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A B S T R A C T

The imprecise stochastic process model is able to incorporate both random and epistemic uncertainties, leading
to a more accurate description of environmental excitations, such as earthquakes or wind loads, when limited
data are available. Epistemic uncertainties in the loading model may significantly affect the performance of
structural systems.

The present paper addresses the stochastic analysis of combined primary-secondary structures subjected to
imprecise seismic excitation modeled as a zero-mean stationary Gaussian random process, characterized by an
interval-valued Power Spectral Density (PSD) function. The power and energy content of the imprecise ground
motion acceleration may vary, even for the same soil category, affecting the complex dynamic behavior of
combined structures and the vibration control capacity of secondary substructures under different frequency
tuning conditions. The main purpose of this study is to develop a framework for investigating both the influence
of epistemic uncertainties in the loading model and the interaction effects between the subsystems on the seismic
performance of combined primary-secondary structures. To this aim, the stochastic analysis of combined
structures under imprecise ground motion acceleration is addressed in both the frequency and time domains by
an efficient approach capable of decoupling the propagation of interval and random uncertainties. Seismic safety
assessment is performed in the framework of the first-passage theory by interval extension.

1. Introduction

Defining accurate models of environmental excitations, such as
earthquakes or wind loads, is a crucial issue in assessing the safety of
structural systems. The well-established stochastic process model is able
to capture the inherent randomness of time-varying loads due to natural
phenomena. The definition of suitable Power Spectral Density (PSD)
functions allows the characterization of stochastic processes in the fre-
quency domain. The non-stationary character, typical of environmental
processes, can be captured by Evolutionary Power Spectral Density (EPSD)
functions which describe the change of the frequency content in time.
Based on the knowledge of the PSD or EPSD functions, the generation of
artificial time signals can be performed using the spectral representation
method [1,2]. Such artificial samples of the excitation can be used to
perform reliability analysis by classical Monte Carlo Simulation (MCS)
[3,4] or advanced sampling techniques [5]. The accuracy of
simulation-based assessment of structural reliability is significantly

affected by the ability of artificial time signals to reproduce actual re-
cords of the natural excitation.

Besides their inherently random character, environmental excitation
models are affected by epistemic uncertainties due to the complexity of
the underlying natural phenomena as well as measurement errors,
limited or missing data, etc. To obtain reliable predictions of structural
behavior, such uncertainties need to be considered in power spectrum
estimates. Two pioneering studies by Vanmarcke and Lai [6], and Luco
[7] have highlighted uncertainties affecting the main parameters of
strong ground motions. By analyzing 140 accelerograms recorded in
Western United States, Lai [8] computed the histograms of the main
parameters of the Kanai-Tajimi PSD function and fitted them with
analytical probability density functions. More recently, some ap-
proaches for estimating the PSD and EPSD function taking into account
uncertainties in the data records have been proposed. The issue of
quantifying the uncertainty in power spectrum estimates under missing
data has been addressed, among others, by Comerford et al. [9,10] and
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Zhang et al. [11]. Muscolino et al. [12] proposed an imprecise model of
ground motion acceleration characterized by a PSD function depending
on three interval parameters whose bounds were estimated by analyzing
a set of accelerograms recorded on rigid soil deposits. Bounds for the
physical parameters of an analytical PSD function were determined in
Ref. [13] by applying a data-driven bootstrapping approach. Based on
the statistical information extracted from a large data set of similar
signals, Behrendt et al. [14] derived a relaxed PSD function utilizing
subjective probabilities to capture the epistemic uncertainties. This
approach was extended to non-stationary processes by defining a novel
class of stochastic EPSD functions [15]. By using a radial basis function
network, Behrendt et al. [16] proposed an imprecise PSD function which
is able to provide optimal bounds for a set of limited data records.

Epistemic uncertainties in the loading model may significantly affect
the performance of structural systems (see e.g., [12]). Response analysis
under imprecise stochastic excitation is of particular relevance for
combined primary-secondary systems due to their complex dynamic
behavior. Indeed, interaction effects, mainly depending on the mass
ratio, stiffness ratio, coupling stiffness, and frequency tuning between
the subsystems (see e.g., [17–20]), may be influenced by the imprecision
of the stochastic excitation. Secondary subsystems such as façades,
commonly connected to primary structures for esthetic, thermal, and
energy-saving purposes, are attracting increasing attention due to their
vibration control capacity under environmental excitations, e.g.,
earthquakes and wind loads, impacts, or explosions. Relying on the
classical Tuned Mass Damper (TMD) concept [21], Moon [22,23] first
investigated the potential of double-skin façades (DSF) to act as verti-
cally distributed mass dampers for multi-storey buildings under wind
loads. By enabling movements of the outer façade skin via actuators, Fu
and Zhang [24] proposed an integrated system that combines DSFs and
mass dampers to improve building safety and energy efficiency with no
need to add extra mass to the structure. Bedon and Amadio [25,26]
explored the feasibility and potential of passive control systems con-
sisting of glazing curtain walls and special mechanical connectors able
to act as dissipative supports mitigating the effects of seismic loads and
blast events. Recently, Pipitone et al. developed novel approaches to
optimize the design of DSFs for the passive control of seismic-induced
vibrations within a deterministic [27] and stochastic framework [28].
The performance of buildings with monolithic moving façades under
harmonic excitation acting on the cladding system has been investigated
in Ref. [29] relying on a simplified two degrees-of-freedom model. To
the best of the authors’ knowledge, the influence of the imprecise nature
of environmental loads on the dynamic behavior of primary structures
combined with secondary subsystems, e.g. façades, has not been inves-
tigated in the literature.

The present study addresses the performance assessment of com-
bined primary-secondary structures subjected to imprecise seismic
excitation. To this aim, within the strong motion duration, ground motion
acceleration is modeled as a zero-mean stationary Gaussian random
process, characterized by the interval-valued PSD function recently
proposed in Ref. [12]. The dynamic analysis of combined structural
systems under imprecise stochastic excitation is quite challenging since
it involves the propagation of hybrid uncertainty i.e., interval and
random, as well as the assessment of the interaction effects between the
subsystems. Under the condition that the effects of aleatoric and
epistemic uncertainty are kept separated [30], the propagation of hybrid
uncertainty is usually performed by solving a double-loop problem. This
approach requires tremendous computational effort and becomes
quickly unfeasible for real-world engineering problems. Indeed, an in-
terval PSD function defines a set of zero-mean stationary Gaussian
random processes, one for each realization of the interval spectral pa-
rameters [31]. In this context, the application of classical MCS requires
the generation of a sufficiently large number of samples for each random
process belonging to the set defined by the interval PSD function. To
enhance computational efficiency, surrogate modeling or decoupling
techniques are needed. In the literature, several efficient numerical

schemes for the joint propagation of epistemic and aleatoric un-
certainties have been developed, such as the approaches based on
advanced line sampling [32], Extended Monte Carlo simulation [33],
Non-intrusive Imprecise Stochastic Simulation [34], Bayesian probabi-
listic propagation [35], operator norm theory [30,36,37], etc. A
comprehensive overview of this topic is provided in [38,39].

