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ABSTRACT 32 

 33 

Accurate predictions of surface runoff and soil erosion after wildfire help land managers adopt the 34 

most suitable actions to mitigate post-fire land degradation and rehabilitation planning. The use of 35 

the Artificial Neural Networks (ANNs) is advisable as hydrological prediction tool, given their 36 

lower requirement of input information compared to the traditional hydrological models. 37 

This study proposes an ANN model, purposely prepared for forest areas of the semi-arid 38 

Mediterranean environments. The ANN hydrological prediction capability in non-burned, burned 39 

by wildfire, and burned and then treated soils has been verified at the plot scale in pine forests of 40 
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South-Eastern Spain. Runoff and soil loss were much higher than non-burned soils (assumed as 41 

control), but mulch application was effective to control runoff and soil erosion in burned plots. 42 

Moreover, logging did not affect the hydrological response of these soils. The model gave very 43 

accurate runoff and erosion predictions in burned and non-burned soils as well as for all soil 44 

treatments (mulching and/or logging or not), with only one exception (that is, in the condition with 45 

the combination of treatments which gave the worst performance, burning, mulching and logging), 46 

as shown by the exceptionally high model efficiency and coefficients of determination. Although 47 

further experimental tests are needed to validate the ANN applicability to the burned forests of the 48 

semi-arid conditions and other ecosystems, the use of ANN can be suggested to landscape planners 49 

as decision support system for the integrated assessment and management of forests. 50 

 51 

KEYWORDS: Artificial Intelligence; hydrological modelling; surface runoff; erosion; mulching; 52 

logging. 53 

 54 

1. INTRODUCTION  55 

 56 

The increased frequency and severity of summer droughts due to the forecasted global warming are 57 

expected to lead to an important increase in the severity and recurrence of wildfires, which may 58 

affect processes and properties of forest soils (Certini, 2014). Forest fire generates a chain of 59 

physico-chemical and biological processes, whose effects influence the entire ecosystem. One of the 60 

most threatening effect of forest fire soil is the change in its post-fire hydrological response, strictly 61 

linked to fire severity (Morales et al., 2000; Benavides-Solorio and MacDonald, 2005; Robichaud et 62 

al., 2007). In other words, the more severe the fire is, the greater is the susceptibility to surface 63 

runoff and soil erosion. More specifically, key factors enhancing runoff and soil loss are the 64 

reduction in infiltration, increase in water repellence, destruction of vegetal cover, and loss of soil 65 

organic matter (Larsen et al., 2009; Neary et al., 2005). The changes in soil hydrology induced by 66 



 

 4 

wildfire are of high importance particularly in Mediterranean areas, where the infiltration-excess 67 

mechanism dominates runoff and erosion generation (Plaza-Alvarez et al., 2019). In such an 68 

environmental context, intense storm events in autumn and hot summers with drought risks make 69 

these zones prone to post-fire erosion and wildfire occurrence, respectively (Shakesby, 2011). 70 

Therefore, the post-fire changes in soil hydrology are the key to understand the post-fire restoration; 71 

however, the number of the studies analysing the post-fire effects on soils at multi-year scale is 72 

larger than short-term research (few months after fire).  73 

Moreover, it is very important to understand the hydrological effects (that is, the potential reduction 74 

of surface runoff and erosion) of the post-fire stabilization and rehabilitation treatments, used to 75 

mitigate the short-term effects on soil degradation (Robichaud et al., 2000). Among these treatments, 76 

emergency post-fire activities for soil stabilization, such as mulching, are recommended in areas 77 

burned by wildfire to minimize overland flow and erosion risk (Vega et al., 2014). In any case, the 78 

need of a better understanding and prediction of the hydrological effects of wildfire fires has created 79 

a strong demand for tool able to simulate post-fire runoff and soil loss (Moody et al., 2013). 80 

Accurate predictions of water and sediment flows after fire help land managers in the adoption of 81 

the most suitable actions to mitigate post-fire land degradation and rehabilitation planning (Moody 82 

et al., 2013). With regards to post-fire erosion modelling, literature reports simple empirical models 83 

(such as the Universal Soil Loss Equation, USLE, and its revised version, the RUSLE model), semi-84 

empirical models (e.g., the revised Morgan–Morgan–Finney model, Morgan 2001), and physically-85 

based models (for instance, the Water Erosion Prediction Project (WEPP). However, many 86 

hydrological models were developed for agricultural regions, and thus such models may find 87 

limited applicability in burned conditions of the Mediterranean ecosystems (Esteves et al., 2012; 88 

Vieira et al., 2014; 2018).  89 

In the last two decades data-driven models, such as the Artificial Neural Networks (ANNs), had an 90 

increasing popularity for estimating and forecasting water resources (Hsu et al., 1995; Riad et al., 91 

2004; Sharma and Tiwari, 2009). The ANNs have been applied to complex, dynamic and highly 92 
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non-linear systems (Hsu et al., 1995), and in situations where the input is incomplete or ambiguous, 93 

since they can analyze multi-source dataset (Tokar and Johnson, 1999). The main advantage of the 94 

ANNs over traditional methods is the lower requirements of information about the complex nature 95 

of the underlying process that are instead described in a mathematical closed form (Sudheer et al., 96 

2002). Furthermore, ANNs can generalise relationships also from a small dataset, but remain more 97 

or less robust when noisy or missing inputs are present and can work also in changing environments 98 

(Dawson and Wilby, 1998). ANNs learn from the analysis of the available input data and do not 99 

require reprogramming, but they must be trained, optimized and tested (Gholam et al., 2018).  100 

ANNs have been extensively used also for rainfall-runoff modeling, flood predictions, reservoir 101 

operations, routing of polluting compounds (ASCE, 2000). For instance, ANNs have been used for 102 

modelling the rainfall-runoff relationships in small to large watersheds of United States (Hsu et al., 103 

1995), United Kingdom (Dawson and Wilby, 1998), India (Sudheer et al., 2002; Sharma and 104 

Tiwari, 2009), Morocco (Riad et al., 2004), Albaradeya et al., 2011 (in Palestinian territories) and, 105 

more recently, in Australia (Asadi et al., 2019). Also, soil erosion was predicted using ANNs at 106 

both plot scale (Licznar and Nearing, 2003, and Kim and Gilley, 2008, in USA; Albaradeya et al., 107 

