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ABSTRACT Industrial and technological evolution has led to the identification of different techniques and
strategies that can best adapt to the needs of Manufacturing Industry 4.0. As industrial production has become
more automated, the need for more efficient maintenance strategies has increased. Today, among the possible,
several applications demonstrate how the Predictive Maintenance (PdM) strategy is the best performing. In
fact, PdM makes it possible to predict an impending failure with high accuracy in order to intervene before
failure occurs. This work focuses on the application of PdM technique in order to predict the type of chips
produced by a lathe through a machine learning algorithm. Moreover, being our application a delay-sensitive
one, to drastically decrease the time delay in prediction, our solution proposes the combination of PdM
with the Edge Computing paradigm. To simulate this paradigm, the chosen machine learning models were
deployed on STM microcontrollers obtaining both high accuracy (98%) and an inference time in the order of
milliseconds.

INDEX TERMS Chip form classification, cyber-physical system (CPS), edge computing (EC), Industry 4.0,
industrial systems, manufacturing, predictive maintenance (PdM), supervised learning, turning.

NOMENCLATURE
ADC Analogue-to-digital converter.
AI Artificial intelligence.
ANN Artificial neural network.
BNN Bayesian neural network.
CFS Cutting force signal.
CPS Cyber-physical system.
DIPF Design-installation-potential failure-failure.
EC Edge computing.
EdgeAI Edge intelligence.
FFBP Feed-forward back propagation.
I2C Inter-integrated circuit.
I4.0 Fourth industrial revolution.
I5.0 Fifth industrial revolution.
IoT Internet of Things.
KNN k-Nearest neighbors.

LPA Linear predictive analysis.
MACC Multiply-accumulate per cycle.
ML Machine learning.
MLOps Machine learning operations.
MLP Multilayer perceptron.
MVR Multiple variable regression.
NN Neural network.
PCA Principal component analysis.
PdM Predictive maintenance.
QoS Quality of service.
RA Regression analysis.
ReLU Rectified linear unit.
RF Random forest.
RUL Remaining useful life.
RTF Run-to-failure.
SOM Self-organizing map.
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SPI Serial peripheral interface.
SVM Support vector machine.
SVR Support vector regression.
TBM Time-based maintenance.

I. INTRODUCTION
The development of the fourth industrial revolution (I4.0) has
disrupted the entire industrial sector in order to meet new
market demands. Since state and market borders are deleted,
comprehensive globalization started to rule and the demand
and supply of products is greater than ever. In detail, the rapid
development of technology and informatics have brought ma-
jor changes in the market, causing the abandonment of the
classical production methods [1].

The solution deployed by I4.0 is called Smart Factory.
Based on the third industrial revolution initiative, this solution
consists of the integration of all recent IoT technological ad-
vances in computer networks, data integration, and analytics
to bring transparency to all manufacturing factories [2].

In order to make the industrial conversion, the manufactur-
ing industry has to deal with multifaceted challenges because
investments are required not only at the production level, to
increase economic and environmental efficiency, but also at
the organizational, strategic, business, and customer service
levels.

These needs create a space for the search of a new
paradigm. In particular, the CPS finds applications in man-
ufacturing as it supports the production process thanks to
the interaction between the physical word and the internet
(cyber) space, hence the name of the system. The immediate
consequence is an increase in the level of complexity of the
production process, but provides significant benefits for the
entire manufacturing industry.

In general, architecture for CPS in Industry 4.0 manufac-
turing systems consists of two main functional components:
1) the advanced connectivity that ensures real-time data ac-
quisition from the physical world and information feedback
from the cyber space; and 2) intelligent data management, an-
alytics and computational capability that constructs the cyber
space [3].

From this point of view, physical processes are the plant
that is controlled by a cyber system. Among the numerous
advantages, encapsulated in the term “global optimization of
systems,” one of the most important is enabling monitoring,
which increases control over the entire work chain, thereby
improving decision-making capacity especially during the oc-
currence of unforeseen events.

Keeping changing states under control during the produc-
tion phase is one of the challenges that modern companies
face. In fact, to survive in the global competitive marketplace,
it is required to improve the quality of the product and, at the
same time, to shorten production cycle, reducing equipment
downtime, and lowers production costs, thus decreasing main-
tenance costs.

This is because, besides being the main component in time
and cost calculations, maintenance plays an important role

in intelligent systems. Indeed, reliability and safety are chal-
lenged by a highly complex, automated, and flexible industrial
system [4].

Nowadays more companies are producing the Big Data
generated by the numerous sensors, for real-time data acqui-
sition. The analysis of industrial Big Data can provide new
solutions for maintenance, ensuring the improvement of sys-
tem reliability by achieving almost zero downtime.

These needs are leading to terrific attention on maintenance
strategies and today, among those available, PdM is proving
to be the preferable option. Several studies show that the
application of PdM in the company has as its main benefit
the reduction of production costs (between 15% and 70% [5])
as well as the advantage of having greater safety for employ-
ees, the company, and the environment. In fact, thanks to the
evolution of technologies such as AI, especially ML methods,
and the IoT platform, PdM allows the real-time health moni-
toring of the assets to predict possible failures and replace the
components just before their breakage, increasing the success
probability of the mission and decreasing the time-to-market.

Moreover, one of the requirements of a Smart Factory is
Real-time capability. This refers to the ability of the sys-
tem to respond to changes on time, such as changes in the
status of the internal production system (e.g., malfunctions
and resource failures). This means that responses to internal
changes, monitoring, and controlling should be in real time.
Disturbances should be detected on time, and the system
should have the ability to recover rapidly [6], [7].

In most of the current state of the art, the responsiveness
feature is implemented with the Cloud Computing paradigm
as a control center for processing data, gaining knowledge,
and predicting the state of health of equipment.

An innovative and interesting solution is achieved with the
EC paradigm, in which sensors and edge devices distribute the
data processing work to each other, thus reducing data trans-
mission costs. Consequently, adding the edge layer increases
the relationship between the physical factory floor and the cy-
ber decision space, enabling immediate local decision-making
even in those time-sensitive applications where the latency of
the Cloud is too high to support decision-making based on
PdM analytics.

This study contributes to bridging the gap of AI-based Edge
PdM by examining its benefits. In detail, it aims to compare
several supervised ML algorithms, placed on a microcon-
troller, for predicting the health of the working environment.
This article extends our previous work [8] with an in-depth
case study on three microcontrollers and an analysis of the
implications of edge device performance.

