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A comparison between machine 
and deep learning models on high 
stationarity data
Domenico Santoro  1,5, Tiziana Ciano 2,3,5 & Massimiliano Ferrara 3,4,5*

Advances in sensor, computing, and communication technologies are enabling big data analytics by 
providing time series data. However, conventional models struggle to identify sequence features and 
forecast accuracy. This paper investigates time series features and shows that some machine learning 
algorithms can outperform deep learning models. In particular, the problem analyzed concerned 
predicting the number of vehicles passing through an Italian tollbooth in 2021. The dataset, composed 
of 8766 rows and 6 columns relating to additional tollbooths, proved to have high stationarity and 
was treated through machine learning methods such as support vector machine, random forest, and 
eXtreme gradient boosting (XGBoost), as well as deep learning through recurrent neural networks 
with long short-term memory (RNN-LSTM) cells. From the comparison of these models, the prediction 
through the XGBoost algorithm outperforms competing algorithms, particularly in terms of MAE and 
MSE. The result highlights how a shallower algorithm than a neural network is, in this case, able to 
obtain a better adaptation to the time series instead of a much deeper model that tends to develop a 
smoother prediction.

Recent advances in sensor, computing, and communication technologies are primary sources that are rich in pro-
viding time series data. Some technical evidence in this direction also arises in decision sciences and economics, 
particularly in mathematical finance. These advances transform how complex real-world systems are monitored 
and controlled1,2. Time series forecasting is one of the most critical aspects of big data analytics. However, conven-
tional time series forecasting models cannot effectively identify appropriate sequence features, often leading to a 
lack of forecast accuracy. Time series are generated chronologically and have high dimensionality and temporal 
dependence. High dimensionality allows for more information about the behavior of the series, but generally, 
for analysis, it is crucial to consider each time point as one dimension. Instead, temporal dependencies mean 
that even two numerically identical points can belong to different classes or predict different behaviors. Time 
series can be divided into single-variable time series and multi-variable time series, secondary to the notice of 
the number of sampling variables at a given point in time. These combined characteristics make accurate time 
series prediction very difficult. Time series are statistical recordings of stochastic processes over time, focusing 
on discrete, equally spaced observations. They have temporal dependence, where the distribution of an obser-
vation depends on previous values and are typically analyzed over all non-negative integers. “Stationarity” is a 
crucial concept in time series, indicating that a series’ behavior remains constant over time, despite variations. 
Stationary series have a well-understood theory and are fundamental to studying time series, although many 
non-stationary ones are related. Stationarity is an invariant property that means statistical characteristics of a 
time series remain consistent over time. While it may not be plausible over long periods, it is often assumed in 
statistical analysis of time series over shorter intervals. There are two definitions of stationarity: weak stationar-
ity, which only considers the covariance of a process, and strict stationarity, which assumes distributions remain 
invariant over time. Numerous approaches to the prediction of temporal series have been proposed in the 
literature, including the autoregressive approach3,4, the autoregressive approach of integrated mobile media5,6, 
the support vector machine approach7,8, and neural network-based approaches9–11. Various hybrid approaches 
have been proposed12–15. Deep learning is a new approach that combines non-linear neural networks to obtain a 
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multi-dimensional representation of original input16,17. It can learn the functionalities of input data, improving 
accuracy in non-linear and non-static datasets. The use of neural networks in predicting time series has become 
increasingly frequent thanks to the ever-increasing computational capacity and advanced techniques. Specifi-
cally, neural networks based on long short-term memory (LSTM) architecture have become state-of-the-art in 
the prediction literature thanks to the memory effect. For example, Varnousfaderan and Shibab18 use different 
types of LSTM-based networks to predict bird movement for flight planning to minimize collisions, highlight-
ing how the ability to learn long-order dependence in sequence prediction problems allows for very accurate 
predictions. Sen et al.19 use neural networks in financial markets to predict asset prices and build an efficient 
portfolio, demonstrating how LSTM cells are optimal even in the presence of financial data. Zdravković et al.20 
compare different types of LSTM neural networks to predict the fluid temperature in the district heating systems 
(DHS) supply line, demonstrating how, after an accurate transformation of the dataset, these neural networks 
can obtain very high prediction accuracy values. Baesmat et al.21 develop a hybrid approach for prediction in 
power system operations by combining neural networks with Artificial Bee Colony (ABC) algorithms, thanks to 
which they can improve network learning procedures and obtain superior results compared to classical models. 
At the same time, Baesmat and Shiri22 demonstrate that a curve-fitting approach can outperform the previous 
neural network-based method. Or Wen and Li23, that improve the predictive capabilities of the LSTM through the 
Attention mechanism in a particular model called LSTM-attention-LSTM based on encoder-decoder architecture, 
demonstrating how the latter is more accurate than many vanilla models in the prediction task.