2011, in Palestinian territories) and watershed scale (e.g., Gholami et al., 2018, in Iran). Moreover, 108 

Yusof et al. (2014) used ANNs to predict the soil erodibility factor of the USLE equation using 74 109 

samples of Malaysia soils. 110 

However, only a few studies have analysed the ANN performance in soil erosion modelling 111 

(Gholami et al., 2018) and, even, ANN has not been used for hydrological predictions in burned 112 

soils. Modelling soil erosion and runoff after wildfires using ANNs may be a novel approach that 113 

could be of help to better understand and predict fire-induced effects after fire. 114 

To fill this gap, this study provides an ANN model, purposely prepared for pine forest areas of the 115 

semi-arid Mediterranean environments, and verifies its hydrological prediction capability in non-116 

burned, burned by wildfire, and burned and then treated soils. More specifically, surface runoff and 117 

soil loss were firstly measured in i) unburned plots (assumed as control); ii) plots subjected to a 118 
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wildfire and not rehabilitated with any post-fire measures; iii) plots subjected to fire and treated 119 

with mulching throughout one year. Based on these observations, the ANN model is calibrated and 120 

its performance in estimating surface runoff and soil loss at the event scale is evaluated under the 121 

peculiar climatic conditions and forest management. 122 

 123 

 124 

2. MATERIALS AND METHODS 125 

 126 

2.1. Experimental site and design 127 

 128 

2.1.1. Study area  129 

 130 

The study was carried out in the Sierra de las Quebradas forest (Liétor, Castilla-La Mancha region, 131 

province of Albacete, Central Spain) (Figure 1a). The climate is hot dry Mediterranean (Allué, 132 

1990), BSk according to the Koppen classification (Kottek et al., 2006). Average annual rainfall and 133 

medium annual temperature is 282 mm and 16 °C, respectively. Elevation ranges between 520 and 134 

770 m and aspect is W-SW. According to the Spanish Soil Map (2000), soils are classified as 135 

Inceptisols and Aridisols and soil texture is sandy loam. 136 

The forest land mainly consists of Pinus halepensis M. stands. The mean density and height of 137 

forest trees before the wildfire were about 500–650 trees/ha and 7–14 m, respectively. The shrubs 138 

and herbaceous species mainly found at the study site were Rosmarinus officinalis L., 139 

Brachypodium retusum (Pers.) Beauv., Cistus clusii Dunal, Lavandula latifolia Medik., Thymus 140 

vulgaris L., Helichrysum stoechas (L.), Stipa tenacissima (L.), Quercus coccifera L. and Plantago 141 

albicans L.  142 
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 143 

 144 

Figure 1 - Location/experimental design (a) and measuring equipment (b) of the experimental plots 145 

used to model the hydrological response of pine forest to wildfire using ANNs (Liétor, Castilla La 146 

Mancha, Spain).  147 
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 148 

2.1.2. Experimental site description 149 

 150 

Immediately after the wildfire, one site of about five hectares in the forest stand was selected for 151 

study (Figure 1a). Twelve experimental plots (each one 9 m long and 3 m wide, for a total area of 152 

27 m2) were installed with their longest dimension along the maximum slope in the burned area. In 153 

addition, an unburned area, located 7 km far from the burned stand was selected as control and three 154 

other plots were located for the same aim.  155 

In both areas, the plots were distributed caring that their characteristics (soil properties, slope and 156 

aspect) were similar, to ensure comparability. Plot slope varied between 10 and 15%. Plot distance 157 

was always higher than 20 m.  158 

The plots, delimitated by a 0.5 m wide geotextile fabric that was inserted up to 0.4 m below the 159 

ground surface, were hydraulically isolated along their perimeter to prevent external inputs of water 160 

and sediments. For this, a geotextile that was tightly fastened to 0.8 m long and 20 mm in diameter 161 

iron rods was pounded into the ground at 0.15 m of depth. A 50 cm long metallic sediment fence 162 

with a triangular shape was installed in the downstream side of the plot, to convey water and 163 

sediments in a pipe and then into a 25 litre tank. The area with the metallic fence was protected 164 

from rain by a plastic cover. Its ground surface was also covered by plastic, to ensure that the entire 165 

runoff and all sediments were delivered to the collection point and then to the storage container 166 

(Figure 1b). 167 

 168 

2.1.3.  Wildfire and forest management operations 169 

 170 

The Sierra de las Quebradas area was affected in July 2016 by a wildfire. During the wildfire about 171 

830 ha of forest land was burned. Tree mortality was 100%. A mean value of soil burn severity was 172 

obtained for each plot by adopting the methodology proposed by Vega et al. (2013) and Fernandez 173 
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et al. (2017). Soil burn severity values were classified in the high class for all of the burned plots by 174 

the Castilla La Mancha Forest Service. 175 

In September 2016, mulching treatment was carried out in six plots in the burned area. Mulching 176 

consisted of manually spreading straw of barley on the plots at a rate of 200 g/m2 (dry weight). 177 

Initial mulch cover and depth were 95% of the plot area and 3 cm, respectively.  178 

Moreover, salvage logging was conducted in December 2016 in six plots, of which three non-179 

mulched and three mulched. The geotextile fabrics of the plots were removed before harvesting and 180 

re-installed immediately after. The trees were cut with mechanical chain saws and burned logs were 181 

removed using an agricultural tractor equipped with pneumatic wheels.  182 

The experimental design consisted of the following soil conditions in relation to the wildfire: (1) 183 

"Non-Burned, NB" (three plots); (2) "Burned, B" (twelve plots). After fire the following soil 184 

treatments were defined in the burned plots: (i) Burned+Mulching+No-Logging (B+M+NL, six 185 

plots); (ii) Burned+No-Mulching+No-Logging (B+NM+NL, six plots). This experimental design 186 

was adjusted from the cutting date onwards, and the treatments were reassigned as follows: i) 187 

Burned+Mulching+Logging (B+M+L, three plots); ii) Burned-No-Mulching+Logging (B+NM+L, 188 

three plots).  189 

 190 

2.1.4 Collection of observed data 191 

 192 

Precipitation depth, duration and intensity were measured by a weather station (WatchDog 2000 193 

