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A B S T R A C T

Assessing the performance of earthquake-resistant structural and geotechnical systems is crucial
for achieving a desired reliability level and enhancing the resilience of the built environment in
seismic-prone regions. Nonlinear dynamic analyses are widely used to quantify structural and
geotechnical performance. Still, they require an accurate representation of nonlinear behaviours
and proper modelling of the expected seismic events. Stochastic approaches are popular strategies
for modelling dynamic actions to account for the uncertain nature of ground shaking. In this
framework, joint time–frequency signal representations of seismic records are powerful tools to
analyze signals’ time-varying amplitude and frequency content. This paper presents a new
method for the stochastic generation of artificial accelerograms using the circular harmonic
wavelet transform, which possesses joint time–frequency localization capabilities and offers the
engineers a clear and transparent interpretation of the results. The proposed approach adopts a
new exponential auto-correlation structure for generating the random phases in the “child
(generated) signals” starting from the deterministic ones in the “parent record”. The effects of the
correlation structure and different subdivisions of earthquake records in frequency bands are
investigated and discussed, leading to practical considerations for identifying an effective trade-
off between localization in time and frequency domains. The method can be used for seismic
assessment and design purposes, and numerical applications illustrate its potency.

1. Introduction

Earthquakes pose one of the greatest threats to the built environment in terms of loss of human lives and widespread destruction.
Triggered by immense forces acting deep within the Earth’s crust, earthquakes result in complex three-dimensional movements of the
Earth’s surface, causing dynamic effects on structures and geotechnical systems that can severely compromise their functionality and
stability. The ground shaking induced by an earthquake at a given location is random in nature and depends on several factors, such as
the event’s magnitude, the depth of the hypocentre, the distance to the epicentre, the density and mechanical properties of the Earth’s
strata through which the seismic waves have traveled, the local geological conditions immediately beneath the given site (e.g., local
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amplification in alluvial basins).
The accelerogram üg (tℓ) is the time-discretized record of ground acceleration along a given direction, e.g., North-South, East-West,

and up-down, where ug (tℓ) is the ground displacement at time t, the over-dot is Newton’s notation of time differentiation, and t = tℓ is
the ℓth discrete time instant at which the ground acceleration is known. Accelerograms are recorded by accelerometers and, in case of
strong ground motions, they are post-processed (e.g., baseline removal, reduction of low-frequency noise, etcetera [1]), classified, and
made available through dedicated databases (e.g., PEER NGA-West2 database [2], PEER NGA-East database [3], Engineering Strong
Motion (ESM) database [4], etcetera).

In the design practice, structural and geotechnical engineers use a range of tools to represent the expected seismic actions, including
their aleatory variability. For conventional earthquake-resisting systems, intensity measures (IMs) such as Arias intensity [5], peak
ground acceleration (PGA), and spectral pseudo-acceleration provide sufficient information to carry out seismic analyses and design
checks. Advanced applications, however, require the numerical solution of the equations of motion for a suite of accelerograms,
deemed representative of the seismic hazard at a particular site. When local, geologic, and tectonic conditions of a given location are
similar to those of the sites where strong motions have previously been recorded, these time histories can be directly used as input.
Otherwise, the use of artificial accelerograms, having characteristics consistent with those of actual earthquakes, could represent a
valid alternative (e.g., [6–12]).

Stochastic simulation of artificial accelerograms is a valuable tool to account for ground motion randomness in reliability analyses
(e.g., [13]), including the development of robust fragility curves that typically require a large number of earthquake records [14,15].
However, generating realistic artificial accelerograms can be challenging. For example, many signals that prima facie appear
reasonable in the time domain may not be so in the frequency domain, and vice versa [16]. Furthermore, earthquake records are
inherently non-stationary; hence, a joint analysis in time and frequency domains is necessary to overcome the limitations of the
traditional Fourier analysis and accurately analyze the evolutionary spectral content of such signals [17–19].

Unlike the harmonic functions used in ordinary Fourier transform (FT), wavelets possess joint time–frequency localization capa-
bilities (e.g., [20–22]), which enable their successful application in a range of structural dynamics problems. For example, Spanos and
associates have employed various wavelet families, includingNewland’s harmonic wavelets [23,24], to compute the evolutionary power
spectral density (EPSD) function of stochastic signals [25,26] and determine the response statistics of linear and nonlinear oscillators
subjected to non-stationary excitations [27], all within the theoretical framework of Priestley’s non-stationary random processes [28].
In [10], Wang et al. proposed a new generalized harmonic-wavelet (GHW) based formula to simulate non-stationary random processes
by integrating the evolutionary spectral representation method. The formulation introduced in [10] is based on the relationship be-
tween the GHW coefficients of the random process and the EPSD of the non-stationary process. The samples of the random process are
generated by superimposing the GHWs with the random phase angles uniformly distributed in the range from 0 to 2π. The use of GHW
offers the advantages of orthogonality and complete coverage of the frequency domain without overlap. In addition, other researchers,
such as Liang et al. [29], have demonstrated that the wavelet transform can accurately estimate the EPSD function from a single time-
history record of the phenomenon under study. This body of research clearly shows the great potential of wavelet-based approaches
when non-stationarity plays an important role in the dynamics of structural systems, such as in the case of seismic signals (e.g.,
[30–33]). In this context, explicit closed-form solutions have been derived by Basu and Gupta for the stochastic response of linear
single-degree-of-freedom (SDoF) oscillators [34] and multi-degree-of-freedom (MDoF) structures [35] subjected to a non-stationary
ground shaking whose time-dependent amplitude and frequency content are modeled through a generalization of the Littlewood-
Paley (L-P) basis of orthogonal wavelets (e.g., [36]). Iyama and Kuwamura [37] have proposed a technique for simulating artificial
accelerograms based on the inverse wavelet transform of a random sequence of wavelet coefficients satisfying some constraints in
terms of instantaneous energy for each frequency component. Giaralis and Spanos [38] have developed a three-stage procedure to
generate spectrum-compatible ensembles of seismic records, in which the last stage consists of using the harmonic wavelet transform
(HWT) to iteratively improve the matching between the individual artificial accelerogram and the target response spectra. Spanos et al.
[39] employed harmonic wavelets in conjunction with the integrated methodology proposed in [38] to generate artificial ground
motions compatible with the design response spectrum prescribed by Chinese aseismic regulation. Legrue and Menun [40] have
exploited the Daubechies’ D20 wavelets to decompose a recorded accelerogram (parent signal) into a number N of sub-signals, which
are then multiplied by a set of N uncorrelated time-independent unit-mean random variables with Rayleigh’s distribution. It follows
that the parent signal constitutes the mean value of the random process so obtained; however, a limited variability is observed for the
generated signals (i.e., they tend to be all similar and may not capture the expected level of variability in seismic records).

The latter drawback is common to many methods for simulating artificial accelerograms. To cater to the more significant variability
observed in actual earthquake records (which should then be mirrored in the artificial accelerograms), Cacciola and Zentner [41] have
proposed a method in which Preumont’s procedure for generating samples of fully non-stationary random processes [42] is applied in
conjunction with the spectrum-compatible power spectral density (PSD) function previously proposed by Cacciola et al. [43], and a set
of random coefficients is introduced to match the mean ± standard deviation of the target response spectrum. Nakamura et al. [44]
proposed a model that employs the discrete wavelet transform (DWT) to generate artificial accelerograms, achieving a target response
spectrum through a linear combination of wavelet coefficients derived from observed earthquake motions. Sasaki et al. [45] intro-
duced a model that utilizes the DWT to generate artificial ground motions characterized by time and frequency non-stationarity,
employing attenuation models to predict the parameters of their proposed model. Amiri et al. [46] employed the wavelet packet
transform to generate artificial ground motions, ensuring compatibility with a target pseudovelocity response spectrum while
incorporating time and frequency nonstationarity. In their model, a neural network is used to predict the amplitudes of wavelet packet
coefficients. The model’s simulations are constrained by a specified target spectrum rather than seismological parameters; however,
this makes it challenging to generate ground motions that encompass the complete variability of potential future seismic events.
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Yamamoto and Baker [47] have introduced a stochastic ground-motion model that uses the wavelet packet transform to quantify the
time and frequency characteristics of the time series. Overall, this comprehensive model requires 13 parameters related to seismo-
logical variables such as magnitude, distance, and site conditions, which are determined through a two-stage linear regression analysis.
The resulting regression equations are also used to simulate ground motions based on user-defined earthquake scenarios. Thus, in [47],
in addition to the predictive nature of the model, wavelets are directly used for simulation of entire time series.

Alternative predictive stochastic models [48–50], based on the spectral representation method (SRM) [51–54], have been proposed
to generate fully non-stationary ground motion time histories. Vlachos et al. [48,49] have introduced a stochastic ground motion
model, based on regression relationships, developed using a user-specified earthquake scenario description; the model’s core is a
bimodal analytical fully non-stationary Kanai-Tajimi model [55–57] with physically interpretable parameters. Rezaeian and Der
Kiureghian [50] have developed a method for generating a suite of synthetic ground motions tailored to specific earthquake and site
characteristics, employing a parameterized stochastic model based on a modulated, filtered white-noise process. In this model [50] the
temporal and spectral non-stationarities are separately computed through the modulation of a linear filter’s response with time-
varying characteristics, considering a white-noise excitation.

Cacciola and Deodatis [58] proposed a SRM-based procedure to generate fully non-stationary and spectrum-compatible multipoint
correlated time histories. This method [58] considers the stochastic ground motion as the superposition of: i) an evolutionary non-
stationary stochastic vector process with amplitude and frequency modulation, representative of local geological and seismological
conditions; and ii) a non stationary process with only amplitude modulation that adjusts the response spectra of the overall vector
process to ensure spectrum compatibility. In [59], Wen et al. proposed a method to generate non-stationary multivariate earthquake
accelerograms that match the response spectrum and the characteristics of a parent accelerogram in both the time and frequency
domains by combining the wavelet-packet-based approach with the traditional spectral representation method.