The following work presents a method in order to find out
the ML model that better fits a practical example. In this sense,
it focuses on the application of ML models to carry out the
PdM of a turning machine, classifying the shape of the chip
on the basis of the forces applied by the tools on the material.
Indeed, the formation of too-long chips may complicate the
machining process, as a chip that is too long can tangle around
the tool, thus causing injuries to operators and damage to
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cutting tools, other than a poor surface quality of the work-
pieces. As a matter of fact, to avoid the above conditions, it
is essential to intervene in the shortest time possible. To do
so, this study proposes to combine the PdM strategy with the
EC paradigm and demonstrates that it is possible to achieve
impressive results in enabling PdM at the edge, anticipating
equipment failures through an inference time in the order of
milliseconds.

Our methodology adapts edge ML technique to address the
specific challenges of the turning process. These challenges
include the need for continuous monitoring, real-time analysis
and timely intervention to prevent failures or inefficiencies.
Turning, as well as other machining operations, can benefit
significantly from edge ML, as these operations are intrin-
sically sensitive to faults, but with different specifications.
For example, in milling, the movement of the tool relative
to the material results in less uniform wear. In contrast, the
continuous, high-speed nature of turning results in rapid and
uniform wear. Therefore, in milling, continuous control of
tool trajectories is necessary, while in turning, continuous
control of cutting forces is required.

Executing real-time control through the Cloud Computing
paradigm negatively affects the quality of monitoring critical
variables. Cloud-based ML typically causes latency on the or-
der of tens of milliseconds, which can render latency-sensitive
applications unusable. In contrast, edge-based ML reduces la-
tency to a few milliseconds, enabling the prediction of cutting
tool wear and deterioration in real-time.

Therefore, with this time-saving solution, manufacturing
companies address turning challenges proactively, avoiding
unplanned and costly downtime and ensuring greater process
safety. To demonstrate the effectiveness of the proposed ap-
proach, three devices were selected, i.e. three microcontrollers
that differ mainly in terms of their computational capacity.
Once an agnostic model has been defined with respect to
the hardware used, the aim is to provide a comprehensive
overview of the performance achievable on different hard-
ware. The analysis conducted in this research revealed that
the parameters of speed, power consumption and cost are not
linearly dependent, and thus emphasizes the importance of a
careful evaluation of the available hardware options for an
optimized choice for specific application requirements.

The rest of this article is organized as follows. In Section II,
the maintenance problem is presented. In Section III, we ex-
amine the related literature. Section IV discusses about the EC
paradigm. In Section V, we present a turning problem and the
solution we propose for it. Finally, Section VI concludes this
article.

II. MAINTENANCE
A. MAINTENANCE HISTORY
Industrial and technological evolution has led to the identifica-
tion of different techniques and strategies that can best adapt
to the needs of modern industry. These needs require the opti-
mization of industrial processes, which can only be achieved

FIGURE 1. Types of maintenance strategies in manufacturing.

with highly automated systems. As industrial production has
become more automated, the need for more efficient main-
tenance strategies has increased. The goal of these strategies
is to improve the availability and efficiency of manufac-
turing processes. This can only be achieved by identifying
any anomalies in real-time before the actual machine failure
occurs, thus avoiding interrupting production and possibly
causing costly unplanned downtime. Maintenance strategies,
thus, evolved in order to better fit the aforementioned require-
ments.

Overall, as shown in Fig. 1, three different maintenance
strategies can be applied in the industrial field: 1) Corrective
Maintenance; 2) Preventive Maintenance; and 3) Predictive
Maintenance.

Corrective maintenance, also called failure-driven mainte-
nance or RTF, is an unplanned maintenance type whose logic
is “When a machine breaks down, fix it” [9]. It is the oldest
and most common maintenance and repair strategy [10] which
applies no-maintenance management before the breakdown of
the machine occurs. The goal of Corrective maintenance is to
bring the item back to a functioning state as soon as possible,
either by repairing or replacing the failed item or by switch-
ing to a redundant item [11]. This maintenance strategy may
apparently be the simplest to apply, as it is performed only
when strictly necessary and it does not require any additional
expenses to monitor the machinery during its life cycle. Fur-
thermore, since the repair/replacement of a component takes
place only when strictly necessary, the corrective maintenance
strategy has the advantage of maximizing the time of use of
the system. As a consequence, corrective maintenance can
only be chosen if the failure of the machinery is not catas-
trophic since, in this case, the advantage of increasing the
time of use of the system would have negative consequences,
such as the increase in repair costs. In fact, the analyses on
maintenance costs show that the repair in reactive mode has
a cost generally three times higher than the cost of the same
repair carried out with scheduled maintenance [9]. Moreover,
as [12] points out, the machine uptime indicates the success of
a maintenance strategy, therefore it is important to maximize
this value. However, maximizing the machine uptime by de-
laying maintenance, as corrective maintenance does, may not
be a winning strategy. In fact, this could lead to high machine
downtime once the failure has occurred. For example, it is
shown that, when applying a corrective maintenance strategy,
high machine downtime is very frequent, since it is not certain
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that the identification and resolution of the problem are imme-
diate. Indeed, in the absence of other information, identifying
the component that requires maintenance may take time.

Whether the (momentary or permanent) unavailability of
machinery begins to prevail, it means that high and frequent
machine downtime lead to reduced machine uptime, which is
the opposite of the established goal.

The consideration presented above is a valid reason to
switch from a corrective maintenance strategy to a type of
maintenance that intervenes at predetermined intervals, de-
fined as preventive maintenance [10].

Preventive maintenance, or TBM, is a maintenance strat-
egy that schedules periodic checks in advance, in order to
reduce the probability of system breakdown. Such periodic
checks allow understanding when to repair or replace the
system/component or even detect developing problems.

Differently from Corrective Maintenance, which is failure-
driven, the frequency of Preventive Maintenance activities can
be determined by the following factors.

1) Clock-based maintenance: Scheduled based on speci-
fied calendar times.

2) Age-based maintenance: Scheduled according to the
specified age of the item.

3) Condition-based maintenance: Scheduled based on the
value of one or more condition variables.

The underlying concept of those three maintenance strate-
gies is that preventive maintenance strategy assumes that the
system deterioration in normal usage is statistically or exper-
imentally known. This means that it is possible to schedule a
maintenance activity on a critical component at fixed intervals,
just shorter than their lifetime.