Series model) with a tipping bucket rain gauge, located 50 m out of the study area. In the hourly 194 

rainfall series of the experimental database, two consecutive events were considered separate, if no 195 

rainfall was recorded for 6 h or more (Wischmeier and Smith, 1978; Zema et al., 2017). 196 

Between September 2016 and July 2017, after each precipitation event, the volume of surface 197 

runoff collected by the plot tank was measured. After mixing the runoff water collected in the tank, 198 

a water sample of about 0.5 litres was collected. Then, samples were oven dried (at 105 °C) for 24 h 199 
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in the laboratory and Total Dissolved Sediments (TDS) and Suspended Sediments (SS) were 200 

measured. Moreover, the eroded soil deposited at each metallic sediment fence was collected 201 

manually after each event and then weighed in the field. After sample oven-drying, the dry 202 

sediment (DS) weight was measured. 203 

The runoff coefficients of each event were calculated as the ratio surface runoff to total rainfall. Soil 204 

loss was evaluated as the sum of DS, TDS and SS. 205 

 206 

2.1.5 Statistical analysis on observed data 207 

 208 

Following Lucas-Borja et al. (2019), the observed data were analysed to evaluate the treatment 209 

effect (with five levels: Non-Burned, Burned+No-Mulching+No-Logging, Burned+Mulching+No-210 

Logging, Burned+No-Mulching+Logging Burned+No-Mulching+No-Logging) on runoff volumes 211 

and soil losses by a general linear mixed model. The survey date and plots were included as random 212 

effects. The rainfall parameters (total precipitation, maximum rainfall intensity in 60 min of each 213 

rainy event) for each sediment collection date were included as covariates. Data were log-214 

transformed to achieve normality and residuals were tested for autocorrelation, normality and 215 

homogeneity of variance. When significant mixed effects were indicated, the post hoc pairwise 216 

comparisons (with Bonferroni adjustment for multiple comparisons) were conducted to assess 217 

differences between the main effects of treatments and their interactions. All the statistical analyses 218 

were conducted using the R statistical program, package lme4.  219 

 220 

2.2. Implementation of the Artificial Neural Networks 221 

 222 

2.2.1. Theoretical approach about the Artificial Neural Networks  223 

 224 
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In this work a standard feedforward neural network has been used to simulate the hydrological 225 

response of the experimental plots. A standard feedforward neural network (Haykin, 1994) is 226 

composed by a set of N nodes N and a set of M arcs A (see Figure 2). The nodes are partitioned into 227 

L groups, called layers, with L > 2. The first layer is a set of I input nodes NI called input layer; 228 

then, there are L-2 hidden layers, of which each hidden layer ht, with t = 1, .., L-2 is a set of H 229 

nodes NHt. Finally, there is a set of O nodes NO, called output layer. Each node (denoted by o) of 230 

the output layer is connected with each node (denoted by h) of the NHL-2 hidden layer by an edge 231 

directed from o to h, and each node y of the NH1 hidden layer is connected by an edge with each 232 

node x of the input layer by an edge directed from y to x .  233 

For each edge of the network, we denote by i (resp. j) the source (resp. destination) node and we 234 

associate a real value Wij, called weight, with the edge.  235 

The neural network is used for representing a real function. Each input layer node is associated with 236 

an input (real) value and each output layer node is associated with an output (real) value of the 237 

function. The output values are computed by the neural network using the input values. Hidden 238 

layer nodes are associated with intermediate results of the computation.  239 

The neural network computes the output values as follows. Both of each hidden and output layer 240 

node n are provided with the same function a, which is called activation function, and with a 241 

parameter , which is called bias. The node j of the first hidden node NH1 computes its associated 242 

hidden value     i

I

i ij IWah *
11 , where i is an input layer node, i.e., by computing the 243 

weighted sum of the values iI of the input layer using the weights ijW  associated with all the 244 

connections between each input layer node i and the hidden layer node j. 245 

The node j of each hidden layer NHl computes its associated hidden value 246 

  
 1

1
* l

i

H

i ij
l
j hWah , where i is the l-1 layer node, i.e., by computing the weighted sum of the 247 
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values 1l
ih  of the nodes of the previous layer. Analogously, each output layer node j computes its 248 

associated output value   
 2

1
* L

i

H

i ijj hWao , where 2L
ih   is a hidden L-2 layer node. 249 

The weight ijW  associated with the edges of the set A and the activation function parameters are 250 

suitably set by a training algorithm that tries to learn how correctly approximating the desired 251 

output. Training algorithms can be unsupervised or supervised. In the first case, the ANN 252 

autonomously learns the functional dependence between an input and its correct output. Differently, 253 

a supervised training algorithm takes advantage from the availability of a training dataset where for 254 

each input its correct output is provided; by measuring the difference between the correct and the 255 

computed ANN outputs then it is possible to tune the ANN parameters to minimize this error. When 256 

the ANN reaches the desired precision in reproducing the outputs of the training dataset, then the 257 

learnt ends and the ANN can be considered ready to work with unknown input data. 258 

Multilayer feedforward networks are commonly used to approximate real functions, i.e. for 259 

determining weights and parameters of a given neural networks such that a set of given output data 260 

matches with a corresponding set of input data, with an approximation error. Some theoretical 261 

results have been provided in the related literature (Hetch-Nielsen, 1987) to assure the possibility of 262 

approximating any real function satisfying some determined constraints. 263 

Many types of activation function a can be used with the above neural network model. In this work, 264 

we will use the well-known sigmoid function with the following formula:  265 

 266 

xe1

1
)x(a 
             (1)  267 

 268 

where  is a parameter that should be appositely chosen when designing the neural network 269 

architecture. 270 

 271 
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 272 

 273 

Figure 2 – The architecture of the ANN used to model the hydrological response of plots (Liétor, 274 

Castilla La Mancha, Spain). 275 

 276 

2.2.2.  ANN implementation  277 

 278 

In these experiments, we used the Neuroph framework for training the ANN on a data set of real 279 

hydrological information. The data set contains 243 tuples of four attributes, namely i) treatment, ii) 280 

precipitation (mm), iii) runoff (mm) and iv) soil loss (kg/ha). Among the input variables, rainfall 281 

intensity has not been deliberately included, although many studies (e.g., Lucas-Borja et al., 2019; 282 