In this paper, we will deeply investigate some time series features, considering some endogenous mathematical 
aspects that arose from the observations related to a class of big data from a certain library. We will show that 
implementing some machine learning (ML) algorithms will be more effective concerning a more robust model, as 
LSTM is usually determined with this issue. For example, Abbasimher et al.24 propose using an XGBoost regres-
sor on two renewable energy consumption datasets through a two-stage forecasting framework and comparing 
this algorithm with the main deep learning models. From this analysis, the authors highlight how the XGBoost 
regressor outperforms its competitors. Alipour and Charandabi25 use the XGBoost classifier in combination with 
NLP models to improve price movement prediction, demonstrating how this combination is optimal. Ghasemi 
and Naser26 use some ML algorithms such as XGBoost and random forest to predict compressive strength 
properties for 3D printed concrete mixes, highlighting how these two algorithms obtain excellent results and 
allow the identification of the most significant features. Qiu and Wang27 use the K-Means algorithm to perform 
customer segmentation of customers in the credit card industry, demonstrating how non-complex clustering 
algorithms can produce excellent results. Additional ML methods, such as Compressed Sensing, are used to 
study wireless communications in Industrial Internet-of-Things (IIoT) devices28,29, or Bayesian Learning-based 
algorithms for channel estimation30.

In several cases, however, the XGBoost algorithm has been directly compared with LSTM-based neural net-
works for the prediction task. For example, Frifra et al.31 propose a comparison between LSTM and XGBoost to 
predict storm characteristics and occurrence in Western France, highlighting how, in their case, XGBoost is more 
accurate than LSTM networks. Hu et al.32 compare the XGBoost algorithm with RNN-LSTM for predicting wind 
waves, which require more usability than numerical methods inspired by land physics. From the comparison, it is 
clear that XGBoost generally performs better than RNN-LSTM. Tehranian33 compares different ML algorithms, 
such as random forest, XGBoost, probit, and neural networks, in predicting economic recessions by exploiting 
macroeconomic indicators and market sentiment, highlighting how ML algorithms are the most accurate. Fan 
et al.34 analyzing cooling load predictions by comparing ML algorithms with neural networks, highlighting how 
non-linear models obtain lower performance than XGBoost, although requiring more time for computation. 
Or Wei et al.35, which compare different models in the prediction of a heating load of a residential district, from 
which it is clear that the ML models, such as XGBoost and SVR, are the fastest (in training time) and obtain excel-
lent results on a par with those obtained by the LSTM network. Furthermore, the propensity for ML algorithms 
that require fewer hyperparameters is also significant.

In many cases, it is evident that the non-linearity of neural network-based models underperforms the mod-
el’s potential since they often deal with data characterized by stationarity. Some main limitations concern the 
impossibility of increasing the accuracy beyond a certain threshold. Others, instead, have to do with intrinsic 
characteristics of the time series. In the latter case, much data is derived from recordings of physical/natural 
phenomena or related to repeated human activities that appear stationary. So far, many authors have preferred 
to resort to dataset manipulations to eliminate stationarity, for example, by applying restrictions (where possible) 
or working with decompositions of the latter to obtain higher accuracy values of DL models. However, it is clear 
that models characterized by a lower complexity are more accurate in the prediction phase than competitors in 
this type of time series. The main contributions of this paper are:

•	 The analysis of the vehicle flows dataset from some Italian tollbooths that highlight highly stationary char-
acteristics;

•	 The comparison between RNN-LSTM, XGBoost, SVM, and random forest in the prediction task based on 
the previous dataset through the best hyperparameters’ combination;

•	 The explainability analysis of the best performing algorithm, XGBoost, through the SHAP framework to 
highlight which are the most significant features.

