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Abstract

This thesis is devoted to the analysis and development of trust and reputation sys-

tems, focusing on the study of accurate models for the computation of reputation,

especially in virtual contexts such as social networks. By analysing what causes users

to assign trust and how reputation is perceived, we have proposed advanced models

that aim at accurately capturing the dynamics that influence reputation formation.

We have examined the Eigentrust algorithm, one of the most effective solution to

measure the reputation in a set of social agents. We have highlighted a possible lim-

itation in the Eingentrust algorithm, observing that it increases the reputation of

all the pre-trusted agents, regardless of their reliability. To solve this problem, as

first algorithm, we have proposed a different strategy that introduces the advan-

tage, with respect to Eigentrust, of estimating the reputation values of the honest

actors in a manner more close to the actual reliability of these agents. Instead, the

second proposed algorithm was designed for the detection of colluding agents di-

vided into multiple clusters. It combines the EigenTrust algorithm with a clustering

procedure, grouping agents based on their reputation scores. Finally, we apply the

theory of variational inequalities in a virtual environment, in which users evaluated

specific objects. We demonstrated that the equilibrium conditions of the system can

be formulated as a variational inequality problem. We explored the robustness of

our model across different conditions, introducing significant variations in both user

trustworthiness and initial reputation of objects.
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1

Introduction

The first chapter of this thesis is devoted to explore in detail the motivations that constitute

the driving force of our research over these years. Furthermore, crucial preliminary con-

cepts related to multi-agent systems will be provided. We highlight the advantages (and

disadvantages) of the trust and reputation system, in order to establish a solid conceptual

basis for understanding the study context. Finally, the overall structure of the thesis will

be outlined, providing an advance overview of the topics covered in the subsequent chap-

ters. In particular, we focus our attention in a first part on Trust and Reputation System

in peer to peer network, in a second part on Trust and Reputation System between agents

and objects.

1.1 Motivation

The modern paradigm of social network represents the human need for a communi-

cation space, different from the traditional physical places as home and work, where

people can talk, write and express their opinions, make several kinds of activities

as business transactions, learning courses, challenging research etc., generally giv-

ing the possibility to the community members who interact to share knowledge, in-

sight and ideas. This paradigm has been implemented in generalist social networks

as Facebook and Twitter, and in thematic social network as Linkedin, Flickr and Re-

searchgate, but also in e-commerce platforms as Èbay and Amazon, or in comparison

shopping website as Tripadvisor. In all these different domains, a key issue is repre-

sented by the possibility to introduce a sufficient level of trustworthiness associated

with the community members, generally called agents, since they usually perform

some kind of activities and they could be either humans or software entities act-

ing on behalf of humans, and where by the term trustworthiness we usually mean

the possibility for each agent of the community to have trust in the other agents.

This is particularly important both for competitive and collaborative agents [1, 2],

since in both cases an agent has to accurately select its interlocutors, because both its
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incomes and outcomes depend on this choice, considering the possibility that mali-

cious agents could be present in the community with the purpose to realize personal

advantages engaging in deceptive behavior and making frauds. This makes it diffi-

cult to make decisions about which resources can be relied upon and which entities

it is safe to interact with. Trust and Reputation systems are aimed at solving this

problem by enabling service consumers to reliably assess both the quality of services

and the reliability of entities, before deciding to use a particular service or to interact

with or to depend on a given entity. Such systems should also allow serious service

providers and online players to correctly represent the reliability of themselves and

the quality of their services. In the case of reputation systems, the basic idea is to

let parties rate each other, for example after the completion of a transaction, and

use the aggregated ratings about a given party to derive its reputation score. In the

case of trust systems, the basic idea is to analyse and combine paths and networks of

trust relationships in order to derive measures of trustworthiness of specific nodes.

Reputation scores and trust measures can assist other parties in deciding whether

or not to transact with a given party in the future, and whether it is safe to depend

on a given resource or entity. This represents an incentive for good behaviour and

for offering reliable resources, which thereby tends to have a positive effect on the

quality of online markets and communities.

Thus, we can state that dealing with trust and reputation systems is important

for several reasons. These systems are crucial in online environments to build trust

and security among users. In online commercial transactions, they help evaluate

the reputation of sellers and products. In sharing and collaborative contexts, such

as car-sharing platforms, reputation becomes crucial to encourage reliable behavior.

They also contribute to preventing online fraud and maintaining the quality of user-

generated content. In cases of disputes, trust systems facilitate fair resolution. Addi-

tionally, they incentivize positive behavior and allow for the evaluation of skills in

online professional environments. Overall, these systems contribute to creating safe,

reliable, and collaborative online environments.

1.2 Thesis structure

The thesis is divided into two distinctive parts. In the first part, we adopt a tradi-

tional approach, in accordance with the principles of information engineering and

data processing. We focus on the study of trust reputation systems in modern social

networks, especially common in e-commerce and e-learning, analysing the fraudu-

lent behaviour of a specific category of agents. Infact, a particularly dangerous type

of fraud is represented by collusion, i.e. a deceitful agreement or secret cooperation
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between two or more agents to limit open competition by deceiving, misleading or

defrauding others of their legal right. We use established methods to thoroughly in-

vestigate and understand these dynamics, drawing on a classical perspective typical

of the field.

In the second part, we take an innovative direction, embracing the theory of vari-

ational inequalities and Lagrange multipliers. This state-of-the-art methodology al-

lows us to explore the systems in question in a more in-depth and advanced manner,

introducing a more sophisticated level of analysis. The variational approach offers

a unique perspective to address the complex dynamics of such trust reputation sys-

tems, enriching understanding and opening new perspectives for the management

and optimisation of such systems in real-world contexts.