Prats et al., 2012), carried out in the same environmental conditions, have demonstrated that, beside 283 

the total rainfall, rainfall intensity is the most influential variables explaining runoff generation after 284 

fire. This choice is due to the fact that many weather stations (as happen in Spain) are equipped 285 

only with rain gauges, which provides daily depths rather than with automated devices, allowing 286 

continuous measurements of rainfalls for hourly or sub-hourly intensity calculations. By this way, 287 

the ANN seems to have a larger transferability compared to the gauged areas. 288 
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The treatment assumes the following discrete values: Burned+Mulching+No-Logging, Burned+No-289 

Mulching+No-Logging, Non-Burned, Burned+Mulching+Logging and Burned+No-290 

Mulching+Logging.  291 

The attributes i) and ii) are considered as the neural network inputs, while iii) and iv) are used as 292 

neural network outputs. 293 

 294 

2.2.3. Data pre-processing 295 

 296 

First, we have processed the data to obtain a suitable dataset to train the neural network.  The value 297 

of treatment has been transformed into an integer number that takes values between 1 and 5. In 298 

particular, Burned+Mulching+No-logging = 1, Burned+No-mulching+No-logging = 2, Non-burned 299 

= 3, Burned+Mulching+Logging = 4 and Burned+No-mulching+Logging = 5. Since some pair of 300 

inputs <treatment, precipitation> were associated with different outputs (due to the fact that the 301 

same precipitation can produce different runoff volumes, because of many factors, such as the 302 

variability of precipitation intensity, soil characteristics in time and space), we averaged in those 303 

cases the values of the surface runoff and soil loss. The new dataset is shown in Table 1a. 304 

Then, the data set had to be normalized. Normalization implies that all values from the dataset 305 

should take values in the range from 0 to 1. For this purpose, we used the following formula: 306 

 307 

minmax

min
n XX

XX
X




           (2) 308 

        309 

where X is the value that should be normalized, Xn is the normalized value, Xmin is the minimum 310 

value of X and Xmax is the maximum value of X. Therefore, we obtained the dataset shown in Table 311 

1b.   312 

 313 
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Tables 1a and 1b - The original (a) and normalized (b) datasets used to model the hydrological 314 

response of plots through ANNs (Liétor, Castilla La Mancha, Spain). 315 

 316 

(a) 317 

Treatment  

(input 1) 

Precipitation (mm) 

(input 2) 

Runoff volume (mm) 

(output 1) 

Soil loss (kg/ha) 

(output 2) 

1.0 40.0 1.65 68.1 

2.0 40.0 2.21 316.3 

3.0 40.0 0.00 0.0 

1.0 41.0 0.41 145.16 

2.0 41.0 0.35 403.09 

3.0 41.0 0.00 6.366 

1.0 59.0 0.25 158.35 

2.0 59.0 0.25 424.01 

3.0 59.0 0.03 8.3 

4.0 93.8 0.60 5.98 

5.0 93.8 0.70 77.73 

3.0 93.8 0.08 0.6 

4.0 28.0 0.15 8.84 

5.0 28.0 0.18 19.52 

3.0 28.0 0.02 1.97 

4.0 16.8 0.13 9.45 

5.0 16.8 0.19 15.91 

3.0 16.8 0.00 0.0 

4.0 11.6 0.02 7.1 
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5.0 11.6 0.04 38.48 

3.0 11.6 0.01 0.79 

4.0 47.4 1.46 48.28 

5.0 47.4 1.34 103.25 

3.0 47.4 0.03 4.15 

4.0 20.7 0.08 22.32 

5.0 20.7 0.21 21.72 

3.0 20.7 0.03 0.26 

 318 

 319 

(b) 320 

Treatment  

(input 1) 

Precipitation  

(input 2) 

Runoff volume  

(output 1) 

Soil loss  

(output 2) 

0.0 0.345 0.75 0.16 

0.25 0.345 1.0 0.74 

0.5 0.345 0.0 0.0 

0.0 0.358 0.18 0.34 

0.25 0.358 0.16 0.95 

0.5 0.358 0.0 0.01 

0.0 0.577 0.11 0.37 

0.25 0.577 0.11 1.0 

0.5 0.577 0.013 0.02 

0.75 1.0 0.27 0.01 

1.0 1.0 0.32 0.18 

0.5 1.0 0.04 0.001 
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0.75 0.199 0.07 0.02 

1.0 0.199 0.08 0.05 

0.5 0.199 0.009 0.005 

0.75 0.063 0.06 0.02 

1.0 0.063 0.08 0.04 

0.5 0.063 0.0 0.0 

0.75 0.0 0.009 0.02 

1.0 0.0 0.018 0.09 

0.5 0.0 0.004 0.002 

0.75 0.435 0.66 0.114 

1.0 0.435 0.6 0.24 

0.5 0.435 0.013 0.0097 

0.75 0.111 0.04 0.53 

1.0 0.111 0.095 0.51 

0.5 0.111 0.013 6.0e -04 

 321 

 322 

Tables 2a and 2b - Runoff volume (a) and soil loss (b) observed and simulated by the ANN used to 323 

model the hydrological response of plots through (Liétor, Castilla La Mancha, Spain). 324 

 325 

(a)  326 

Observed runoff  

(mm) 

Simulated runoff 

(mm) 

Error 

(mm) 

 1.65 1.65 0 

2.21 2.14 0.07 
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0 0.025 0.025 

0.41 0.39 0.02 

0.35 0.35 0 

0 0.0084 0.0084 

0.25 0.243 0.007 

0.25 0.21 0.04 

0.03 0.06 0.03 

0.6 0.57 0.03 

0.7 0.7 0 

0.08 0.11 0.03 

0.15 0.15 0 

0.18 0.21 0.03 

0.02 0.0097 0.0103 

0.13 0.085 0.045 

0.19 0.13 0.06 

0 0.007 0.007 

0.02 0.072 0.052 

0.04 0.11 0.07 

0.01 0.0075 0.0025 

1.46 1.46 0 

1.34 1.33 0.01 

0.03 0.00044 0.02956 

0.08 0.1 0.02 

0.21 0.15 0.06 

0.03 0.0075 0.0225 
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 327 

(b) 328 

Observed soil loss 

(kg/ha) 

