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Abstract: To better understand the biochemistry of the organoleptic properties of honey influencing
its commercial value, a predictive model for correlating amino acid profiles to aromatic compounds
was built. Because the amino acid composition of different varieties of honey plays a key role as a
precursor of specific aroma bouquets, it is necessary to relate the amino acid typesetting to aromatic
molecules. A selection of unifloral honeys produced in Calabria, South Italy, were used, and a new
methodology based on the use of HILIC-UHPLC-ESI-MS/MS and HS-SPME-GC-MS combined with
multivariate processing has been developed. This study, carried out for the first time on honey,
shows its excellent potential as a modern analytical tool for a rapid multicomponent analysis of
food-quality indicators. Data obtained showed strong positive linear correlations between aldehydes
and isoleucine, valine, leucine, and phenylalanine. Furans are correlated with isoleucine, leucine, and
phenylalanine; hydrocarbons with serine, glutamic acid, and aspartic acid; and ketones with serine,
alanine, glutamine, histidine, asparagine, and lysine. Alcohols were more associated with tyrosine
than esters with arginine. Proline, tryptophan, and threonine showed poor correlations with all the
classes of aroma compounds.
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1. Introduction

Honey serves as a nourishing and wholesome food source, holding significant im-
portance in the global food economy. It stands as the primary output of beekeeping
(Apis mellifera L.) and has been utilized by humans since ancient times. According to the
Codex, honey is defined as the natural sugary substance crafted by honey bees through the
collection and conversion of plant nectar, secretions from living plant parts, or excretions
from plant-feeding insects. This collected substance is then altered by the bees through a
specific process, eventually being stored within honeycombs for further refinement and
maturation [1]. The characteristics, attributes, and makeup of honey are influenced by
factors such as its geographic and floral source, the season, environmental conditions, and
the methods employed by beekeepers [2,3]. These aspects are crucial in sate-guarding
consumers and ensuring the unrestricted trade of honey in both domestic and international
markets [4–6]. Honey has been utilized for countless ages, both as a means of sweetening
and for its therapeutic qualities. It is also chosen by consumers for its distinct characteristics,
often driven by hedonistic inclinations. Honey can be categorized as monofloral, in cases
where the nectar and pollen from a specific plant dominate in predetermined proportions,
or polyfloral, when it consists of an assorted blend of various nectar and pollen sources.
The preference for a particular kind of honey and its associated health advantages are
entirely influenced by its composition. Honey primarily comprises a concentrated solution
of sugar, making up around 95% of its content, with the remaining 5% composed of micro
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components like minerals, phenolic compounds, organic acids, proteins, free amino acids,
vitamins, and volatile compounds. These volatile compounds are commonly referred to
as volatile organic compounds (VOCs) or volatile metabolites (VMs) [7]. Despite their
relatively small quantities, these compounds play a pivotal role in shaping honey’s sensory
qualities and contributing significantly to its flavor profile. A distinguishing feature of
honey is its aroma, a trait strongly influenced by the nature and type of the specific honey [8].
Honey’s fragrance stands as one of its most prized attributes and is a subject of substantial
interest within beekeeping. This is because consumers typically place more emphasis on the
sensory aspects of honey than just its nutritional content [9,10]. The sensory attributes and
acceptability of honey are intricately shaped by its chemical composition. Therefore, com-
prehending the precise relationships between its sensory qualities and specific molecules
is an essential endeavor. Among the most crucial and distinct characteristics of honey, its
flavor stands out prominently as a blend of taste and aroma. The taste of honey primarily
arises from its sugar content and minor constituents, including minerals, vitamins, organic
acids, flavonoids, and amino acids. On the other hand, the intricate aroma of honey is a
result of a multitude of volatile compounds, often unique to each variety. The aromatic
profile of honey is intrinsically tied to its volatile composition. The entirety of these volatile
compounds contributes to the complex and unique aroma. The volatile organic compounds
(VOCs) in honey are remarkably diverse, exceeding 600 in number and encompassing both
volatile and semi-volatile varieties. These compounds can be classified into distinct groups
such as esters, ethers, alcohols, aldehydes, ketones, terpenes, furan and pyran derivatives,
and more. The origin of these volatile compounds is multifaceted, including transfers from
plants or modifications of plant constituents by honeybees. Additionally, post-harvest
treatments and the presence of microorganisms can influence these compounds [11]. It has
been long recognized that both pleasant and unpleasant aroma compounds emerge from
the breakdown of amino acids [12,13]. Amino acids serve as the fundamental constituents
for protein biosynthesis, acting as the foundational elements from which molecules with
biological and antioxidant properties are formed.

