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Abstract: In this paper, starting from a well-known nonlinear hyperbolic integro-differential model
of the fourth order describing the dynamic behavior of an electrostatic MEMS with a parallel plate,
the authors propose an upgrade of it by formulating an additive term due to the effects produced
by the fringing field and satisfying the Pelesko–Driscoll theory, which, as is well known, has strong
experimental confirmation. Exploiting the theory of hyperbolic equations in Hilbert spaces, and
also utilizing Campanato’s Near Operator Theory (and subsequent applications), results of existence
and regularity of the solution are proved and discussed particularly usefully in anticipation of the
development of numerical approaches for recovering the profile of the deformable plate for a wide
range of applications.
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1. Introduction

In recent years, physical-mathematical scientific research has produced complete
analytical models capable of simulating the behavior of parallel plate MEMS (micro-electro-
mechanical systems) characterized by strong confirmation with experimental evidence [1–4].
Particularly, a wide range of models of electrostatic actuators, obtained through refined
design techniques, have been developed for several applications [5,6], including MEMS-
based metamaterial [7,8]. This has made it possible to highlight a strong synergy between
undoubted theoretical skills and industrial realities by carrying out technological transfers
that were previously prohibitive [9–11], also with manufacturing imperfections (which, no-
toriously, affect the operation of MEMS devices), if taken into account during the modeling
and design phases [12,13] (i.e., by means of asymptotic homogenization techniques [14]).
These devices, nowadays, considered “intelligent”, are able to combine electrical, electronic,
mechanical, and optical effects by managing highly complex industrial processes [15–20], es-
pecially when nonlinear dynamic characteristics of MEMS devices are involved, so that the
relative simulation accuracy is low and cannot meet the needs of design applications [21,22].
Modern industrial technologies allow the production of micro-products, even with com-
plex geometries, in which the deformable elements take on particular connotations and
characteristics. Among them, the electrostatic MEMS (in which the deformable element is a
metal plate) stand out since they do not have particular precautions for their construction
and exhibit high-level performance [1,23–25]. Moreover, for many of them, it was possible

Mathematics 2022, 10, 4541. https://doi.org/10.3390/math10234541 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10234541
https://doi.org/10.3390/math10234541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5293-1809
https://orcid.org/0000-0002-3944-7198
https://orcid.org/0000-0003-3837-6671
https://doi.org/10.3390/math10234541
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10234541?type=check_update&version=1


Mathematics 2022, 10, 4541 2 of 20

to study their behavior even with deformable elements initially curved and loaded by non-
linear electrostatic actions to study, using completely innovative techniques, any instability
and/or bistability [26–28]. Today, scientific research works hard in proposing advanced
physical-mathematical models with the primary objective of producing synergies with
industrial research through possible correspondences with experimental models [29–32].
Obviously, regardless of the intended use of the device, it is imperative that the deformable
element inside it does not come into contact with the fixed elements (to avoid the generation
of highly harmful electrostatic discharges) [33–35], avoiding any very dangerous instability
in several applications (in such cases, one needs to exploit special techniques able to also
recover the stability regions [36,37]). Therefore, it is imperative to limit the physical causes
behind the excessive deformation of the deformable element [10,38]. Among them, the
capacitive fringing field is one of the most frequent causes of instability of electrostatic
MEMS devices [39,40]. As is known, it depends on the geometry of the device (in particular
on its length/width ratio, L/d) producing in the device harmful effects on the bending of
the lines of force of E [41,42], and it is important to highlight that this influence is stronger
near the edges, while it is considered to be negligible in the center [43–46].

In the recent past, the authors have produced scientific works of modeling of electro-
static MEMS devices for industrial and biomedical applications, as well as of recovering the
profile of the deformable element by means of numerical techniques, where the deformable
element was a membrane. Particularly, a second order semi-linear elliptical model was
developed and studied (in the absence or presence of a fringing field, with amplitude
of the electric field locally proportional to the curvature of the membrane [47]), which,
by applying “ad-hoc” numerical procedures, produced recovery of the membrane profile
fully consistent with the experimental evidence [10,48,49]. In parallel, the authors became
interested in modeling MEMS devices with parallel plates. In particular, starting from a
well-known fourth order integro-differential model [50] of general validity for electrostatic
MEMS devices with parallel plates, they reformulated the problem in the presence of
fringing fields obtaining results of existence and uniqueness of the solution [3], from which
to recover the profile of the deformable element using numerical techniques [51]. How-
ever, these models proposed and studied by the authors do not also present, up to now,
dynamic components.

Concerning electrostatic MEMS devices with parallel plates, an important dynamic
dimensionless integro-differential dynamic model (of the fourth order) has been studied in
detail in [52], where important existence and regularity results for the solution (profile of
the deformable plate) have been demonstrated in the absence of the fringing field, offering
interesting food for thought regarding potential future developments. Particularly, in [52],
it was considered

∆2u(x, t) + c(x, t)u′(x, t) + u′′(x, t) =
G(β, γ, u) + H(λ(t), χ, δ(x, t), p(x), u(x, t)), in Ω× [0, T),
0 ≤ u(x, t) < 1, in Ω× [0, T] x ∈ Ω ⊂ RN , 1 ≤ N < 4,
u(x, t) = 0, on ∂Ω× [0, T],
∇u(x, t)− d ∂u(x,t)

∂ν = 0, on ∂Ω× [0, T],

(1)

where

1. x is the spatial variable, while t is the time variable;
2. Ω ⊂ RN , ≤ N ≤ 3 represents a bounded domain with a sufficiently smooth boundary

(i.e., the device electrostatic MEMS with a deformable plate under study);
3. u(x, t) is the profile of the deformable plate;
4. ′ represents the derivative with respect to time;
5. ν is the outward pointing normal to ∂Ω;
6. c(x, t) is a bounded real function that is related to anisotropic damping phenomena;
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7.

G(β, γ, u) := −
(

β
∫

Ω
|∇u(x, t)|2dx + γ

)
∆u(x, t), (2)

in which γ is a positive dimensionless parameters linked to the stretching effect in
the deformable plate while β (also positive and dimensionless) takes into account the
stiffness of the deformable plate:

8.