Simulated soil loss 

(kg/ha) 

Error 

 (kg/ha) 

68.1 85.18 17.08 

316.3 320.42 4.12 

0 0.38 0.38 

145.16 136.49 8.67 

403.09 401.96 1.13 

6.36 0.42 5.94 

158.35 157.69 0.66 

424.01 424.01 0 

8.3 12.42 4.12 

5.98 0.975 5.005 

77.73 76.19 1.54 

0.6 2.03 1.43 

8.84 7.93 0.91 

19.52 20.35 0.83 

1.97 0.38 1.59 

9.45 11.45 2 

15.91 24.8 8.89 

0 0.72 0.72 

7.1 14.96 7.86 

38.48 30.4 8.08 

0.79 1.02 0.23 
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48.28 48.76 0.48 

103.25 101.93 1.32 

4.15 3.985 0.165 

22.32 9.54 12.78 

21.72 21.88 0.16 

0.26 0.55 0.29 

 329 

 330 

2.2.4. Neural network architecture 331 

 332 

We adopted the Neuroph, which is an ANN tool, and the Multi Layer Perceptron architecture, 333 

which is a feedforward ANN (see Section 2).  This ANN model maps sets of input data into a set of 334 

appropriate output. It consists of multiple layers of nodes in a directed graph, with each layer fully 335 

connected to the next one. Except for the input nodes, each node is a neuron with nonlinear 336 

activation function. 337 

Multilayer Perceptron uses a supervised learning technique called backpropagation for the training 338 

stage. It is a modification of the standard linear Perceptron, which is not able to distinguish data that 339 

not linearly separable, as in our case. We set multi-layer Perceptron 's parameters. The number of 340 

input and output neurons was the same as in the training set. Then, we had to choose number of 341 

hidden layers, and number of neurons in each layer. 342 

The topology of our ANN was chosen as the result of a preliminary study, where several 343 

alternatives in terms of number of hidden layers and number of neurons for layer were tested. At the 344 

end of this study, the best performance architecture resulted in two hidden layers with 20 neurons in 345 

each layer (Figure 3). 346 

 347 



 

 21 

 348 

Figure 3 - The ANN with two hidden layers with 20 following neurons used to model the 349 

hydrological response of plots (Liétor, Castilla La Mancha, Spain). 350 

 351 

Then we adopted a 'Sigmoid' for transfer function, while, for learning rule, we chose a 352 

'Backpropagation with Momentum'. The momentum is a real value added to speed up the process of 353 

learning and to improve the efficiency of the algorithm. 354 

 355 

2.2.5. Neural network training 356 

 357 

After we have created training set and set the parameters of the neural network, we started to train 358 

it.  359 

In our case the maximum error was set to 0.0001, learning rate was set to 0.2 and momentum was 360 

set to 0.7. In the first phase, we calculated the total Mean Square Error (MSE). For that purpose, the 361 

following formula was used: 362 

 363 

 
2n

1i
ii ŶY

n

1
MSE 



            (3) 364 
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 365 

where MSE is the arithmetic mean of the squares of the errors (Yi – Ŷi)
2. 366 

In the following, we will refer to the MSE as the Total Network Error. When this Total Network 367 

Error value dropped below the max error, the training was complete. The smaller the error is, the 368 

better the obtained approximation is. 369 

 370 

 371 
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2.3. Evaluation of the hydrological prediction capability of ANN  372 

 373 

The predictions of surface runoff and soil loss provided by the adopted ANN model were compared 374 

to the corresponding observations collected in the equipped plots. First, observed and simulated 375 

values were visually compared in "scatter-plots". Then, the following indicators, usually adopted in 376 

the literature studies dealing with hydrological modelling (e.g., Willmott, 1982; Legates and 377 

McCabe, 1999; Loague and Green, 1991; Zema et al., 2017; 2018), were calculated:  378 

(i) the main statistics (i.e. the maximum, minimum, mean and standard deviation of both the 379 

observed and simulated values);  380 

(ii) the coefficients of determination (r2), efficiency (E, Nash and Sutcliffe, 1970) and residual 381 

mass (CRM, also knowns as "percent bias", PBIAS); and  382 

(iii) the Root Mean Square Error (RMSE). 383 

The related equations for the calculation of these indicators are reported by Zema et al. (2012), 384 

Krause et al. (2005), Moriasi et al. (2007) and Van Liew and Garbrecht (2003).  385 

To summarise, the model performance can be evaluated as follows: 386 

- the closer the statistics, the more accurate the model predictions; 387 

- values of r2, ranging from 0 to 1, over 0.5 indicate reasonable model performance (Santhi et al., 388 

2001; Van Liew et al., 2003; Vieira et al., 2018);  389 

- E, in the range −∞ to 1, is negative for a model giving poor predictions,  0.35 for a satisfactory 390 

model and  0.75 for a good performance (Zema et al., 2017); 391 

- RMSE, which should be as closest as possible to zero (no errors between predictions and 392 

observations), less than half the standard deviation of the measured data are considered good 393 

(Singh et al., 2004); 394 

- CRM/PBIAS, which, if positive, indicates model underestimation, whereas, if negative, model 395 

overestimation (Gupta et al., 1999), must be below 0.25 or 0.55 for good runoff and soil loss 396 

predictions, respectively, according to Moriasi et al. (2007). 397 
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 398 

 399 

3. RESULTS AND DISCUSSIONS  400 

 401 

3.1. Runoff and soil erosion observations  402 

 403 

During the observation period, nine events were monitored, for which precipitation depth and mean 404 

intensity were in the range 11.6-93.8 mm and 0.98-28.0 mm/h. The monitored events were only 405 

those producing surface runoff and erosion. As expected, all burned plots gave runoff volumes and 406 

soil loss significantly (at p < 0.05) much higher than non-burned soils (control), for which the mean 407 

runoff and soil loss were 0.02  0.03 mm and 2.49  3.07 kg/ha (mean  standard deviation). Also 408 

Gimeno-García et al. (2007), studying the soil's hydrological response after wildfires in 409 

Mediterranean shrublands, showed that total runoff and sediment yield in the first post-fire year 410 