These amino acids play a vital role in enhancing the nutraceutical value of sub-
stances and contributing to the flavor of foods by serving as the precursors for aroma
compounds [14]. Volatile compounds, in fact, are formed when catabolic processes prevail
over metabolic ones [15,16]. Within fruits and vegetables, amino acids serve as precursors
for the development of volatile aromatic compounds, which encompass aldehydes, alco-
hols, acids, and esters. These amino acids can be linked to distinct aromatic characteristics.
For instance, specific amino acids such as alanine, glycine, and serine are linked to a sweet
taste, whereas aspartic and glutamic acids are commonly associated with acidic and umami
taste profiles [17,18]. Amino acids constitute approximately 1% (w/w) of the components
present in honey, with their relative proportions being contingent on the source of the
honey, whether from nectar or honeydew [19,20]. The most prevalent amino acid in both
honey and pollen is proline [21]. Alongside proline, various other amino acids are iden-
tified within honey, including glutamic acid, aspartic acid, glutamine, histidine, glycine,
threonine, alanine, arginine, tyrosine, valine, methionine, cysteine, isoleucine, leucine,
tryptophan, phenylalanine, lysine, serine, and asparagine [22]. Since honey amino acids
could drive the honey aromatic profile, it is necessary to find a relationship between the
amino acids and volatile and semi-volatile compounds to better evidence the nutraceutical
and aromatic characteristics of honey linked to territoriality. Therefore, the aim of this
paper was to build a predictive model to study the behavior and correlation of amino
acid profiles with aromatic compounds. The key objectives were (1) to trace the amino
acid profile of 25 different honeys belonging to different species through a new HILIC-
UPLC-ESI-MS/MS method; (2) to trace the aromatic profile using HS-SPME-GC-MS; (3) to
investigate the possible correlation between different amino acids and aromatic compound
families using a Pearson test; and (4) to trace a method for predicting a correlation be-
tween various types of honeys, their amino acid profiles, and aroma characteristics by PLS
analysis [23]. A novel approach has been developed, employing hydrophilic interaction
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chromatography coupled with a triple quadrupole mass spectrometry detector operating in
multiple reaction monitoring mode (HILIC-UPLC-ESI-MS/MS), for the analysis of amino
acid profiles [24,25]. Additionally, for the assessment of volatile profiles, headspace-solid
phase micro-extraction (HS-SPME) combined with gas chromatography mass spectrometry
(GC-MS) has been utilized. Both sets of data are subjected to multivariate processing. The
utilization of the SPME technique in conjunction with GC-MS to generate fingerprint pro-
files for classifying unifloral honeys is of significant interest. Solid-phase microextraction
(SPME) stands as a straightforward, cost-effective, and versatile solvent-free technique. It
serves the purpose of sampling, extracting, and concentrating volatile compounds prior to
GC-MS analysis. This approach has been recognized as a valuable tool in characterizing
the aroma of honey [26,27]. Also, HILIC offers distinct advantages, particularly for small
polar molecules, including amino acids [5,6,28,29]. Finally, a partial least squares (PLS)
regression analysis was conducted. PLS regression offers notable advantages over classic
regression, largely due to the availability of charts that facilitate the comprehension of the
data structure. Correlation and loading plots enable the exploration of relationships among
variables. The score plot provides insight into sample proximity and dataset structure.
Furthermore, the biplot encapsulates all these aspects within a single visualization.

In this work, a selection of unifloral honeys produced in the Calabria region was
studied. Due to the particular pedo-climatic conditions, that includes both mountainous
and hilly areas and coastal areas with different flora. The Calabria region (South Italy)
allows honey varieties with different properties to be obtained [30,31]. To date, limited
pieces of information that correlate amino acid content and aromatic compounds are
available, while both factors are bound to both genetic and environmental characteristics.
To our knowledge, this is the first time that a similar investigation has been carried out on
the honeys.

Previous research and bridges between recent trends and the past: The exploration of
honey’s intricate composition and sensory attributes builds upon a foundation of previous
research endeavors that have sought to unravel the secrets of this cherished natural product.
Historical uses of honey for its sweetness and therapeutic benefits have been documented,
emphasizing its significance across time. However, in recent years, scientific advancements
and innovative methodologies have allowed us to delve deeper into the complex realm of
honey’s characteristics. Past studies have laid the groundwork for our understanding of the
multifaceted relationship between honey’s amino acid profiles and its aromatic compounds.
These investigations have paved the way for the current study’s innovative approach. By
combining hydrophilic interaction chromatography (HILIC) and mass spectrometry, as well
as headspace-solid phase micro-extraction (HS-SPME) coupled with gas chromatography
mass spectrometry (GC-MS), this study takes a significant step forward in unraveling
the intricate connections between amino acids and aroma compounds in different honey
types. As recent trends in the scientific community lean towards a holistic and compre-
hensive understanding of food products, this study aligns itself with this trajectory. The
integration of advanced chemometric techniques offers a contemporary perspective on
the interplay between honey’s composition and sensory attributes, establishing a bridge
between traditional wisdom and modern analytical capabilities.