H(λ(t), χ, p(x), u(x, t)) :=
λ(t)p(x)

(1− u(x, t))2
(

1 + χ
∫

Ω
dx

(1−u(x,t))

)2 , (3)

in which χ is a positive dimensionless parameter which takes into account the non-
local dependence of the applied voltage, V, on the solution due to a possible non-
uniform electric charge distribution; moreover, p(x) is a bounded real function which
takes into account the dielectric properties of the material constituting the deformable
plate (as it is evident, it is independent on time) and, finally, λ(t) is a positive di-
mensionless parameter depending on V, which represents the ratio of a reference
electrostatic force to a reference elastic force (therefore, it depends on time).

To make (1) more adherent to industrial realities, in this work, we introduce an additive
term, which, according to Pelesko and Driscoll [53–55] theory, takes the form:

λ(t)δ(x, t)|∇u(x, t)|2 (4)

where δ(x, t) is a non-negative real function that weighs the effects due to the fringing field,
so that, in our work, we replace (3) by

H̃(λ(t), χ, δ(x, t), p(x), u(x, t)) :=

λ(t)p(x)

(1− u(x, t))2
(

1 + χ
∫

Ω
dx

(1−u(x,t))

)2 + λ(t)δ(x, t)|∇u(x, t)|2, (5)

and our model (1) becomes

∆2u + c(x, t)u′(x, t) + u′′(x, t) = G(β, γ, u(x, t)) + H̃(λ(t), χ, δ(x, t), p(x), u(x, t)) =

G(β, γ, u) + λ(t)p(x)

(1−u(x,t))2
(

1+χ
∫

Ω
dx

(1−u(x,t))

)2 + λ(t)δ(x, t)|∇u(x, t)|2, in Ω× [0, T)

0 ≤ u(x, t) < 1, in Ω× [0, T] x ∈ Ω ⊂ RN , 1 ≤ N < 4
u(x, t) = 0, x ∈ ∂Ω,
∇u(x, t) = 0 x ∈ ∂Ω.

(6)

We observe that in [52], system (1) was studied with Steklov boundary conditions,

u(x, t) = 0, ∇u(x, t)− d
∂u(x, t)

∂ν
= 0, on ∂Ω× [0, T], (7)

in which non-negative parameter d, in the case d = 0, gives Navier’s conditions [52,56,57],
in the case d = ∞ gives the Dirichlet’s conditions u = uν = 0; in this last case, we
study our problem. To our knowledge, there are no scientific papers in the literature
concerning the existence and regularity of the solution for the problem (6). Thus, in this
paper, we prove these important results, which also open up interesting scenarios for
possible numerical reconstructions of the deformable plate profile in the absence of ghost
solutions (i.e., numerical solutions not satisfying the aforementioned conditions of existence
and uniqueness).

The paper is structured as follows: After having described the studied device, specify-
ing as the analytical model is achieved taking into account both the effect due to the fringing
field and usual load conditions (Section 2), Section 3 details some peculiar properties of
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the proposed model. Section 4 illustrates the main results of existence, uniqueness and
regularity of the solution for (1), also providing some links with industrial specifications.
In Section 5, our results concerning existence and uniqueness for (1) are proved also ex-
ploiting a penalization approach according to Campanto’s Theory [58] to then proving the
results of regularity in Section 6. Finally, the brief Section 7 illustrates the possible intended
use of the device studied, and some conclusions and perspectives end the work.

2. Some Specifications on the Electrostatic MEMS Device and Its Analytical Model
with Fringing Field

The MEMS device studied in this paper can be schematized as an elastic system
consisting of two parallel plates of the same thickness and made of the same material.
The upper plate, subjected to a positive electric potential, is not deformable, while the
lower plate, deformable but anchored to its edges, is subjected to a reference electric
potential [3]. Under the action of external V, the deformable plate lifts towards the fixed
plate without touching it in order to avoid unwanted electrostatic discharges. Figure 1
displays a simplified representation of the device in which all its constituent elements
are indicated.

Figure 1. The electrostatic MEMS: a schematic representation.

It follows that the electrostatic potential, φ, satisfies, within the device, the Laplace
equation, ∆φ = 0. According to the theory of deformable plates, the lower plate of the
device satisfies the following equation [1,55]:

K̃1(x, t)∆2u(x, t) = K̃2(x, t)∆u(x, t) + F̃(x, t), (8)

where K̃1(x, t) and K̃2(x, t) represent particular weight functions below specified and
F̃(x, t), defined as [1,55]

F̃(x, t) =
λ(t)p(x)

(1− u(x, t))2 , (9)

with

λ(t) =
ε0V2L2

2d3T(t)
, (10)

(where T(t) is the dynamic mechanical tension of the deformable plate, ε0 is the permittivity
of the free space, L is the length of the device and d is the distance between the plates)
establishing how the deformable plate is stressed if V is applied. Obviously, V inside the
device determines E, which, locally, determines an electrostatic force, which, per surface
unit, materializes in electrostatic pressure acting on the deformable plate. Then, F̃(x, t)
must necessarily be correlated both to V (so that the deformation of the plate is controllable
by V) and to the geometric, mechanical and dielectric properties of the deformable element.
Therefore, combining (8) with (9), it is easy to write

K̃1(x, t)∆2u(x, t) = K̃2(x, t)∆u(x, t) +
λ(t)p(x)

(1− u(x, t))2 , (11)
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which unfortunately is unable to electrically control the device. This is due to the fact that
V must undergo a specific control action to avoid sudden lifting of the deformable plate.
Then, for this purpose, it is sufficient for a basic capacitive control device consisting of an
electrical circuit whose elements, connected in series with each other, are the source voltage,
Vs, the capacity, C f , of a suitable capacitor and the MEMS device to be controlled (for detail,
see [1,3]). Then, as classical circuit theory suggests, the following equation holds:

V =
Vs

1 + C
C f

, (12)

in which C that represents the capacitance of the MEMS device; it can be easily evaluated as:

C =
ε0

V

∫
Ω
∇φ · n̂dx ≈ ε0

V

∫
Ω

∂φ

∂z
dx ≈ ε0L2

d

∫
Ω

dx
(1− u(x, t))

, (13)

by which, setting

χ =
ε0L2

C f d
, (14)

Equation (12) becomes

V =
Vs

1 + χ
∫

Ω
dx

(1−u(x))

, (15)

so that the control action on the load becomes( V
Vs

)2
=

1(
1 + χ

∫
Ω

dx
(1−u(x,t))

)2 . (16)

Thus, exploiting (16), Equation (9) can be written as:

F̃(x) =
λ(t)p(x)

(1− u(x, t))2

( V
Vs

)2
=

λ(t)p(x)

(1− u(x, t))2
(

1 + χ
∫

Ω
dx

(1−u(x,t))

)2 . (17)