Road‑map of the paper
This article is structured as follows: Sect. “ Machine and deep learning algorithms” introduces the machine and 
deep learning algorithms/models to compare for prediction; Section “Data description” presents the data used 
from tollbooths and the main characteristics; “Comparison between models” reports the comparisons between 
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the main hyperparameter combinations of the different algorithms in the prediction task, based on the dataset 
used and analyzes the explainability of the XGBoost model in terms of feature importance; finally, Sect. “Conclu-
sions” concludes the paper with an overview of the work done, some final remarks and its limitations.

Machine and deep learning algorithms
Nowadays, the algorithms and techniques for time series prediction are increasingly “deep” and performing. 
However, a task of the same type can be performed with different methods, which leads to results that, in most 
cases, achieve better accuracy with more information. For example, a DL model widely used for the prediction 
task is neural networks. An artificial neural network (ANN) is a computational model inspired by the human 
brain, which comprises artificial neurons36 that perform computations within them. The key feature of ANNs 
is the ability to learn, i.e. adapting the network parameters to specific data. A first specific type of ANN is the 
feedforward neural network (FNN), where connections move in a one-way sequence from one node to the 
next, like in the Perceptron37 case. On the other hand, ANNs that can be equipped with feedback connections 
in which training requires different time instants are called recurrent neural networks (RNNs). The unfolding 
in time process for training makes these types of networks ideal for data sequences. To train an RNN, consider-
ing feedback connections, a particular version of the Backpropagation38 algorithm is used: the backpropagation 
through time (BPTT), in which the gradients are computed at each time step.

Neural networks suffer from a problem related to the gradient of the loss function to be computed, which 
leads to the explosion or vanishing of the gradient and can lead to the interruption of training. To prevent this 
problem, a particular architecture was introduced: the Long-short term memory (LSTM)39. This unit uses specific 
control gates to “decide” which information should be forwarded to the next level. Specifically, the LSTM cell 
is made up of an input gate, an output gate, and a forget gate. Considering an input Xt and the previous hidden 
state St−1 , a new state St can be described as:

where σ is the sigmoid activation function, i the identify gate, f the forget gate, o the output gate, C the cell state, 
U the input weight matrix, W the recurrent weight matrix, b the bias, and ⊙ represents the Hadamard product. 
RNN-LSTM represents the newest and most widespread architectures for time series forecasting.

On the other hand, ML algorithms used for prediction are generally more explainable than those of DL’s 
competitors. A first type of proposed model is support vector machines (SVMs)40, initially used for classification, 
has been extended for the regression task. Specifically, SVM finds the optimum separating hyperplane (OSH) 
between two classes, and its main objective is to maximize the margin between classes of training samples41. Its 
extension, support vector regression (SVR), also called ǫ-SVR, minimize the loss function42,43

under the following constraints:

where w is the weight vector, C is a regularization term, ζi , ζ ∗i  are slack variables related to prediction error, b is 
the bias term, φ is a map function over the feature space, yi is the coefficient vector, and ǫ is the error parameter 
user-defined. In this way, the ǫ-SVR finds the linear function that deviates at most ǫ from the coefficient vector43. 
To improve the separability of the input data, it is possible to apply a kernel function that adds non-linearity and 
transports them into a higher dimensional space. An example is represented by the radial basis function (RBF) 
between two points, K(x1, x2) , defined as:

where σ is an hyperparameter.
A different approach from the previous one is to use decision Trees to carry out classification or regres-