(19.43 mm and 0.56 kg/m2 in the intense fire) contrast with the very low runoff (3.82 mm) and soil 411 

loss (0.08 kg/m2) in control plots. In a different Mediterranean landscape, Mayor et al (2007) found 412 

that total runoff and sediment yield in the burned catchment (35 mm and 4.56 kg/ha, respectively) 413 

were considerably greater than in the unburned catchment (0.03 mm, and 0.12 kg/ha). Key casual 414 

factors enhancing runoff and soil loss are the reduction in infiltration and some combination of 415 

sealing, soil water repellency, loss of surface cover, and disaggregation due to loss of soil organic 416 

matter (Neary et al., 2005). 417 

Mulching reduced the hydrological response of the B+M+NL soils (mean runoff of 0.26  0.54 mm 418 

as well as soil loss of 41.3  66.6 kg/ha soils) compared to B+NM+NL plots (mean runoff of 0.31  419 

0.72 mm and soil loss of 127  193 kg/ha) (Figure 4a and 4b). The differences were significant for 420 

soil erosion, but not for runoff. The efficacy of mulch application to control soil erosion is in 421 

accordance with Bautista et al. (2009), who highlighted the immediate increase of ground cover in 422 

mulch application, which result in an effective soil protection for the first rain events after fire.  423 
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The effects of logging on burned soils (mulched or not) anywhere not appreciably different between 424 

the plots, since the differences in surface runoff and soil loss were not significant (at p < 0.05). 425 

More specifically, B+NM+L plots gave higher runoff (on the average 0.30  0.45 mm) and soil loss 426 

(on the average 30.7  36.7 kg/ha) compared to B+M+L soils (mean runoff of 0.27  0.48 mm and 427 

soil loss of 11.3  15.5 kg/ha) (Figure 4a and 4b). This is in accordance with other authors that did 428 

not report a significantly negative effect of logging in soil parameters (Fernández and Vega, 2016). 429 

The type of machinery used during forest operations could also explain this. As Lucas-Borja et al. 430 

(2018) demonstrated, the use of not heavy machinery with air tires generates not negative impact on 431 

soil and reduce soil compaction in comparison to chain tires.  432 

It is worth to highlight that a temporal gradient in runoff generation mechanism was found for the 433 

B+NM+NL and B+M+NL (regardless of the treatment), indicating a decrease of the hydrological 434 

response of all soils throughout the time elapsed from fire. In other words, the largest runoff - and 435 

thus soil loss - was produced by the rainfall events occurring immediately after the wildfire, as 436 

shown by the decrease of the runoff coefficients (data not shown). This has been observed in the 437 

first and second storms in the season immediately after wildfires by several authors (e.g., de Dios 438 

Benavides-Solorio and MacDonald, 2005; DeBano et al., 1998; MacDonald et al., 2000; Robichaud 439 

and Brown, 1999). The large increase in the runoff coefficients just after fire has been attributed to 440 

changes in soil hydrological properties, such as the development of a water-repellent layer at or near 441 

the soil surface, which prevents infiltration and induces overland flow (DeBano et al., 1970; 442 

Shakesby et al., 2000). In addition, this fact might be explained by the vegetation (mainly shrubs 443 

and herb) recovery after fires that performed better than litter in order to stop runoff generation. The 444 

complex system of vegetation patches in control plots which is highly disconnected that influence 445 

of semi-arid Mediterranean vegetation on runoff generation has been widely reported in previous 446 

studies (i.e. Dunjó et al., 2004). 447 

 448 
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 449 

Figures 4a and 4b - Precipitation, runoff volumes (a) and soil losses (b) observed in the 450 

experimental plots (Liétor, Castilla La Mancha, Spain) (NB = Non-Burned; B+M+NL = 451 

Burned+Mulching+No-Logging; B+NM+NL = Burned+No-Mulching+No-Logging; B+M+L = 452 
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Burned+Mulching+Logging; B+NM+L = Burned+No-Mulching+Logging; different lower case 453 

letters indicate statistically significant differences at p < 0.05). 454 

 455 

3.2. Hydrological modelling by ANN 456 

  457 

First, we train the neural network for the first output. After 250000 iterations we obtained a Total 458 

Mean Square Error drop down to a specified level of 0.0001, which means that training process was 459 

successful. 460 

 461 

3.2.1. Neural Network Approximation 462 

 463 

A Total Mean Square Error of 1.965 e-4 in simulating the runoff volume was achieved (Figure 5a), 464 

which certainly is a very good result, because our goal is to get the total error to be as small as 465 

possible. In more detail, Table 2a reports the observed (desired output) and simulated (ANN output) 466 

runoff values and the related differences the trained neural network produced. Looking at the 467 

individual errors, we can observe that most of them are at the low level, below 0.1. MAE was equal 468 

to 0.025 mm. So we can conclude that this type of neural network architecture is the best choice.  469 

We used the same neural network shown in Figure 2. Also in this case, we set the maximum error to 470 

0.0001, the learning rate to 0.2 and the momentum to 0.7. After 175000 iterations we obtained a 471 

total MSE drop down to a specified level of 0.0001, which means that training process was 472 

successful and that now we can exploit this trained neural network (Figure 5b). The Total Mean 473 

Square Error for this second neural network was 1.78 e-4. The relative error on the individual soil 474 

loss between the observations and the simulations (Table 2b) was lower than 17.1 kg/ha while MAE 475 

was equal to 3.57 kg/ha.  476 

 477 
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 478 

Figures 5a and 5b - Total Network Error (equal to the Total MSE, Mean Square Error for runoff 479 

volume (a) and soil loss (b) simulated by the ANN used to model the hydrological response of plots 480 

(Liétor, Castilla La Mancha, Spain).  481 

 482 
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3.2.2. Evaluation of the ANN prediction capability 483 

 484 

The scatter plots of Figure 6a and 6b show a very close agreement between the predictions provided 485 

by ANN and the corresponding observations collected at the plots for both surface runoff volumes 486 

and soil loss for all the experimental conditions (control, burned and treated/not treated soils).  487 

 488 

 489 

Figures 6a and 6b - Scatter plot of the observed vs simulated (by ANN) runoff volumes (a) and soil 490 

loss (b) in the experimental plots (Liétor, Castilla La Mancha, Spain). 491 



 