Moreover, Equation (8), by (17), becomes:

K̃1(x, t)∆2u(x, t) = K̃2(x, t)∆u(x, t) +
λ(t)p(x)

(1− u(x, t))2
(

1 + χ
∫

Ω
dx

(1−u(x,t))

)2 . (18)

Some clarifications are necessary. In particular,

• As highlighted in Equation (14), χ essentially depends on the capacity of the device
and is a positive real number less than 1 [1]. This is due to the fact that, if χ → 1−,
dangerous bifurcation phenomena capable of generating instability could occur;

• ∆u(x, t), according to the plate theory [1], takes into account the contributions due to
bending and torsional curvatures;

• Since the edges of the deformable plate are anchored, once V is applied, the deformable
plate rises with an evident increase in its surface (generating a “stretching effect”).
Consequently, if the plate is under elastic deformation, the mechanical restoring force
will necessarily be proportional to the aforementioned surface increase. The first
addend of the right side of (18) contains the function K̃2(x, t) that can be expressed as

K̃2(x, t) = β
∫

Ω
|∇u(x, t)|2dx + γ, (19)

in which β according to Pelesko’s approach [1], takes into account the stiffness of the
deformable plate, and γ considers the effect due to the stretching phenomenon. Therefore,
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the right side of the equation in (1), considering that, usually, K̃1(x, t) = D
L2T ≈ 1 (where

D is the flexural rigidity of the deformable plate) [1], and introducing c(x, t)u′(x, t) and
u′′(x, t) to take into account the fact that the profile of the deformable plate evolves in
time, the model studied in the past was

∆2u(x, t) + c(x, t)u′(x, t) + u′′(x, t) =(
β
∫

Ω |∇u(x, t)|2dx + γ
)

∆u(x, t) + λ(t)p(x)

(1−u(x,t))2
(

1+χ
∫

Ω
dx

(1−u(x,t))

)2 ,

u(x) = 0, ∇u(x) = 0, x ∈ ∂Ω,
0 ≤ u(x, t) < 1, in Ω× [0, T], x ∈ Ω ⊂ RN , 1 ≤ N < 4.

(20)

We note that, in the recent past, many authors have extensively studied model (20),
obtaining interesting conditions on global existence where dangerous bifurcation phenom-
ena took place [1,59]. Particularly, in [60], it was proved that (20), besides admitting a
N-dimensional generalization, provided interesting conditions of existence particularly
useful for the numerical recovering of the deformable plate profile.

The Contribution Due to the Effects of the Fringing Field According to Pelesko and
Driscoll Approach

We observe that, in (20), there is no contribution due to the fringing field, electrostatic
phenomenon, according to which, once V is applied, the bending of E occurs at the edges
of the MEMS, while, at its center, E remains parallel. Furthermore, the electrostatic capacity
of the MEMS undergoes strong variations in its amplitude that are not easy to evaluate;
therefore, empirical formulation has to be exploited [1,59]. As experimentally highlighted,
electrostatic MEMS devices, depending on the L/d ratio, exhibit the phenomenon of the
fringing field. Recently, interesting results have been obtained regarding the physico-
mathematical models of parallel plate electrostatic MEMS where the effects due to the
fringing field are taken into account. However, these studies are limited, for the most part,
to models describing static behaviors [10,46], leaving out the evaluation of any dynamic
contributions to empirical experiences. According to the Pelesko and Driscoll approach,
the effects due to the fringing field are quantifiable by the following additive term [55]

λ(t)F
(

u(x, t),∇u(x, t), δ(x, t)
)

, (21)

in which
F
(

u(x, t),∇u(x, t), δ(x, t)
)
= δ(x, t)|∇u(x, t)|2 (22)

depends on δ(x, t), which weighs the effects of this particular field; the function λ(t), linked
to V by (10), must not exceed the value of λ∗ (pull-in voltage) because it would not be an
essential condition for the uniqueness of the solution. This is experimentally confirmed by
the fact that high values of V produce instability of the deformed plate, necessitating the
enactment of control actions on V.

3. Some Properties of the Model with Fringing Field

Equation (20) takes into account many physical phenomena occurring in electrostatic
MEMS with parallel plates. In the following items, some issues are detailed:

• Model (20) considers the effects due to the fringing field using a term,

λ(t)δ(x, t)|∇u(x, t)|2, (23)

and it is easy to implement both hardware and software with obvious control by
V (λ ∝ V). Furthermore, the control action due to V (see (10)) allows for avoiding
instabilities generating unwanted electrostatic discharges. Therefore, the intended use
of the device (i.e., biomedical applications) will guarantee values of V generating stable
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displacements of the deformable plate. It is worth noting that δ(x, t) cannot actually
be controlled by V (as proved in literature, the deformable element is a membrane).

• The proposed model, through the β and γ, takes into account the fatigue phenomena
that can arise on the deformable plate following prolonged use of the device;

• The amplitude of the variation of the electrostatic capacitance of the device, during the
deformation of the plate, depends on the geometry of the device as well as on the
(additional) C f capacitance, opposing significant variations of V. The term containing
χ in the proposed model takes this phenomenon into account;

• p(x) in the model, which takes into account the dielectric properties of the plates,
appears in the capacitive term where these properties have the greatest influence.
Moreover, p(x) ∈ L2(Ω) because p(x) must be a measurable function so that ∀x ∈ Ω,
| f (x)| ≤ S (S, suitable constant).

However, it is evident that the proposed model does not allow for recovering u(x, t)
explicitly. Thus, for any numerical recovering, it is imperative to have conditions that
ensure the existence, uniqueness and regularity of the analytical solution, which, if verified
by the numerical solutions, the recovering obtained does not represent a ghost solution.

4. The Dynamic Model with Contribution Due to Fringing Field: Main Results

In [52], important existence and regularity results were proved for the (20) model,
where the contribution due to the fringing field had not been considered. Particularly,
for the achievement of these results, is an important theorem proved by Tarsia in [61]
concerning the Near Operator Theory introduced by Campanato [58]. In the present work,
exploiting the same demonstration technique, we present our main results whose proofs
are detailed in Sections 5.1 and 6, respectively.

Theorem 1. Let us consider Ω ⊂ RN , with 1 ≤ N ≤ 3, which represents a bounded domain with
a sufficiently small diameter. We consider the problem (6) in which β, λ and χ are non-negative
constants and both p(x) and c(x, t) are bounded functions while

λ(t) ∈ L∞(0, T); p(x) ∈ L2(Ω), (24)

with
||λ(t)||∞ < λ∗, (25)

and
δ(x, t) ∈ C1((0, T); L2(Ω)). (26)

Moreover, let u0 ∈ H2 ∩ H1
0(Ω) (satisfying suitable compatibility conditions) and u1 ∈ L2(Ω).