Most stochastic generation procedures for accelerograms still assume that phase angles are random variables, independent and
uniformly distributed within the range [0, 2π]. In [60], Ohsaki pointed out that although the Fourier phase angles in recorded
accelerograms appeared to be uniformly distributed, they were far from independent. Ohsaki [60] suggested using phase differences (i.
e., the differences between Fourier phase angles for consecutive frequencies) to capture information on the non-stationarity of the time
history, and showed that although the probability distribution of Fourier phase angles in most real earthquake accelerograms seems
uniform, the distribution of phase differences is not uniform and often resembles a normal or normal-like distribution. Hou et al. [61]
presented a non-stationary stochastic model for periodic excitation with random phase modulation, accounting for the non-stationarity
of the excitation by modelling the phase modulation as a modulated stationary process. In [61], three different types of envelope
functions (step, rectangular, and exponential) are considered to study the effects of non-stationarity, including build-up rate, decay,
and peak value of the random phase modulation on the system response. Shrikhande and Gupta [62] approached the problem of
characterizing phase spectra as a constrained nonlinear programming problem. They modelled the phase curve of earthquake ground
motion with a piecewise-linear generic phase curve and added zero-mean Gaussian residual phases to accurately capture the time-
domain envelope features of the earthquake ground motion.

In this paper, a novel stochastic model is formulated for the generation of an arbitrary number of “child signals” with non-stationary
characteristics similar to those of a chosen “parent record”, i.e., a random realization of a zero-mean Gaussian process, representative
of the expected seismic action.

The proposed approach employs the circular wavelet transform (CWT) to decompose the recorded accelerogram into complex-
valued harmonic wavelets. The artificial signals are then generated by extending the well-known Shinozuka’s formula [52,63] to
randomize the phases of the contributory wavelets. A new correlation structure is introduced for the random phases to overcome the
traditional assumption of statistical independence and provide a higher degree of versatility in the probabilistic representation of the
seismic action. Unlike the traditional SRM, the proposed approach: i) does not require the definition of the PSD function of seismic
acceleration given that it directly pursues the randomization of the parent signal through the proposed generation formula, ii)
overcomes the traditional assumption of independent random phases uniformly distributed between 0 and 2π. In fact, the main novelty
of the proposed procedure lies in the introduction of a new exponential function to account for the statistical correlation among
random phases in the generation formula. In this paper, the generic random phase, considered as the discrete value of a two-
dimensional mixed time–frequency-domain random field, depends on two seismic parameters, namely: the “strong motion dura-
tion” and the “significant frequency bandwidth”. The introduction of the proposed correlation structure allows for linking the gen-
eration of artificial accelerograms to the expected seismic parameters at a given site, that are easily predictable by using empirical
attenuation relationships. The simulation of artificial accelerograms without relying on a target PSD function is not a novelty of the
present work. For instance, Chen et al. [8] have recently proposed a method that directly generates pulse-like ground motions in the
time domain using the trigonometric series.

In the proposed model, a “circular” version of the Newland’s “musical” wavelet has been used as mother wavelet for the
randomization of the parent signals. The use of these families of wavelets is particularly suitable for structural dynamic analysis
because their Fourier transforms result in box-shaped functions. This property theoretically enables the manipulation of a specific
frequency band within a signal without impacting other frequencies. However, some overlapping does occur in practical computation,
as it cannot be possible to have filters with an ideal box-shaped spectrum, leading to inevitable energy spillage into adjacent frequency
bands in harmonic wavelet transformed signals [64]. The capability of operating within a single frequency band has been exploited by
Cecini and Palmeri [22] that have used the wavelet transform method along with the “time of maximum” spectrum concept to develop
a systematic approach involving iterative adjustments that target specific frequency bands and time intervals to match a desired
earthquake spectrum.

This research highlights the critical role played by the number and size of bands used to partition the frequency domain. In
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particular, it is shown that assuming statistically independent random phases and using either a single frequency band or several
mono-frequency bands leads to random processes that lose information on the energy distribution in the time or frequency domain,
respectively. Instead, adopting an intermediate and conveniently chosen number of frequency bands in conjunction with a suitable
time–frequency correlation structure for the random phases can preserve all the desired non-stationary characteristics of the parent
signal and achieve an effective trade-off between time and frequency localization. More generally, the choice of how partitioning the
frequency domain greatly influences, qualitatively and quantitatively, the outcomes of the simulation. Factors such as analysis ob-
jectives, available computational resources, signal characteristics, and required statistics can all influence the decision on the number
and width of frequency bands to be adopted.

The paper is organized as follows: Section 2 discusses the key aspects of wavelet analysis for joint time–frequency representation of
discrete signals; Section 3 summarizes the novel procedure for randomly generating an arbitrary number of samples with the same non-
stationary characteristics as the parent signal; the closed-form expressions for evaluating the statistics of the generated random process
are reported in Section 4; finally, in Sections 5 and 6, the influence of the novel correlation structure for defining the wavelets’ random
phases is highlighted through the application to a generic test signal and to recorded accelerograms, respectively.

2. Wavelet-based representation of discretised signals

A signal is a function of time, but its frequency domain representation can reveal some of its salient features. In an ideal world,
engineers and scientists would like to retain as much information as possible in both the time and frequency domains. Unfortunately,
this is not possible due to the so-calledHeisenberg’s uncertainty principle (also referred to as theHeisenberg–Gabor limit), which states that
a signal cannot be simultaneously localised in both the domains (e.g., Ref. [65,66]). The trade-off between time and frequency domain
localization is of key importance and can be addressed by wavelet analysis, which involves projecting a given signal onto a convenient
set of functions called wavelets, generated by scaling and shifting a mother wavelet [65,67]. Unlike harmonic waves, which are ever-
lasting periodic functions, wavelets are decaying functions. This property allows wavelet analysis not only to reveal the frequency
components of signals, as the Fourier transform does, but also to identify where specific frequencies occur in the temporal domain,
providing the capability for time localization.

Let’s consider a discrete, real-valued signal Fℓ = f(tℓ), with ℓ=0,1, …, 2N, where tℓ= ℓΔt is the generic time instant in which the
continuous time signal f(t) has been sampled over the time interval [0, t2N]; ν0 = 1/Δt is the sampling frequency, and t2N = 2NΔt is the
time duration of the signal, known at 2N+1 points. The discrete Fourier Transform (DFT) algorithm can be used to represent the
discrete signal in the frequency domain:

{

F̃0, F̃1, F̃2,⋯, F̃2N

}T

= DFT
[
{0, F1 − F1, F2 − F2,⋯,0}T ]

, (1)

where F̃ℓ is the DFT value at the ℓth discrete frequency ωℓ = ℓ Δω, Δω = 2π/t2N being the discretisation step in the frequency domain;
the superscripted T means transpose; Fℓ is the ℓth linear-trend value in the time domain, so defined:

Fℓ = F0 +
F2N − F0

2N
ℓ ; (2)

and, for 1 ≤ ℓ ≤ N, F̃ℓ = F̃
*
2N+1− ℓ, where the superscripted asterisk means complex conjugate; furthermore, F̃0 is real-valued and ωN=N

Δω is the Nyquist frequency.
Different formulations are available to perform the DFT; without loss of generality, the following expression has been adopted in

the present work:

F̃ℓ =
∑2N

s=0
(Fs − Fs)exp

(
− i2π ℓs

2N+ 1

)
, (3)

in which i =
̅̅̅̅̅̅̅
− 1

√
is the imaginary unit.

The frequency range [0,ωN] can be arbitrary partitioned in M frequency bands [ωmj , ωnj ], with j ≤ M and 1 ≤M≤ N; furthermore,
m1 = 0, nM = N; and, for 1 ≤ j ≤ M, nj = mj+1, so that jth and (j+1)th frequency bands are adjacent to each other, without any
overlapping or gaps. Bandwidth and central circular frequency of the jth band are given by:

Bj = bjΔω; (4)

ωj =
mj + nj

2
Δω, (5)

in which bj = nj − mj. In line with the assumed partitioning of the frequency domain, the generic complex-valued circular wavelet in
the discretised time domain can be defined as:

Ψj,k,ℓ =
1
bj

∑nj − 1

s=mj

exp
[

iπ(2s+ 1)
(

ℓ
2N

−
k
bj

)]

, (6)

F. Genovese and A. Palmeri



Mechanical Systems and Signal Processing 223 (2025) 111833

5

where k = 0, 1, ... , bj − 1 and ℓ=0,1, …, 2 N are two time indexes, defining the time instants at which the wavelet Ψj,k,ℓ is centered
(
τj,k = k t2N/bj

)
and evaluated (tℓ), respectively. Importantly, the larger bj, i.e., the wider the jth frequency band, the larger the number

of wavelets Ψj,0,ℓ,Ψj,1,ℓ,⋯,Ψj,bj − 1,ℓ belonging to it, the more precise the time localisation of the energy can be achieved in that fre-
quency band.

For the given discrete signal Fℓ, the generic complex-valued wavelet coefficient can be calculated as:

âj,k =
bj
2N

∑2N

ℓ=0
(Fℓ − Fℓ)Ψ*

j,k,ℓ , (7)

and the signal can be reconstructed as:

F̂ℓ = Fℓ + 2Re

[
∑M

j=1

∑bj − 1

k=0
âj,kΨj,k,ℓ

]

, (8)

where Re[⋅] returns the real part of the complex-valued expression within square brackets. It is worth mentioning here that, inde-
pendently of the band-partitioning of the frequency domain, N =

∑M
j=1bj is the number of wavelets contributing to the double sum-

mation in the right-hand side (rhs) of Eq.(8).
Alternatively, the reconstruction formula of Eq. (8) can be expressed as:

F̂ℓ = Fℓ + 2
∑M

j=1

1
bj

∑bj − 1

k=0

⃒
⃒âj,k

⃒
⃒
∑nj − 1

s=mj

cos
[

π(2s+ 1)
(

ℓ
2N

−
k
bj

)

+ θ̂ j,k

]

, (9)

where âj,k =
⃒
⃒âj,k

⃒
⃒eiθ̂j,k is the exponential form of the generic wavelet coefficient âj,k; that is, θ̂ j,k = ∠âj,k and |âj,k| are the phase angle

and modulus of âj,k, respectively.
A special case occurs forM=N i.e., when there areN frequency bands [ωj,ωj+1], all with the same bandwidth Bj = Δω, i.e., b1 = b2 =

... = bN = 1. Accordingly, there is only one wavelet Ψj,0,ℓ and one wavelet coefficient âj,0 for each frequency band (i.e., no time
localisation occurs in any of the M “monochromatic” frequency bands), and Eq.(9) can be rewritten as:

F̂ℓ = Fℓ + 2
∑N

j=1

⃒
⃒âj,0

⃒
⃒cos

(
ωjtℓ + θ̂ j,0

)
, (10)

with ωj =
1
2
(
ωj + ωj+1

)
, which particularises Eq. (5).