2. Materials and Methods
2.1. Reagents

Amino acid standards were acquired from Sigma–Aldrich (Steinheim, Germany). The
L-amino acid kit comprised p.a. standards with a purity of 98%. The kit encompassed
the following amino acids: aspartic acid (Asp), asparagine (Asn), glutamic acid (Glu),
glutamine (Gln), alanine (Ala), arginine (Arg), glycine (Gly), leucine (Leu), histidine (His),
hydroxyproline (Hyp), isoleucine (Ile), lysine (Lys), methionine (Met), phenylalanine (Phe),
proline (Pro), serine (Ser), threonine (Thr), tryptophan (Trp), valine (Val), and cystine (Cys).
Sodium chloride (NaCl) was also procured from Sigma–Aldrich. For the chromatographic
analysis, high-grade solvents were employed: acetonitrile (ACN), methanol (MeOH), and



Foods 2023, 12, 3284 4 of 14

water (H2O) of MS grade. Furthermore, formic acid, ammonium acetate, and ammonium
formate (utilized as eluent additives for LC-MS) were sourced from Honeywell Fluka
(Harvey St., Muskegon, MI, USA).

2.2. Sampling and Treatment

The proposed method was applied to 25 honey samples. According to the botanical
origin (certified by qualitative and quantitative pollen analysis and organoleptic tests per-
formed by different laboratories appointed directly by beekeepers), they were classified as
chestnut (Castanea sativa Mill.), acacia (Robinia pseudoacacia), citrus (Citrus L), eucalyptus,
and sulla (Hedysarum coronarium) honeys. 8 citrus, 4 chestnut, 4 eucalyptus, 4 acacia, and
5 sulla honeys were supplied directly by local beekeepers. All the samples were obtained
through manual processes involving centrifugation and remained unpasteurized. These
samples originated from the 2022 production, and all analyses were conducted within the
same year. The assessment of the aromatic profile was executed immediately after procur-
ing the honey samples. Subsequently, the samples were stored in a lightless environment at
a temperature of 20 ◦C until further determinations were carried out. For the determination
of the amino acid profile, representative samples from the honey lot were selected, homog-
enized, and weighed (1 g). These samples were then dissolved in a solution of 5 mL H2O:
MeOH (80:20) with 0.1% formic acid. The resulting solution was quantitatively transferred
to a 10 mL volumetric flask and diluted with the same solution. After vigorous vortexing
for 5 min, the solution was subjected to centrifugation at 5000 rpm for 10 min. A 1 mL
aliquot of the supernatant was filtered using a 0.22 µm filter (Millipore, Bedford, MA, USA)
and analyzed using HILIC-UPLC-ESI-MS/MS [32]. For the determination of the aromatic
profile, the volatile compounds from the honeys were extracted using the HS-SPME method.
A Divinylbenzene/Carboxene/Polydimethylsiloxane (DVB/CAR/PDMS) fiber (Sigma
Aldrich Supelco, St. Louis, MO, USA) with dimensions 50/30 µm was employed. Before
use, the SPME fiber was conditioned in the GC-MS injection port at 250 ◦C for 10 min to
prevent contamination and carry-over from prior samples. Portions of 3 g of honey were
placed within a 15 mL SPME headspace vial along with a magnetic stirrer and 1.5 mL of
water. The vial was promptly sealed and heated to 60 ◦C for 15 min using a magnetic
hot plate stirrer. Following equilibration, the headspace extraction step was performed
by inserting the fiber into the vial for 30 min at 60 ◦C with a stirring rate of 600 stirs per
minute. The extracted analytes were desorbed in the GC-MS for 10 min while maintaining
the injection port at 250 ◦C. Each sample underwent three separate extractions, with each
extraction corresponding to a single SPME analysis.