Therefore, Equation (6) has a unique solution

u(x, t) ∈ C0([0, T]; H2
0(Ω)) ∩ C1([0, T]; L2(Ω)). (27)

Concerning the second-order boundary condition involved in both (1) and (6), see
Remark 4, page 7 of [52].

Theorem 2. Let us consider

u(x, t) ∈ C0([0, T]; H2
0(Ω)) ∩ C1([0, T]; L2(Ω)), (28)

to be the solution to (6) given by Theorem 1. Assuming that

u0, u1 ∈ H2 ∩ H1
0(Ω), (29)

λ(t) ∈W1,2(0, T), (30)

and
c(x, t) ∈W1,∞((0, T); L2(Ω)), (31)
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the solution enjoys the following regularity property:

u(x, t) ∈ C0([0, T]; H4(Ω)) ∩ C1([0, T]; H2 ∩ H1
0(Ω)) ∩ C2([0, T]; L2(Ω)). (32)

Remark 1. In Theorem 1, condition (24), as well as being mathematically necessary to prove the
existence and uniqueness of the solution for (20), confirms the fact that λ(t) must not undergo
sudden variations in its amplitude. Operationally, in order for this condition to be satisfied in the
experimentation, the MEMS device is associated with an electrical circuit capable of opposing the
abrupt variations of V and, therefore, by the (10), there is an abrupt variation of λ(t) (for details,
see Section 2). Furthermore, to avoid bifurcation phenomena (that would contradict the uniqueness
of the solution), as experimentally proved and mathematically demonstrated [1], Equation (25) must
occur. This is experimentally confirmed by the fact that high values of V produce instability of the
deformed plate, imposing control actions on V. Moreover, condition (24) allows us to state that

λ(t) ∈ C0(0, T). (33)

Then, continuous waveforms for V are allowed, such as the trapezoidal ones, which, as is known,
also incorporate the piecewise continuous waveforms characterized by a linear transition with a high
slope between two constant levels. Finally, being

W1,2(0, T) ⊂ C0(0, T), (34)

Equation (33) is still valid.

Remark 2. The second-order boundary condition involved in both (1) and (6) needs to be legiti-
mated, since, in H2 ∩ H1

0 , second order derivatives do not have trace on ∂Ω. However, exploiting
the elliptic regularity theory, the weak solution of the following problem{

∆2u = f , in Ω
u = 0, uν = g, on ∂Ω

(35)

belongs to H4(Ω), in order that f , g ∈ L2(Ω). This remark allows us to rewrite the equation of our
model as follows:

∆2u(x, t) = −c(x, t)u′(x, t)− u′′(x, t)+

G(β, γ, u(x, t)) + H̃(λ(t), χ, δ(x, t), p(x), u(x, t)).
(36)

Therefore, ∀t ∈ [0, T], and the trace of ∆u(x, t) is well-defined on ∂Ω, if the right side in (36)
belongs to L2(Ω). This condition is ensured by the regularity Theorem 5 in [52].

5. A Penalization Approach According to Campanato’s Theory: The Problem of
Existence and Uniqueness

To obtain the existence and uniqueness result of this paper, we use the result we
achieved in the stationary case [3], and we apply opportunely the following theorem
proved by Tarsia [52].

Theorem 3 ([61], Theorem 2.1). Let X be a topological space, Y a set (not necessary structured),
and Z a Banach space. Let us also consider the mappings

F : X×Y → Z, (37)

and
B : Y → Z. (38)

Let us consider the following assumptions:

(i) There exists (x0, y0) ∈ X×Y such that F(x0, y0) = 0;
(ii) The mapping x 7→ F(x, y0) is continuous on x0;
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(iii) There exists two constants, k1 > 0 and k2 ∈ (0, 1), and a neighborhood of x0, indicated by
U(x0) ⊂ X, such that ∀y1, y2 ∈ Y and ∀x ∈ U(x0), we achieve

||B(y1)− B(y2)− k1[F(x, y1)− F(x, y2)]||Z ≤ k2||B(y1)− B(y2)||Z; (39)

(iv) B is injective;
(v) B(Y) is a neighborhood of z0 = B(y0).

Therefore, there exists a ball S(z0, r) ⊂ B(Y) and a neighborhood of x0, indicated by
V(x0) ⊂ U(x0), such that {

F(x, y(x)) = 0, ∀x ∈ V(x0),
y(x0) = y0

(40)

has a unique solution
y : V(x0)→ B−1(S(z0, r)). (41)

Furthermore, if (iii) holds ∀x ∈ X, then the solution y = y(x) turns out to be defined in the
whole X.

We apply Theorem 3 setting

X = R+ ×R+ ×R+ ×Φ×Λ×R+, (42)

in which
Φ = { f ∈ L∞(Ω) : |x : f (x) > 0| 6= 0}, (43)

and
Λ = {λ ∈ L∞[0, T] : 0 < λ < λ∗, λ∗ ∈ R+}. (44)

It will be useful to prove that all assumptions of Theorem 3 are verified, and we will verify
the assumptions of the Theorem 3 in order to apply it to the following penalized problem:
et ε > 0 and consider the following penalized problem

∆2uε(x, t) + c(x, t)u′ε(x, t)+
u′′ε (x, t) = G(β, γ, uε) + H̃ε(λ(t), χ, p(x), δ(x, t), uε(x, t)), in Ω× [0, T]
0 < uε(x, t) < 1, in Ω× [0, T],
uε(x, t) = ε, on ∂Ω× [0, T],
∆uε(x, t) = 0, on ∂Ω× [0, T],
uε(x, 0) = u0 + ε, on Ω,
u′ε(x, 0) = 0, on Ω,

in which

H̃ε(λ(t), χ, δ(x, t), p(x), u(x, t)) :=

λ(t)p(x)

(1 + ε− u(x, t))2
(

1 + χ
∫

Ω
dx

(1−u(x,t))

)2 + λ(t)δ(x, t)|∇u(x, t)|2. (45)

It is worth noting that, in (45), we use δ(x, t) also for the penalized problem because,
for very small variations of the profile of the deformable plate, the variation of the effects
due to the fringing field is negligible. From problem (45), the following Lemma was yielded.
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Lemma 1. Let ε0 = supΩ vε, where vε is the solution to the stationary problem. Under the assump-

tion of Theorem 1, ∀ε ∈
(

0, 1−ε0
2

)
, problem (45) admits a unique solution uε ∈ C0([0, T]; H2(Ω))∩

C1([0, T]; L2(Ω)).