 30 

 492 

This qualitative agreement is confirmed by the values of the indicators adopted for the quantitative 493 

assessment of ANN prediction capability. In general, when the ANN performance is evaluated by 494 

aggregating all the soil conditions, the statistics (i.e., mean, standard deviation, minimum and 495 

maximum) were practically equal for both runoff and soil loss. Only very small differences were 496 

found for the maximum runoff (under 3.2%) and the minimum soil loss (modelled as zero against a 497 

mean value of 0.38 kg/ha). Moreover, the model efficiency and RMSE are good and the coefficient 498 

of determination equal to one, while the CRM (equal to 0.01) indicates a very small model 499 

underestimation of the observations (Table 3). 500 

A more detailed analysis of the ANN performance, carried out separately for the individual soil 501 

conditions (burned/unburned) and treatments (mulching/logging) highlighted that (Table 3): 502 

- the observed and predicted mean values of both runoff and soil loss are practically the same and 503 

the maximum difference (16.2%, however under the acceptance threshold) is detected for soil loss 504 

prediction in B+M+L plots; 505 

- the lower agreement between observations and predictions was found in the maximum runoff 506 

(with differences lower than 32%) and in the minimum soil loss (below 112%); for the latter, in 507 

same cases the ANN predicted soil losses equal to zero also in the case of observed erosion; instead, 508 

for the maximum soil losses, only in one case (for the B+M+L plots) the difference with the 509 

corresponding observation was more than 20%. 510 
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Table 3 - Values of the criteria adopted for ANN evaluation in the experimental plots (Liétor, Castilla La Mancha, Spain). 511 

 512 

Mean Minimum Maximum 
Standard 

Deviation 
E CRM r2 RMSE 

Treatment 
Number 

of events 
Value 

(mm or kg/ha) (-) (-) (-) (mm or kg/ha) 

RUNOFF VOLUME 

Observed 0.39 0.00 2.21 0.59 - - - - 
ALL DATA 27 

Simulated 0.38 0.00 2.14 0.58 1.00 0.01 1.00 0.03 

Observed 0.57 0.00 2.21 0.80 - - - - 
NB 9 

Simulated 0.56 0.01 2.14 0.78 1.00 0.01 1.00 0.03 

Observed 0.46 0.08 0.70 0.33 - - - - 
B+M+NL 3 

Simulated 0.46 0.11 0.70 0.31 0.99 0.00 1.00 0.02 

Observed 0.12 0.02 0.18 0.09 - - - - 
B+NM+NL 3 

Simulated 0.12 0.01 0.21 0.10 0.93 -0.06 0.99 0.02 

Observed 0.07 0.00 0.19 0.08 - - - - 
B+M+L 6 

Simulated 0.07 0.01 0.13 0.05 0.55 -0.06 0.56 0.05 

B+NM+L 6 Observed 0.53 0.03 1.46 0.68 - - - - 
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Simulated 0.51 0.00 1.46 0.69 1.00 0.03 1.00 0.03 

SOIL LOSS 

Observed 70.96 0.00 424.01 120.84 - - - - ALL 

DATA 
27 

Simulated 70.99 0.38 424.01 120.96 1.00 0.00 1.00 5.60 

Observed 169.96 0.00 424.01 170.74 - - - - 
NB 9 

Simulated 171.00 0.38 424.01 170.21 1.00 -0.01 1.00 6.98 

Observed 196.89 8.30 424.01 210.52 - - - - 
B+M+NL 3 

Simulated 198.04 12.42 424.01 208.74 1.00 -0.01 1.00 2.41 

Observed 10.11 1.97 19.52 8.84 - - - - 
B+NM+NL 3 

Simulated 9.55 0.38 20.35 10.08 0.97 0.06 1.00 1.16 

Observed 11.96 0.00 38.48 14.26 - - - - 
B+M+L 6 

Simulated 13.89 0.72 30.40 12.15 0.79 -0.16 0.82 5.93 

Observed 33.33 0.26 103.25 38.25 - - - - 
B+NM+L 6 

Simulated 31.11 0.55 101.93 38.85 0.98 0.07 0.98 5.25 

Notes: NB = Non-Burned; B+M+NL = Burned+Mulching+No-Logging; B+NM+NL = Burned+No-Mulching+No-Logging; B+M+L = 513 

Burned+Mulching+Logging; B+NM+L = Burned+No-Mulching+Logging. 514 
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As regards the other model performance indicators, the following considerations can be drawn 515 

(Table 3): 516 

- ANN showed a very slight tendency to overestimate or underestimate the hydrological 517 

observations (for instance, overestimation of runoff in B+NM+L and B+NM+L plots, CRM = -0.06 518 

as well as underestimation of soil loss in B+NM+NL and B+NM+L, CMR = 0.06-0.07), as shown 519 

by the very small negative or positive values of CMR;  520 

- for all the soil conditions/treatments and both for runoff and soil loss predictions, E, r2 and RMSE 521 

attained good values (that is, very close to one for E and r2, and to zero for RMSE), except for the 522 

B+M+L plots; 523 

- for the latter soil condition and treatment, the worst performance of the ANN was found for both 524 

runoff and erosion predictions (see values of E, r2 and RMSE). Presumably, in soil subjected to 525 

logging, the impacts of machinery wheels on soil determine the formation of small rills, in which 526 

small volumes of water and sediments are stored and do not feed runoff. Since, in general, many 527 

models find difficulties in modelling rill erosions (e.g., Aksoy and Kavvas, 2005), this behaviour 528 

could be common with ANN.  529 

However, on account of E, r2 and RMSE values, the prediction capability of the ANN can be 530 

considered as satisfactory to good for runoff and good for soil loss. This indicates that a soil 531 

disturbance due to more than two factors (in our case wildfire, mulching and logging) founds some 532 

difficulties in being simulated by ANN, which however does not compromise the generally good 533 

model performances.   534 

The runoff and erosion prediction capacity provided by ANNs appears to be very satisfactory in the 535 

experimental conditions and this is even more appreciable if we make comparisons with other 536 

conceptual models. For instance, limiting the evaluation criteria to model efficiency, the very high 537 