In the present paper, both frequency- and time-domain formulations
for the dynamic analysis of combined systems under imprecise seismic
excitation are derived. A main feature of the adopted imprecise PSD
function is the dependency on three interval parameters only. An effi-
cient approach to carry out MCS is proposed by assuming the variance of
the selected response quantity as a performance indicator. To assess the
safety level of the combined structure under imprecise stochastic exci-
tation, interval reliability analysis is performed within the framework of
the classical first-passage problem (see e.g., [40,41]). The main purpose
of the present study is to investigate the interaction effects between the
subsystems and the influence of epistemic uncertainties in the loading
model for different values of selected structural parameters. Due to
imprecision, seismic excitation may exhibit the major power content
over a wide range of frequencies [12], leading to significant changes in
the performance of the coupled system, which in turn depends on the
interaction effects between the subsystems.

The presented framework is applied to a six-storey shear-type frame
connected by elastic springs to two independent lumped mass sub-
systems, subjected to imprecise ground motion acceleration.

The rest of the paper is organized as follows: in Section 2, the
equations of motion of the combined primary-secondary structure are
derived and the assumed model of the imprecise seismic excitation is
outlined; Section 3 presents the frequency- and time-domain formula-
tions for the dynamic analysis of the combined system under imprecise
ground motion acceleration; in Section 4, seismic performance assess-
ment is addressed within the framework of the first-passage theory by
interval extension; in Section 5, numerical results are presented and
discussed; finally, in Section 6, some concluding remarks are given.

2. Problem formulation

2.1. Equations of motion

Let us consider the combined primary-secondary system sketched in
Fig. 1 [27,28]. The primary subsystem (p) is a multistorey building,
modeled as a np − storey shear-type frame with floors characterized by
equal mass mp, lateral stiffness kp, and interstorey height h. The viscous
damping ratio ζp is assumed the same for all vibration modes of the
building.

The lateral displacements Upj(t),
(
j = 1, 2,…, np

)
, are the dynami-

cally significant degrees-of-freedom (DOFs) collected into the vector
Up(t). The primary structure is connected at each floor by elastic springs
to N independent secondary subsystems (s) consisting of elastic beam-
like systems with equally spaced lumped masses msi. The i − th mass
has two DOFs i.e., the lateral displacement Usi(t) and the rotation φsi(t).
The secondary subsystems may be viewed as external substructures, e.g.,
panels of double-skin façades (see e.g., [27,28]). It is worth mentioning
that the developments presented in this paper hold for different types of
combined primary-secondary structures.

After static condensation of the rotational DOFs of the secondary
subsystems, the n dynamically significant DOFs of the coupled
system can be collected into the n − vector

U(t) =
[
UT

p(t) UT
s1(t) …. UT

sN(t)
]T

, where Usi(t) is the sub-vector

listing the nsi (i = 1,2,…,N) horizontal translations of the masses of
the i − th secondary subsystem (n = np + ns1+…+ nsN= np + ns); the
superscript T denotes the transpose operator.

The equations of motion of the coupled system subjected to ground
motion acceleration Üg(t) (see Fig. 1) can be written in the following
form:
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MÜ(t) + CU̇(t) + KU(t) = − MτÜg(t) (1)

where a dot over a variable denotes differentiation with respect to time
t; τ is the n − vector listing the influence coefficients; M and K are the
n× n mass and stiffness matrices of the coupled system which can be
defined as follows:

M =

⎡

⎢
⎢
⎣

Mp 0 … 0
0 Ms1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … MsN

⎤

⎥
⎥
⎦; K =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Kp + K0 Ksp1 … KspN

KT
sp1 Ks1 … 0
⋮ ⋮ ⋱ ⋮
KT

spN 0 … KsN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2a,b)

where Mp and Kp are the mass and stiffness matrices of the primary
structure; Msi and Ksi (i = 1,2,…,N) are the mass and stiffness matrices
(after static condensation) of the i − th secondary subsystem; the matrix
K0 represents the increment of the stiffness matrix of the primary
structure due to the secondary subsystems; Kspi (i = 1, 2,…,N) denotes
the physical coupling between the primary structure and the i − th
subsystem; 0 is a zero matrix of appropriate dimensions. The elements of
both the matrices K0 and Kspi depend on the stiffness of the elastic
springs at each storey level. Each subsystem is considered classically
damped. In particular, it is assumed that the N secondary subsystems
have the same viscous damping ζs. Relying on these assumptions, the
damping matrix of the coupled system is evaluated as follows [27]:

C = Γ− 1Ξ Γ− T (3)

where Γ is a suitable transformation matrix, defined following the phi-
losophy of the component-mode synthesis method [27]:

Γ =

⎡

⎢
⎢
⎣

Φp 0 … 0
Ψ1 Φs1 … 0
⋮ ⋮ ⋱ ⋮

ΨN 0 … ΦsN

⎤

⎥
⎥
⎦ (4)

and Ξ is given by:

Ξ =

⎡

⎢
⎢
⎣

2ζpΩp 0 … 0
0 2ζsΩs1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 2ζsΩsN

⎤

⎥
⎥
⎦. (5)

In the previous equations, Φi, and Ωi (i = p, s1,…, sN) are the modal
and spectral matrices of the i − th subsystem separately taken; Ψi = −

K− 1
si K

T
spiΦp (i = 1,2,…,N) is the i − th influence modal matrix.

2.2. Imprecise seismic excitation

To take into account epistemic uncertainties affecting seismic exci-
tation, within the strong motion duration, ground motion acceleration is
modeled as a zero-mean stationary Gaussian stochastic process charac-
terized by the following interval-valued one-sided Power Spectral Density
(PSD) function [12]:

GI
Üg
(ω) ≡ GÜg

(
ω;ϑI) ≡ (σ2

Üg
)
I G̃Üg

(ω; ϑ̃
I
) (6)

where the apex I denotes interval variables [31];

ϑI =

[

ΩI
0 ρI

0 (σ2
Üg
)
I
]T

is the interval vector collecting the three main

parameters characterizing the PSD function, which are modeled as in-
terval variables [31] i.e., the predominant circular frequency ΩI

0, the
circular frequency bandwidth ρI

0, and the variance (σ2
Üg
)
I of the random

process [42]; and

G̃
I
Üg
(ω) ≡ G̃Üg

(ω; ϑ̃
I
) = βI

0

[
ω2

ω2 + (ωI
H)

2

][ (
ωI

L
)4

ω4 + (ωI
L)

4

]

G(CP)I
0 (ω) (7)

is the interval PSD function of the unit variance process ¨̃U
I

g(t) ≡
¨̃Ug (t;

ϑ̃
I
) = Üg(t;ϑI)/ σI

Üg
with ϑ̃

I
=

[
ΩI

0 ρI
0
]T collecting only two interval

spectral parameters, such that ϑI =

[

ϑ̃
I

(σ2
Üg
)
I
]T

. Furthermore, in Eq.

(7) G(CP)I
0 (ω) is the interval extension of the Conte and Peng PSD function

[43]:

G(CP)I
0 (ω) = ρI

0
π

[
1

(
ρI

0
)2

+
(
ω + ΩI

0
)2 +

1
(
ρI

0
)2

+
(
ω − ΩI

0
)2

]

(8)

and

βI
0 ≡ β0

(
ΩI

0, ρI
0
)
;

ωI
H ≡ ωH

(
ΩI

0
)
= 0.1 ΩI

0;

ωI
L ≡ ωL

(
ΩI

0, ρI
0
)
= ΩI

0 + 0.8 ρI
0

(9a-c)

where ωI
H and ωI

L are the interval control frequencies of the second-order
high-pass and first-order low-pass Butterworth filters, respectively; βI

0 is
defined in Appendix A.