Let us define Yε as the set of functions y ∈ C0([0, T]; H2
0,ε(Ω)) ∩ C1([0, T]; L2(Ω)),

in which H2
0,ε(Ω) indicates the set of function y such that, ∀t ∈ [0, T], y− ε ∈ H2

0(Ω)), and

∆2y(x, t) + c(x, t)y′(x, t) + y′′(x, t) ∈ L1((0, T); L2(Ω)), (46)

0 < y(x, t) < 1, in Ω× [0, T], y′(x, 0) = 0 in Ω, (47)

∫
Ω

1
[1− y(x, t)]4

dx < M1, (48)

∫
Ω
|∆y(x, t)|2dx < M2, ∀t ∈ [0, T], (49)∫

Ω
|∇y(x, t)|4dx < M3, ∀t ∈ [0, T], (50)

where M1, M2 and M3 are positive constants; we also set Z = L1((0, T); L2(Ω))×H2
0,ε(Ω)

setting
x = (β, γ, χ, p, λ, δ), (51)

to denote an element of the space X.

Definition 1. Let us define

Fε(x, y) := (Fε(x, y), y(x, 0), y′(x, 0)) =

(∆2y(x, t) + c(x, t)y′(x, t) + y′′(x, t)−
−G(β, γ, y(x, t))− H̃(λ(t), χ, p(x), y(x, t), δ(x, t), y(x, t)),

(y(x, 0)− ε− u0)|λ(t)− λ0|),

(52)

B(y) := (B(y), y(x, 0)) =

(∆2y(x, t) + c(x, t)y′(x, t) + y′′(x, t)y(x, 0)).
(53)

We remark that the existence of the solution vε of the stationary problem obtained by (45),
for a fixed t, follows from the existence of the solution v0 corresponding to ε = 0 achieved
in [3], by considering 0 < ε < (1− ε0)/2 and setting vε = v0 + ε.

5.1. Proofs of Theorem 1 and Lemma 1

Now, we prove Theorem 1 and Lemma 1 applying Theorem 3 and, for this purpose,
we will prove that the assumptions (i)− (v) are verified for the penalized problem (45).
Thus, we set

x0 = (β0, γ0, χ0, p0, λ0, δ0) and y0,ε = vε(x, t0), (54)

to obtain
Fε(x0, y0,ε) = 0. (55)
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To verify (ii), we have to evaluate

||Fε(x, y0,ε)− Fε(x0, y0,ε)||Z =∫ T

0

∫
Ω
|Fε(β, γ, χ, p(x), λ(t), δ(x, t), vε(x, t0))−

Fε(β0, γ,χ0, p0(x), λ0(t), δ0, vε(x, t0))|2dxdt ≤

2
∫ T

0

∫
Ω

∣∣∣[β
∫

Ω
|∇vε(x, t0)|2dx + γ

]
∆vε(x, t0)−[

β0

∫
Ω
|∇vε(x, t0)|2dx + γ0

]
∆vε(x, t0)

∣∣∣2dxdt+

2
∫ T

0

∫
Ω

∣∣∣ λ(t)p(x)
[1 + εvε(x, t0)]2[1 + χh(vε)]2

−

λ0(t)p0(x)
[1 + ε− vε(x, t0)]2[1 + χ0h(vε)]2

∣∣∣2dxdt+

2
∫ T

0

∫
Ω

∣∣∣λ(t)δ(x, t)|∇vε(x, t0)|2 − λ0δ(x, t0)|∇vε(x, t0)|2
∣∣∣2dxdt = I1 + I2 + I3.

(56)

For this purpose, exploiting what has been demonstrated in this regard in [52], there
remains to study the term due to the fringing field that is to increase I3, that is, exploiting
the Sobolev embedding theorem (because N < 4)

I3 = 2
∫ T

0

∫
Ω

∣∣∣λ(t)δ(x, t)|∇vε(x, t0)|2 − λ0δ0∇vε(x, t0)|2
∣∣∣2dxdt ≤

||λ− λ0||L∞(0,T)||δ− δ0||L∞((0,T);Ω)T||∇ε(x, t0)||4L4(Ω) ≤

C(T, Ω, M3)||λ− λ0||L∞(0,T)||δ− δ0||L∞((0,T);Ω)

(57)

where δ0 = δ(x, t0). As consequence of [3], we have proved that, for any (β0, γ0, χ0, p0) ∈
R+×R+×R+×Φ×R+, and ∀t0 ∈ [0, T] and λ0 ∈ [0, λ∗), there exists a unique stationary
solution, vε(x, t0) ∈ H2

0(Ω) ∩H4(Ω) of the problem achieved from (45) by freezing the
time at t = t0, which satisfies 0 < vε(x, t0) < 1 together with∫

Ω

1
[1− vε(x, t0)]2

dx < M1, (58)

∫
Ω
|∆vε(x, t0)|2dx < M2, (59)∫

Ω
|∇vε(x, t0)|4dx < M3, (60)

provided the diameter of Ω is sufficiently small.
In order to prove estimate (iii) of Theorem 3 in the global form holds, we need to

prove that there exists k1 > 0 and k2 ∈ (0, 1) such that ∀x ∈ X, y1, y2 ∈ Yε, the following
inequality is yielded: ∫ T

0

∫
Ω
|(1− k1)[B(y1)− B(y2)]+

k1|G(β, γ, y1(x, t))− H̃ε(λ(t), χ, p(x), y1(x, t), δ(x, t), y1(x, t))]−
[G(β, γ, y2(x, t))− H̃ε(λ(t), χ, p(x), y2(x, t), δ(x, t), y2(x, t))]|2dxdt+

(1− k1)
2||λ(t)− λ||2∞,[0,T]||y1(x, 0)− y2(x, 0)||2H2

0(Ω)
≤

k2

∫ T

0

∫
Ω
|∆2y1(x, t) + c(x, t)y′1(x, t) + y′′1 (x, t)−

[∆2y2(x, t) + c(x, t)y′2(x, t) + y′′2 (x, t)]|2dxdt + k2||y1(x, 0)− y2(x, 0)||2H2
0(Ω)

.