The opposite situation occurs for bj = N. In this case, there is only one frequency band (M=1) and the particularization of Eq. (9)
leads to:

F̂ℓ = Fℓ +
2
N
∑N− 1

k=0

⃒
⃒â1,k

⃒
⃒
∑N− 1

s=0
cos
[

π(2s+ 1)
(

ℓ
2N

−
k
N

)

+ θ̂1,k

]

(11)

In this case: i) a perfect localisation is achieved in the time domain; ii) no localization is possible in the frequency domain, where the
energy of the wavelet is spread nearly uniformly over the frequency range [0,ωN].

Note that increasing the number M of the frequency bands results in an improved resolution in the frequency domain, i.e., a more
detailed representation of the frequency content, however, the larger M, less detailed is the representation of the signal in the time
domain. Furthermore, the wavelet transform becomes DFT when harmonic wavelet expansion, with one coefficient per scale, is taken.

3. Proposed randomisation procedure

Let F(t) be a zero-mean, stationary Gaussian process, fully defined in the frequency domain by the power spectral density (PSD)
function SF (ω). A generic realisation of the random process F (t) can be obtained using the so-called Shinozuka’s formula [52,63], which
requires the following steps:

1. choose a “ cut-off ” frequency ωN such that (for the purposes of the analysis being carried out) the energy of the random process can
be neglected for ω > ωN;

2. divide the frequency range of interest [0,ωN] into a “large number” N of intervals of equal width Δω = ωN/N;

3. calculate the value of the PSD function at the central frequency of each interval Δω, that is Sj = SF
(
ωj
)
, width ωj =

(

j − 1
2

)

Δω and

j = 1,2, ...,N;

4. generate a set of N statistically independent random variables,
{

ϕ(r)
1 ,ϕ(r)

2 ,⋯,ϕ(r)
N

}
, uniformly distributed over the range [ − π, π];

5. generate the rth sample of the random process through a superposition of N harmonic functions with random phases:
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F(r)(tℓ) = 2
∑N

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅
Sj Δω

√
cos
(

ωj tℓ + ϕ(r)
j

)
, (12)

where tℓ is the generic time instant at which the sample is evaluated;
6. repeat steps 4 and 5 for r = 1, 2, 3, ⋯, until enough samples of the random process have been obtained.

It should be noted that: i) the number N of harmonic functions must be large enough for the central limit theorem to apply (e.g.,
[68]); ii) the generated sample F(r)(t) is periodic, of period T1 = 2π/ω1 = 4π/Δω; iii) using Euler’s formula, Eq. (12) is equivalent to:

F(r)(tℓ) = 2Re

[
∑N

j=1
Cj,ℓ exp

(
iϕ(r)

j

)
]

, (13)

where the complex-valued coefficients Cj,ℓ =
̅̅̅̅̅̅̅̅̅̅̅̅
Sj Δω

√
exp
(
iωj tℓ

)
are sample-independent, so they need to be calculated only once,

while the sample-to-sample variability is achieved through the generation of the random phases ϕ(r)
j . Shinozuka’s formula of Eq. (12) is

remarkably similar to Eq. (10), which particularises the wavelet-based reconstruction of a discrete signal when the number M of
frequency bands is the same as the number N of wavelets being used [69,17]. This suggests the possibility of using random phases to
randomise the contributions of the harmonic functions appearing in the circular wavelets used to reconstruct a discrete signal.
Accordingly, Eq. (9) can be randomised as:

F(r)ℓ = F(r)(tℓ) = 2
∑M

j=1

1
bj

∑bj − 1

k=0

⃒
⃒âj,k

⃒
⃒
∑nj − 1

s=mj

cos
[

π(2s+ 1)
(

ℓ
2N

−
k
bj

)

+ θ̂ j,k + ϕ(r)
j,k

]

, (14)

in which, without loss of generality, a zero trend line has been assumed (i.e., consistent with the assumption of zero mean random

process, Fℓ = 0), and ϕ(r) =
{

ϕ(r)
1,0, ... ,ϕ(r)

j,k , ... ,ϕ
(r)
M,bM − 1

}T
is the N-dimensional array collecting the rth realisations of random phases

uniformly distributed over the range [− π, π]. Noteworthily: i) if all the random phases are set to zero, i.e., if ϕ(r) = {0, ...,0, ...,0}T, the

rth realisation of the random signal F(r)ℓ of Eq. (14) coincides with the discrete signal F̂
(r)
ℓ , deterministically reconstructed via Eq. (9); ii)

the generic element ϕ(r)
j,k of the random vector ϕ(r) represents the random rotation of the circular wavelet Ψj,k,ℓ of Eq. (6), whose real

part is the (j, k)th contribution to the random realization F(r)ℓ . In this respect, the role of θ̂ j,k is similar to that of ϕj,k; however, while the

angle θ̂ j,k is deterministically required to achieve the reconstruction of a given signal, the angle ϕj,k acts on the same (j, k)th wavelet to
randomise its contribution.

It follows that the generation formula of Eq. (14) can be expressed in the equivalent form:

F(r)ℓ = 2 Re

[
∑M

j=1

∑bj − 1

k=0

Ĉj,k,ℓ exp
(
iϕ(r)

j,k

)
]

, (15)

in which the generic coefficient Ĉj,k,ℓ is sample-independent and defined as:

Ĉj,k,ℓ = âj,k Ψj,k,ℓ =
âj,k
bj

∑nj − 1

s=mj

exp
[

i π (2s+ 1)
(

ℓ
2N

−
k
bj

)]

= Ĉ
’
j,k,ℓ + i Ĉ

’’
j,k,ℓ , (16)

where Ĉ
’
j,k,ℓ = Re

[
Ĉj,k,ℓ

]
and Ĉ

’’
j,k,ℓ = Im

[
Ĉj,k,ℓ

]
are its real part and imaginary part, respectively.

The comparison between Eqs. (13) and (15) reveals that the proposed wavelet-based generation formula coincides with the
conventional Shinozuka’s formula in the special case where M=N, which implies b1 = b2 = ... = bM = 1 (i.e., each frequency band
consists of a single discrete frequency), mj = j-1 and nj = j. In this case k = 0 and there is no time localization since there is only one
wavelet in each monochromatic frequency band. As a consequence, no information is preserved in the time domain, meaning that the
child signals generated in this way represent samples of a stationary random process with an expected linear trend in the cumulative
intensity function. The sample-independent coefficients are given by:

Ĉj,0,ℓ = Ĉj,ℓ = âj,0 exp
[

i π (2 j − 1) ℓ
2N

]

. (17)

Importantly, in the Shinozuka’s formula, the random phases ϕj are assumed to be statistically independent; that is, for j ∕= J and any
pair of exponents a and b:

E
[
ϕa
j ϕb

J

]
= E

[
ϕa
j

]
E
[
ϕb
J
]
, (18)

where E [⋅] is the expectation operator.
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Furthermore, mean value and variance of the generic random phase are:

μϕ = E
[
ϕj
]
= 0 ; (19)

σ2
ϕ = E

[
ϕ2
j

]
= π2

/
3 . (20)

On the contrary, in the proposed generation formula, an arbitrary correlation structure can be adopted for the random phases ϕj,k. The
implications of accounting for the correlation between the random phases are explored in the following sections.

4. Statistics of the generated random process

In this section, the statistical properties of the generation formula of Eq. (15) are investigated in detail.

4.1. Mean value

The application of the expectation operator to both sides of the Eq. (15) yields:

μF(ℓ) = E[F(ℓ) ] = 2
∑M

j=1

∑bj − 1

k=0

E
[
Ĉ

’
j,k,ℓcos

(
ϕj,k
)
− Ĉ

’’
j,k,ℓ sin

(
ϕj,k
) ]

= 0, (21)

as E
[
cos
(

ϕj,k

) ]
= 0 and E

[
sin
(

ϕj,k

) ]
= 0. It follows that, similarly to the Shinozuka’s formula, the generated random process

F(ℓ) = F(tℓ) has zero mean.

4.2. Correlation function

According to the mathematical definition of the second-order correlation function, for the proposed generation formula, one gets:

RFF(ℓ,L) = E[Fℓ FL] = 4
∑M

j=1

∑bj − 1

k=0

∑M

J=1

∑bJ − 1

K=0
E
[{

Ĉ
’
j,k,ℓcos

(
ϕj,k
)
− Ĉ

’’
j,k,ℓ sin

(
ϕj,k
)}{

Ĉ
’
J,K,Lcos

(
ϕJ,K

)
− Ĉ

’’
J,K,Lsin

(
ϕJ,K

)} ]

= 4
∑M

j=1

∑bj − 1

k=0

∑M

J=1

∑bJ − 1

K=0

{
Ĉ

’
j,k,ℓ Ĉ

’
J,K,L σcc(j,k,J,K) + Ĉ

’’
j,k,ℓ Ĉ

’’
J,K,L σss(j,k,J,K)

}
, (22)

where σcc(j,k,J,K) = E
[
cos
(

ϕj,k

)
cos
(
ϕJ,K

) ]
and σss(j,k,J,K) = E

[
sin
(

ϕj,k

)
sin
(
ϕJ,K

) ]
are the covariances of the cosine and sine of the random

phases ϕj,k and ϕJ,K, respectively. The variance of the generated random process can be obtained by setting ℓ = L in Eq. (22); that is:

σ2
F(ℓ) = E

[
F2ℓ
]
= RFF(ℓ,ℓ). (23)

Furthermore, in the last line of Eq. (22): i) the condition E [cos (ϕj,k) sin (ϕJ,K)] = 0 has been used to simplify the final expression (this
outcome arises from the mathematical observation that the expected value of the product of the terms enclosed within the square
brackets yields an odd function within a symmetric interval; hence, it results in a zero outcome); ii) the covariances σcc and σss
appearing in Eq. (22) only depend on the linear correlation coefficient ρϕϕ(j,k,J,K) between the relevant random phases; that is:

σcc(j,k,J,K) = σcc
(
ρϕϕ(j,k,J,K)

)
; (24a)

σss(j,k,J,K) = σss
(
ρϕϕ(j,k,J,K)

)
. (24b)

The calculation of these covariances can be performed once the vector collecting the random phases, ϕ, is conveniently expressed
through the following transformation of variables:

ϕ = Φ(u), (25)

where u = {u1, ..., ui, ..., uN}T is anN-dimensional vector of zero-mean, Gaussian variables with unitary variance, i.e., σu(i) = E
[
u2
i
]
= 1;

and the transformation function is:

Φ(u) = π erf
(

u̅
̅̅
2

√

)

, (26)

in which erf(⋅) is the error function; furthermore, a given pair of frequency index j and time index k is mapped onto the position i of the
corresponding random variable ui through the following bijective expression:
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i = 1 + k+
∑j

h=1
bh
(
1 − δj,h

)
, (27)

in which δj,h is the Kronecker’s delta, such that δj,h = 1 if and only if j = k.
The covariances of Eqs. (24) can be computed through the following double integrals:

σcc(i,I) =

∫ +∞

− ∞

∫ +∞

− ∞
cos[Φ(ui) ]cos[Φ(uI) ]puu(i,I)(ui, uI)dui duI; (28a)

σss(i,I) =

∫ +∞

− ∞

∫ +∞

− ∞
sin[Φ(ui) ]sin[Φ(uI) ]puu(i,I)(ui, uI)dui duI, (28b)

where the indexes i and I are associated with the frequency-time pairs {j, k} and {J,K}, respectively; puu(i,I)(ui, uI) is the bivariate PDF
(probability density function) of the auxiliary random variables ui and uI:

puu(i,I)(ui, uI) =
1

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

uu(i,I)

√ exp

⎡

⎣ −
u2
i − 2ρuu(i,I)uiuI + u2

I

2
(
1 − ρ2

uu(i,I)

)

⎤

⎦, (29)

in which the auxiliary correlation coefficient ρuu(i,I) is a function of the linear correlation coefficient between the corresponding random
phases [70]:

ρuu(i,I) = 2 sin
(π
6

ρϕϕ(j,k,J,K)

)
. (30)

For fully correlated random phases, i.e., for ρuu(i,I) = 1, the double integrals of Eqs. (28) can be evaluated in closed form, and one gets
σcc(1) = σss(1) = 1/2 for any choice of the indexes i and I.

For statistically independent random phases, i.e., for ρuu(i,I) = δi,I the covariances of their cosine and sine functions are zero for i∕= I,
that is: σcc(δi,I) = σss(δi,I) = (1/2)δi,I. Accordingly, Eqs. (22) and (23) simplify as:

RFF(ℓ,L) = 2
∑M

j=1

∑bj − 1

k=0

{
Ĉ

’
j,k,ℓ Ĉ

’
j,k,L + Ĉ

’’
j,k,ℓ Ĉ

’’
j,k,L

}
; (31)

σ2
F(ℓ) = 2

∑M

j=1

∑bj − 1

k=0

⃒
⃒Ĉj,k,ℓ

⃒
⃒2. (32)

For the general case of partially correlated random phases, i.e., for 0 < ρϕϕ(j,k,J,K) < 1, the double integrals can be computed
numerically. This has been done for ρϕϕ(j,k,J,K) = 0.02, 0.04, ⋯, 0.98. The data points so obtained have then been best-fitted with the
following polynomial expressions:

σcc(ρ) ≈ 0.280971 ρ2 + 0.098309ρ3 + 0.12072ρ7; (33)

σss(ρ) ≈ 0.224567 ρ + 0.16018ρ3 + 0.115252ρ7. (34)

Fig. 1. Covariance of the harmonic functions of uniformly distributed random phases with linear correlation coefficient ρ: circle ○, σcc(ρ); triangle
△, σss(ρ).
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The two best-fit functions of Eqs. (33) and (34) are plotted with solid lines in Fig. 1 along with the data points (empty circles and
triangles) used to determine them.

From the above derivation, it appears that the random process Fℓ, generated through the circular wavelets, has a correlation
function that depends on: i) the partitioning of the frequency range [0,ωN] in the M frequency bands B1, ...,BM; ii) the correlation
structure assumed for the random phases ϕj,k. The implications of different choices will be investigated in the next sections with
reference to an amplitude-modulated chirp (AMC, in Section 5) and to recorded accelerograms (Section 6).

5. Numerical validation

In order to validate the formulae derived in the previous section, let’s consider the test signal defined as:

f(t) = 3 − t3/2 + 2 sin2
(πt)cos

[
7π
(
t + t3

) ]
; (35)

that is, an amplitude-modulated chirp (AMC) superimposed with a non-linear trend (NLT) function.
The time duration is t2N = 2 s and the sampling frequency is ν0 = 100 Hz, meaning that the discretised signal consists of 2N+ 1 =

ν0 t2N + 1 = 201 points. A time step Δt = 0.01 s has been adopted. The number of the discrete non-zero frequencies is N=100, the
Nyquist frequency is ωN = 314.2 rad/s and the frequency step is ωN/ N = Δω = 3.142 rad/s. The linear trend defined by the boundary
values f(0) = 3 and f(t2N) = 0.171573 has been removed from the signal (see Eqs. (1) and (2)). In the following, the de-trended signal
thus obtained is referred to as the “parent signal”, f(t), such that f(0) = 0 and f(t2N) = 0. The frequency range of interest, [0,ωN =

314.16 rad/s], has been partitioned in seven frequency bands (i.e. M=7) of nearly uniform bandwidth, i.e., Bj = 43.98 rad/s for j ≤ 7
with the exceptions of B2 = B6 = 47.12 rad/s. The number of circular wavelets in the frequency bands is bj= 14 for j= 1, 3, 4, 5, 7 and bj
= 15 for j = 2, 6. One hundred is the total number of wavelets, i.e, b1 + b2 + ⋯ + b7 = N = 100.

Three correlation structures have been assumed for the random phases in the N-dimensional vector ϕ, namely:

i. “uncorrelated” (UC), so that ρϕϕ(j,k,J,K) = 0 if the random phases ϕj,k and ϕJ,K are different from each other;
ii. “partially correlated” (PC), in which, among all the possible choices, the linear correlation coefficient for a generic pair of

random phases has been assumed as:

ρϕϕ(j,k,J,K) =

(

1 −
|J − j|
M − 1

)(

1 −

⃒
⃒
⃒
⃒

K
bJ − 1

−
k

bj − 1

⃒
⃒
⃒
⃒

)

, (36)

meaning that ρϕϕ(j,k,J,K)= 1 only for {j, k}= {J, K} and ρϕϕ(j,k,J,K) = 0 when the corresponding wavelets Ψj,k,ℓ and ΨJ,K,ℓ belong to
frequency bands at the opposite sides of the frequency range (e.g., j = 1 and J =M) or are centered at the opposite sides of the
time interval (e.g., k = 0 and K = bJ − 1);

iii. “fully correlated” (FC), so that ρϕϕ(j,k,J,K) = 1 for any pair of random phases ϕj,k and ϕJ,K, meaning that their rth realisations
coincide to each other, i.e., ϕ(r)

j,k = ϕ(r)
J,K.

The top row of Fig. 2 provides a visual representation of the elements of the N×N covariance matrix of the random phases,
∑

ϕ ϕ =

E
[
ϕ ⋅ ϕT], in which the dot sign (⋅) stands for the row-by-column matrix product. Its (i, I)th element is given by:

∑

ϕϕ(i,I)
=

π2

3
ρϕϕ(j,k,J,K) (37)

where Eq. (27) establishes the relationship between the index triples {i, j, k} and {I, J, K}. The color scheme used for the matrix plots of
Fig. 2(a) to 2(c) ranges from “white” when Σϕϕ(i,I) = 0 (i.e., the random phases ϕj,k and ϕJ,K are statistically independent) to “black”
when

∑
ϕϕ(i,I) = π2/3 = σ2

ϕ (i.e., the random phases ϕj,k and ϕJ,K are fully correlated). Accordingly:

• Σϕϕ is a diagonal matrix in Fig. 2(a), corresponding to the case of UC random phases;
• Σϕϕ is a constant matrix in Fig. 2(c), corresponding to the case of FC random phases;
• the covariance matrix Σϕϕ of the PC model (Eq. (36)) appears partitioned in M ×M blocks of dimensions bi ×bI (see Fig. 2(b)). The

closer the block to the main diagonal of the covariance matrix, the darker the shades of its elements; in fact, the closer the frequency
bands j and J, the higher the correlation between the corresponding random phases (for instance, the blocks (1, M) and (M, 1) are
completely white as they are associated with the most distant frequency bands). Furthermore, within each block, the closer the
element to the main diagonal of the block, the darker the shades; in fact, the closer the time centres of the wavelets Ψj,k,ℓ and ΨJ,K,ℓ
(proportional to the time indexes k and K), the higher the correlation between the corresponding random phases.

It is worth emphasising here that the cases of UC and FC random phases are limiting models which maximise and minimise the
variability of the generated random samples, respectively. On the other hand, the PC case of Eq. (36) is only one of the many inter-
mediate models that can be assumed for the random phases.

The middle row of Fig. 2 illustrates the effects of different covariance matrices Σϕϕ on the sample-to-sample variability of the
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generated samples. Specifically, ten samples F(r)ℓ (with r = 1,2,…,10) have been generated through Eq. (15) for each of the three
correlation models (thin lines) and compared against the parent signal f(tℓ) (thick lines). The generated samples of Fig. 2(d) appear
much more irregular than the parent signal, although its signature features in both the time and frequency domains are preserved, i.e.,
increasing number of up-crossing of the time axis and peak amplitudes at about ℓ = 45 and ℓ = 145. Similar considerations can be
made for the ten samples of Fig. 2(e), although, from a visual inspection, their variability appears less pronounced than in the previous
case. Finally, all the generated samples of the FC case (Fig. 2(f)) show the same regular chirp-like oscillations as the parent signal.