However, if on one hand preventive maintenance can lead
to organizing production stops in a more convenient way and
can reduce the probability of failure, on the other hand, it can-
not eliminate the occurrence of random catastrophic failures.
Moreover, there is a risk of falling into excess or a defect of
prevention, especially if it is not possible to estimate the RUL
of a given component.

From this point of view, observing the failure curves of
a certain machine is not very helpful. Indeed, failure curves
do not consider the scenario in which a machine operates,
when in fact the scenario has a direct effect on the life of a
machine and its components. As suggested by several studies,
the same item in different scenarios does not require the same
maintenance schedule: In many cases, there is the risk of
carrying out the replacement (prematurely) when it is not yet
necessary. On the other hand, even avoiding reaching the end
of life of a component, according to the bathtub curve (Fig. 2),
the failure rate can still increase because the new equipment
may experience infant mortality [13].

Moreover, [13] showed that time-based maintenance is un-
reliable even taking into account the working conditions of
a specific tool. This consideration can be derived from the
experiments done by the SKF Group, which performed a
stress test on 30 identical bearing elements under identical
conditions, to cause them to fail. In addition, it was observed

FIGURE 2. Bathtub curve.

that the time to failure of each component has a high variance
despite the elements tested being all the same, as well as their
working conditions [13].

Another aspect to take into consideration is the pres-
ence of spare parts, the management of which is linked to
maintenance results. Unreliable maintenance can lead to an
underestimation of the number of stocks needed. Thus, it may
be hard to replace the faulty component in short time, with a
consequent production stop which is equivalent to economic
damage for the company.

When traditional maintenance strategies are adopted, engi-
neers have to choose between maximizing the useful life of
a system/component at the risk of machine downtime (un-
planned maintenance) and maximizing uptime (time-based
preventive maintenance) through early replacement of po-
tentially good parts [14]. It has been shown that for many
industrial companies, this type of organization is inefficient
because, even if in theory the goal is to reduce machine down-
time, in practice acceptable results are not achieved.

According to [5] as a result of the new policy, called PdM, it
enables to lessen 25%–35% the maintenance costs, eliminate
70%–75% breakdowns, reduce 35%–45% breakdown time,
and increase 25%–35% production. These results are a good
reason to take a closer look at the most recent development in
terms of PdM strategy.

B. PREDICTIVE MAINTENANCE (PDM)
The latest evolution of maintenance policies is called PdM
which is a technique for optimizing the use interval of the
equipment while reducing the frequency of maintenance ac-
tivities to a minimum.

PdM could significantly reduce both maintenance activities
and costs, thus reducing the waste of human and material
resources. As a result, PdM helps avoid overmaintenance and
undermaintenance while decreasing the risks of unexpected
breakdowns. This result is achievable because maintenance
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activities are scheduled based on the performance or condi-
tions of the equipment and not based on a time-regular basis.

Despite the fact that predictive maintenance steps are not
well defined, the key points of this strategy are known and
will be classified hereafter.

One of the key points consists of spotting all the system
critical variables. The aforementioned is a complex task that
requires a deep knowledge of the monitored asset, its goals,
and the environment effects on the monitored asset. Once
these preconditions are met, it is possible to derive a model of
the machining process, necessary to build a smart monitoring
system.

Another key point of predictive maintenance strategy in-
volves the monitoring of such variables. In fact, condition
monitoring, i.e., the monitoring of critical variables, is the
concept behind PdM. Depending on the peculiar working
environment, there exist a lot of different technologies that
can be used to collect data from the working environment,
including both direct and indirect modes. During monitoring,
the sensor signal has to be transformed into features that
can adequately describe the signal. In particular, a continuous
monitoring system provides a continuous flow of information,
thanks to which a potential fault in the in-service equipment
can be detected.

Finally, the last key point consists of the activity of pre-
diction and decision-making. Indeed, data, obtained from the
activity of monitoring the asset status, can be analyzed in
order to predict the future behavior/condition of machines.
This prediction allows a fault to be diagnosed even if the
monitored machine has not failed. This is possible because
a fault manifests itself as a deviation of the system or ma-
chine behavior from its nominal behavior. Therefore, we can
identify on time a certain anomaly, i.e., a potential equipment
fault, in order to make a decision before the degradation state
develops into a worse one over time.

Different from the reactive maintenance technique, in
which maintenance can be performed only after a failure,
a proactive maintenance technique, such as PdM, requires
maintenance to be performed before the occurrence of a
failure. Actually, even adopting a proactive maintenance tech-
nique, it still seems the monitored asset fails suddenly. This is
due to the fact that a machine component may enter a degra-
dation state before it fails. However, if a degradation condition
can be measured, it is possible to identify the component (or
the components) which causes the failure and then remove
it from the system early, which is exactly the main aim of
proactive maintenance [15].

Once the fault is eventually detected, the next thing to
do is to schedule a maintenance activity, before the detected
fault develops into a worse degradation condition, eventually
leading to the machine breakdown. Often undertaking a main-
tenance activity when a component has not failed yet could
seem like a waste because that component is still able to
accomplish its mission. Actually, it is important to point out
that undertaking a maintenance activity when a component is
just working in a degraded state (but still it is working) has

FIGURE 3. DIPF curve and CostToRepair curve.

the main benefit of preserving the high quality of the final
product, which is one of the most important requirements of
modern industry.

The two main approaches that can be distinguished in PdM
are the data-driven approach and the model-based approach.

The model-based approach has the ability to incorporate
a physical understanding of the target product, relying on
the mathematical model to represent the behavior of the sys-
tem [16].

Instead, data-driven approaches (called ML approaches) are
able to find highly complex and nonlinear patterns in data
of different types and sources and transform raw data into
features spaces, so-called models, which are then applied for
prediction, detection, classification, regression, or forecast-
ing [17]. This type of method does not require an in-depth
understanding of system physical processes that lead to sys-
tem failures and does not assume any underlying probability
distributions [18], since it uses historical data to learn a model
of system behavior [16].

Today, data-driven are the most popular approaches in fault
diagnostics, since the availability of data is increasing.

To sum up all the benefits mentioned so far condition
monitoring and ML are changing the way of performing main-
tenance activity, making it a more efficient, organized, and
least cost action.

C. DIPF
The importance of taking real-time decisions can also be ex-
plained with the curve called DIPF, which is depicted in Fig. 3.
The x-axis of the curve represents Time or Operating Age,
while the y-axis represents Resistance to Failure.

Along this curve, it is possible to identify two important
points for the predictive maintenance technique: the potential
failure point (P) and the functional failure point (F).