By applying the Improved Interval Analysis via Extra Unitary Interval
(IIA via EUI) [44], the i − th interval variable ϑI

i = ΩI
0, ρI

0, (σ2
Üg
)
I is

defined as follows:

ϑI
i = [ϑi, ϑi] ≡ ϑmid,i

(
1 + αI

i
)
= ϑmid,i

(
1 + Δαi ê

I
i
)

(10)

where the symbols ϑ i = Ω 0, ρ 0, σ 2
Üg

and ϑi = Ω0, ρ0, σ2
Üg

denote the

Fig. 1. Combined primary-secondary system under seismic excitation.
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Lower Bound (LB) and Upper Bound (UB) of the interval variable,
respectively; αI

i = [αi,αi] is a symmetric interval variable (αi = − αi)

representing the dimensionless fluctuation of the i − th uncertain
parameter around its midpoint value; êIi = [ − 1, 1] is the so-called EUI
associated with the i − th interval variable i.e., êIi = êIΩ0

, êIρ0
, êIσ2

Üg
;

ϑmid,i = Ω0,mid, ρ0,mid,σ2
Üg,mid

and Δαi = ΔαΩ0 ,Δαρ0 ,Δασ2
Üg

are the midpoint

value (or mean) and the normalized deviation amplitude (or radius) of ϑI
i ,

given, respectively, by:

ϑmid,i =
ϑi + ϑi

2
; Δαi =

Δϑi

ϑmid,i
=

αi − αi

2
> 0 (11a,b)

where Δϑi = (ϑi − ϑi)/ 2 is the deviation amplitude of ϑI
i . To guarantee

positive values of the spectral parameters, the condition Δαi < 1 must
always be satisfied.

The midpoint and the normalized deviation amplitudes of the three
interval parameters characterizing the imprecise PSD function, ΩI

0, ρI
0,

and (σ2
Üg
)
I, can be estimated by analyzing a selected set of accelerograms

recorded on rigid soil deposits [12]. Specifically, for the generic accel-
erogram, the spectral parameters can be evaluated from the knowledge
of the total intensity, the total number of zero-level up-crossings, the total
number of peaks and the strong motion duration [42]. Since such quan-
tities vary from one accelerogram to another, Muscolino et al. [12]
proposed to model the spectral parameters as interval variables (see Eq.
(6)). The resulting interval PSD function may be viewed as representa-
tive of accelerograms recorded on soils with specific geotechnical
characteristics.

Let us assume that the combined primary-secondary system,
described in the previous section, is subjected to ground motion accel-
eration characterized by the interval PSD function in Eq. (6). Due to the
imprecision of the seismic excitation, the motion of the combined system
is ruled by a set of interval ordinary differential equations, which can be
written as:

MÜI
(t) + CU̇I

(t) + KUI(t) = − MτÜI
g(t) (12)

where UI(t) ≡ U(t;ϑI) is the zero-mean stationary Gaussian vector pro-
cess of displacements which has an interval nature. Indeed, the solution
of Eq.(12) yields a set of stochastic response processes, one for each
realization of the interval parameters ϑI of the PSD function (see Eq.
(6)).

It is worth noting that Eq. (12) involves hybrid or mixed uncertainty
i.e., interval and random uncertainty, whose propagation is quite chal-
lenging (see e.g., [36], [37]). A naïve approach involves the solution of a
double-loop problem where a stochastic analysis has to be performed for
each realization of the interval parameters ϑI entering the PSD function
(see Eq. (6)). This approach is highly time-consuming and becomes
unfeasible for real-world problems.

3. Interval stochastic response process

3.1. Frequency-domain analysis

The interval zero-mean stationary Gaussian stochastic response
process UI(t), ruled by the equations of motion in Eq. (12), can be fully
characterized in the frequency domain by the interval one-sided PSD
function matrix, given by:

GI
UU(ω) = H*(ω)ppTHT(ω)GI

Üg
(ω) (13)

where the asterisk means complex conjugate; p = − Mτ; H(ω) is the
frequency response function (FRF) matrix, defined as:

H(ω) =
[
− ω2M+ j ω C+ K

]− 1 (14)

with j =
̅̅̅̅̅̅̅
− 1

√
denoting the imaginary unit.

In view of the linear dependence of the interval PSD function in Eq.
(6) on (σ2

Üg
)
I, the variance of ground motion acceleration can be assumed

equal to unity and set a posteriori. Denoting with

Ũ
I
(t) ≡ Ũ(t; ϑ̃

I
) = UI(t)/σI

Üg
the displacement vector under the unit

variance seismic acceleration ¨̃U
I

g(t) ≡
¨̃Ug(t; ϑ̃

I
) = ÜI

g(t)/ σI
Üg

, Eq. (13)

can be recast as:

GI
UU(ω) = (σ2

Üg
)
I G̃

I
UU(ω) = (σ2

Üg
)
I H*(ω)ppTHT(ω)G̃

I
Üg
(ω) (15)

where G̃
I
UU(ω) is the PSD function matrix of Ũ

I
(t); G̃

I
Üg
(ω) ≡ G̃Üg

(ω; ϑ̃
I
) is

defined in Eq. (7); and the tilde denotes quantities depending only on

ϑ̃
I
=

[
ΩI

0 ρI
0
]T.

The generic response process, YI
h(t) ≡ Yh(t;ϑI) = qT

h U
I(t) (e.g.,

displacement, strain or stress at a critical point), related to the interval
displacement vector UI(t) through suitable combination coefficients
collected into the vector qh, can be characterized in the frequency
domain by its interval one-sided PSD function, defined as follows:

GI
YhYh

(ω) = (σ2
Üg
)
I G̃

I
YhYh

(ω) = (σ2
Üg
)
IqT

h G̃
I
UU(ω)qh (16)

where G̃
I
YhYh

(ω) is the PSD function of the response process

Ỹ
I
h(t) = qT

h Ũ
I
(t) = YI

h(t)/σI
Üg

under unit variance ground motion
acceleration.

The spectral moments of YI
h(t) can be defined by interval extension as

follows:

λIl ,Yh
≡ λl ,Yh

(
ϑI) =

∫∞

0

ωl GI
YhYh

(ω)dω = (σ2
Üg
)
I
∫∞

0

ωl G̃
I
YhYh

(ω)dω

= (σ2
Üg
)
I λ̃

I
l ,Yh

, l = 0, 1,2,…

(17)

In particular, the zero- and second-order spectral moments define the
interval variance of the interval random process YI

h(t) and of its time
derivative i.e., λI0,Yh

≡ (σ2
Yh
)
I and λI2,Yh

≡ (σ2
Ẏh
)
I. In Eq. (17),

λ̃
I
l ,Yh

≡ λ̃l ,Yh (ϑ̃
I
), (l = 0,1, 2, …), denote the spectral moments of the

response process Ỹ
I
h(t)=YI

h(t)/σI
Üg

.