sion tasks, as in the random forest44 (RF) case, an ensemble method that uses many trees. These are generated 
randomly through a training phase on a random sample with a replacement of the training set (bagging) and a 
restriction of the features. Through this mechanism, random forest is also used to identify the most important 
features by minimizing the out-of-bag error (OOB), i.e. the error on values not considered in the sampling pro-
cess. Furthermore, no form of pruning is applied to the trees45.
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A further evolution in the use of trees is eXtreme Gradient Boosting (XGBoost)46, an iterative algorithm 
implemented in a boosting library. The main algorithm implemented for learning is the sequential creation of 
regression trees, the classification and regression tree (CART)47. The potential of using decision trees lies in divid-
ing alternatives’ space into different subsets based on a measure, a process which, repeated recursively, allows 
classification rules to be obtained. XGBoost training generates sequential trees to minimize prediction errors48,49. 
Specifically, the objective function to minimize can be divided into two components50, the error function L(·) 
and a regularization term �(·):

where L(yi , ŷi) is the loss function for i-th tree with prediction ŷi . Instead, the �(f ) is composed:

where T is the number of leaves whose weight is represented by ω , γ is a learning rate used for pruning, and � in 
a regularization parameter. Identifying the optimal branch of the tree in this algorithm occurs through a greedy 
method, with which the candidate with the highest probability is searched for and continues on that path. Unlike 
LSTM, XGBoost enjoys much higher explainability due to the classifier’s “simplicity” of the decisions obtainable 
at each level and its high generalizability and computational speed. A popular framework to further improve the 
explainability of this algorithm (and, in general, machine learning algorithms) is SHapley Additive exPlanations 
(SHAP)51. Specifically, SHAP allows explaining each feature’s contribution to the model used. This framework is 
based on a Game Theory approach that measures each player’s contribution in a cooperative game, the Shapley 
value. For a feature xj , the Shapley value is given by52:

where p is the number of features in total feature set Y, X ⊆ Y \ {j} is the set of features combinations without 
the j-th, and f(X), f(Y) are the model prediction in different feature sets. A variant for tree-based algorithms is 
TreeSHAP53, which is computationally less expensive than the basic framework.

Data description
The prediction tests with LSTM and XGBoost were carried out on a dataset relating to the number of vehicles 
passing through 5 Italian tollbooths on different days. Sequential numbering indicates the “interest” for each of 
them, linked, for example, to geographical factors. In this sense, Tollbooth 1 is of greater interest than Tollbooth 
5 and is the subject of the prediction task. Specifically, the dataset used represents a restriction of the originally 
collected data, which included a series of additional variables linked to climatic conditions and extended over a 
longer period. The original dataset, weighing over 250 MB, was reduced to the current version (around 100 MB), 
containing the hourly data of the vehicles passing through the tollbooths from 1/1/2021 to 12/31/2021 (in US 
format). For more information related to the Data, see the Acknowledgment at the end of the present work. The 
dataset comprises 8766 rows and 6 features related to the registration time and the 5 most relevant tollbooths, 
as shown in Table 1. Figure 1 contains a plot of the different tollbooths, differentiated by color, while Table 2 
presents some statistics of this dataset.

Graphically, it is evident how the different time series are characterized by stationarity, in which many hours 
are characterized by the passage of no vehicles, especially at night, followed by hours of heavy traffic. We have 
performed, with the statsmodels Python module, the Augmented Dickey-Fuller (ADF)54 and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS)55 tests to prove it, as shown also in Table 2. Particularly, the ADF tests the null hypothesis 
H0 , which is that the series presents a unit root against an alternative hypothesis H1 , which is the absence of unit 
roots. On the other hand, KPSS tests a null hypothesis H0 of trend-stationarity of the series against an alternative 
hypothesis H1 of the presence of a unit root. At a 95% level, the ADF test on the different features demonstrates 
the stationarity of the latter since the null hypothesis H0 can be rejected. Similarly, from the KPSS test, it is clear 
that at a level of 95%, the null hypothesis H0 can be rejected, highlighting non-stationarity. This contrast between 
the two tests indicates how the considered time series are difference-stationary processes. To highlight stationarity 
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Table 1.   Sample of the dataset used (values from beginning and ending dates).