P represents the potential failure point, i.e., it is physically
possible to identify, through the monitoring of the parameters,
a deviation of the asset behavior with respect to the condition
of normal operation that indicates a future failure.

F is the functional failure point, that is to say the temporal
instant in which the equipment is no longer able to run (or is
not able to maintain a certain standard) and so maintenance is
required.
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FIGURE 4. Block scheme of the proposed monitoring system.

The time elapsed between point P and point F is known
as the P-F interval. Observe that during the P-F interval, the
monitored asset has the ability to continue running even if it
is in critical conditions. However, after the P-F interval, the
asset is no longer able to complete its mission.

Once the point P has been identified, the time duration of
the P-F interval is not unique but depends on the component:
it can last months, weeks, or much less, as minutes or seconds.
Knowing this interval duration is crucial to defining the best
maintenance strategy to apply. Regardless of the case, the dif-
ferent maintenance strategies lead to lesser or greater rapidity
of intervention.

In Fig. 3, the CostToRepair curve is also depicted in corre-
spondence with the DIPF curve. The former curve increases
increases exponentially in correspondence with point F (the
closer we get to the breaking point F). Therefore successfully
detecting potential failures requires intervening before the PF
interval ends, so that the maintenance costs do not increase
excessively. For the reasons explained above, PdM aims to
predict the failure by detecting the problem early.

As stated by [19], to meet latency requirements, differ-
ent architectures for quick-performing model inference have
been proposed: 1) on-device computation, where machine
learning algorithms are executed on the end device; 2) edge
server-based architectures (where the data are sent from the
end devices to edge servers for computation); and 3) joint
computation which includes the possibility of having cloud
processing.

D. FUNDAMENTAL BUILDING BLOCKS FOR AI-ENABLED
PDM
To set up a PdM strategy, it is necessary to choose which
approach to use to predict a failure event.

This article focuses on the application of the data-driven
approach for PdM. As shown in Fig. 4, the AI-Based PdM
approach is divided into the following blocks:

1) Data Acquisition System (DAS)
At the basis of predictive analysis, it is necessary to
determine which parameters must be continuously mon-
itored. That is, to monitor the critical variables that

influence the outcome of the process in order to detect
a potential failure event. Sensor technologies, strategi-
cally placed in equipment and machines, form the core
of the DAS. The functionality of this block ensures
detailed data collection as it includes both historical and
current records on the life of the equipment. This feature
provides a temporal perspective of the system; hence, a
complete understanding of the dynamic environment in
which the PdM system is immersed.

2) Decision Support System (DSS)
The DSS module integrates AI techniques. In particular,
the Dataset provided by the DAS block allows the devel-
opment of an ML algorithm, the most suitable for the
given application. Then, based on previous experience,
the predictive model learns to detect an anomaly or devi-
ation in the data trend, returning a snapshot of the health
of the equipment in the immediate future. As a result,
the DSS block, the heart of the PdM strategy, predicts
a potential failure with the aim of avoiding unexpected
downtime in operations.

3) Maintenance Alert System (MAS)
By observing the behavior of the machine, it is possible
to identify whether it deviates from its nominal behav-
ior. Consequently, a decision can be made before the
degraded state of the equipment evolves into a worse
one over time. In fact, based on the decision returned by
the DSS block, the MAS block recommends a very good
strategy, i.e., whether it is necessary to start a main-
tenance procedure on the machine before the physical
system is irreversibly damaged.

4) Manufacturing System/Operators (MS/O)
The last block in the decision-making chain is the MS/O
whose task is to transform the possible maintenance
decision of the MAS block into a concrete action. The
preventive machine downtime procedure actively in-
volves the operators working directly in the field. These
receive trigger alerts and are responsible for interpreting
the information, i.e. they have the task of scheduling
when maintenance actions are required.

III. RELATED WORK
The most common way to tackle the problem of PdM is using
ML algorithms whose goal is to increase the effectiveness of
the maintenance activity. This article focuses on the applica-
tion of ML models in the manufacturing industry, particularly
the field of turning process.

Hereafter different solutions proposed in the literature are
listed, each for a different sector. The researchers faced dis-
tinct problems, ranging from the prediction of cutting forces
to the prediction of surface roughness, from the classification
of the chip to the prediction of tool wear, etc. Each of them
is particularized considering very precise working conditions:
machine settings (such as the depth of the cut), type of ma-
terial processed, and much more. In the literature there are
some papers closely related to the task of chip form prediction,
which is also the task tackled in this paper. In particular,
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several of these deal with the choice of input data from which
to infer the shape of the chip. There are several articles in the
literature, [20], [21], [22], and [23], that use an ANN for their
tasks.

In [20], the researchers focused on both the problems of
chip form classification according to the standard ISO 3685-
1977(E) and tangential cutting force prediction of cast nylon
in turning operation. The final results showed an accuracy of
86.67% for classification chip form and accuracy of 91.130%
for the main cutting force prediction. To train and validate the
ANN, a small dataset was used (60 samples for training and
15 samples for validation). The cutting force was measured by
a load cell, inserted under the cutting tool adaptor. The cutting
force signal was sent to the computer via an interface card in
order to collect the data.

In [21], the authors carried out a classification of the shape
of the chip on the basis of the characteristics reported by the
ISO 3685-1977 standard, which defines different classes in
which to classify the shape of the chip. The latter (target of the
ML model) is the result of the turning process, and it depends
on the three components of the cutting force (which are the
input data to the ML model). These input data are measured
by means of a piezoelectric sensor incorporated in the tool
holder.

The authors in [22] used emission signal analysis to pre-
dict the chip form during the cutting process. The prediction
achieves a percentage of correct recognition of the chip form
higher than 90%.

The article [23] performs a sensor monitoring of chip form
in turning of C45 carbon steel through features from sig-
nals provided by a cutting force based sensor. In this sense,
the pre-established goals are single chip form classification
and favorable/unfavorable chip type prediction. As a result,
through the NN, the obtained success rates in chip form recog-
nition were always higher than 80%.

The authors in [24] focused on the control of chip forma-
tion during longitudinal turning of carbon steel with coated
carbide inserts. The control for favorable chip formation has
been carried out using real-time cutting force sensor signal
spectrums. An unsupervised NN, specifically an SOM, was
used to address this problem.

Another common problem addressed in literature consists
in the prediction of the cutting forces in a turning process,
which is a regression problem. The authors in [25] finds out
a NN is more suitable for this task than a traditional linear
regression model, since NN shows a greater accuracy.