An important consideration here is that, given the generation formulae (Eqs. (14) and (15)), the parent signal f(tℓ) represents a
possible realisation for all the three random processes obtained for the UC, PC and FC model (i.e., the realisation, when all the random
phases are equal to zero, is a non-null event in all these models); however, “qualitatively”, the parent signal resembles the generic
samples of the FC model more than the samples of the other two cases.

The bottom row of Fig. 2 demonstrates the accuracy of Eqs. (22) and (23) (general randomisation case) and Eqs. (31) and (32) (UC
random phases only) in evaluating the variance of the generated random process, σ2

F(ℓ), as the prediction of these formulae (solid lines)
are compared against the outcomes of an MCS (Monte Carlo simulation) carried out with 1000 samples (dots). In all cases, an excellent
agreement is observed.

It is worth noting here that the variance of the signal in the case of FC random phases (Fig. 2(i)) shows fluctuations that match
deterministically the chirp-like oscillations of the parent signal. These fluctuations are much less visible in the PC case (Fig. 2(h)) and
virtually disappear in the UC case (Fig. 2(g)), highlighting how the correlation model adopted for the random phases ϕj,k affect the
generated random process.

Fig. 2. Top row, matrix plots of the covariance matrix Σϕϕ when the random phases ϕ(r)
j,k are uncorrelated (UC, Fig. 2(a), left column), partially

correlated (PC, Fig. 2(b), middle column) and fully correlated (FC, Fig. 2(c), right column). Middle row, generated samples F(r)ℓ for the three
correlation models (thin lines in Fig. 2(d) to 2(f)), compared against the parent signal (thick lines). Bottom row, time-dependent variance σ2

F(ℓ)

evaluated using the proposed formulae (solid lines, Eqs. (22)-(23)) and (32)) and MCS (dots).
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6. Numerical applications to seismic signals

In this section, before investigating the effects of different modelling choices in the wavelet-based stochastic generation of seismic
accelerograms, a new exponential function is introduced to account for the statistical correlation between the random phases in the
proposed generation formula. Additionally, a brief overview of some commonly used engineering measures for earthquake ground
motions is presented, as these quantities are used subsequently to investigate the effects of different randomization choices on the
stochastic generation of accelerograms.

6.1. Engineering representation of seismic action

The analysis of strong ground motions recorded during seismic events plays a crucial role in earthquake engineering. Often, the
characteristics of the seismic ground motion can be conveniently quantified in terms of a range of parameters directly extracted from
the time history of the ground acceleration, üg(t).

6.1.1. Arias intensity and Husid’s function
The Arias intensity, IA, is one of the most common measures of seismic intensity [5]. Dimensionally equivalent to a velocity, this

seismic parameter captures the destructiveness potential of an earthquake as the integral of the square of the ground acceleration:

IA =
π
2g

∫ Tg

0

(

üg(t)
)2

dt , (38)

where g is the acceleration of gravity and [0, Tg] is the time interval in which the ground motion occurs. The cumulative distribution of
the seismic signal, normalised with respect to the Arias intensity, is known as Husid’s function [71] and can be expressed as:

J(t) =
π/(2g)
IA

∫ t

0

(

üg(s)
)2

ds , (39)

with 0 ≤ t ≤ Tg and J (Tg) = 1.
The Husid’s function can be used to determine the accelerogram’s “strong motion duration”, i.e., the portion of the accelerogram

which is more likely to cause damage to the built environment. Several definitions have been proposed in the literature [72]. The most

Fig. 3. Time history of illustrative accelerogram recorded during the 1983 Trinidad offshore earthquake (a); normalised cumulative intensity and
strong-motion duration (b); cumulative zero-level up-crossings function (c).
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commonly used is the “significant duration” [73], which is the time interval over which a certain percentage of the Arias intensity
cumulates. Usually, the range between 5 % and 95 % of IA is considered, and the corresponding time duration is denoted with T5/95.

Fig. 3(a) shows the ground acceleration üg(t) recorded during the 1983 Trinidad offshore earthquake at the “Rio Dell Overpass, E
Ground” station (horizontal component, azimuth angle = 0◦), used in this section as an illustrative example. The Husid’s function is
reported in Fig. 3(b). A change in the slope of the function J(t) denotes a change in the amplitude of the signal. The gray area shows the
definition of the significant duration for this accelerogram. It is worth highlighting here that, although the earthquake record has a
duration Tg = 21.44 s, the actual significant duration is T5/95 = 7.715 s.

6.1.2. Zero-level up-crossings
The frequency content of an accelerogram is directly related to the dynamic effects it can have on structural and geotechnical

systems. While the Fourier analysis is a powerful tool to quantify the frequency content of the seismic signal, a preliminary insight can
be provided by frequency of occurrence of zero-level up-crossings, i.e., crossings of the time axis with positive slope (e.g., [74–76]).

Fig. 3(c) plots the cumulative number of zero-level up crossings, N+
0 (t), for the same illustrative accelerogram used in the previous

sub-section. A change in the slope of the function N+
0 (t) denotes a change in the frequency content of the accelerogram.

6.1.3. Significant frequency bandwidth
Considering the importance of time–frequency duality in the analysis of seismic signals, Fig. 4(a) shows the amplitude of the DFT

(discrete Fourier transform) spectrum of the case-study accelerogram. Similar to the significant (time) duration defined above in
conjunction with Husid’s function, this sub-section introduces the new concept of “significant frequency bandwidth”, Ω5/95. First, let
Ag(ω) be the complex-valued Fourier transform of the accelerogram:

Ag(ω) = FT
[

üg(t)
]

=

∫ Tg

0
üg(t)exp( − iωt)dt , (40)

in which i =
̅̅̅̅̅̅̅
− 1

√
is the imaginary unit. As a direct consequence of Parseval’s theorem, one can prove that the Arias intensity can be

calculated in the frequency domain as:

IA =
1
2g

∫ +∞

0

⃒
⃒Ag(ω)

⃒
⃒2dω; (41)

hence, the cumulative distribution of the seismic signal in the frequency domain, normalised with respect to the Arias intensity (dual
with respect to the Husid’s function) can be defined as:

J̃(ω) = 1/(2g)
IA

∫ ω

0

⃒
⃒Ag(s)

⃒
⃒2ds , (42)

with 0 ≤ J̃(ω) ≤ 1.
The new function J̃(ω) is illustrated in Fig. 4(b), where ω5 and ω95 are the circular frequencies corresponding to 5 % and 95 % of the

Arias intensity, respectively; that is, J̃(ω5) = 0.05 and J̃(ω95) = 0.95 . Thus, the significant frequency bandwidth (corresponding to the
gray-shadowed area in Fig. 4(b)) can be defined as:

Ω5/95 = ω95 − ω5. (43)

For the case-study accelerogram, ω5 = 10.26 rad/s, ω95 = 65.94 rad/s, and Ω5/95 = 55.68 rad/s.

Fig. 4. Absolute value of the Fourier transform (FT) of the case-study accelerogram (a) and its cumulative energy distribution in the frequency
domain, normalised to the Arias intensity (b).
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6.2. Phase correlation

In this subsection, a novel correlation structure for defining the wavelets’ random phases, to be applied in the generation of
artificial accelerograms, is introduced.

The generic random phase ϕj,k can be considered as the discrete value of two-dimensional, mixed time–frequency-domain random
field Z(ω, t), evaluated at the centre Pj,k ≡

{
ωj, τj,k

}
of the {j, k}th wavelet Ψj,k,ℓ; that is ϕj,k ≡ Z

{
ωj, τj,k

}
. Let now λτ = ΛτT5/95 and λω =

Λω Ω5/95 be the correlation lengths for this random field in the time domain and in the frequency domain, respectively, Λτ and Λω

being dimensionless measures of the correlation lengths normalised with respect to the significant duration T5/95 and bandwidth Ω5/95

of the parent signal. Adopting an exponential auto-correlation function (ACF) for the generation of the random phases, one obtains:

ρϕϕ(j,k,J,K) =
E
[
ϕj,k ϕJ,K

]

σ2
ϕ

= exp

⎡

⎣ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

ωj − ωJ

Λω Ω5/95

)2

+

(
τj,k − τJ,K
Λτ T5/95

)2
√ ⎤

⎦, (44)

in which the square root in the right-hand side of Eq. (44) is a scaled distance between the two wavelet centres Pj,k and PJ,K. The
limiting condition Λω → 0 and Λτ → 0 corresponds to the case where all the random phases are uncorrelated (UC), i.e., where
ρϕϕ(j,k,J,K) = δj,J δk,K, such that ρϕϕ(j,k,J,K) = 0 if {j, k} ∕= {J, K}.

Conversely, the case of fully correlated (FC) phases occurs when simultaneously Λω → +∞ and Λτ → +∞, i.e., where ρϕϕ(j,k,J,K) = 1
for any pairs {j,k} and {J, K}. Other interesting cases occur when only one of the correlation measures Λτ and Λω goes to infinity. When
Λτ →+∞, Eq. (44) simplifies as:

ρϕϕ(j,k,J,K) = exp
(

−

⃒
⃒ωj − ωJ

⃒
⃒

Λω Ω5/95

)

; (45)

accordingly, all the random phases in the same bandwidth j, with j = 1, 2, ⋯, M, become fully correlated; that is,
ϕj,0 ≡ ϕj,1 ≡ ... ≡ ϕj,bj − 1, meaning that the whole contribution of the jth bandwidth to the reconstruction of the parent signal will be

phase-shifted of the same random angle ϕ(r)
j,0 when generating the rth sample F(r)ℓ . Similarly, when Λω → +∞, Eq. (44) simplifies as:

ρϕϕ(j,k,J,K) = exp
(

−

⃒
⃒τj,k − τJ,K

⃒
⃒

Λτ T5/95

)

; (46)

in this case, irrespectively of the frequency bands they belong to, the closer the time instants τj,k and τJ,K at which the wavelets Ψj,k,ℓ and
ΨJ,K,ℓ are centered, the stronger the correlation between the corresponding random phases ϕj,k and ϕJ,K.