(61)
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After observing that the initial data comply with (61), provided we chose (1− k1) ≤
k2, the next step concerns the evaluation of the integral part and then we begin to estimate∫ T

0

∫
Ω
|G(β, γ, y1(x, t))− G(β, γ, y2(x, t))|2dxdt. (62)

For this purpose, we exploit the calculation as in [52] achieving the following:∫ T

0

∫
Ω
|G(β, γ, y1(x, t))− G(β, γ, y2(x, t))|2dxdt ≤

C(β, γ, M2, dΩ)e2T||c||∞
{
[
∫ T

0

( ∫
Ω
|B(y1)− B(y2)|2dx)

1
2 dt]2+

||y1(x, 0)− y2(x, 0)||2H2
0(Ω)

}
.

(63)

Arguing as in [52], to complete the proof, we need to increase∫ T

0

∫
Ω
|H̃ε(λ(t), χ, δ(x, t), p(x), uε)− H̃ε1(λ(t), χ, δ(x, t), p(x), uε1)|

2dxdt. (64)

Therefore, ∫ T

0

∫
Ω
|H̃ε(λ(t), χ, p(x), y1(x, t), δ(x, t), y1(x, t))−

H̃ε(λ(t), χ, p(x), y2(x, t), δ(x, t), y2(x, t))|2dxdt =∫ T

0

∫
Ω

∣∣∣ λ(t)p(x)
[1 + ε− y1(x, t)]2[1 + χh(y1)]2

+ λ(t)δ(x, t)|∇y1(x, t)|2−

λ(t)p(x)
[1 + ε− y2(x, t)]2[1 + χh(y2)]2

− λ(t)δ(x, t)|∇y2(x, t)|2
∣∣∣2dxdt ≤

2(λ∗)2||p||2L∞(Ω)

∫ T

0

∫
Ω

∣∣∣ (1 + ε− y2(x, t))2 − (1 + ε− y1(x, t))2

(1 + ε− y2(x, t))2(1 + ε− y1(x, t))2

∣∣∣2+∣∣∣ [1 + χh(y2)]
2 − [1 + χh(y1)]

2

(1 + ε− y2(x, t))2

∣∣∣2dxdt+∫ T

0

∫
Ω
(λ(t)δ(x, t))

∣∣∣|∇y1(x, t)|2 − λ(t)δ(x, t)(|∇y2(x, t)|2)
∣∣∣2dxdt =

2(λ∗)2||p||2L∞(Ω)(IH1 + IH2) + IH3.

(65)

Both IH1 and IH2 have been elaborated in [52] achieving the following inequalities:

IH1 ≤ 4CM2
1Td4−N

Ω e2T||c||∞
{[ ∫ T

0

( ∫
Ω
|B(y1)− B(y2)|2dx

) 1
2
dt
]2
+

+||y1(x, 0)− y2(x, 0)||2H2
0(Ω)

}
,

(66)

IH2 ≤ C(χ, M1, |Ω|)Td2
Ωe2T||c||∞

{[ ∫ T

0

( ∫
Ω
|B(y1)− B(y2)|2dx

) 1
2
dt
]2
+

||y1(x, 0)− y2(x, 0)||2H2
0(Ω)

.
(67)
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It remains to elaborate IH3, that is,

IH3 =
∫ T

0

∫
Ω

∣∣∣(λ(t)δ(x, t)|∇y1(x, t)|2 − λ(t)δ(x, t)(|∇y2(x, t)|2
∣∣∣2dxdt ≤

(λ∗)2||δ||2L∞(Ω×[0,T])

∫ T

0

∫
Ω

∣∣∣|∇y1(x, t) +∇y2(x, t)||∇y1(x, t)−∇y2(x, t)|
∣∣∣2dxdt ≤

(λ∗)2||δ||2L∞(Ω×[0,T])

∫ T

0

( ∫
Ω
|∇(y1(x, t) + y2(x, t)|4dx

) 1
2

( ∫
Ω
|∇(y1(x, t)− y2(x, t)|4dx

) 1
2
dt ≤

(λ∗)2||δ||2L∞(Ω×[0,T])C(T) sup
t∈[0,T]

||∇(y2(x, t) + y2(x, t))||2L∞(Ω)∫ T

0
||∇(y2(x, t)− y1(x, t))||2L4(Ω)dt.

(68)

To increase the last integral in (68), we increase

||∇(y2(x, t)− y2(x, t))||2L4(Ω), (69)

using Sobolev’s embedding theorem, Poincaré and Miranda-Talenti inequalities and,
in particular, ∫

Ω
|∇y1(x, t)|2dx ≤ Cd2

Ω

∫
Ω
|∆y1(x, t)|2dx. (70)

Then, by Gronwall’s Lemma, we have

IH3 ≤ C(M2, dΩ, δ)e2T||c||∞{[ ∫ T

0

( ∫
Ω
|B(y1)− B(y2)|2dx

) 1
2
dt
]2

+ ||y1(x, 0)− y2(x, 0)||2H2
0

}
,

(71)

and then, with dΩ being sufficiently small (this is physically correct because, usually,
the amplitude of the deformation of the deformable plate has dimensions of the order of
10−6), we have proved that property (iii) is verified.

To verify condition (v) in Theorem 3, we need to prove that, for η > 0, such that,
∀g ∈ L1((0, T); L2(Ω)) satisfying∫ T

0

∫
Ω
|g− By0,ε|2dxdt < η2, (72)

we can find uε ∈ Yε such that Buε = g. As already noted in [61], y0,ε ∈ Yε ∩ H4(Ω) and
y′0,ε = y′′0,ε = 0 so that By0,ε = ∆2y0,ε ∈ L2(Ω). Moreover, it is known that the following
Cauchy–Dirichlet problem

Buε(x, t) = ∆2uε(x, t) + c(x, t)u′ε(x, t) + u′′ε (x, t) = f (x, t), a.e. in Ω× [0, T],
uε(x, 0) = y0,ε, in Ω,
u′ε(x, 0) = 0, a.e. in Ω,
uε(x, t) = ε, in ∂Ω× [0, T],
∆uε = 0, in ∂Ω× [0, T],

(73)

by means of Theorem 3 in [52], which can also be easily applied in the presence of the term
due to the fringing field, has a unique solution yε ∈ C0((0, T)H2

0,ε) ∩ C1((0, T); L2(Ω)).
Now, we need to verify the remaining conditions for functions belonging to Yε. For this
purpose, applying to uε − y0,ε the energy estimation (12) in [52] with

f (x, t) = G(β, γ, u(x, t)) + H̃(λ(t), χ, δ(x, t), p(x), u(x, t)), (74)
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we have that, ∀t ∈ [0, T]:

∫
Ω
|∆uε(x, t)− ∆y0,ε(x)|2dx ≤ e2t||c||∞

{[ ∫ T

0

( ∫
Ω
|B(uε)− B(y0,ε)|2dx

) 1
2
]2}

. (75)

Since ∫
Ω
|∆y0,ε(x)|2dx < M2, ∀t ∈ [0, T], (76)

it is easy to see that ∫
Ω
|∆uε(x, t)|2dx < M2 ∀t ∈ [0, T]. (77)

If η is small enough, this implies condition (49). We recall that 1 ≤ N < 4, exploiting the
Sobolev embedding theorem, it is easy to write

sup
Ω
|uε(x, t)− y0,ε| ≤ C

(
d2− N

2
Ω

)
||∆uε(x, t)− y0,ε(x)||L2(Ω)<C

(
d2− N

2
Ω

)
η. (78)

Since 0 < y0,ε < 1, ∀x ∈ Ω, there exists η1 > 0 such that, for 0 < η < η1, also
0 < uε(x, t) < 1 and then condition (47) is satisfied. Then, we conclude that (v) is satisfied
and, thus, all assumptions of Theorem 3 are verified. Finally, taking into account the same
calculations carried out in [52], Lemma 1 is verified. In fact, from the following inequality∫

Ω

1
(1− uε(x, t))2 dx ≤∫

Ω

∣∣∣ (1− uε)2 − (1− y0,ε)
2

(1− y0,ε)2(1− uε)2

∣∣∣dx +
∫

Ω

1
(1− y0,ε)2 dx,

(79)

and following the same procedure to verify condition (ii), it is very easy to achieve

∫
Ω

∣∣∣ (1− uε)2 − (1− y0,ε)
2

(1− y0,ε)2(1− uε)2

∣∣∣dx ≤ C sup
Ω
|u− y0,ε|, (80)

and, exploiting inequality (78), it follows that there exists η2 > 0, such that, for 0 < η < η2,
it follows that ∫

Ω

1
(1− y0,ε)2 dx < M1, ∀t ∈ [0, T], (81)

so hence condition (5) concludes the proof of Lemma 1.
Now, we show that the solution of the penalized problem, uε, converges, as ε → 0

to the solution of (6). For this purpose, we need to prove that the family of the penalized
solution has a Cauchy sequence in C0([0, T]; H2

0 ∩ C1([0, T]; L2(Ω)). Indeed, if uε and
uε1 are two penalized solutions corresponding to parameters ε and ε1, respectively, and
we consider

∆2(uε(x, t)− uε1(x, t)) + c(x, t)(u′ε(x, t)− u′ε1
(x, t)) + u′′ε (x, t) + u′′ε1

(x, t)+
G(β, γ, uε(x, t))− G(β, γ, uε1(x, t)) =
H̃ε(λ(t), χ, δ(x, t), p(x), uε(x, t))−
H̃ε1(λ(t), χ, δ(x, t), p(x), uε1(x, t)), in Ω× [0, T]
uε(x, t)− uε1(x, t) = ε− ε1,
∆[uε(x, t)− uε1(x, t)] = 0, on ∂Ω× [0, T],
uε(x, 0) = ε− ε1, on Ω,
(u′ε − u′ε1

)(x, 0) = 0, on Ω,

(82)



Mathematics 2022, 10, 4541 15 of 20

arguing as in [52], and proceeding as in (68) concerning the increasing of the term related
to the fringing field, we can write, ∀t ∈ [0, T],∫ t

0

∫
Ω
|G(β, γ, uε(x, t))− G(β, γ, uε1(x, t))|2dxdt ≤

C
∫ t

0

∫
Ω
|∆[uε(x, t)− uε1(x, t)]|2dxdt,

(83)

and again ∫ t

0

∫
Ω
|H̃ε(λ(t), χ, δ(x, t), p(x), uε(x, t))− (84)

H̃ε1(λ(t), χ, δ(x, t), p(x), uε1(x, t))|2dxdt ≤

C(ε− ε1)
2T|Ω|+ C2

∫ t

0

∫
Ω
|∆[uε(x, t)− uε1(x, t)]|2dxdt.

(85)

Therefore, applying inequality (12) in [52] to the model (82), ∀t ∈ [0, T], we can write:∫
Ω
|∆[uε(x, t)− uε1(x, t)]|2dx ≤

C(ε− ε1)
2T|Ω|+ C2

∫ t

0

∫
Ω
|∆[uε(x, t)− uε1(x, t)]|2dxdt,

(86)

and, applying the Gronwall’s Lemma, the following inequality yields∫
Ω
|∆[uε(x, t)− uε1(x, t)]|2dx ≤ C(ε− ε1)

2T|Ω|, (87)

which completes the proof of Theorem 1.

Remark 3. It is worth noting that there are MEMS devices which rely on the fact that λ(t) > λ∗,
∀t, in which the point of maximum deflection continues to advance suddenly until its movement is
interrupted by contact with a dielectric that prevents the short circuit [62,63]. However, we observe
that the proposed model starts from a fourth order dynamic model for a MEMS device in which the
deformable element is a metal plate. In the work we propose, a term has been added to this model in
order to take into account the effects due to the fringing field. Operationally, we started from the
statement of Theorem 1 which sanctioned the existence and uniqueness of the solution of the starting
theorem in which λ(t) > λ∗. However, as proof of this, in the proof of Theorem 1, it was necessary
more than once to extract λ(t) from the integrals in the time domain. This operation is feasible on
the assumption that there exists a λ∗ (independent of t) which increases, ∀t, λ(t).

6. A Result Concerning the Regularity (Proof of Theorem 2)

To prove the regularity of the solution for (6) (Theorem 2), we exploit the same
procedure as for the proof of Theorem 2 in [52] and also utilize its Lemma 3 (obviously,
adapting the procedure to our model). We premise the following result of regularity proved
by Gilardi [52]).