In view of the linear dependence on the variance (σ2
Üg
)
I (see Eq. (17)),

the LB and UB of the interval spectral moments λIl ,Yh
, can be expressed

as:

λl ,Yh
≡ min

ϑ∈ϑI

{
λl ,Yh (ϑ)

}
= σ2

Üg
λ̃l ,Yh

= σ2
Üg

min
ϑ∈ϑ̃I

{
λ̃l ,Yh (ϑ̃)

}

λl ,Yh ≡ max
ϑ∈ϑI

{
λl ,Yh (ϑ)

}
= σ2

Üg
λ̃l ,Yh = σ2

Üg
max
ϑ∈ϑ̃I

{
λ̃l ,Yh (ϑ̃)

}
,

l = 0, 1,2,…

(18)

where λ̃ l ,Yh
and λ̃l ,Yh are the bounds of the interval spectral moments

λ̃
I
l ,Yh

≡ λ̃l ,Yh (ϑ̃
I
) which can be computed by performing global optimi-

zation and anti-optimization with respect to the predominant circular

frequency and circular frequency bandwidth i.e., ϑ̃ ∈ ϑ̃
I
=

[
ΩI

0 ρI
0
]T.

It is worth emphasizing that the combinations of the values of the pa-
rameters Ω0 ∈ ΩI

0 and ρ0 ∈ ρI
0 which yield the bounds of the interval

spectral moments λ̃
I
l ,Yh

depend on the dynamic behavior of the combined
structure under seismic excitation [12]. As known, such behavior is
quite complex and mainly depends on the mass ratio, stiffness ratio, and
link stiffness between the primary and secondary subsystems as well as
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on the frequency tuning. Furthermore, resonance with some vibration
modes of the structure may occur as the interval predominant circular
frequency ΩI

0 varies within its range [12].

3.2. Time-domain analysis

The combined primary-secondary system is non-classically damped.
To perform the time-domain dynamic analysis of the initially quiescent
combined structure under imprecise seismic excitation, first, the equa-
tions of motion in Eq. (12) are rewritten in terms of state variables:

ŻI
(t) = D ZI(t) +w ÜI

g(t) (19)

where ZI(t) is the interval 2n − vector of state variables, D is a 2n× 2n
matrix, and w is a 2n − vector, defined, respectively, as:

ZI(t) =
[
UI(t)
U̇I

(t)

]

; D =

[
0 In

− M− 1K − M− 1C

]

; w =

[
0
− τ

]

(20a-c)

with In denoting the n − order identity matrix.
The solution of Eq. (19) under zero initial conditions at t0 = 0 can be

expressed in the following integral form [45,46]:

ZI(t) =
∫t

t0

Θ(t − τ)wÜI
g(τ)dτ (21)

where Θ(t) is the transition matrix which can be evaluated as follows:

Θ(t) = exp(Dt) = ϒexp(Λt)ϒTA = ϒ*exp(Λ*t)ϒ*TA. (22)

In the previous equation, ϒ is a complex matrix of order (2n× 2m)

which collects the first 2m (m ≤ n) complex eigenvectors obtained as
solution of the following eigenproblem:

D− 1ϒ = ϒΛ− 1; ϒTAϒ = I2m (23)

where Λ is a diagonal matrix collecting the first 2m complex eigen-
values; and

A =

[
C M
M 0

]

. (24)

To enhance computational efficiency, the set of interval first-order
ordinary differential equations in Eq.(19) can be decoupled by
employing complex modal analysis. To this aim, the following coordinate
transformation is introduced:

ZI(t) = Υ XI(t) (25)

where XI(t) is an interval complex vector of order 2m, with m ≤ n
denoting the number of retained complex modes.

By applying the coordinate transformation in Eq. (25), Eq. (19) yields
the following set of 2m decoupled interval first-order ordinary differ-
ential equations with complex coefficients:

ẊI
(t) = Λ XI(t) + v ÜI

g(t) (26)

where v = ϒTAw.
The interval statistics of the response process can be defined in the

time domain by applying classical Monte Carlo Simulation (MCS). Due
to imprecision of the stochastic excitation, MCS involves a double loop
which requires a tremendous computational burden. Indeed, for each

realization of the interval spectral parameters ϑI =

[

ΩI
0 ρI

0 (σ2
Üg
)
I
]T

,

NG samples of the associated stochastic excitation need to be generated.
By applying the classical spectral representation [1], the k − th sample

of the imprecise ground motion acceleration, associated with the j − th
realization of the epistemic uncertainties ϑ(j), reads:

Ü(k)
g
(
t;ϑ(j) ) =

∑M

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2 GÜg (ωi;ϑ(j) )Δω
√

sin
(

ωit + ϕ(k)
i

)
(27)

where ϕ(k)
i are M independent random phases uniformly distributed in

the interval [0,2π]; Δω is a constant step along the frequency axis, and
ωi = iΔω.

For each sample of the imprecise seismic excitation, the associated
sample of structural response can be obtained by the step-by-step inte-
gration of Eq. (26) (see Appendix B).

The computational effort increases with the number of samples and
becomes unfeasible for real-world structures. Suitable strategies are
needed to enhance computational efficiency. This issue is addressed in
the next section.

4. Safety assessment under imprecise seismic excitation

Safety assessment of the combined structure under imprecise seismic
excitation can be performed by interval extension of the first-passage
theory (see e.g., [40,41]).

Due to epistemic uncertainties affecting the PSD function of ground
motion acceleration, the extreme value random process, over the time
interval [0, T], for the generic response process YI

h(t) has an interval
nature and is defined as:

YI
h,max(T) ≡ Yh,max

(
T;ϑI) = max

0≤t≤T

⃒
⃒Yh

(
t;ϑI)⃒⃒ (28)

where the symbol | • | denotes absolute value.
The safety condition can be established by evaluating the probability

that YI
h,max(T) is equal to or less than a critical level b within the time

interval [0,T] i.e., estimating the so-called interval cumulative distribution
function (CDF) or interval reliability function, LIYh,max

(b,T), of the extreme
value random process. As known, the evaluation of such a function is
quite challenging, even when no epistemic uncertainties affecting the
stochastic excitation are considered.

An approximate expression of the interval CDF can be obtained by
interval extension of Vanmarcke’s first-passage failure criterion [47] i.e.:

LIYh,max
(b,T) ≡ LYh,max

(
b,T;ϑI) = Pr

[
YI

h,max(T) ≤ b
]

≅ exp

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
T
π

̅̅̅̅̅̅̅̅̅

λ̃
I
2,Yh

λ̃
I
0,Yh

√
√
√
√
√

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − exp

⎛

⎜
⎝ − b (δ̃

I
Yh
)
1.2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅π

2 (σ2
Üg
)
I λ̃

I
0,Yh

√
⎞

⎟
⎠

exp

⎛

⎜
⎝

b2

2 (σ2
Üg
)
I λ̃

I
0,Yh

⎞

⎟
⎠ − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29)

where

δ̃
I
Yh

≡ δ̃Yh

(
ϑ̃

I)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

Re
{

λ̃
I
1,Yh

}2

λ̃
I
0,Yh

λ̃
I
2,Yh

√
√
√
√
√
√ (30)

is the so-called interval bandwidth parameter of the response process

Ỹ
I
h(t) = YI

h(t)/σI
Üg

.

Approximate estimates of the LB and UB of the interval CDF can be
efficiently obtained relying on the knowledge of the bounds of the

spectral moments λ̃
I
l ,Yh

, (l = 0, 1, 2), (see Eqs. (18)) as follows [12]:
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LYh,max
(b,T) ≡ min

ϑ∈ϑI

{
LYh,max (b,T; ϑ)

}
≈ LYh,max

(
b,T; σ2

Üg
, λ̃0,Yh , λ̃1,Yh , λ̃2,Yh

)
;

LYh,max (b,T) ≡ max
ϑ∈ϑI

{
LYh,max (b,T; ϑ)

}
≈ LYh,max

(
b,T; σ2

Üg
, λ̃0,Yh

, λ̃1,Yh
, λ̃2,Yh

)
.