Also, [26] showed how NN worked better than the various
regression models in predicting the surface roughness, which
is an indicator of surface quality, in the turning process in
various conditions.

For example, Wenkler et al. [27] proposed a model for
dealing with the problem of predicting the specific cutting
force in a milling process. The model adopted to carry out
this task is an ANN feedforward, which is a supervised model
in which there is no back link between the neurons of one
layer and those of the previous layer. Furthermore, the model

is trained following an iterative process, as the milling process
is continuously monitored and the specific cutting force is pre-
dicted from time to time. The cutting force Fc is not a directly
adjustable or measurable parameter, therefore a further rela-
tionship is required. The input vector contains 13 parameters,
the influencing parameters, which are each transferred as a
scalar to the ANN.

The objective of [28], on the other hand, is to predict
the surface roughness in the milling process. Three different
models were compared, namely: RA, SVM, and BNN. The
study examines how the surface roughness is influenced by
the following parameters: The cutting speed, the cut itself, and
the depth of cut. The result of the work shows that all three
models, mentioned above, have a prediction error below 8%.
In addition, when the size of the training dataset is small, the
three models have comparable performance and the results are
even better.

In [29], the authors used an ANN to monitor tool wear
of milling operations. The authors carried out a classification
of the tool status through an ANN model trained with data
collected by acceleration sensors. This article also reports the
comparison between different trained models and the result
shows one greater efficiency of the ANN model compared
to the SVM and KNN models. In addition, the work can be
modified to predict the lifetime left to the tool using an ANN
based on a supervised regression. In this case, it is necessary
to acquire the acceleration data for a long time in order to
progressively monitor the wear of the tool, from the beginning
of the life cycle until the break.

In the study [30], the main research objective is to de-
tect faults in bearings using a minimum set of observations
and selecting the minimum number of features. The author
applied vibration signals to predict deterioration. He uses vi-
bration analysis to obtain features in an optimal ML model
using a public dataset from Case Western Reserve University
(CWRU), which contains data on bearing failures. As a result,
the Kernel Naive Bayes model achieved an accuracy of 94.4%,
while the Decision Tree (Fine Tree) and KNN, in detail Fine
KNN, models demonstrate exceptional accuracy, achieving a
perfect accuracy rate of 100%.

The authors in [31] presented a tool wear prediction model
based on cutting forces measured in-process during peripheral
milling of Ti-6Al-4V. It explains how the residual stress state
of the machined subsurface influences the service quality in-
dicators of a component. Indeed, during machining, the radius
of the cutting edge changes due to tool wear. In specific, the
rounding of the cutting edge significantly affects the residual
stress state in the workpiece and the process forces occurring.
An ML algorithm, a MLP model in this case, was imple-
mented to calculate the effect of the change in cutting edge
microgeometry due to tool wear using the radius of the cutting
edge and the measured cutting forces.

In [32], a SVM model was used for implementing a tool
breakage detection system in a milling process. The obtained
result was compared with the traditional regression approach
MVR. The cutting forces in input were measured during
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the production process using a dynamometer. The proposed
model can be recommended due to its slightly higher accu-
racy. However, it has been observed that the proposed model
has to be trained through a relatively complicated tuning pro-
cess of design parameters.

In [33], a maintenance activity was used to monitor the pro-
gression of lateral wear of the tool. In particular, a CNN model
was chosen for its ability to find the correlation between the
forces produced during the cutting processes and tool wear.
The accuracy obtained is 90%.

In [34], the prediction of tool wear in milling operations
was undertaken using three ML algorithms, such as ANNs,
SVR, and RFs. The performance of these algorithms was
evaluated on a dataset collected from 315 milling tests. A
set of statistical features was extracted from cutting forces,
vibrations, and acoustic emissions. The results have shown
that while the training time on the particular dataset using
RFs is longer than the FFBP ANNs with a single hidden layer
and SVR, RFs generate more accurate predictions than the
FFBP ANNs and SVR. But, as the authors themselves state,
the ANN model employed has only a single hidden layer. This
model may not be suitable for the considered task, since it is
known that ANN better performs with more hidden layers.

The examined works are summarized in Table 1. Herein, it
is easy to see that NN algorithms are applied to tackle differ-
ent problems from each other, such as chip form prediction,
prediction of the specific cutting force, surface roughness,
and tool lifetime. In most of these problems, NNs have been
demonstrated to be a competitive alternative to traditional
classifiers for many practical classification problems [35].

Indeed, from the study conducted in [36] regarding the
algorithms used for the prediction in the manufacturing sector,
28% of the problem of PdM in the manufacturing industry
(which is also the highest fraction) is solved using an ANN
model.

In this section, we only present works related to PdM since,
to the best of our knowledge, there are no works combin-
ing PdM and EC coordinated to our field (turning process).
The literature offers several reviews but no work explains the
strategies introduced at a practical level and, therefore, in our
field, there are currently no results to compare with.

IV. EDGE ML
EC (Fig. 5) is a paradigm that allows overcoming the limit of
the cloud computing paradigm (Fig. 6).

Indeed, although the cloud is seen as “characterized by
virtually unlimited capabilities in terms of storage and pro-
cessing power” [37], a cloud-based approach has several
disadvantages, as shown below.

For example, the increasing number of IoT devices leads
to the generation of a large amount of data. Sending all this
data toward the Cloud requires incredibly high network band-
width [38]. This causes the Cloud to become a bottleneck,
thus leading to a latency increase, and in general degrading
the QoS.

TABLE 1. Summary of the Most Relevant Contributions in the PdM
Together With ML in Related Works

FIGURE 5. Edge computing paradigm.

Another consequence of the increased volume of data is the
need for more storage capacity and computational capability.
In some scenarios, meeting the aforementioned requirements
may not be easily achievable by the Cloud service.

Moreover, there are many applications that require low
latency (within a few milliseconds). Using Cloud services
often means offloading data elaboration from the source to
the Cloud. This procedure clearly involves the transfer of data
from the source to the cloud and vice versa. The time needed
to transfer data in the network may not be acceptable for some
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FIGURE 6. Cloud computing paradigm.

applications, since it depends on the geographical distance
between the source and the cloud servers.

Moving to the Cloud also arises security and privacy con-
cerns. Indeed, the cloud computing approach implies moving
data from the source to third-party servers. Therefore, privacy
and confidentiality issues arise due to the fact that an untrusted
service provider necessarily has access to all the data, also
considering that the physical location of data in the Cloud is
unknown.