2.3. HILIC-UPLC-ESI-MS/MS Analysis

The separation of free amino acids was carried out using a Nexera X2 chromatograph
(Shimadzu Corporation, Milan, Italy) with an LCMS-8050 Triple Quad detector (Shimadzu
Corporation, Milan, Italy). The UPLC system consisted of a binary pump, an automatic
degasser, a column heater, and an autosampler. To mitigate errors stemming from poor
repeatability, a HILIC (hydrophilic interaction liquid chromatography) separation method
was employed [33,34]. The chromatographic separation using the hydrophilic interaction
was conducted utilizing an Acuity BEH Amide column (100 × 2.1 mm × 1.7 µm) at a
temperature of 30 ◦C with a flow rate of 0.3 mL/min. The mobile phase composition
consisted of a binary gradient of (A) H2O:MeOH buffer (45:45:10) and (B) ACN:Buffer
(90:10). The buffer solution comprised 20 mmol/L formic acid, 3 mmol/L ammonium
formate, and 3 mmol/L ammonium acetate. The gradient elution program involved the
following steps: 0–5 min at 100% B, 5–7 min at 90% B, 7–10 min at 70% B, and 10–18 min
at 40% B. The composition was then reverted to the initial mobile phase and equilibrated
for 8 min prior to the next injection. The MS/MS system incorporated an ESI (electrospray
ionization) source operating in the positive ion mode. Optimization of ionization source
and MS parameters was conducted individually for each analyte by directly infusing a
standard solution (with a concentration of 1 mg/L). Detection was performed in Multiple
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Reaction Monitoring (MRM) mode to ensure high sensitivity and selectivity for each analyte.
This was achieved through the in-source generation of protonated molecular ions of amino
acids and the generation of specific fragment or through collision-induced processes. For
the LC-MS/MS analysis, the following instrumental parameters were used: nitrogen as
the drying gas at a flow rate of 10 L/min, nebulizing gas at 3 L/min, and heating gas
flow at 10 L/min. The interface voltage and temperature were set at 4 kV and 300 ◦C,
respectively. The DL (drying line) and heater block temperatures were set to 250 ◦C and
400 ◦C, respectively. Data acquisition and analysis were carried out using Labsolution
software (Shimadzu Corporation). Detailed information about the specific MRM transitions
for amino acids, along with corresponding fragmentor voltages, collision energies, and
dwell times, is provided in Table 1.

Table 1. MRM amino acid transitions.

Compound Precursor (m/z) Product (m/z) Dwell (msec) Q1 (V) Ce Q3 (V)

Glycine 76.1 30 13 −12 −11 −12
76.1 47.9 13 −12 −10 −18

Tyrosine 182
136.1

13 −11
−15 −28

165.3 −12 −20

Aspartic Acid 134.2
74.1 13 −14 −16 −30
87.9 13 −14 −13 −19

Lysine 146.7
130.2 100 −30 −15 −15
84.1 100 −30 −27 −30

Seryne
105.9 60.1 13 −10 −12 −24
106 42 13 −21 −22 −17

106.1 83 100 −10 −19 −21

Proline 116.1 70.1 30 −19 −16 −30

Valine
118.1

72.1
8 −22

−12 −15
55.1 −22 −23

158.9 118 100 −16 −9 −13

Methionine
150.2 56.1

8 −10
−17 −12

150.2 61 −24 −24

Fenilalanine 165.6
120.1 8 −30 −14 −26
103.1 8 −30 −27 −22

Arginine 175.1
70.1 13 −11 −22 −29
60.1 13 −11 −14 −25
116 13 −11 −15 −24

Leucine 131.9
86.1

8 −27
−12 −22

41.6 −30 −18

Isoleucine 131.9
86.1

8 −13
−12 −19

69 −17 −27

Threonine 120.2
74

13
−12 −12 −15

102.2 −24 −13 −22

Glutamic Acid 147.8
83.9

22
−14 −15 −17

130 −29 −14 −15

Alanine
90.1 44.1

13 −17
−13 −21

90.1 44.9 −31 −18

Histidine 155.6
110.1

13 −30
−14 −23

93 −23 −18
93.1 −23 −11
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Table 1. Cont.

Compound Precursor (m/z) Product (m/z) Dwell (msec) Q1 (V) Ce Q3 (V)