(31a,b)

The previous relationships allow one to avoid the time-consuming
solution of a global optimization and anti-optimization problem for each
value of the barrier level b.

Taking into account that the zero-order spectral moment λI0,Yh
≡

(σ2
Yh
)
I has the highest impact on reliability (see e.g., [12,30]), the

following approximate expressions of the bounds of the interval CDF are
proposed:

LYh,max
(b,T) ≈ LYh,max

(
b,T; ϑ(UB) );

LYh,max (b,T) ≈ LYh,max

(
b,T; ϑ(LB) ) (32a,b)

where the quantities ϑ(UB) =

[

Ω(UB)
0 ρ(UB)

0 (σ2
Üg
)
(UB)

]T
and ϑ(LB) =

[

Ω(LB)
0 ρ(LB)

0 (σ2
Üg
)
(LB)

]T
, with (σ2

Üg
)
(UB)

= σ2
Üg

and (σ2
Üg
)
(LB)

= σ 2
Üg

, are

the realizations of the interval vector ϑI =

[

ΩI
0 ρI

0 (σ2
Üg
)
I
]T

which

characterize the seismic excitation leading to the UB and LB of the in-
terval variance λI0,Yh

≡ (σ2
Yh
)
I of the selected response process,

respectively.
Based on the knowledge of the LB and UB of the interval reliability

function, the bounds of the interval failure probability function PI
f ,Yh,max

(b,

T) ≡ Pf ,Yh,max

(
b,T;ϑI) can be derived as follows:

Pf ,Yh,max
(b,T) = 1 − LYh,max (b,T);

Pf ,Yh,max (b,T) = 1 − LYh,max
(b,T).

(33a,b)

It is worth emphasizing that the LB of the interval CDF and the
associated UB of the interval failure probability (Eqs. (32a) and (33b)),
identify the worst-case scenario and correspond to the realization of the
interval PSD with ϑ = ϑ(UB). Based on this observation, within the family
of stochastic processes defined by the interval PSD function in Eq. (6),
the critical seismic excitation, leading to the worst-case scenario, may be
identified as the one pertaining to the combination of the interval

spectral parameters ϑ(c) ≡ ϑ(UB) =
[

Ω(UB)
0 ρ(UB)

0 σ2
Üg

]T
, which yields

the UB of the variance of the selected response process λ0,Yh =

σ2
Üg

λ̃0,Yh ≡ σ2
Yh

. Once the critical excitation has been identified, MCS can
be efficiently performed by generating NG samples of the zero-mean
stationary Gaussian random process Üg

(
t;ϑ(c)), characterized by the

one-sided PSD function GÜg

(
ω;ϑ(c)).

A notable feature of the proposed approach is the capability of
decoupling the propagation of interval and random uncertainties by
assuming the variance of the response as a performance indicator. Thus,
the time-consuming double loop can be avoided in both the frequency
and time domain. The presented formulation can be applied to investi-
gate the performance of combined primary-secondary structures, like
the one shown in Fig. 1, under imprecise seismic excitation. In partic-
ular, the influence of epistemic uncertainties on the vibration control
capacity of the secondary subsystems is of interest for design purposes
(see e.g., [27,28]).

5. Numerical application

The six-storey shear-type frame (primary subsystem) coupled with
two independent beam-like structures with equally spaced lumped
masses msi (secondary subsystem), shown in Fig. 2, is considered as a
case study [27,28]. The subsystems are connected to the shear-type

frame by means of elastic springs at the floor level. The primary sub-
system is characterized by the following parameters: floor mass mp =

20000 kg; lateral stiffness kp = 4 × 107 N/m; interstorey height h =

3.3 m; and viscous damping ratio ζp = 0.02. The fundamental period of
vibration of the primary structure is Tp0 = 0.582 s.

The secondary substructures may be viewed as two independent
panels whose total mass is assumed equal to 10 % of the mass of the
primary building. Each lumped mass msi is assumed to account for half
the interstorey mass of the secondary subsystem. The stiffness of the
links and the flexural stiffness of each secondary subsystem are assumed
proportional to the lateral stiffness of the shear-type frame kp [27,28]
through the non-dimensional coefficients η and υ, respectively, i.e., ηkp

and υkp. When not otherwise specified, it is assumed υ = 0.6, while
different values of the parameter η within the range ηmin ≤ η ≤ ηmax,
with ηmin = 1.7 × 10− 3 and ηmax = 5.1× 10− 3, are considered. The
viscous damping ratio of the secondary subsystems is set equal to ζs =

0.13. The values of the main structural parameters are selected relying
on Refs. [27,28].

The interval zero-mean stationary Gaussian random process
describing the displacement of the first floor of the primary structure,
UI

p1(t), is selected as the response quantity of interest. In particular, the
variance of UI

p1(t) is assumed as performance variable and the bounds of
the interval reliability function, LIUp1,max

(b, T), and interval failure proba-
bility, PI

f ,Up1,max
(b,T), are evaluated to assess the seismic behavior of the

combined system.
The LB and UB of the interval parameters, ΩI

0, ρI
0, and (σ2

Üg
)
I, entering

the interval PSD function of ground motion acceleration in Eq. (6), are
estimated by analyzing a set of accelerograms that are site-compatible

Fig. 2. Six-storey shear-type frame coupled with two secondary subsystems,
subjected to imprecise earthquake ground motion.
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with the Port Area of Tremestieri, located in Southern Italy. This area
falls in the seismogenic zone ZS929, which is part of the seismic source
zone model (ZS9) used for the seismic hazard assessment of the Italian
territory [48]. With reference to the Life Limit State, earthquake ground
motions recorded on rock subsoil having moment magnitude MW = 6.5 ±

0.2 and Joyner-Boore distance [49] Rjb = 0 ÷ 30 km are selected. By
applying these criteria, a set of 10 acceleration time histories is down-
loaded from the PEER [50] and ESM [51] databases (see Table 1).
Subsequently, each accelerogram in the set is scaled to achieve the target
peak ground acceleration value ag = 3.33 m/s2. It is worth remarking
that assuming sufficiently tight ranges of key parameters, such as the
moment magnitude and Joyner-Boore distance, is critical to obtain a
realistic description of seismic acceleration which is site-compatible
with a specific area.

For all the selected accelerograms, the total intensity, the total num-
ber of zero-level up-crossings, the total number of peaks and the strong
motion duration are evaluated to derive the three main parameters
characterizing the assumed model of the imprecise PSD function of
seismic excitation i.e., the variance σ2

Üg
, the predominant circular fre-

quency Ω0, and the circular frequency bandwidth ρ0. Then, the LB, UB,
midpoint (mid), and the normalized deviation amplitude (dev/mid) of
the three spectral parameters listed in Table 2 are obtained.

In order to investigate the dynamic behavior of the combined pri-
mary-secondary system in the frequency domain, in Fig. 3 the modulus
of the FRF for the first-floor displacement of the primary structure (i.e.,
the first element of the vector |H(ω)p|), obtained considering different
values of the link stiffness ηkp, is compared with the one pertaining to
the primary structure separately taken. In particular, the dynamic
behavior for the assumed minimum and maximum values of the link
stiffness parameter η, ηmin and ηmax, as well as for an intermediate value
η̂ = 3.7 × 10− 3 is scrutinized. It can be observed that the FRF is signif-
icantly affected by the stiffness of the links between the primary and the
secondary subsystems. Interestingly, when the non-dimensional link
stiffness parameter is set equal to η̂, the FRF exhibits two distinct peaks
in place of the first modal peak. A similar feature typically characterizes
the frequency-domain behavior in the presence of a traditional TMD.
When the maximum value of the link stiffness is considered i.e., η =

ηmax, the first modal peak of the combined structure is shifted to the left
and its height is reduced compared to the one of the primary structure.