For the aboveexplained reasons, there are several appli-
cations where a cloud-based approach may make it difficult
to comply with their real-time constraints. For example, in
Healthcare Industry 4.0, patients’ health data must be imme-
diately available and any delay or failure introduced by the
Cloud cannot be tolerated [39].

Similar real-time constraints are present in several applica-
tions such as industrial automation, virtual reality, real-time
traffic monitoring, smart home, smart sea monitoring, data
analytics, or maintenance, which is the case studied in this
work.

For these types of applications, it is impractical and often
it is not necessary to directly transfer raw data to a remote
cloud [40]. An alternative solution could be the adoption of
the EC paradigm that allows data to be processed locally, as
close as possible to the data sources, using smart devices.

In general, the EC approach can be defined as an extension
of cloud computing [41] since both their structures are similar,
but the main difference is in the positioning of the computing
applications, data, and services, which are no more located in
central nodes, the core, but in the other logical extreme, the
edge of the Internet [42].

To be precise, we have also to point out that the main
disadvantage of EC over Cloud Computing is that edge de-
vices have limited computational power and storage capacity.
However, it is still possible to carefully choose the edge
devices by ensuring they have features like large enough
memory, sufficient process capabilities, and sufficient Internet
bandwidth, which allows connecting with the cloud if it is
necessary.

Consider, e.g., our case study in which, in order to monitor
an asset condition, a large amount of data must be collected

by real-time sensors. This data must, then, be processed
(adopting a machine learning algorithm) in order to obtain
information on the current state of the monitoring asset and
make predictions about its future state.

In addition, in the event that the DIPF curve of the asset
is characterized by a very short P-F interval (of the order of
seconds), it is impossible for a human being to encounter the
potential failure and intervene before the functional failure.
Therefore in this case it is crucial to opt for strategies able to
reduce as much as possible the time needed for detecting a
potential failure and making a subsequent decision on how to
treat that failure. Opting for Edge ML strategies is therefore a
must in these cases.

Adopting edge devices to process the collected data has
several benefits, mainly due to the proximity of the data source
to these edge devices, such as low transfer latency, context and
location awareness, high scalability and availability, all while
maintaining confidentiality of possibly sensitive data.

Therefore, edge devices enable real-time computation,
which is fundamental to determining whether the current
manufacturing equipment state is or not normal. In case of
anomalies, it enables to take real-time decisions like blocking
the productive process, either by sending an alarm to the em-
ployee, or executing an interrupt routine that it has previously
learned.

V. CASE STUDY
The scope of the research work is to monitor the longitudi-
nal turning process of carbon steel, with metal-coated inserts
taking under control the chip form classification.

The normal variations of process conditions can produce
changes in the chip form or shape during a machining opera-
tion.

The problem with the formation of chips that are too long
is that it complicates, in many cases, the machining process,
as a too long chip may tangle around the tool.

Unacceptable chip shapes can cause injuries to operators
and damage to cutting tools, workpieces (resulting in a de-
crease in surface quality) and machines [44], [45].

In this work, a monitoring system of cutting force sensor
signals is proposed to predict the shape of the chip through a
scaled ML algorithm for application on an end-device.

Given these considerations, this turns into a PdM problem,
as we want to monitor the parameters that affect chip forma-
tion in order to detect, and possibly interrupt, a potentially
dangerous process.

For the above problem we consider three chip shapes, de-
fined by the ISO 3685 standard [46] (as shown in Fig. 8): 1)
short spiral; 2) short; and 3) snarled.

The dataset was obtained by monitoring the three compo-
nents (Fc, Ff , Fp), represented in Fig. 7, of the cutting force
measured using a Kistler laboratory dynamometer 9263 [47],
a three-channel piezoelectric dynamometer.

The cutting parameters set to obtain the cutting forces, are
as follows:

1) Cutting speed = 150, 250 m/min;
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FIGURE 7. Cutting forces generated during the turning process (Figure
taken from [43]).

FIGURE 8. ISO standard 3685.

2) Feed = 0.08, 0.13, 0.20, 0.30 mm/rev;
3) Depth of cut = 1.0, 1.5, 2.0, 3.0 mm.
The force component signals were digitized at a frequency

of 2500 Hz for three seconds, resulting in a data sequence of
7500 points. Then, an analysis of cutting force signal speci-
mens is performed.

The following steps of our methodology can be defined.
1) Cutting force signal specimens are measured with three-

channel piezoelectric dynamometer.
2) LPA, in particular Durbin’s algorithm, is applied to es-

timate the spectral characteristics of the signal.
3) The characteristic predictive coefficients of the spectral

model are derived, four features for each cutting force.
The analysis of CFS specimens is carried out by achiev-

ing spectral estimation through a parametric method. In this
procedure, the signal spectrum is assumed to take on a
specific functional form, the parameters of which are un-
known. The spectral estimation problem, therefore, becomes
the estimation of these unknown parameters of the spectrum
model rather than the spectrum itself. From the (measurement
vector), p features or predictor coefficients (feature vector),
{a1, . . ., ap}, characteristic of the spectrum model, are ob-
tained through LPA. Feature extraction is executed through

TABLE 2. Fc Component

TABLE 3. Fp Component

TABLE 4. Ff Component

TABLE 5. Dataset Summary

the application of Durbin algorithm and the p value is chosen
by examining the plot of the normalized RMS prediction error
versus the order of the model [44].

The acquisition of the force sensors, the saving on a circular
array and the real-time processing to extract the features of
interest are compatible with the computational capabilities of
many microcontrollers.

The above process is applied to obtain the experimental
dataset. The dataset consists of the three cutting force com-
ponents (Fc, Ff , Fp), each represented through four features
(a1, a2, a3, a4). Table 2 –4, one for each component, show
the values of the features for a part of the dataset. Overall
this leads to 12 features plus a target. The target can assume
3 integer values: the value 0 represents the snarled shape of
the chip, the value 1 indicates the short shape, and the value 2
represents the short spiral shape. The experimental dataset is
composed of 210 observations; 45 for class 0, 90 for class 1,
and 75 for class 3. For clarity, detailed information regarding
the distribution of the dataset is summarized in Table 5.

The dataset is unbalanced, but not so much as to negatively
affect the result. Therefore, it is not necessary to perform any
operation of balancing.

In this work, we did not implement the data acquisition
setup as we used the data collected in the paper [44].