6.3. Application of the randomization procedure to recorded accelerograms

In this subsection, the wavelet-based method has been applied to three recorded accelerograms with entirely distinct time and
frequency characteristics, to highlight the remarkable versatility and adaptability of the proposed procedure to deal with any seismic
input. Since the results of the proposed wavelet-based method depend on a dual choice, i.e., the subdivision of the frequency domain
into a certain number of M frequency bands and the type of the correlation structure adopted for the random phases, both aspects are
investigated for each of the three analyzed signals. The main time and frequency properties of the selected accelerograms (Trinidad
offshore 1983, Imperial Valley-06 1979 and Landers 1992), are listed in Table 1: time duration t2N, sampling step Δt, sampling fre-
quency ν0, number of discrete non-zero frequencies N, Nyquist frequency ωN, and frequency step Δω.

Different sets composed byNs = 1000 child signals have been generated by using Eq.(15) and baseline corrected (e.g. [77–80]) with
a best-fit polynomial curve of order ≥ 2. This polynomial is determined for each child sample through a least-squares regression
analysis and is then subtracted from the acceleration time history, so that the end ground velocity is zero and any physically incon-
sistent trends in the slowly varying moving average of the ground displacement time history are removed.

6.3.1. Trinidad offshore earthquake
The first horizontal component of the 1983 Trinidad offshore earthquake, depicted in Fig. 3a, has been used in the following as

parent accelerogram. The selected ground motion, downloaded from PEER [2] database and characterised by moment magnitude Mw
= 5.7 and Joyner-Boore site-to-source distance RJB=68.02 km, has been recorded by a station having an average shear wave velocity in
the upper 30 m equal to Vs,30 = 311.75 m/s. The selected motion of time duration t2N=21.44 s, sampling step Δt = 0.005 s and peak

Table 1
Main time and frequency properties of the selected accelerograms.

Earthquake t2N [s] Δt [s] ν0 [Hz] N ωN [rad/s] Δω [rad/s]

Trinidad offshore 21.44 0.005 200 2144 628.319 0.293
Imperial Valley 37.86 0.005 200 3786 628.319 0.166
Landers 48.12 0.005 200 4812 628.319 0.13
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ground acceleration PGA=1.72 m/s2, is characterized by an Arias intensity equal to IA=0.17 m/s. The mean period, determined to
characterize the frequency content of the parent signal, has been evaluated according to Rathie et al. [81] and is equal to Tm = 0.32 s,
corresponding to a mean circular frequency Fm = 2π/ Tm = 20.03 rad/s.

Aimed at investigating different options for the circular wavelet-based randomisation of the parent record, the effect of alternative
subdivisions of the frequency range [0, ωN=628.32 rad/s] into:

• M=1, and M=N intervals of equal-spaced-bandwidths (ESB), have been studied to highlighted how the trade-off between locali-
zations in time and frequency domains plays a fundamental role for the generation of meaningful time histories of ground ac-
celeration. For M=1 there is only a single frequency band with a bandwidth B1 = 628.32 rad/s, being b1 = 2144; while for
M=N=2144, each frequency band consists of a single discrete frequency (b1 = b2=…=bN=1) and all the N bandwidths have the
same amplitude B1 = B2=…=BN=0.293 rad/s;

• M=10 intervals of constant-intensity-bandwidths (CIB), evaluated as the frequencies corresponding to the value released by cu-
mulative distribution of the seismic signal in the frequency domain, normalised with respect to the Arias intensity, J̃(ω). The
representation of the subdivision of the function J̃(ω) considering M=10 bands, is reported in Fig. 5. The main parameters of each j
frequency band belonging to the partition of the parent signal into M=10 constant-intensity-bandwidths, have been listed in
Table 2.

Furthermore, in order to investigate the effect of the exponential auto-correlation function (ACF) for the generation of the random
phases (see Eq.(44)), three different correlation structures have been adopted for each of the three M partitions of the frequency
domain. Specifically:

• for the two extreme cases with M=1 and M=N intervals of equal-spaced-bandwidths (ESB), have been considered the following
correlation measures:
i) Λω = Λτ → 0 (UC case);
ii) Λω = Λτ = 1 (PC case);
iii) Λω = Λτ →∞ (FC case);

• for the intermediate case withM=10 constant-intensity-bandwidths (CIB), have been analysed the results that occur when both the
dimensionless measures of the correlation lengths are unitary and when only one of the correlation measures goes to infinity:

Fig. 5. Normalised cumulative energy distribution in the frequency domain of the parent signal (red line) together with the frequency band
subdivision assuming M=10 (vertical lines) and with significant frequency bandwidth (grey area).

Table 2
Main characteristics of each frequency band belonging to jth partition in M=10 bands: Trinidad offshore earthquake.

J̃(ω) [%] j mj nj bj ωmj [rad/s] ωnj [rad/s] Bj [rad/s]

0–10 1 0 50 50 0 14.65 14.65
10–20 2 50 56 6 14.65 16.41 1.76
20–30 3 56 60 4 16.41 17.58 1.17
30–40 4 60 66 6 17.58 19.34 1.76
40–50 5 66 74 8 19.34 21.68 2.34
50–60 6 74 79 5 21.69 23.15 1.47
60–70 7 79 89 10 23.15 26.08 2.93
70–80 8 89 101 12 26.08 29.60 3.52
80–90 9 101 179 78 29.60 52.46 22.86
90–100 10 179 2144 1965 52.46 628.32 575.86
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i) Λω = Λτ = 1 (PC case);
ii) Λω = 1 and Λτ →∞ (PC case);
iii) Λω → ∞ and Λτ = 1 (PC case).

Finally, nine sets composed by Ns = 1000 child signals have been generated by using Eq. (15).
In Fig. 6 are reported the parent signal (red line) together with the corresponding statistics of theNs generated child signals namely:

i) mean value μ (solid black line); ii) bounds of the confidence interval corresponding to mean plus/minus one standard deviation σ
(black dotted lines), iii) maximum-minimum envelope of the generated signals (shadowed grey area), for the nine analysed cases.

From the analysis of the bounds of the confidence interval, it can be noticed that for M=1 the variation in amplitude of the
generated child signals appear to be preserved for all the three adopted correlations structures while for M=N=2144, the temporal
evolution of the amplitude of the generated child signals appears to be preserved only for the PC (Λω = Λτ = 1) and FC (Λω = Λτ →∞)
cases. In fact, when M=N and Λω = Λτ → 0 (UC case), the generated child signals tend to lose the fidelity in terms of non-stationary

Fig. 6. Parent accelerogram together with the statistics of the generated child signals, considering a subdivision of the frequency domain in M=1
and M=N=2144 equal-spaced frequencies bands and for M=10 constant-intensity-bandwidths, assuming three different values of the correlation
measures Λω and Λτ: Trinidad offshore earthquake.
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characteristics, and they become realizations of a stationary process with no information preserved in the time domain.
The opposite situation occurs in the frequency domain in fact, for the UC case, as the number of bands increases, the fidelity in

representing the frequency content also increases. This effect is highlighted in Fig. 7 in which the mean values of the modules of the
Fourier spectra are compared with the target one. In fact, the case in whichM=1 (i.e. there is only a single frequency band) and Λω = Λτ
→ 0 (UC case), leads to a random process in which information about the distribution of energy is lost in the frequency domain. This
extreme case doesn’t preserve the frequency characteristics of the original seismic record, in fact the mean amplitude Fourier spectrum
is nearly flat.

The adoption of the correlation structure with Λω = Λτ = 1 enhances the fidelity of the generated samples to match the frequency
content of the target signal. For M=10, the fidelity in mimicking both the variation in time and the frequency content of the parent
signal appears to be preserved for all the three adopted correlation measures.

A further comparison is presented in terms of Husid’s function J, cumulative zero-level up-crossing functions N+
0 (t), and elastic

response spectra Sa(T0, ζ0) (computed assuming the equivalent viscous damping ratio ζ0 = 0.05), which are shown in Figs. 8-10 along

Fig. 7. Comparison between Fourier spectrum modulus of the parent signal and the mean spectrum of the generated signals, considering a sub-
division of the frequency domain in M=1 and M=N=2144 equal-spaced frequencies bands and for M=10 constant-intensity-bandwidths, assuming
three different values of the correlation measures Λω and Λτ: Trinidad offshore earthquake.
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with the corresponding statistics.
Fig. 8 shows that the mean percentage Husid’s function J of the generated child signals is in a good agreement with the parent one

in all the analysed configurations except for the UC case in correspondence of a subdivision of the frequency range into M=N=2144
parts. In this case, the linear trend of the percentage Husid’s function is caused by the fact that the child signals are samples of a
stationary process.

From the analysis of the shadowed grey area it can be noticed that for M=10, the percentage Husid’s functions J of the samples
belonging to sets evaluated with Λω = Λτ = 1 and Λω →∞, Λτ = 1 assume a great variability. This means that the adoption of the auto-
correlation function for the generation of random phases allows to obtain signals having characteristics totally different from each
other although they have the same average function.

Fig. 9 shows that the mean cumulative zero-level up crossing functions of the child signals are very close to the target one in all the
analysed situations except for the uncorrelated case (UC) with M=1. In this case (M=1 and Λω = Λτ → 0), the only frequency band

Fig. 8. Percentage Husid’s function of the parent signal (red lines) together with the mean one of the generated child signals (black solid lines); the
mean ± one standard deviation (black dotted lines); the maximum and the minimum values for whole set of generated signals (grey shaded area),
considering a subdivision of the frequency domain in M=1 and M=N=2144 equal-spaced frequencies bands and for M=10 constant-intensity-
bandwidths, assuming three different values of the correlation measures Λω and Λτ: Trinidad offshore earthquake.
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makes the generated signals as uniformly modulated samples of a white noise having a far larger number of high-frequency fluctu-
ations. As a result, the zero-level up-crossing function (black line) heavily overestimates the parent signal (red line).

For the UC case of the M=1 and M=N frequency partitions, the mean acceleration response spectra of the generated child signals
(black solid lines), shown in Fig. 10 versus the oscillator’s undamped natural period of vibration T0, are very far to that of the target one
(red line). In all the other investigated configurations the mean acceleration response spectra are in a good agreement with the trend of
the parent one.