Date - hour Tollbooth 1 Tollbooth 2 Tollbooth 3 Tollbooth 4 Tollbooth 5

2021-01-01 - 00:00 10 4 0 1 0

2021-01-01 - 01:00 1 8 0 0 0

2021-01-01 - 02:00 0 5 0 0 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2021-12-31 - 22:00 20 135 7 9 2

2021-12-31 - 23:00 16 116 8 5 3
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through the KPSS test, a new series can be built by differencing between different time-step observations, as 
shown in Fig. 2, bringing the results of the two tests into a common agreement.

Comparison between models
We want to test the predictive capabilities of SVM, Random Forest, XGBoost, and RNN-LSTM on the Tollbooth 
1 feature. However, unlike Machine Learning models, RNN-LSTM needs to reshape the dataset size by consid-
ering a sliding window to “look back”, which is why several attempts have been made with a maximum window 
of 24 hours in the past, from which the dimensionality tensor has a maximum size equal to (7865, 24, 4). All 
analyses were performed through Python, and the scaler used in all cases is the StandardScaler. We have set the 
LSTM network structure with a maximum of 5 input layers with several neurons from 1 to 30, and 1 output 
layer with 1 neuron only given the one output feature. Given the data type, adding excessive complexity to the 
network was inappropriate. Table 3 shows the remaining hyperparameters, which control the learning process. 
On the other hand, from the ML algorithm side, also Table 3 shows the hyperparameters for XGBoost, ǫ-SVR, 
and Random Forest. Particularly, to best adapt them to the dataset type, a GridSearchCV was applied to select 
the best combination of hyperparameters. For XGBoost and Random Forest, several tests were carried out by 
modifying the max depth of the trees and number of estimators, while for ǫ-SVR, the substantial change concerns 
the type of kernel used. The dataset was divided into a training set (80%) and a test set (20%). The size of the 
test set is different because the RNN-LSTM considers a 3D tensor to be the size of the training set, reducing the 

Fig. 1.   Dataset features plot indexed by hours.

Table 2.   Dataset main statistics, ADF and KPSS tests.

Feature Mean St. dev Min 25% 50% 75% Max ADF (p-val) KPSS (p-val)

Tollbooth 1 193.20 325.79 0.0 7.0 82.0 255.0 7285.0 −13.65 (0.0) 2.64 (0.01)

Tollbooth 2 197.23 352.67 0.0 7.0 96.0 280.0 6750.0 −13.29 (0.0) 4.59 (0.01)

Tollbooth 3 53.46 140.72 0.0 0.0 12.0 47.0 4241.0 −14.22 (0.0) 3.19 (0.01)

Tollbooth 4 68.64 145.20 0.0 1.0 19.0 75.0 2715.0 −13.86 (0.0) 3.31 (0.01)

Tollbooth 5 45.36 125.13 0.0 0.0 8.0 32.0 2469.0 −13.97 (0.0) 3.84 (0.01)

Fig. 2.   Differenced series.
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number of observations allocated to the test set. In contrast, the other machine learning algorithms consider 
a 2D array. Table 4 compares the different RNN-LSTM and the machine learning algorithms in terms of mean 
absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and R2 of the prediction. 
These metrics are calculated as:

where yi represents the observed data, ŷi is the predicted ones, and ȳ is the average value of each features. Greater 
attention is paid to the MAE and MSE, where the lower values indicate a better model performance in the pre-
diction phase. Specifically, for the LSTM, there is a description of layers and neurons per layer that minimizes 
the MAE at the best sliding window value obtained (in most cases, equal to 24). The notation used to describe 
LSTM networks is LSTMlayers:{neurons per layer} , for XGBoost is XGBoostmax_depth , for SVM is SVMkernel;C;ǫ , and 
for random forest is RFn_estimators . For example, an LSTM network with 3 layers and 1 neuron in the first layer, 10 
in the second, and 1 in the last layer will be indicated as LSTM3:{1,10,1} . Table 4 presents, in bold, the best values 
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Table 3.   Hyperparameters of different models.