A. SECOND STEP: MATLAB/PYTHON DATA ANALYSIS AND
MODEL DESIGN
In this section, we focus on the choice of multiclass super-
vised classification models that, starting from the value of
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the cutting forces, perform better in predicting the chip shape
produced by the turning process.

MATLAB: To select the best models, we use the Classifi-
cation Learner App, included in the Statistics and Machine
Learning Toolbox for MATLAB R2021. The software can
be used to train supervised and semisupervised learning al-
gorithms for binary and multiclass problems [48]. We used
this application to train the ML models (on the same dataset)
belonging to the following classes.

1) Decision Trees.
2) Discriminant Analysis.
3) SVMs.
4) Nearest Neighbors.
5) Naive Bayes.
6) Ensemble and NN.
Each of these classes contains one or more models for a

total of 29 trained models.
The ML models were trained without using the PCA. Clas-

sification Learner App offers three possible choices for the
model validation: K-Fold Cross Validation (K-FCV), Hold-
out, and No Validation. Among these, we choose to use
the K-FCV method, setting the number of folds equal to 5.
This method leads to better prediction accuracy, as it allows
to avoid overfitting issues. Once the application trains each
model, it reports the details in the “Summary” section. Also,
the application presents the “Optimizer” option, which allows
choosing the search range of the hyperparameters.

An example of the hyperparameter ranges used, in the case
of NNs, is given below. These ranges were initially informed
by established practices and empirical evidence in the field.
Subsequently, they were fine-tuned to ensure optimal per-
formance for our specific application. The intervals are as
follows.

1) Number of fully connected layers: The maximum num-
ber of fully connected layers was set at 4. This range
was determined on the basis of a balance between the
complexity of the model and the computational burden
required by deeper networks.

2) Layer size: The maximum number of neurons per layer
was set to 100. This range was chosen on the basis of
empirical data and the literature review, which suggest
that this size is sufficient to capture the complexity of
the data without excessively increasing the computa-
tional load.

3) Activation function: ReLU, which is effective in train-
ing deep neural networks, was chosen as the activation
function.

4) Maximum number of iterations: The training process
can perform a maximum of 100 iterations. This pa-
rameter was chosen in order to guarantee a sufficient
number of training epochs while avoiding the problem
of overfitting.

The obtained results are reported in Table 6. Herein, for
each model, we specify: Classifier family, Classifier type,
Accuracy (%), and Training time (Seconds). The results show
different models predict with very high accuracy: Quadratic

TABLE 6. MATLAB Results

Discriminant Analysis, some types of SVM and KNN, En-
semble KNN, and NN manage to achieve accuracy between
95% and 99%.

Actually, taking into account both the accuracy and the
prediction speed, our results show that NNs present the best
tradeoff between accuracy (ranging from 95% and 99%) and
prediction speed (ranging from 10 000 to 15 000).

In addition, as highlighted in Section III, NN models
represent the most used models in the field of Predictive Main-
tenance, via the ML approach. This is due to the fact that NNs
show high robustness and they return a very high accuracy in
different scenarios, such as predicting chip shape, predicting
specific cutting force, surface roughness and tool life, etc.

We focused our attention on classification models that were
suitable of guaranteeing adequate performance. Exploiting
NN’s models, an excellent tradeoff was chosen between the
complexity of the problem addressed and the computational
resources required. In particular, the intrinsic simplicity of the
input data structure made it possible to avoid complex models
that, although potentially more accurate, would have required
significantly greater computational resources. In fact, a lighter
model not only optimizes the use of the microcontroller’s
memory, but also reduces energy consumption, an important
factor for embedded applications where energy efficiency is
often a priority. The choice falls on NN models, in addition to

1200 VOLUME 5, 2024



FIGURE 9. Structure of the Bilayered NN.

the reasons already listed, also because state-of-art technolo-
gies are considered. The actual software technology primarily
supports the deployment of NN models in microcontrollers. In
fact, STM32 software focuses on optimizing NN models for
efficient execution on embedded systems, offering, for these
models, functionalities such as quantization and memory us-
age optimization [49].

Therefore, the selection of suitable models was limited to
an efficient classification structure that could provide proper
accuracy in a reasonable time while occupying a small amount
of memory.

As reported in Table 6, 5 NN types were trained by the
MATLAB Toolbox: Narrow NN; Medium NN; Wide NN;
Bilayer NN, and Trilayer NN. The following settings were
specified in the MATLAB Toolbox to train the NN models:

1) the activation function used for all the fully connected
layers (except the last one) is ReLU;

2) the activation function used for the last layer is softmax;
3) the maximum number of training iterations is set to

1000;
4) the Regularization strength (Lambda) is set to 0;
5) data standardization is performed before the training

process.
Classification Learner App allows visualizing the perfor-

mances of the trained ML models. In the following, we report
the Validation Confusion Matrix (Fig. 10) and the Structure
(Fig. 9) for the Bilayered NN model.

Python: Each ML model was developed using Python on
a Desktop environment. Following the preliminary analysis
results provided by MATLAB Toolbox, NN models were
implemented leveraging the TensorFlow library. In this way
the model obtained is smaller or comparable to the memory
available in the device used in this work.

Table 7 shows the architectures of the implemented models
and Table 8 shows the accuracy percentage and training times
(expressed in seconds) of the trained NNs.

FIGURE 10. Validation confusion matrix for the Bilayered NN.

TABLE 7. Number of Neurons

TABLE 8. Desktop Results

TABLE 9. Values of Complexity (MACC), RAM, and FLASH Memory
Associated to Each Model

B. THIRD STEP: MICROCONTROLLER IMPLEMENTATION
The performance of the algorithms was tested on different
embedded boards from the STMicroelectronics family.

The devices selected were: NUCLEO-H743ZI2; B-U585I-
IOT02A and NUCLEO-F401RE. Each board has a maximum
frequency of 480 MHz, 160 MHz, and 84 MHz, respec-
tively. The STM32CubeIDE tool with the Expansion Package
X-CUBE-AI was employed to load the pretrained NN algo-
rithms onto the microcontroller.

In detail, the models implemented with Python language
were saved in .h5 format, one of the formats supported by
the Additional Software X-CUBE-AI. In this way, there is no
need to use a separate transpiler, because the tool provides a
native solution for converting TensorFlow models to C/C++,
optimizing performance for the selected STM32 microcon-
troller.