Asparagine 133 74
22

−14 −15 −30
133.1 87.1 −12 −12 −18

Glutammine 147.1
84

22 −16
−15 −22

130 −24 −26

Tryptophan 204.9 118.1 8 −22 −24 −25
204.9 118.1 8 −22 −10 −21

Cistyne 241.2
74.1

13 −10
−26 −29

152 −12 −28
240.8 122 100 −11 −16 −26

Hydroxyproline 132.2 74.2
100

−17 −23 −29
123.1 86.1 −15 −14 −18

2.4. HS-SPME-GC-MS Analysis

The composition of the headspace was examined using gas chromatography mass
spectrometry (GC-MS) with a QP2010 Ultra instrument from Shimadzu, Italy. Volatile
compounds were separated using a capillary column MEGA SE52 (5% phenyl, 95% methyl
polysiloxane), with dimensions of 30 m × 0.25 mm i.d. and a film thickness of 0.25 µm. The
temperature of the oven was initially maintained at 60 ◦C for 1 min, followed by a gradual
increase at a rate of 3 ◦C/min to reach 180 ◦C. Subsequently, the temperature was ramped
up at a rate of 10 ◦C/min to achieve 220 ◦C and held for 10 min. The total runtime for the
analysis was set at 55 min. Helium gas (purity > 99.999%) was employed as the carrier gas.
The injection temperature was set at 250 ◦C, and the injection mode was set to split with
a split ratio of 50. Mass scan spectra were recorded in the range of 35–500 amu using the
electron ionization (El) source at 70 eV. The MS ion source and interface temperature were
both maintained at 250 ◦C, and a solvent cut time of 0.5 min was selected. The control of
equipment and data acquisition was managed through the GC-MS SOLUTION software.
The identification of volatile compounds was conducted on a tentative basis. This involved
comparing the mass spectra of unknown peaks with those stored in databases such as the
National Institute of Standards and Technology (NIST Vs. 2011) library, with a similarity
threshold of over 75%. Additional resources like WILEY5 and a specialized library for
the analysis of essential oils were also utilized. For each peak, the retention index was
determined and compared with values reported in the literature. The relative concentration
of each isolated compound was calculated as a normalized % abundance, which provides a
measurement of the relative ratios of components within each sample.

2.5. Statistical Analysis

All the data underwent analysis using XLSTAT software (Vs. 2022.4.5 Addinsoft,
Paris, France). The outcomes were presented in terms of Person’s correlation coefficient,
which was employed to evaluate the correlations between the means. The significance of
these correlation coefficients was assessed through a Student’s t-test with a threshold error
probability of 5%. In this context, a p-value less than 0.05 was deemed to be statistically
significant. For visual representation and relative comparisons of each amino acid and
volatile compound class, a heat map was generated. Given the variations in the values of
amino acids and volatile compounds, the dataset was subjected to normalization before
undergoing statistical analysis.

3. Results and Discussion

To understand the flavor and aroma of honey [35], it is therefore necessary to know the
characteristics and the correlation between the main molecules that affect the bouquet of
aroma that will be formed in honey. Through the building of a predictive model, a method
for correlating amino acid profiles to aromatic compounds was developed. The objective of
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this study was to enhance our comprehension of the intricate realm of honey taste and its
overall acceptability. The model was based on data derived from the analysis (Figure 1)
of the amino acid profile using a HILIC-UPLC-ESI-MS/MS and from the analysis of the
aromatic profile using HS-SPME-GC-MS [36,37].

Figure 1. Citrus honey: (A) Amino acids profile by HILIC-UPLC-ESI-MS/MS (from the top down:
Hydroxyproline, Arginine, Aspartic Acid, Lysine, Histidine, Cysteine, Glutamine, Asparagine, Glu-
tamic Acid, Alanine, Tyrosine, Serine, Phenylalanine, Leucine, Threonine, Methionine, Valine, Proline,
Glycine, Isoleucine, Tryptophan) (B) Volatile profile by HS-SPME-GC-MS of Citrus Honey.

Through this study, a highly promising HILIC method was established, enabling
the swift and accurate quantification of 17 amino acids frequently encountered in honey
samples. Additionally, the application of SPME-GC-MS facilitated an in-depth exploration
of the aromatic profile, leading to the identification of 130 distinct aromatic compounds. In
an effort to examine the interrelationship between amino acids and volatile compounds
(aroma), a chemometric approach was employed. This allowed for a systematic analysis of
the correlations between these components. A correlation analysis (Pearson test) was used
to make the comparisons among and between values for the single amino acid content
and classes of aromatic compounds (aldehydes, alcohols, ketones, furans, hydrocarbons,
and esters) (Table 2). A Pearson’s product-moment correlation coefficient, denoted as “r”,
serves as a prevalent measure of association. This coefficient is dimensionless and evaluates
the linear relationship between two variables. Consider a scenario where there are two
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continuous traits, X and Y, measured for each of the N individuals in a sample. In such a
situation, the calculation of the Pearson’s correlation coefficient involves:

X =
1
N

N

∑
i=1

Xi

Y =
1
N

N

∑
i=1

Yi

r =
∑N

i=1
[(

Xi − X
)(

Yi − Y
)]√

∑N
i=1
(
Xi − X

)2
√

∑N
i=1
(
Yi − Y

)2

Table 2. Pearson correlations among amino acids and aroma compounds (classes) in honey samples.