Theorem 4. Let V, H be Hilbert spaces such that V ↪→ H ↪→ V′ with continuous and dense
embeddings. Let A. R and C be linear operators as defined in [52]. Let us consider the following
Cauchy problem:

Au(t) + R(t)u(t) + C(t)u′(t) + u′′(t) = f (t), t ∈ [0, T],
u(0) = u0,
u′(0) = 0,

(88)



Mathematics 2022, 10, 4541 16 of 20

where f ∈ L1((0, T); H) and u0 ∈ V. Let f ∈ W1,1((0, T); H), u0, u1 ∈ V and Au0 ∈ V.
Moreover, let R(t) and C(t) in W1,1,(0, T). Furthermore, for any v ∈ V,

||R′(t)v||H ≤ c||v||V , (89)

and, for any v ∈ H,
||C′(t)v||H ≤ c||v||H . (90)

Then, the solution u of (88), if c ∈ H1,∞((0, T); L2(Ω)), belongs to

C0([0, T]; D(A)) ∩ C1((0, T); V) ∩ C2((0, T); H). (91)

We recall that Equation (6) can be writable as follows:

∆2u(x, t) +
[
− β

∫
Ω
|∇u(x, t)|2dx + γ

]
∆u(x, t) + c(x, t)u′(x, t) + u′′(x, t) =

H̃(λ(t), χ, δ(x, t), p(x), u(x, t)) =

λ(t)p(x)

(1− u(x, t))2
(

1 + χ
∫

Ω
dx

(1−u(x,t))

)2 + λ(t)δ(x, t)|∇u(x, t)|2
(92)

so that, applying Theorem 1, the right-hand side of the previous equation

λ(t)p(x)

(1− u(x, t))2
(

1 + χ
∫

Ω
dx

(1−u(x,t))

)2 + λ(t)δ(x, t)|∇u(x, t)|2, (93)

belongs to C2([0, T]; L2(Ω) provided

λ(t)p(x) ∈ C1([0, T]; L2(Ω)), (94)

so that, by Lemma 3 of [52] (this is allowed because (27) is valid),

t 7→ −β
∫

Ω
|∇u(x, t)|2dx + γ, (95)

belongs to H1,∞(0, T). Therefore, exploiting Theorem (4), we can write

u(x, t) ∈ C0([0, T]; H4(Ω)) ∩ C1([0, T]; H2 ∩ H1
0(Ω)) ∩ C2[0, T]; L2(Ω)), (96)

provided
c ∈ H1,∞((0, T); L2(Ω)), (97)

which concludes the proof of Theorem 2.

7. Possible Uses of the Device Studied

As per experimental evidence known in the literature, electrostatic MEMS devices
with parallel plates (whose use is currently quite wide and in continuous growth) do
not require particular precautions for their realization (even on an industrial scale) so
the associated costs to a possible industrial production are quite contained. Furthermore,
as discussed above, the fields of application are all those for which the operating voltages
would be rather contained. These applications include biomedical ones, which, as is
known, subject the deformable element to periodic and prolonged loads with evident
risks of fatigue and breakage. While aware that circular membrane devices perform better
than devices in which the deformable element is a rectangular metal plate (or membrane)
(since fatigue and failure occur with very low probability), we believe that the studied
device, if realized, can also be used for biomedical applications (i.e., micropumps for the
intravenous administration of drugs and the high-precision surgical microsystems) as
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long as it is associated with a guarantee period provided by the manufacturer compatible
with the resistance of the material of the deformable plate to prolonged and continuous
stresses, beyond which the device, even if still functional, must be replaced. This use is also
supported by the fact that the study carried out has highlighted that continuous waveforms
for V are allowed, such as the trapezoidal ones as well as piecewise continuous waveforms
with a linear transition (V waveforms typical of micropumps).

8. Conclusions and Perspectives

In this paper, a new version of a dynamic hyperbolic fourth-order dimensionless
integro-differential model for electrostatic MEMS devices with parallel plates for indus-
trial and biomedical uses, taking into account, according to Pelesko & Driscoll approach,
the effects due to the fringing field, has been proposed and studied. The model, control-
ling the behavior in external electrical voltage, considers both stiffness and self-stretching
of the deformable plate, making the device suitable for any uses where limited external
electrical voltages are required (i.e., continuous waveforms, trapezoidal ones incorporating
piecewise continuous waveforms with high-slope linear transitions). This model does not
allow the explicit recovering of the deformable profile. Therefore, by well-known results on
the theory of neighboring operators, uniqueness and regularity of the solution have been
proven, making possible in the future any no-ghost numerical recovery (i.e., numerical
solutions that do not satisfy the conditions of existence, uniqueness and regularity). More-
over, the uniqueness of the solution ensures that each value of external tension applied
determines only one deformation of the deformable plate. Furthermore, since the results
are valid for N < 4, the model satisfies the requirement of developing 3D predictive models
in which stiffness and self-stretching and fringing field effects are considered. In addition,
being N < 4, the model is also valid for devices with thin dielectric layers (in which fringing
field occurs) in which at least one spatial dimension can be neglected (the term taking these
phenomena into account strongly depends on λ(t) which strongly increases as the distance
between the two plates of the device decreases). However, in the model, the parameter
that weighs the effects due to the fringing field is not controllable in voltage. Therefore,
efforts will be focused on defining the link between this parameter and the external voltage,
to reduce the risk of triggering unwanted electrostatic discharges, even in cases where
defects and/or anomalies in the deformable plate could occur. The present work, obviously,
is to be considered as the first step of a broader research path where the numerical recovery
of the deformable plate profile will have to be performed in the near future with numerical
techniques for the resolution of integro-differential hyperbolic dynamic models (FEM, finite
differences, or other). Furthermore, the existence conditions’ uniqueness and regularity
of the solution obtained in this work, if satisfied by any numerical solutions, will provide
recoveries of the deformable plate profile that will not represent ghost solutions (i.e., nu-
merical solutions that do not satisfy the existence, uniqueness and regularity conditions of
the solution of the analytical model).
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Abbreviations
The following abbreviations are used in this manuscript:

MEMS micro-electro-mechanical systems
Ω smooth bounded domain
V external electrostatic potential
x spatial variable
t time
u(x, t) unknown profile of the deflecting plate
χ the dimensionless parameter that weighs the capacitance of the MEMS
λ(t) drop-in voltage
p(x) bounded real function taking into account the dielectric properties of the material
δ(x, t) the real parameter that weighs the effect of the fringing field
N dspace dimension
ν outward pointing normal to ∂Ω
c(x, t) bounded real function related to anisotropic damping phenomena
d distance between the plates in the MEMS
L the length of the MEMS
F̃(x) load function
T(t) the mechanical tension of the deformable plate at rest
ε0 the permittivity of free space
Vs source voltage
C f the capacitance of the fixed series capacitor
C the capacitance of the MEMS device
D flexural rigidity
K̃1(x), K̃2(x) specific weight functions
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