Fig. 4 shows the variance λ̃
I
0,Up1

≡ (σ̃2
Up1

)
I

of the interval stochastic

process Ũ
I
p1(t) = UI

p1(t)/σI
Üg

(see Eq. (17)), for η = η̂ and υ = 0.6, versus

the predominant circular frequency Ω0 ∈ ΩI
0 and circular frequency

bandwidth ρ0 ∈ ρI
0 of seismic acceleration (see Table 2). It can be

observed that the variance λ̃
I
0,Up1

≡ (σ̃2
Up1

)
I

is a monotonic decreasing
function of the predominant circular frequency. Thus, the LB and UB of

λ̃
I
0,Up1

≡ (σ̃2
Up1

)
I
are achieved when the predominant circular frequency is

set equal to its UB and LB, respectively, i.e. Ω(LB)
0 = Ω0 and Ω(UB)

0 = Ω0.
Furthermore, the LB and UB of the variance of the response process

Ũ
I
p1(t) are attained when the circular frequency bandwidth is equal to its

LB, ρ(LB)
0 = ρ0, and to the intermediate value ρ(UB)

0 = 19.42 rad/s,
respectively. Therefore, the vectors collecting the values of the interval
predominant circular frequency and circular frequency bandwidth

which yield the LB and UB of λ̃
I
0,Up1

≡ (σ̃2
Up1

)
I

are defined as ϑ̃
(LB)

=

[
Ω0 ρ 0

]T
and ϑ̃

(UB)
=

[

Ω 0 ρ(UB)
0

]T
with ρ(UB)

0 = 19.42 rad/s,

respectively.
When dealing with imprecise stochastic excitations, a key issue to be

investigated is the potential occurrence of resonance conditions with
some structural vibration modes. For the selected case study, no reso-
nance with the first vibration mode of the coupled structure may occur
as the predominant circular frequency of the excitation varies within the
pertinent interval (see Table 2) and the stiffness parameters, υ and η,
range between the prescribed limits.

Fig. 5 displays the realizations of the interval PSD function G̃
I
Üg
(ω)

(see Eq. (7)) of the unit variance seismic acceleration for assigned values
of the interval spectral parameters ΩI

0 and ρI
0, including the midpoints

ϑ̃mid =
[

Ω0,mid ρ0,mid
]T and those giving the LB and UB of λ̃

I
0,Up1

≡

(σ̃2
Up1

)
I

i.e., ϑ̃
(LB)

=
[

Ω0 ρ 0

]T
and ϑ̃

(UB)
=

[

Ω 0 ρ(UB)
0

]T
. It can be

observed that, due to epistemic uncertainties affecting the spectral pa-
rameters, the actual PSD function of ground motion acceleration may
exhibit the major power content over a broad range of frequencies,
leading to different dynamic behaviors of the seismically excited
structure.

The LB and UB of the variance of the interval random response

process UI
p1(t) = σI

Üg
Ũ

I
p1(t) are achieved when ϑ̃ = ϑ̃

(LB)
and ϑ̃ = ϑ̃

(UB)
,

respectively, and the interval variance of the imprecise ground motion
acceleration process is equal to its LB and UB i.e., (σ2

Üg
)
(LB)

= σ 2
Üg

and

(σ2
Üg
)
(UB)

= σ2
Üg

. Thus, the critical excitation, leading to the worst-case

scenario, is characterized by the PSD function in Eq. (6) with the
following values of the uncertain parameters:

ϑ(c) ≡ ϑ(UB) =
[

ϑ̃
(UB)

σ2
Üg

]T
=

[
Ω 0 ρ(UB)

0 σ2
Üg

]T
.

To gain a deeper insight into the dynamic behavior of the combined
structure under imprecise seismic excitation, in Fig. 6 the realizations of

the imprecise one-sided PSD function G̃
I
Up1Up1

(ω) = GI
Up1Up1

(ω)/(σ2
Üg
)
I (see

Eq. (16)) of the displacement process Ũ
I
p1(t) pertaining to the values of

the interval parameters ΩI
0 and ρI

0 which yield the LB and UB of the

variance λ̃
I
0,Up1

≡ (σ̃2
Up1

)
I
i.e., ϑ̃

(LB)
and ϑ̃

(UB)
, as well as to the nominal or

midpoint values ϑ̃mid are plotted. Three different values of the link
stiffness ηkp are considered. Consistently with the frequency-domain
behavior of the coupled structure disclosed by the FRFs in Fig. 3, it is
observed that the peak associated with the first natural frequency is
shifted when the connection stiffness changes, and it is replaced by two
distinct peaks when η = η̂. For such a value of the link stiffness, the
secondary substructures act like distributed vibration absorbers. Fig. 6
also shows the remarkable influence of epistemic uncertainties affecting
seismic excitation on the PSD of structural response, in agreement with
the results plotted in Fig. 4.

The stiffness of the links as well as the mass and stiffness ratio be-

Table 1
Main recording information on the selected accelerograms.

Earthquake name Component Station name Date

1 San Fernando 270 Pasadena - Old Seismo Lab 9/2/1971
2 Northridge− 01 185 LA – Wonderland Ave 17/1/1994
3 Northridge− 01 0 Vasquez Rocks Park 17/1/1994
4 Northridge− 01 90 Vasquez Rocks Park 17/1/1994
5 Tottori Japan EW SMNH10 6/10/2000
6 Central Italy HE Accumoli 30/10/2016
7 Central Italy HGN Accumoli 30/10/2016
8 Central Italy HNE Avendita PG 30/10/2016
9 Central Italy HNN Avendita PG 30/10/2016
10 Central Italy HNE Savelli PG 30/10/2016

Table 2
Main characteristics of the interval spectral parameters.

Parameter LB UB mid dev/mid

σ2
Üg

[
m2/s4

]
0.64 1.47 1.06 0.39

Ω0[rad/s] 23.91 45.22 34.57 0.31
ρ0[rad/s] 12.10 22.56 17.33 0.30

A. Sofi and F. Genovese Engineering Structures 322 (2025) 118885 

7 



tween the primary and secondary subsystems have a significant influ-
ence on the interaction effects between the subsystems. In the presence
of imprecise seismic excitation, the dynamic behavior of the coupled
system depends not only on the interaction between the subsystems but
also on epistemic uncertainties affecting the PSD function of ground
motion acceleration. Fig. 7 displays the LB, UB, and nominal value of the

variance λ̃
I
0,Up1

≡ (σ̃2
Up1

)
I
of the interval random process Ũ

I
p1(t) versus the

non-dimensional link and secondary subsystem stiffness parameters η
and υ. The values of the stiffness parameters which minimize the
quantities plotted in Fig. 7 are nearly η = η̂ and υ = 0.6. Indeed, as
shown in Figs. 3b and 6b, for these values of the stiffness parameters, an
energy transfer from the primary to the secondary subsystems takes
place and the ratios between the natural frequencies of the primary and
secondary substructures are close to unity i.e., ωp/ωs1 = 1.01 and
ωp/ωs2 = 1.14. Though the optimal design of the secondary subsystems

as vibration absorbers is out of the scope of the present study, it is worth
observing that the stiffness parameters minimizing the variance of the
first-floor displacement are not affected by the imprecision of the
seismic excitation for the selected case study. However, the range of
structural performance changes significantly due to epistemic un-
certainties. When secondary subsystems are conceived as retrofit solu-
tions to reduce the vibration amplitudes of the primary structure under
seismic excitation, their design should take into account the imprecision
of ground motion acceleration. Indeed, the vibration control capacity of
the secondary subsystems may be significantly overestimated due to
epistemic uncertainties affecting seismic excitation. Fig. 7 shows that

Fig. 3. Modulus of the FRF of the first-floor displacement of the primary subsystem compared with the one of the coupled structure for different values of the link
stiffness ηkp: a) η = ηmin; b) η = η̂; and c) η = ηmax (υ = 0.6).