Aroma Compounds Classes Amino Acids Pearson Correlation Coefficient p Value Correlation Curve

Aldehydes

Isoleucine 0.931 <0.0001 y = 0.827x − 0.0151
Valine 0.922 <0.0001 y = 0.810x − 0.0151

Leucine 0.932 <0.0001 y = 0.8276x − 0.0151
Phenylalanine 0.972 <0.0001 y = 0.8631x − 0.0151

Furans
Isoleucine 0.982 <0.0001 y = 0.8188x − 0.0852
Leucine 0.982 <0.0001 y = 0.8186x − 0.0852

Phenylalanine 0.983 <0.0001 y = 0.8194x − 0.0852

Hydrocarbons
Serine 0.793 <0.0001 y = 0.7894x + 0.0461

Glutamic Acid 0.941 <0.0001 y = 0.9552x − 0.1389
Aspartic Acid 0.888 <0.0001 y = 0.8971x − 0.1019

Ketones

Serine 0.905 <0.0001 y = 0.9127x + 0.0116
Alanine 0.929 <0.0001 y = 0.99364x + 0.0116

Glutamine −0.964 <0.0001 y = −0.9715x + 0.0116
Histidine −0.979 <0.0001 y = −0.99867x + 0.0116

Lysine −0.958 <0.0001 y = −0.9655x + 0.0116
Asparagine −0.964 <0.0001 y = −0.9714x + 0.0116

Alcohols Tyrosine 0.927 <0.0001 y = 1.1056x + 0.0364

Esters Arginine −0.98 <0.0001 y = −1.00631x + 0.0992

The use of Pearson’s correlation coefficient (r) as a measure of association is based on
several assumptions. These include: the individuals within the sample are assumed to be
statistically independent of one another, and the population from which the sample was
drawn is expected to exhibit a normal bivariate distribution for both of the features under
consideration. Simple linear regression and correlation are both methods for investigating
a potential linear relationship between two variables. They provide insights into a scat-
terplot’s characteristics. Regression analysis is suitable when examining the relationship
between X and Y when they are functionally dependent. Functional dependence implies
that there’s an asymmetry between the variables, where Y can be expressed as a function of
X. This approach is useful for predicting between variables. Functional dependence does
not necessarily require identifying a cause-and-effect mechanism; it focuses on predict-
ing one variable from another. On the other hand, calculating a correlation coefficient is
valuable for measuring the degree of association between variables, regardless of whether
regression is appropriate or not. The magnitude of the correlation coefficient (r) does not
indicate the slope of the linear trend curve; rather, it quantifies the probable dispersion of a
group of individuals around this trend line. The value of r always falls between −1 and
1. A value of r = 0 signifies no linear association between the variables. A value of r = 1
indicates a perfect positive linear relationship, where all sampled individuals align on the
same positive-sloped straight line. If 0 < r < 1, a positive linear trend exists, but the sampled
individuals exhibit dispersion around the common trend line. Smaller absolute values of r
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imply less data cohesion around a single linear relationship. A positive r suggests that an
increase in one variable corresponds to an expected increase in the other. A value of r = −1
suggests a perfect negative relationship where sampled individuals consistently adhere
to the same negatively sloped linear trend line [38]. In this work, which was considered
good, the value of the Pearson correlation coefficient was never lower than 0.75. The ob-
tained results showed strong positive linear correlations between aldehydes with isoleucine
(r = 0.931), valine (r = 0.922), leucine (r = 0.932) and the better correlation with phenylala-
nine (r = −0.972); furans with isoleucine (r = 0.982), leucine (r = 0.982), and the highest
correlation with phenylalanine (r = 0.983); hydrocarbons with serine (r = 0.793 the lower
correlation considered), glutamic acid (r = 0.941) and aspartic acid (r = 0.888); ketones with
serine (r = 0.905), alanine (r = 0.929), and alcohols with tyrosine (r = 0.927); Also, the results
showed a strong negatively linear correlation between ketones and glutamine (r = −0.964),
histidine (r = −0.979), lysine (r = −0.958) and asparagine (r = −0.964); esters and arginine
(r = −0.980). Instead, proline, tryptophan, and threonine showed a poor correlation with
all the classes of aroma compounds (Table 2). Finally, Table 2 showed the p value always
being lower than 0.0001 and the correlation curve for aroma compounds vs. amino acids.

The summarized data of 25 honey samples for the amino acids content are showed
in Table 3.

Table 3. Distribution of amino acids concentration for Calabria unifloral honey (mg/kg).

