliers.

In particular, in the paper we focused on the nonconstant gradient constraint
|Du| ≤ g(x) associated with a nonlinear monotone operator a(Du).

The existence of Lagrange multipliers as Lebesgue functions is guaranteed in the
case f ≡ constant > 0 and strong monotonicity assumption on the operator, whereas
the Lagrange multipliers exist as Radon measure in the case f ∈ Lp, p > 1, and strict
monotonicity assumption is required.

In the future, several studies could be carried out in several directions in this frame-
work. For example it will be interesting to consider a regular, nonconstant, free term f ,
or studying the problem associated with different nonlinear operators. Moreover, the
properties of the Lagrange multiplier may be investigated. Finally, one could analyze the
natural parabolic counterpart.
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