Fig. 4. Variance of the response process Ũ
I
p1(t) versus the predominant circular

frequency Ω0 and circular frequency bandwidth ρ0 (η = η̂, υ = 0.6).

Fig. 5. Realizations of the imprecise PSD function G̃
I
Üg
(ω) of ground motion

acceleration pertaining to different values of the interval predominant circular
frequency ΩI

0 and circular frequency bandwidth ρI
0 collected into the interval

vector ϑ̃ = [Ω0 ρ0 ]
T, (η = η̂, υ = 0.6).
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the stiffness of the connections between the primary and secondary

subsystems affects the interval variance λ̃
I
0,Up1

≡ (σ̃2
Up1

)
I

more than the
stiffness of the secondary subsystems. The dependency of the LB, UB,

and nominal value of the variance of the response process Ũ
I
p1(t) on the

link stiffness parameter η, for assigned value of υ = 0.6, is shown in
Fig. 8.

To investigate the time-domain dynamic behavior of the combined
primary-secondary structure, samples of the imprecise seismic excita-
tion for selected realizations of the interval spectral parameters are
generated by applying Eq. (27) with M = 1000 and Δω = 0.1 rad/s. The
corresponding response samples are obtained by integrating Eq. (26),
assuming a time step Δt = 0.005 s (Appendix B). Fig. 9 shows some

samples of the interval stochastic response process Ũ
I
p1(t) for assigned

values of the interval predominant circular frequency and circular

frequency bandwidth of the excitation i.e., the midpoint values, ϑ̃mid,

and the combinations which give the LB and UB of the variance, ϑ̃
(LB)

and ϑ̃
(UB)

. Three different values of the connection stiffness parameter η
are considered while υ = 0.6. As expected, both the vibration amplitude
and frequency content of the samples are affected by the selection of the
spectral parameters. In particular, the critical excitation, identified by

ϑ̃
(c)
=ϑ̃

(UB)
, causes the largest vibration amplitudes for all the considered

values of the link stiffness parameter η.
To assess the vibration control capacity of the secondary subsystems,

Fig. 10 displays some samples of the interval stochastic response process

Ũ
I
p1(t) of the combined (η = η̂, υ = 0.6) and primary structure for

assigned values of the interval spectral parameters i.e., ϑ̃ = ϑ̃mid,

ϑ̃ = ϑ̃
(LB)

, and ϑ̃ = ϑ̃
(UB)

. It can be observed that the vibration ampli-
tudes of the combined structure are significantly reduced compared to
the ones of the primary structure for all the considered PSD functions. In

particular, under the critical seismic excitation, identified by ϑ̃
(c)
=ϑ̃

(UB)
,

Fig. 6. Realizations of the interval one-sided PSD function of the response process Ũ
I
p1(t) for assigned values of the uncertain spectral parameters and different values

of the link stiffness ηkp: a) η = ηmin; b) η = η̂; and c) η = ηmax (υ = 0.6).

Fig. 7. LB, UB, and nominal value of the variance of the response process Ũ
I
p1(t)

versus the non-dimensional link and subsystem stiffness parameters η and υ.

Fig. 8. LB, UB, and nominal value of the variance of the response process Ũ
I
p1(t)

versus the link stiffness parameter η (υ = 0.6).
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both the combined and the primary structure exhibit larger vibration
amplitudes.

Once the dynamic behavior of the combined structure has been
investigated, its seismic performance under imprecise seismic excitation
is further assessed by evaluating the bounds of the interval CDF, LIUp1,max

(b,
T), and failure probability, PI

f ,Up1,max
(b,T). The observation time is assumed

equal to T = 30 s. The accuracy of the bounds given by Eqs. (32a,b) is
demonstrated by comparison with the “Exact” ones obtained by a time-
consuming combinatorial approach which subdivides the range of the
interval parameters into subintervals and screens all possible combina-
tions of the endpoints of the subintervals to seek the minimum and
maximum of the CDF and failure probability for each value of the critical
level b. Fig. 11 shows an excellent agreement between the proposed and
the “Exact” bounds of the interval CDF and failure probability for the
combined structure with η = η̂ and υ = 0.6. The comparison with the
nominal solution, pertaining to the midpoint or nominal values of the
interval spectral parameters i.e., ϑ = ϑmid, shows that neglecting
epistemic uncertainties in the seismic excitation may lead to a remark-
able overestimation of the safety level compared to the worst-case sce-
nario. Furthermore, it is observed that the region enclosed by the LB and
UB is very wide due to the high degree of uncertainty affecting the three
spectral parameters (see Table 2).

To further investigate the influence of the link stiffness ηkp on the
vibration capacity control of the secondary subsystems, Fig. 12 displays
the CDF, LUp1,max (b, T), and failure probability, Pf ,Up1,max (b, T), of the com-
bined and primary structure pertaining to the nominal PSD function of
ground motion acceleration (ϑ = ϑmid) for η = ηmin, η = η̂, and η = ηmax
(υ = 0.6). In agreement with the results plotted in Figs. 7–9, it is
observed that the best seismic performance is obtained assuming η = η̂
i.e., for the value of the link stiffness parameter which minimizes the

variance of the selected response quantity when the other structural
parameters are assigned. It is worth mentioning, that the increased
safety level of the combined system compared to the primary structure is
obtained at the expense of larger displacements of the secondary sub-
systems. In the context of the design of retrofit solutions based on the use
of external subsystems coupled with the main structure, optimal design
parameters should be selected so as to limit such displacements.

The influence of imprecision of the seismic excitation on the safety
level can be inferred from Fig. 13 where the LB and UB of the interval
CDF, LIUp1,max

(b, T), and failure probability, PI
f ,Up1,max

(b,T) of the primary
structure are compared with the ones of the combined system for three
different values of the link stiffness ηkp. Consistently with the previously
shown results, the highest safety level is obtained when η = η̂. Notably,
for this value of the link stiffness, the region enclosed by the LB and UB
of LIUp1,max

(b,T) and PI
f ,Up1,max

(b,T) is tighter. In general, such a region is
wider for the primary structure. Fig. 13 highlights the significant in-
fluence of imprecision of the seismic excitation on the performance of
both the combined and primary structure. Epistemic uncertainties
affecting ground motion acceleration, therefore, should be properly
taken into account to assess the vibration control capacity of the sec-
ondary subsystems.