E coefficients of this study (close to 0.99) is noticeably higher compared to the maximum values (E 538 

from -10 to 0.93) reported in the studies of Vieira et al. (2014), Fernandez et al. (2010) and Hosseini 539 

et al. (2018), who applied the MMF model for predicting runoff and erosion at seasonal and annual 540 
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scales on soils of Iberian Peninsula, burned by fires of different severity and subjected to different 541 

post-fire treatments. Fernandez et al. (2010) and Fernandez and Vega (2016) found some 542 

inaccuracies of the RUSLE model (shown by a negative E) for predicting annual soil erosion from 543 

burned soils of NW Spain, since the K factor did not allow to reflect the changes on soil 544 

permeability and structure after fire, while the annual soil loss predictions achieved by Vieira et al. 545 

(2018) applying RUSLE in north-central Portugal were more satisfactory (E = 0.63-0.70). 546 

Contrasting results in annual erosion prediction capacity provided by PESERA model applied in 547 

burned plots were shown by coefficients E of 0.33 (Fernandez and Vega, 2016) or 0.73-0.85 (Vieira 548 

et al., 2018). 549 

The ANN models focus on mathematical solutions over process representation, such as the 550 

empirical models do. In other words, it is a “black box” approach, which estimates runoff and soil 551 

loss, but does not gives information about the physical factors underlying the hydrological 552 

processes. Nonetheless, empirical models are frequently used in preference to more complex 553 

models as they can be implemented in situations with limited data and parameter inputs, and are 554 

particularly useful as a first step in identifying sources of water, sediments and pollutants (Merritt et 555 

al., 2003). However, the main goal of technicians and land planners is first the knowledge of the 556 

runoff and erosion rates and then the selection of the most suitable treatment to reduce the 557 

unsustainable rates, rather than a detailed comprehension of the hydrological processes. For 558 

stakeholders or government agencies, who may be responsible for land and water management on a 559 

national or regional basis, the complex models are prohibitive in terms of the time required to 560 

develop and implement them (Fu et al., 2018). Since the data requirements of any model increase 561 

with the model complexity, models that are less complex than the physically-based models, such as 562 

the empirical models (Aksoy and Kavvas, 2005), are more indicated for use in burned areas of 563 

Mediterranean forests, which are often data-poor environments. Low-data demanding models are 564 

based primarily on the analysis of observations and seek to characterise response from these data 565 

(Wheater et al., 1993). The simplest models are regression equations between climatic variables 566 
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(such as precipitation volumes and intensities) and runoff/erosion rates. However, in the 567 

experimental areas, linear regressions were not able to predict with accuracy runoff volumes and 568 

soil loss from simple observations of precipitation. As a matter of fact, very low coefficients of 569 

determination were found by regressing both runoff volumes and soil loss to precipitation depth and 570 

intensity in non-burned soils as well as in burned plots (mulched or not) (Figure 7). This 571 

presumably happened, since these simple models ignore the inherent non-linearities in the 572 

hydrological processes and employ unrealistic assumptions about the physics (Wheater et al., 1993). 573 

Conversely, the ANNs, which require only precipitation as input, but use a more complex 574 

mathematical structure, were successful in capturing the output hydrological variables from the 575 

observational input data, as shown by the very good prediction capacity detected for the ANNs in 576 

the experimental conditions of this study.   577 

Therefore, the main advantages of the ANN use are in such environmental contexts are the low 578 

input requirement in comparison to the more complex physically-based models and, at the same 579 

time, the prediction accuracy in comparison to the simpler empirical models. This is appreciated by 580 

land planners and forest managers, who have a powerful prediction tool easy to be used in data-poor 581 

environment, as often the Mediterranean forests are.  582 

However, further experimental tests are needed to assure ANN applicability to these climatic, 583 

geomorphological and ecological contexts and to upscale the model applications from the plot to the 584 

watershed scale; for instance, a larger database of rainfall/runoff events may make the ANN 585 

prediction capacity more accurate. On the other hand, a larger and general use of ANN for 586 

hydrological predictions requires more experimental investigations in other environmental contexts 587 

(different for climate and geomorphology), which should assure a large transferability of this 588 

modelling tool for hydrological and ecological management in forest ecosystems potentially prone 589 

to fire. If simulations of runoff and erosion remain good also out of the experimental conditions of 590 

this study after fire, the availability of powerful ANNs can support landscape planners not only in 591 

control the fire risk in forestland, but also in identifying the most efficient countermeasures to limit 592 
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ecosystem degradation. Conversely, in the case of less accurate hydrological predictions, other 593 

important variables - of easy measurement or estimation, - influencing the runoff and erosion 594 

generation mechanisms should be implemented when an ANN is designed, such as the rainfall 595 

intensity, vegetal cover and texture of soils. Therefore, estimations of water flows and soil erosion 596 

using ANN decrease the costs and the studies time otherwise required by hydrological models of 597 

other nature.  598 

 599 
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Figure 7 - Linear regression between runoff volumes and precipitation depth as well as soil loss and 601 

maximum 1-h precipitation intensity in the experimental non-burned (a), burned and mulched (b) 602 

and burned and non-mulched (c) plots (Liétor, Castilla La Mancha, Spain). 603 

 604 

 605 

4.  CONCLUSIONS 606 

 607 

The evaluation of the ANN for hydrological modelling in the forest plots subject to wildfire showed 608 

that the runoff and erosion prediction capability is in general very good. The ANN performance was 609 

exceptionally high for all the experimental conditions, since the model efficiency and the coefficient 610 

of determination was equal to one, while the very low CRM indicated a negligible underestimation 611 

of the observations. The ANN proposed is also very robust, in the sense that its performance is 612 

exceptionally high for all the experimental conditions (burned or non-burned soils) and treatments 613 

(mulching and/or logging or not), with only one exception (that is, in the condition where the soil 614 

disturbance is higher).   615 

Overall, this modelling approach only needs precipitation data (whose measuring equipment are 616 

available also in forestlands) as well as a reasonable set of rainfall-runoff observations to train the 617 

ANN. Therefore, the use of ANNs for hydrological predictions in burned areas of Mediterranean 618 

forests seems to be a useful decision support system for the integrated assessment and management 619 

of forested watersheds.  620 

 621 
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