RNN-LSTM Values XGBoost Values SVR Values Random forest Values

Layers From 2 to 5 Max depth (1, 6, 30) Kernel (Linear, rbf) N_estimators (10, 100)

N. of neurons From 1 to 30 Subsample 1 Gamma Scale Max_depth None

Activ. func. Sigmoid Tree method Exact Tol. Default Bootstrap True

Learning rate 0.0005 Sampling Uniform C From 0.01 to 5 Oob_score True

Optimizer Adam Grow policy Lossguide Epsilon From 0.1 to 1 Max_leaf_nodes None

Batch size 32 Min split loss 0.005 Coef0 0 Warm_start False

Epochs 300 Learning rate 0.3 Max_iter – 1 Min_samples_split 2

Time step 3 Lambda 1 Shrinking True Min_samples_leaf 1

Table 4.   Comparison between deep and machine learning algorithms (MAE and MSE lower the better). 
Significant values are in bold.

Model MAE MSE RMSE R
2

LSTM2:{2,1} 0.3846 0.3368 0.5803 0.1812

LSTM2:{4,1} 0.4012 0.3416 0.5844 0.1256

LSTM3:{1,10,1} 0.5141 0.4011 0.6333 0.0171

LSTM3:{5,10,1} 0.4369 0.3661 0.6050 0.0971

LSTM4:{1,5,10,1} 0.4611 0.3901 0.6245 0.0101

LSTM4:{5,15,30,1} 0.4763 0.3961 0.6294 0.0085

LSTM5:{10,20,5,2,1} 0.4311 0.3727 0.6104 0.1041

−→

XGBoost1 0.3391 0.5750 0.7583 0.4520

XGBoost6 0.2679 0.3091 0.3559 0.7058

XGBoost30 0.2801 0.3416 0.5845 0.6159

SVRlin;1;0.5 0.5038 0.9957 0.9978 0.5077

SVRlin;0.01;0.1 0.3457 0.8211 0.9061 0.6162

SVRrbf ;1;0.1 0.4529 1.4783 1.2158 0.2881

SVRrbf ;5;0.5 0.4069 1.1624 1.0781 0.4236

RF10 0.2885 0.3412 0.5841 0.6453

RF100 0.2973 0.3624 0.6020 0.5945

RF500 0.3064 0.3411 0.6209 0.5853



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19409  | https://doi.org/10.1038/s41598-024-70341-6

www.nature.com/scientificreports/

relating to the metrics considered. Specifically, the combination of hyperparameters has been identified for each 
model to obtain more performing metrics through Cross-Validation. However, further values are reported to 
show how the accuracy is drastically reduced with minimal variations in the hyperparameters. A first piece of 
evidence from the MAE and MSE values from the LSTM network is that a relatively simple model (consisting 
of 2 layers and 3 neurons in total) obtains the best results compared to evolutions with multiple states and neu-
rons. Information of this type pushes us to test the prediction with less complex models, from which we see how 
XGBoost obtains the best performance among all the models considered, almost on par with random forest. 
XGBoost’s advantage over the latter is boosting, but the use of Decision Trees allows, in both cases, the building 
of very high-performance models. Further evidence of the prevalence of “simple” models compared to more 
complex ones can be observed from the ǫ-SVR. In this model, using a linear kernel produces a model with the 
lowest MAE compared to an RBF-type kernel. The latter allows the addition of non-linearity to the model, which, 
as highlighted for RNN-LSTM networks, does not bring any advantage to this data type. The high stationarity 
of the data makes it difficult to add non-linearity to extract more information, from which a more explainable 
and branched algorithm like XGBoost manages to outperform a complex model like LSTM. Figure 3 shows an 
example of prediction on the 200-hour test set of the best models ( LSTM2:{2,1} , XGBoost6 , SVRlin;0.01;0.1 , and 
RF10 ). Specifically, even graphically, we can see that the prediction with LSTM tends to be less stationary and 
smoother while maintaining the prediction around a trend. At the same time, XGBoost optimally adapts the 
detrended predicted series to the original one, which is the best choice for a prediction with this type of time 
series. A similar behavior is adopted by Random Forest (which still uses Decision Trees) but achieves lower 
performance than XGBoost.