Citrus (n = 8) * Chestnut (n = 4) Eucalyptus (n = 4) Acacia (n = 4) Sulla (n = 5)

Amino Acids MV SD MV SD MV SD MV SD MV SD

Alanine (Ala) 171.06 15.92 240.13 14.52 273.41 25.80 146.93 14.87 162.49 18.59
Serine (Ser) 84.83 5.09 99.92 5.10 112.03 5.24 74.66 2.53 81.70 7.02

Proline (Pro) 1101.80 159.11 2062.37 160.65 1563.91 190.93 1050.58 82.48 922.90 135.79
Valine (Val) 684.54 59.76 304.88 21.75 510.53 12.53 373.41 24.24 441.27 22.26

Threonine (Thr) 46.06 5.65 32.89 4.71 59.77 8.74 43.17 4.12 42.31 7.72
Leucine (Leu) 988.19 277.33 59.46 10.57 142.74 33.32 137.22 16.39 223.54 60.38
Isoleucine (Ile) 1005.88 279.90 52.94 8.29 140.93 34.92 142.43 15.77 221.58 62.94

Asparagine (Asn) 826.29 72.74 197.73 12.44 463.69 21.31 1038.45 36.56 912.67 60.04
Aspartic acid (Asp) 212.73 33.52 208.32 29.51 373.77 13.59 226.69 37.83 219.02 15.68

Lysine (Lys) 315.08 35.21 24.11 4.92 87.95 6.52 387.67 23.46 323.08 35.17
Glutamine (Gln) 201.27 16.93 16.36 3.32 56.44 5.48 240.67 18.07 221.65 34.91

Glutamic acid (Glu) 174.64 270.06 73.17 1.89 143.30 6.98 76.85 1.70 79.16 5.40
Histidine (His) 169.71 5.53 34.69 1.69 76.50 3.97 209.21 3.82 192.92 12.20

Phenylalalnine (Phe) 1866.58 359.49 120.68 23.66 223.13 48.51 229.06 8.37 666.61 152.22
Arginin (Arg) 161.67 10.23 15.28 2.31 180.88 13.69 125.01 3.81 214.88 9.10
Tyrosine (Tyr) 380.47 47.37 263.61 17.57 317.55 33.08 240.29 21.83 472.73 71.48

Tryptophan (Trp) 36.03 6.22 1.51 0.01 2.88 0.79 44.25 6.28 8.22 2.60

* number of samples; MV: mean value; SD: standard deviation.

In the citrus samples, the amino acids found in abundance were phenylalanine, proline,
isoleucine, leucine, asparagine, and valine (ranged from 684 to 1866 mg/kg FW); for the
chestnut and eucalyptus samples, proline was the most abundant amino acid (2062 and
1563 mg/kg FW, respectively). In the Acacia samples, proline and asparagine were most
abundant. The sulla honeys showed a similar profile, with proline and asparagine as
the most abundant amino acids (922 and 912 mg/kg, respectively). The obtained data
showed that citrus honeys had the highest content of total amino acids, followed by sulla,
acacia, and eucalyptus. The chestnut honey showed a lower level. The most abundant
volatile molecules revealed for the citrus samples were benzeneacetaldehyde (38.6%);
for the chestnut, eucalyptus, and sulla samples, nonal was the most abundant aromatic
compound (11.3, 34.8, and 58.9%, respectively). Finally, in the acacia samples, linalool
oxide was the most abundant. The obtained data were graphically represented by a heat
map (Figure 2). Figure 2 shows the normalized quantity of the 17 amino acids and the
six chemical classes of volatiles quantified in the analyzed honey samples. The relative
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quantity of single compounds (row) must be read in relation to the botanical origin of
honey (column).
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Figure 2. Heat map of honey samples showing area of compounds by amino acids and volatile classes
(blue color means low quantity and red color is high quantity, relatively).

The different shades of color allow us to evaluate the presence and relative abundance
of amino acids and of different aroma families. Blue color means low quantity, and red color
refers to high quantity. As shown (Figure 2), the higher level of proline was highlighted in
the chestnut honeys, whereas the sulla honeys showed the lower levels. Phenylalanine was
higher in the citrus honeys, followed by sulla, and lower in the other honeys. About the
aromatic profile: Figure 2 shows that citrus honeys were characterized by higher levels of
aldehydes and alcohols, even if the aldehyde family was the most abundant. To establish
a correlation between various types of honeys, their amino acid profiles, and their aroma
characteristics, a partial least squares (PLS) analysis was also conducted. If we consider n
different honey types described by p amino acids and q aromatic classes of components,
the aromatic attributes are stored in table X (with dimensions n and q), while the amino
acid contents are presented in table Y (with dimensions n and p). The goal was to perform
a PLS regression of amino acid contents (Y) against aromatic characteristics (X).