6. Conclusions

A novel framework for assessing the performance of combined pri-
mary-secondary structures subjected to imprecise seismic excitation has

Fig. 9. Samples of the response process Ũ
I
p1(t) of the combined structure for

assigned values of the uncertain spectral parameters and different values of the
link stiffness ηkp: a) η = ηmin; b) η = η̂; and c) η = ηmax (υ = 0.6).

Fig. 10. Samples of the response process Ũ
I
p1(t) of the combined structure

contrasted with those of the primary structure for: a) ϑ̃ = ϑ̃
(LB)

; b) ϑ̃ = ϑ̃mid;

and c) ϑ̃ = ϑ̃
(UB)

(η = η̂, υ = 0.6).
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been presented. Ground motion acceleration has been modeled as a
zero-mean stationary Gaussian random process, characterized by a
recently proposed imprecise Power Spectral Density (PSD) function
depending on three main parameters, which are described as interval
variables to account for epistemic uncertainties. The bounds of such
variables can be estimated by analyzing a set of recorded accelerograms,
which are site-compatible with the area under consideration. Due to the
interval nature of the PSD function, the dynamic analysis of combined
primary-secondary structures under imprecise seismic excitation in-
volves the challenging propagation of hybrid uncertainty i.e., interval
and random, which requires the time-consuming solution of a double-
loop problem. To address this issue, both frequency- and time-domain
formulations of the dynamic problem have been derived. Assuming the
variance of the selected response process as a performance indicator, a
criterion has been proposed for identifying the seismic excitation lead-
ing to the worst-case scenario among all possible realizations of the
imprecise ground motion acceleration. In this context, approximate

estimates of the bounds of the interval reliability function and failure
probability have been obtained by interval extension of the classical first-
passage theory.

Numerical results have shown that the vibration amplitude of the
primary structure is considerably reduced due to the coupling with the
secondary subsystems, which can act as distributed vibration absorbers.
The vibration control capacity of the secondary substructures is strongly
affected by the stiffness of the links with the primary structure as well as
by epistemic uncertainties in the loading model. When secondary sub-
systems are conceived as seismic retrofit solutions, designers should take
into account the imprecision of ground motion acceleration to prevent
dangerous overestimation of the vibration control capacity. Since the
predominant circular frequency of the imprecise seismic excitation may
vary, even for the same soil category, the potential occurrence of reso-
nance conditions with some vibration modes of the combined structural
system should be considered at the design stage.

To the best of the authors’ knowledge, this study represents the first

Fig. 11. Bounds of the interval a) CDF and b) failure probability (in semi-logarithmic scale) of the extreme value response process and nominal solution (η = η̂, υ =

0.6).

Fig. 12. Nominal a) CDF and b) failure probability (in semi-logarithmic scale) of the extreme value response process UI
p1,max(T) of the combined structure for different

values of the link stiffness ηkp compared with those of the primary structure separately taken (υ = 0.6).

Fig. 13. Proposed bounds of the interval a) CDF and b) failure probability (in semi-logarithmic scale) of the extreme value response process UI
p1,max(T) of the combined

structure for different values of the link stiffness ηkp compared with those of the primary structure separately taken (υ = 0.6).
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effort in the literature devoted to analyzing the influence of the impre-
cision of seismic excitation on the overall dynamic behavior of combined
primary-secondary structures. The proposed framework enables us to
efficiently predict the range of structural performance taking into ac-
count the inherent random character of ground motion acceleration,
epistemic uncertainties affecting the relevant PSD function, and the
interaction effects between the subsystems.
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Appendix A. Parameters of the Power Spectral Density function of ground motion acceleration

The interval parameter βI
0 is defined by interval extension of the expression given in Ref. [42]:

β0 =
2a0 b0

(
ω4

H + ω4
L
)

ω3
L(c0 + d0 + e0)

(A.1)

where:

a0 =
(
ρ2

0 + Ω2
0
)4

+ 2
(
ρ4

0 − 6 ρ2
0 Ω2

0 + Ω4
0
)
ω4

L + ω8
L ;

b0 = ρ4
0 + 2 ρ2

0
(
Ω2

0 − ω2
H
)
+
(
Ω2

0 + ω2
H
)2
;

c0 = − 2 a0 ρ0 ωH ωL
(
ρ2

0 + Ω2
0 − ω2

H
)
;

d0 =
{(

ρ2
0 + Ω2

0
)2( ρ4

0 − 6 ρ2
0 Ω2

0 + Ω4
0 + ω4

L
)
− ω2

H
(
ρ2

0 − Ω2
0
)[(

ρ2
0 + Ω2

0
)2

+ ω4
L

]}
× 2ωL

(
ω4

H + ω4
L
)
;

e0 =
̅̅̅
2

√
b0 ρ0

{
ω2

L
(
ω2

H − ω2
L
)(

ω4
L + ρ4

0 − 2 ρ2
0 Ω2

0 − 3 Ω4
0
)
+
(
ω2

H + ω2
L
)[

ρ6
0 + Ω6

0 + 3 Ω2
0 ρ2

0
(
ρ2

0 + Ω2
0
)
+ ω4

L
(
ρ2

0 − 3 Ω2
0
) ]}

(A.2a-e)

where ωH and ωL can be assumed equal to ωH = 0.1 Ω0 and ωL = Ω0 + 0.8ρ0, respectively.

Appendix B. Step-by-step integration of the equations of motion

The response sample of the combined primary-secondary structure subjected to the k − th sample of the seismic acceleration Ü(k)
g
(
t;ϑ(j) ) generated

from the j − th realization of the interval PSD function GÜg

(
ω;ϑ(j) ) (Eq. (27)) can be obtained by solving Eq. (26) through a step-by-step scheme.

Subdividing the time interval of interest [0,Tf ] into Nt small intervals of equal amplitude Δt = Tf/Nt and assuming that seismic acceleration is
piecewise linear within each time interval, the modal state variable vector at the time instant tℓ+1 = (ℓ + 1)Δt can be evaluated as [52]:

X(k)( tl +1;ϑ(j)) = exp(Λ Δt)X(k)( tl ;ϑ(j))+ γ0(Δt)v Üg
(
tl ;ϑ(j))+ γ1(Δt)v Üg

(
tl +1;ϑ(j)) (B.1)

where

γ0(Δt) =
[

exp(Λ Δt) −
L(Δt)

Δt

]

Λ− 1 (B.2)

γ1(Δt) =
[
L(Δt)

Δt
− I2m

]

Λ− 1 (B.3)

with

L(Δt) = [exp(Λ Δt) − I2m]Λ− 1 (B.4)

I2m being the 2m − order identity matrix.
Then, based on the knowledge of X(k)(tℓ+1;ϑ(j)), the state variable vector in the nodal space at the time instant tℓ+1 can be derived by applying Eq.

(25), i.e.:

Z(k)
(
tℓ+1;ϑ(j)) = Υ X(k)( tℓ+1;ϑ(j)). (B.5)

A. Sofi and F. Genovese Engineering Structures 322 (2025) 118885 

12 



References

[1] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral
representation. Appl Mech Rev 1991;44(4):191–204. https://doi.org/10.1115/
1.3119501.

[2] Liang J, Chaudhuri SR, Shinozuka M. Simulation of nonstationary stochastic
processes by spectral representation. J Eng Mech 2007;133(6):616–27. https://doi.
org/10.1061/(ASCE)0733-9399(2007)133:6(616).

[3] Zio E. The Monte Carlo Simulation Method for System Reliability and Risk
Analysis. Springer London,; 2013. https://doi.org/10.1007/978-1-4471-4588-2.
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