In this subsection, the extreme cases of M=1 and M=N have been presented for illustrative purposes considering all three corre-
lation structures discussed in the paper. However, given that in the FC case, regardless of the subdivision of the frequency domain, all
the realizations of the random phases coincide to each other, this correlation structure is not adequate to obtain the desired variability

Fig. 9. Cumulative zero level up crossing function of the parent signal together with the statistics of the generated signals, considering a subdivision
of the frequency domain in M=1 and M=N=2144 equal-spaced frequencies bands and for M=10 constant-intensity-bandwidths, assuming three
different values of the correlation measures Λω and Λτ: Trinidad offshore earthquake.
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of the samples. In fact, all child signals closely resemble the parent one. The analysis of the extreme cases,M=1 andM=N, revealed that
the introduction of a correlation structure results in generated samples that closely match the characteristics of the parent signal.
Therefore, it is recommended to use the PC structure for achieving the best results. Thus, the purpose of examining the intermediate
case M=10 is to understand the outcomes achieved by generating samples exclusively with the suggested correlation structure.

To ensure a comprehensive understanding of the results, analyses have also been conducted for the two specific cases of the
correlation structure described in Section 6.2, i.e., when only one of the two correlation measures goes to infinity (see Eqs.(45) and
(46)).

Fig. 10. Acceleration response spectrum of the parent signal together with the mean one of the generated child signals; the mean ± one standard
deviation; the maximum and the minimum values for whole set of generated signals, considering a subdivision of the frequency domain in M=1 and
M=N=2144 equal-spaced frequencies bands and for M=10 constant-intensity-bandwidths, assuming three different values of the correlation
measures Λω and Λτ: Trinidad offshore earthquake.
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Table 3
Main characteristics of each frequency band belonging to jth partition in M=5 bands: Imperial Valley earthquake.

J̃(ω) [%] j mj nj bj ωmj [rad/s] ωnj [rad/s] Bj [rad/s]

0–20 1 0 36 36 0 5.97 5.97
20–40 2 36 79 43 5.97 13.11 7.14
40–60 3 79 116 37 13.11 19.25 6.14
60–80 4 116 164 48 19.25 27.22 7.97
80–100 5 164 3786 3622 27.22 628.32 601.10

Table 4
Main characteristics of each frequency band belonging to jth partition in M=10 bands: Imperial Valley earthquake.

J̃(ω) [%] j mj nj bj ωmj [rad/s] ωnj [rad/s] Bj [rad/s]

0–10 1 0 12 12 0 1.99 1.99
10–20 2 12 36 24 1.99 5.97 3.98
20–30 3 36 61 25 5.97 10.12 4.15
30–40 4 61 79 18 10.12 13.11 2.99
40–50 5 79 103 24 13.11 17.09 3.98
50–60 6 103 116 13 17.09 19.25 2.16
60–70 7 116 121 5 19.25 20.08 0.83
70–80 8 121 164 43 20.08 27.22 7.14
80–90 9 164 254 90 27.22 42.15 14.94
90–100 10 254 3786 3532 42.15 628.32 586.17

Fig. 11. Parent accelerogram together with the statistics of the generated child signals, considering a subdivision of the frequency domain in
M=1,5,10 constant-intensity-bandwidths assuming two different correlation structures Λω and Λτ: Imperial Valley earthquake.
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6.3.2. Imperial Valley earthquake
In this subsection the first horizontal component (HVP225) of the 1979 Imperial Valley-06 accelerogram that is a typical pulse-like

velocity ground motion with a pulse period of Tp = 4.8 s [8], has been assumed as parent signal. The selected motion of magnitude Mw
= 6.53, site-to-source distance RJB=5.35 km, overall duration t2N=37.86 s and peak ground acceleration PGA=2.53 m/s2, is char-
acterized by an Arias intensity equal to IA=0.885 m/s. The recording station, located at the Holtville Post Office, sits on deep deposits
of dense sand with a shear wave velocity Vs,30 = 202.89 m/s. The mean period of the parent signal is equal to Tm = 0.93 s, corre-
sponding to a mean circular frequency equal to Fm = 6.79 rad/s. The significant duration and frequency bandwidth are equal to T5/95
= 11.81 s and Ω5/95 = 50.45 rad/s, respectively.

As highlighted by the results obtained from the application of the proposed method to the test signal (Section 5) and to a recorded
seismic accelerogram (Section 6.3.1), the case of fully correlated (FC) random phases represents a limiting model that minimizes the
variability of generated random samples. Therefore, only the effect of uncorrelated (UC) and partially correlated (PC) random phases
will be investigated in the following by using the correlation function introduced in Eq.(44). Specifically, when Λω → 0 and Λτ → 0 all
random phases are uncorrelated (UC), while the condition Λω = 1 and Λτ = 1 implies that to all random phases being partially
correlated (PC).

The effect of alternative subdivisions of the frequency range [0, ωN=628.32 rad/s] into M=1, M=5 and M=10 constant-intensity-
bandwidths (CIB), evaluated as the frequencies corresponding to the value released by the normalised cumulative distribution of the
seismic signal in the frequency domain, J̃(ω), have been investigated. For M=1 there is only a single frequency band with a bandwidth
B1 = 628.32 rad/s, being b1 = 3786. The main parameters of each j frequency band belonging to the partition of the parent signal into
M=5 and M=10 constant-intensity-bandwidths, have been listed in Table 3 and 4, respectively.

In Fig. 11 are reported the parent signal (red line) together with the corresponding statistics of the Ns = 1000 child signals,
generated by using Eq.(15). From the analysis of the bounds of the confidence intervals, it can be noticed that the variation in
amplitude of the generated signals appear to be preserved for all the three subdivision of the frequency domain (M=1,5,10) and for

Fig. 12. Comparison between Fourier spectrum modulus of the parent signal and the mean spectrum of the generated ones, considering a sub-
division of the frequency domain in M=1,5,10 constant-intensity-bandwidths, assuming two different correlation structures Λω and Λτ: Imperial
Valley earthquake.
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both the adopted correlations structures (UC and PC).
In Fig. 12 the mean values of the modules of the Fourier spectra of the generated signals are compared with the parent one. The

adoption of the correlation structure of Eq. (44) with Λω = Λτ = 1 ensures that for all frequency domain partitions, there is always an
excellent match between the mean amplitude Fourier spectrum of the generated signals and the target one.

In the case of uncorrelated phases (Λω = Λτ → 0), for the three subdivision of the frequency domain, the mean amplitude Fourier
spectra do not exhibit a similar trend to the target spectrum. When M=1, the mean spectrum appears as a constant function, so in the
generated samples there is a total loss of information regarding the original frequency content of the parent signal.

A further comparison is represented in terms of percentage Husid’s function J and cumulative zero-level up crossing functions
N+

0 (t), that are reported in Figs. 13 and 14 together with the corresponding statistics.
It can be observed that the assumption of partially correlated random phases ensures that the characteristics of the parent signal are

always in a good agreement with the functions computed for the generated samples. Furthermore, the variability of the functions of the
child samples increases as the number of considered bands increases too.

6.3.3. Landers earthquake
In this subsection the second horizontal component of the 1992 Landers ground motion (LCN345), has been assumed as parent

signal. The selected accelerograms of magnitude Mw = 7.28, site-to-source distance RJB=2.19 km, overall duration t2N=48.12 s and
peak ground acceleration PGA=6.19 m/s2, is characterized by an Arias intensity equal to IA=6.58 m/s. The recording station, located
at Lucerne, sits on rock deposits with a shear wave velocity Vs,30 = 1369.0 m/s. The mean period of the parent signal is equal to Tm =

0.15 s, corresponding to a mean circular frequency equal to Fm = 39.99 rad/s. The significant duration and frequency bandwidth are
equal to T5/95 = 13.78 s and Ω5/95 = 160.61 rad/s, respectively.

The effect of subdivision of the frequency range [0, ωN=628.32 rad/s] into M=1, M=5 and M=10 constant-intensity-bandwidths
(CIB) and the influence of the uncorrelated (UC: Λω → 0 and Λτ → 0) and partially correlated (PC: Λω = 1 and Λτ = 1) random phases in

Fig. 13. Percentage Husid’s function of the parent signal together with the statistics of the generated signals, considering a subdivision in M=1,5,10
constant-intensity-bandwidths, assuming two different values of the correlation measures Λω and Λτ: Imperial Valley earthquake.
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Fig. 14. Cumulative zero level up crossing function of the parent signal together with the statistics of the generated signals, considering a sub-
division in M=1,5,10 constant-intensity-bandwidths, for two different correlation measures Λω and Λτ: Imperial Valley earthquake.

Table 5
Main characteristics of each frequency band belonging to jth partition in M=5 bands: Landers earthquake.

J̃(ω) [%] j mj nj bj ωmj [rad/s] ωnj [rad/s] Bj [rad/s]

0–20 1 0 295 295 0 38.52 38.52
20–40 2 295 452 157 38.52 59.02 20.50
40–60 3 452 565 113 59.02 73.77 14.75
60–80 4 565 809 244 73.77 105.63 31.86
80–100 5 809 4812 4003 105.63 628.32 522.69

Table 6
Main characteristics of each frequency band belonging to jth partition in M=10 bands: Landers earthquake.

J̃(ω) [%] j mj nj bj ωmj [rad/s] ωnj [rad/s] Bj [rad/s]

0–10 1 0 194 194 0 25.33 25.33
10–20 2 194 295 101 25.33 38.52 13.19
20–30 3 295 351 56 38.52 45.83 7.31
30–40 4 351 452 101 45.83 59.02 13.19
40–50 5 452 521 69 59.02 68.03 9.01
50–60 6 521 565 44 68.03 73.77 5.75
60–70 7 565 639 74 73.78 83.44 9.66
70–80 8 639 809 170 83.44 105.63 22.20
80–90 9 809 1058 249 105.63 138.15 32.51
90–100 10 1058 4812 3754 138.15 628.32 490.17
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the generation procedure, are investigated. For M=1 there is only a single frequency band with a bandwidth B1 = 628.32 rad/s, being
b1 = 4812. The main parameters of each j frequency band belonging to the partition of the parent signal intoM=5 andM=10 constant-
intensity-bandwidths, have been listed in Table 5 and 6, respectively. In Fig. 15, the parent signal is depicted (red line), alongside the
statistical data for 1000 child signals generated using Eq. (15). An examination of the confidence intervals reveals that amplitude
variations in the generated signals remain consistent across all three frequency domain subdivisions (M=1, 5, 10) and under both
adopted correlation structures. Fig. 16 compares the mean values of the Fourier spectra modules of the generated signals with the
parent one. The use of the correlation structure outlined in Eq. (49) with Λω = Λτ = 1 ensures that, across all frequency domain
partitions, there is a consistent and excellent match between the mean amplitude Fourier spectrum of the generated signals and the
target spectrum. In cases of uncorrelated phases (Λω = Λτ → 0), the mean amplitude Fourier spectra do not exhibit a similar trend to the
target one. Especially when M=1, the mean spectrum appears nearly flat, resulting in a complete loss of information about the original
frequency content of the parent signal. A further comparison is presented concerning the percentage Husid’s function J and cumulative
zero-level up crossing function N+

0 (t), as reported in Figs. 17 and 18, along with their respective statistics. It is evident that the
assumption of partially correlated random phases ensures that the characteristics of the parent signal consistently align well with the
functions computed for the generated samples. Moreover, the variability of these functions in the child samples increases as the
number of considered bands also increases.