For the graphical representation of this analysis, the X and Y variables were depicted
on a “correlation circle”, using their correlations with the first two components (t1 and
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t2) of the PLS. This map closely resembles the traditional PLS regression loading plot but
offers the advantage of accommodating additional variables. In this specific scenario, the
honey samples act as additional variables. In the generated PLS regression map (Figure 3),
the correlation circle illustrates the relationships among honey types, aromatic classes, and
amino acid variables with respect to the first two PLS components. The graphical layout is
divided into four sections by two bisectors, and each region corresponds to one specific
honey type. Additionally, within each area, the associated aromatic compounds and amino
acids that are positively correlated with that particular honey type are indicated. The
quality of the regression is deemed satisfactory: the overall R-squared value (R2) between
Y and (t1, t2) is calculated as 0.632, while the cross-validated R-squared value (Q2cum)
amounts to 0.539. In Figure 3, the positive correlations between chestnut and eucalyptus
honey with hydrocarbons, esters, ketones, proline, alanine, serine, and aspartic acids and
the negative correlations between the terpenes, asparagine, histidine, and lysine are shown.
The Sulla honeys showed an opposite relationship. Citrus showed a positive correlation
between alcohols, aldehydes, furans, valine, isoleucine, leucine, phenylalanine, and tirosine;
Acacia honey showed a negative correlation with the same molecules of citrus. Figure 3
shows that two amino acids (threonine and glutamic acid) cannot be related to product
characteristics since they are located in the center of the graphical display.
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(t1; t2).

The model was a correlation expressed as a Pearson index between 17 amino acids
and 130 volatile compounds grouped in different chemical families (aldehydes, furans,
hydrocarbons, ketones, alcohols, and esters). The data obtained showed strong positive
linear correlations between aldehydes and isoleucine, valine, leucine, and phenylalanine.
Furans are correlated with isoleucine, leucine, and phenylalanine; hydrocarbons with
serine, glutamic acid, and aspartic acid; and ketones with serine, alanine, glutamine,
histidine, asparagine, and lysine. Alcohols were more associated with tyrosine than esters
with arginine. Proline, tryptophan, and threonine showed poor correlations with all the
classes of aroma compounds. This research opens avenues for enhanced traceability and
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identification of honey based on its amino acid and aromatic composition. This feasibility
study shows the excellent potentiality of the model as a modern analytical tool for a
rapid multicomponent analysis of honey quality indicators. The utility of the developed
predictive model is closely tied to the feasibility of obtaining information about honey
using much simpler analytical protocols. For example, as demonstrated, gaining insights
into the amino acid composition of honey requires the use of rather complex analytical
methods due to the nature of the molecules and especially the matrix. Conversely, the
analysis of the aromatic profile is straightforward: it does not demand excessive sample
preparation and is also relatively cost-effective and environmentally friendly, as it does not
require solvents. Through correlation modeling, the analysis of the aromatic profile has
the potential to not only define the sensory quality of the product but also the amino acid
composition. Additionally, it can provide information about the botanical origin, given that
many amino acids are considered markers for identifying specific types of honey.

Future Recommendations

The outcomes achieved underscore the potential of utilizing the combined analysis of
amino acid composition and aromatic profile, in conjunction with statistical analysis, as a
valuable tool for identification purposes and for establishing a means of robust tracking
and traceability. To our knowledge, this is the first time that a similar investigation has
been carried out on the honeys. Since the properties of honey are strictly dependent on
various factors, conducting a larger number of analyses by examining samples of different
honeys, both in terms of botanical and geographical origin, will be necessary to establish
the stability of the analytical method. Future research will be further extended to other
Italian, European, and non-European honeys with the aim of confirming the validity of the
developed method and also applying the same method to assess its feasibility in recognizing
geographical origins.

4. Conclusions

In conclusion, this study delved into the multifaceted world of honey. In this study,
which represents a feasibility study, a predictive model was built. A chemometric approach
was employed to decipher the intricate relationships between aroma variability data and
amino acids linked to botanical origin. To build the model, an analysis of 25 honeys of
different botanical origins collected in the Calabria region (South Italy) was performed.
Through hydrophilic interaction chromatography (HILIC) coupled with mass spectrometry,
the amino acid profile was determined. By headspace solid phase micro-extraction (HS-
SPME) with gas chromatography mass spectrometry (GC-MS), the aromatic profile was
extracted. A robust statical approach was used to determine the Person’s correlation
between amino acid profiles and aromatic compounds in various types of honey. Finally,
various types of honeys, their amino acid profiles, and their aroma characteristics were
correlated by PLS analysis. The results revealed a strong linear association between specific
amino acids and various classes of aromatic compounds, shedding light on the potential
impact of amino acids on honey’s aromatic profile. Further investigations can extend this
methodology to explore additional honey varieties, thus contributing to a comprehensive
understanding of the intricate interplay between amino acids and aroma compounds in
this prized natural product.
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