Table 9 shows the four models with their relative com-
plexity (MACC), the amount of RAM and FLASH memory
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TABLE 10. Microcontroller Results

used. As can be seen from the table, the size of each model
is such that there is no need to reduce the size of the model
by compression or simplification. The peripherals used in
this project encompass the Timer, necessary to calculate the
inference time, and the Universal Synchronous Asynchronous
Receiver/Transmitter for communication between PC and mi-
crocontroller.

Table 10 shows the measurement of the inference time,
expressed in milliseconds, for each board.

The inference time indicates the time required to obtain the
prediction output, that has a three-words format: Each value
indicates the probability of belonging to the three classifica-
tion classes. The obtained result confirms the choice of EC:
The inference time is of the same order of magnitude as the
delay in sending and receiving data from the cloud network.
For our application, the delay that would accumulate using the
Cloud infrastructure would be unacceptable. This means that
a successful PdM strategy requires the implementation of EC.
In fact, for delay-sensitive applications, it becomes imperative
to allocate AI algorithms and data processing at the edge,
in the proximity of the sensors, leveraging edge intelligence.
Nevertheless, microcontrollers easily interface with standard
industrial equipments, exploiting industrial buses and con-
nection (e.g., SCADA, CAN, RS485) to real-time interact
with MS/O. This allows the reduction of equipment off-time
and the side effects of wasting material resources due to the
derive of the quality production, influenced from potentially
dangerous processes, e.g., the formation of snarled chips.

At the intersection of PdM and EdgeML, it is essential to
emphasize the efficiency of industrial systems. Therefore, a
comparative analysis is carried out based on the computational
efficiency of the models, in order to evaluate the following:

1) Energy consumed during the inference operation.
2) Energy efficiency (MACC per Joule).
3) RAM and Flash memory utilization versus complexity.
1) Once the inference times are obtained, for each de-

vice used, it is possible to calculate the value of the energy
consumed during the inference operation of ML models. In
particular, the formula for energy consumption (in Joules) for
electronic devices is given by

E = V × I × t (1)

FIGURE 11. Energy consumption of NN models across devices.

FIGURE 12. Energy efficiency (MACC per Joule) across models.

FIGURE 13. RAM and flash usage versus model complexity.

where E is energy, V is voltage, I is current, and t is time. The
results obtained from (1) are shown in Fig. 11.

2) Energy Efficiency is defined as the number of
multiplication-accumulation operations (MACC) that can be
performed for each Joule of energy consumed. The results of
this comparison are shown in the graph 12.

3) Fig. 13 correlates RAM and Flash memory usage with
the complexity of each model. It is evident how the demand
for resources is directly proportional to the complexity of the
model.

Our analysis shows that the microcontroller in the midrange
(intermediate frequency) outperforms the other two devices
in terms of energy consumption. This counterintuitive result
stems from the inherent differences between microcontrollers.
In detail, the high-speed microcontroller benefits from ad-
vanced circuitry that enables it to perform its tasks faster,
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while performing them at a higher current level. In contrast,
the low-speed microcontroller requires a longer execution
time to complete its tasks, resulting in higher power consump-
tion over a longer period.

Together, these analyses offer a comprehensive view of
how model complexity affects not only the computational
efficiency, but also the resource requirements of NN models.
Indeed, factors such as required computing power, energy
consumption, and available memory resources can guide the
choice of models and hardware for specific applications, es-
pecially in contexts where these factors are constrained. In
this context, the search for a PdM strategy for industrial sys-
tems requires the maximization of efficiency, thus pushing
towards solutions that optimize the cost of running industrial
production processes. All this results in tradeoffs between the
complexity of the model and the available resources, during
the design phase of efficient and sustainable industrial sys-
tems.

VI. CONCLUSION
In the Industry 4.0 evolution, many limitations in standard
maintenance approaches in terms of quality, efficiency, and la-
tency have emerged, requiring increasingly high-performance
strategies. PdM activities combined with edge intelligence
represent a new trend that is transforming the manufacturing
industry into an intelligent unit. The EdgeAI is implemented
through smart devices capable of running ML algorithms and
(pre and post) process data. In this way, task execution can be
shifted, partially or entirely, from the cloud closer to the IoT
sensors.

This paradigm enables decision-making and monitoring ac-
tivities at the edge, especially for applications that require low
latency. The transformation to smart manufacturing is already
underway and growing rapidly. Nowadays, more research fo-
cuses on finding solutions to challenges and opportunities by
exploiting the high potential of this method.

Our research lies in the abovementioned context. To the
best of our knowledge, this is the first contribution that fo-
cused on developing an edge artificial intelligence to predict
the class of the chip produced during a turning process.

This article introduced a methodology to select models
that best fit the particular work environment. Moreover, be-
ing our application a delay-sensitive one, our research also
focuses on the efficiency of the prediction process. From
our study, it results that NN models offer the best trade-
off between accuracy and prediction speed. The trained NN
models show an accuracy ranging from 96% to 98%. More-
over, our estimates show that the time needed to make an
inference, employing an NN model, is in the order of a few
milliseconds.

This promising result justifies the adoption of the EC
paradigm in place of the cloud computing one. Indeed, the
latter would require a higher prediction time because of the
latency due to the time to transfer data over the network. Such
time is at least of the same order of magnitude as the measured
prediction time. This additional delay is unacceptable for most

delay-sensitive applications, that require timely interventions
to prevent damages to equipment and working materials.
Moreover, the proposed solution leverages the resilience of the
manufacturing process that become independent of the avail-
ability of network connection. In conclusion, the company’s
choice of a maintenance strategy is critical to improving the
chance of success. Each company is responsible for the de-
sign of the maintenance technique in order to obtain one that
perfectly fits its needs.

An important aspect to deal with in future works is the
extension of the methodology to the long-term model lifecy-
cle. In this context, the automation of model retraining and
continuous performance monitoring represents a significant
challenge for most real-world applications, as the simple ini-
tial training of models is not sufficient to guarantee consistent
performance over time. Several factors, such as model drift,
aging, continuous data collection, and management, as well
as data security during retraining, can negatively affect the ac-
curacy and effectiveness of ML models, especially in dynamic
and constantly changing environments. What is referred to in
the literature as the MLOps paradigm addresses these issues
by providing a set of techniques that enable continuous mon-
itoring of model performance over time. This involves the
periodic evaluation of data, model, infrastructure resources,
and model performance to detect potential errors or changes
that may affect the quality of the product, keeping the model
fresh and accurate.
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