Depending on the results, it may be interesting to transfer the characteristics of this specific model to other 
domains. Transfer learning (TL) allows the transfer of information from a source domain to a target domain, 
such as information on instances, parameters, and feature characteristics56. In this case, the TL can be used on the 
influx of vehicles at motorway tollbooths for which there is a lot of missing data due to malfunctions. Although 
having the same data distribution is difficult, it is still possible to benefit from very accurate predictive models.

Going into explainability in detail, the SHAP framework allows us to study the importance of the different 
features in the prediction phase. In this case, the idea is to use it on the XGBoost algorithm, which has outper-
formed its competitors. Considering Tollbooth 1 as the target feature, as shown in Fig. 4b, the most important 
feature that affects the prediction is Tollbooth 3 linked to the highest Shapley value, followed by Tollbooth 4. The 
distribution can explain this relationship over time of vehicles that passed through Tollbooths 2 to 5. Assuming 
that Tollbooth 1 is the one of greatest interest to travelers and absorbs the greatest number of vehicles that pass 
through at different times of the day, different types of users use the remaining toll booths. In this case, Tollbooth 
3 has a distribution of vehicles very similar to Tollbooth 1 at different times of the day, albeit with a much smaller 
number of vehicles, which is why it is the feature that most influence the model. Instead, Tollbooth 2, despite hav-
ing a very high average number of vehicles passed through (on a par with Tollbooth 1), has a different temporal 
distribution, which makes it a feature characterized by minimal importance and almost on a par with Tollbooth 
5. The summary plot, however, present in Fig.  4a, allows us to illustrate different Shapley values as the instances 
vary, considering the increase in feature values depending on the color intensity of each point. Specifically, the 
high values achieved by the different features that impact the model correspond to increasingly higher Shapley 
values and, consequently, higher predicted values (in terms of vehicles passed through). Although not the most 
important, the Tollbooth 2 feature reaches higher values (regarding vehicles passed through), pushing towards an 
increase in the Shapley value. This analysis through the SHAP framework shows that the dataset used, although 
characterized by few features, has optimal characteristics since no feature has a zero magnitude. Therefore, all 
the features impact the final model, although some in a limited way compared to others.

Conclusions
Time series prediction represents a fundamental task in many sectors. However, the presence of stationary data 
is still challenging, especially if the prediction is carried out using deep learning techniques. This work consid-
ers data from motorway tollbooths characterized by high stationarity. Here, a series of comparisons were made 
between machine and deep learning algorithms. Specifically, RNN-LSTM, XGBoost, ǫ-SVR, and Random Forest.

The results highlight how XGBoost outperformed the algorithms for prediction on data with these char-
acteristics, obtaining the best results in terms of MAE, MSE, RMSE, and R2 is clear how the Deep Learning 
models tend to neutralize the excessive number of peaks in the time series considered, producing a smoother 
prediction but not corresponding to reality. Using machine learning algorithms such as XGBoost is preferable 
to more complex models.

The advantage of this result is the possibility of using a computationally less expensive algorithm on this highly 
stationary data since XGBoost does not require the use of a large number of parameters like an LSTM neural 
network. Furthermore, using a CART-based algorithm like XGBoost allows us to benefit from a certain degree 
of explainability of what contributed to the model’s performance. However, using a machine learning algorithm 
can be seen as a limitation since, in a historical moment in which deep learning models achieved extraordinary 
performance in many areas, this demonstrates the ineffectiveness of neural networks on data with extreme char-
acteristics such as high stationarity. A further limitation concerns the explainability of the phenomenon since it 
is possible to identify which are the most essential features. Still, due to the strong peaks in the data, it remains 
challenging to understand which are the most significant patterns that can be used for prediction.
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Fig. 3.   Comparison between different models.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available since they belong in 
full to the MONTUR Project still under development (see Acknowledgments), but are available from the cor-
responding author on reasonable request.
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