6.4. Discussion

The numerical results have shown that the choice of the number and size of bands used to partition the frequency domain of the
parent accelerogram greatly influences the accuracy of the analysis. The subdivision of the frequency domain of the selected signal
depends on key factors, including the analysis objectives, available computational resources, signal characteristics, and the desired
level of precision. A denser number of bands should be used when the main goal is to analyse and capture very detailed frequency
variations within the signal as it develops over time. Using a reduced number of bands provides a more general and less detailed view

Fig. 15. Parent accelerogram together with the statistics of the generated child signals, considering a subdivision of the frequency domain in
M=1,5,10 constant-intensity-bandwidths assuming two different correlation structures Λω and Λτ: Landers earthquake.
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of spectral variations in the signal, which can be appropriate when seeking an overview rather than a detailed representation of
spectral changes.

The choice of the number of bands can be made by examining the characteristics of the seismic signal being analysed. If the signal
has rapid and significant frequency changes, it may be useful to use multiple bands to capture these variations accurately. Conversely,
if the frequency variations of the signal are less pronounced, fewer bands may be sufficient. Another critical factor to take into account
when deciding on the number of frequency bands in wavelet analysis is the availability of computational resources. The process of
dividing the frequency domain into a greater number of bands demands a commensurate increase in computational power. Conversely,
when confronted with constraints in computational resources, it becomes necessary to make a more discerning choice regarding the
number of frequency bands. Therefore, it is necessary to find a trade-off between computational efficiency and the level of detail
captured in the analysis. In fact, it’s crucial to strike a balance that aligns with the available resources while still meeting the analytical
goals. Another crucial consideration in the selection of the number of frequency bands for the wavelet analysis is the required level of
precision. In applications where precision is of utmost importance, such as structural engineering, the choice of a greater number of
frequency bands can significantly enhance the accuracy of the analysis. This heightened level of granularity ensures that even the
subtlest spectral details are meticulously captured and accounted for. This precision is indispensable when the analysis directly impacts
safety, design, or performance assessments of critical structures. Conversely, in applications where a high degree of precision is not as
critical, a more moderate number of bands might sufficient. This approach provides a balanced trade-off between computational
efficiency and precision, ensuring that the analysis remains suitable for its intended purpose.

Another fundamental point concerns the choice of the type of correlation structure to adopt. Various intermediate models can be
considered for random phases. Unlike the correlation structure used in Section 5 to generate random phases in a simple test signal,
Section 6 introduces a distinct correlation structure for generating random phases when the parent signal is a seismic accelerogram.
This new structure links the distance between two wavelet centers to fundamental seismic parameters of the parent earthquake ground
motion, which are: significant duration and frequency bandwidth. Through the formulation introduced in Section 4, it is possible to
evaluate the statistics of the generated random process for any correlation structure adopted.

In this paper, for the first time in the literature, the versatility of circular harmonic wavelets has been exploited to generate samples
of fully non-stationary random processes. The use of the circular harmonic wavelets allows higher frequency resolution since its

Fig. 16. Comparison between Fourier spectrum modulus of the parent signal and the mean spectrum of the generated signals, considering a
subdivision of the frequency domain in M=1,5,10 constant-intensity-bandwidths, assuming two correlation structures Λω and Λτ:
Landers earthquake.
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bandwidth could be artificial controlled. However, a drawback of the proposed method is the absence of a unique solution for
determining the width of the frequency bands.

The main advantage of the proposed method is that by varying the frequency domain partition and introducing the correlation
structure, it becomes possible to generate samples with the desired time and frequency characteristics. However, a limitation of the
proposed method is that it is designed to replicate the characteristics of a ‘seed’ ground motion used for calibration, rather than to
generate simulations for arbitrary future earthquake scenarios.

Based on the numerical results, the following recommendations are made for the application of the proposed method:

• divide the frequency domain in constant-intensity-bandwidths (CIB), evaluated as the frequencies corresponding to the value
released by cumulative distribution of the seismic signal in the frequency domain, normalised with respect to the Arias intensity
J̃(ω);

• select the number of bands based on the shape of the function J̃(ω) of the parent signal. In fact, the width of the frequency bands
should be capable of capturing the changes in slope of the aforementioned function, as illustrated by the vertical lines in Fig. 5;

• the use of the partially-correlated structure, by setting Λω = Λτ = 1 in the function introduced in Eq. (44) is recommended for the
generation of samples when the parent signal is a seismic accelerogram.

7. Conclusions and future research

In this study, the circular harmonic wavelet transform has been used to randomly generate an arbitrary number of seismic records
with similar non-stationary characteristics as a “parent” signal, without the need to preliminary define a target evolutionary power
spectral density (PSD) function. Specifically, a recorded accelerogram is decomposed into the superposition of complex-valued har-
monic wavelets, and an expedient extension of the well-known Shinozuka’s formula is used to randomize their phases. In the present
work, a new correlation structure has been introduced for the random phases, which leads to the generation of “child” samples having
different forms of variability with respect to the parent accelerogram, i.e., a random realization of a zero-mean Gaussian process,
representative of the expected seismic action. In particular, the use of a vector of zero-mean, Gaussian variables with unitary variance,

Fig. 17. Percentage Husid’s function of the parent accelerogram together with the statistics of the generated signals, considering a subdivision in
M=1,5,10 constant-intensity-bandwidths, assuming two different correlation measures Λω and Λτ: Landers earthquake.
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has been used to obtain a vector colleting the partially-correlated random phases trought a suitable variable transformation.
The numerical results have evidenced the critical role played by the choice of number and size of the bands partitioning the fre-

quency domain. For instance, assuming that the random phases are statistically independent and considering the two extreme cases,
either with a single frequency band or several mono-frequency bands, leads to random processes in which information on the energy
distribution is lost in the frequency or time domain, respectively. Instead, the assumption of a convenient time–frequency correlation
structure for the random phases lets the designer preserve all the desired non-stationary characteristics of the parent signal and obtain
an effective trade-off between time and frequency localization.

Based on the above considerations, it is worth emphasizing here that the proposed wavelet-based procedure can be seen as a
practical engineering tool to achieve an optimal compromise in preserving the parent’s information in the time and frequency do-
mains. As a matter of fact, adopting an extreme approach, focused on just one of the two domains, is not able to deliver useful results
for seismic design purposes.

Further study will be required to ascertain the effects of the wavelet-based generation on the seismic response of non-linear
structures.
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Fig. 18. Cumulative zero level up crossing function of the parent accelerogram together with the statistics of the child signals, considering a
subdivision in M=1,5,10 constant-intensity-bandwidths, assuming two correlation measures Λω and Λτ: Landers earthquake.
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Appendix A. General procedure for the generation of random phases

The vector of random phases ϕ =
{

ϕ1,0, ...,ϕj,k, ...,ϕM,bM − 1

}T
required to generate the samples of the discrete random process Fℓ

(see Eqs. (14) and (15)) could in general be a mix of uncorrelated, partially correlated and fully correlated random variables. If the
generic random phases ϕj,k and ϕJ,K are fully correlated, i.e., ϕj,k ≡ ϕJ,K, the corresponding ith and Ith rows and columns (see Eq. (27))
in the N × N covariance matrix

∑
ϕ ϕ = E

[
ϕ ⋅ ϕT] are equal to each other. Given the transformation of Eq. (25), the same occurs with

the ith and Ith rows and columns of the N×N covariance matrix of the auxiliary random variables u = {u1, ..., ui, ..., uN}T, given by (see
Eqs. (20) and (30)):

∑

uu
= E

[
u ⋅ uT] = 2 sin

(
1
2π
∑

ϕ ϕ

)

. (A.1)

When two or more random phases are fully correlated, thus, the matrix Σuu is not positive definite, hindering the application of
standard techniques for the generation of Gaussian random vectors. To overcome this problem, let’s introduce the N× N̂ Boolean
matrix β, N̂ being the number of random phases without any repetitions in the covariance matrix Σϕϕ; that is, N̂ is the rank of the
matrix Σϕϕ. The generic element of the matrix β satisfies the conditions:

βi,h =
{

1, if ui ≡ uh;
0, otherwise, (A.2)

where 1 ≤ i ≤ N and 1 ≤ h ≤ N̂ = rank
(
Σϕ ϕ

)
≤ N.

The vector of the sought random phases can then be expressed as:

ϕ = Φ(β ⋅ û) = β ⋅ Φ(û), (A.3)

where û = {û1, ..., ûh, ..., ûN̂}
T is the reduced auxiliary vector of zero-mean, Gaussian variables with unitary variance. Its covariance

matrix is definite positive and can be obtained by dropping the N − N̂ rows and columns corresponding to the redundant fully
correlated random phases. Formally, this can be expressed as:

∑

ûû
= E

[
û ⋅ ûT]

= β+ ⋅
∑

uu
⋅ β+T, (A.4)

In which β+ is the N̂ × N pseudo-inverse of the Boolean matrix β, such that β+ ⋅ β = IN̂, IN̂ being the identity matrix of size N̂, and β+T =

[β+]
T. Being definite positive, the covariance matrix of Eq. (A.4) can be used to generate samples of the reduced auxiliary random

vector û, which are then transformed into the samples of the random phases ϕ through Eq. (A.3).
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