In detail, in chapter 2, the concept of trust and reputation in multi-agent sys-

tems is introduced. It provides in-depth definitions and analyzes crucial aspects of

both concepts. The two main network architectures, centralized and distributed, are

also explored, outlining their advantages and disadvantages. In particular, these sys-

tems find application in the context of multi-agent systems. The concept of an agent

is defined, outlining its objectives and how it can be organized in collaboration or

competition with other users. The dynamics of interactions between agents are ana-

lyzed, focusing on how they can cooperate or compete to achieve established goals.

A crucial aspect that emerges is the presence of malicious agents within these or-

ganizations. The activities of these agents are explored, whose actions are aimed at

completely disrupting the reputation of agents within a social network. This raises

significant challenges for trust and reputation management in multi-agent systems,

requiring specific strategies to mitigate the risk from harmful behaviors.

In this respect, in Chapter 3 we propose a strategy which allows to preliminar-

ily detect the best candidates as malicious (colluding) agents directly from the trust

matrix. We present an overview of the state of the art in this field, then we focus on

the main algorithm used in this specific situation: the Eigentrust algorithm. It repre-

sents an efficient variant of PageRank and, in addition, stands out for its efficiency in

calculating and dynamically updating users’ reputations. However, it has an impor-

tant disadvantage: it requires prior knowledge about user characteristics, including

potential malicious users. We overcome this drawback proposing a new algorithm to

compare the effectivness of our results with that generated bu Eigentrust. We intro-

duce a measure of effectiveness when computing reputation in presence of malicious

agents, defining a metric of error useful to quantitatively determine how much an

algorithm for the identification of malicious modifies the correct reputation values

of the honest agents.
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In Chapter 4 we propose an alternative strategy to the previous one to detect

potential malicious colluding agents by combining the Eigentrust algorithm with

clustering techniques. Our approach makes use of the spectral properties of a spe-

cific matrix, known as the Lagrangian. In the course of chapter, we provide a broad

overview of these techniques, with a particular focus on the similarity metrics used

to cluster data, or in our case, agents. Through the results obtained, we compare this

new strategy with the previous approach, showing that, in the presence of various

groups of malicious colluding agents, our new algorithm proves to be significantly

more efficient, with high precision.

In Chapter 5 we introduce an innovative methodological framework, the varia-

tional inequality theory, that will be used in the second part of the thesis. We not only

offer practical indications on how to approach an optimization model typical of ap-

plied mathematics, but we also delve into the context by underlining the interesting

link between the optimization problem and the theory of variational inequalities.

In particular, we explore the possibility of expressing the latter as a minimization

problem, thus highlighting the connection between these two fundamental concepts.

In addition, we provide an overview of the Lagrangian theory, elucidating how La-

grange multipliers play a crucial role in the analysis of solutions. We offer a detailed

explanation of how these multipliers represent fundamental elements in the context

of optimization, contributing significantly to the understanding and interpretation

of problem solutions.

In Chapter 6 we present a detailed mathematical model of a trust and reputation

system, where users express their votes to indicate satisfaction or dissatisfaction with

a particular product. We further delve into the context by introducing the concept

of user weight and the initial reputation of objects, key elements that dynamically

influence the system. To better understand the dynamics, we consider the equilib-

rium conditions of the model, evaluating how the utility function and the cost func-

tions converge towards a point of equilibrium. Next, we introduce constraints on the

model solution, providing an equivalent variational formulation. This formulation,

based on optimization concepts, allows us to obtain a more in-depth perspective

on the behavior of the system. We present existence and uniqueness results derived

from this formulation, highlighting the mathematical robustness of the proposed

model with several simulations.

Finally, in chapter 7 we provide a brief summary of the results obtained through

the use of strategies to identify malicious users, referencing the advantages and dis-

advantages of each strategy. Concisely, we outline the innovative aspects arising from

the application of Lagrangian theory and variational inequalities in the contexts of

trust and reputation systems. We conclude with a mention of future research, of-
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fering brief insights and future plans. These could include further developments

in detection strategies, an in-depth exploration of the practical implications of La-

grangian theories and variational inequalities in real-world scenarios, and consider-

ation of broader application scenarios. In this way, we emphasise the continuity of

the research and the potential for further innovative contributions to the field.





Part I

Collusion in Trust and Reputation System
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Trust and Reputation in Multi-Agent System

Virtual interactions between people and services without any previous real world

relationship have experienced an exponential increase with the availability of inter-

active on line sites, including the so called social networks. Despite the diverse range

of online communities, they all share a common feature: a large number of users

interacting under virtual identities. These emerging social media platforms enable

users to establish explicit or implicit social connections and utilize the network as a

global platform to share and disseminate products, services, information, opinions,

and recommendations. In these digital media scenarios, evaluating the credibility of

information poses a more complex challenge compared to traditional media due to

its inherently anonymous and open nature, characterized by a lack of robust gov-

ernance structures. This anonymity creates a conducive environment for malicious

users to disseminate misinformation, viruses, or files, especially in Peer-to-Peer net-

works (P2P). Therefore, it becomes essential to implement mechanisms that facili-

tate the selection of interaction peers and efficiently identify and isolate malicious

actors. The ideal solution is the development of Trust, Reliability and Reputation

system (TRRs), i.e. a network of reputation and trust, either at a local level (indi-

vidual websites for example) or across the whole web, that allows users to express

and propagate trust on others to the entire network to allow other users to assess the

quality of the information or service provided even without a prior interaction with

the agent in question.

2.1 Trust and Reputation Systems

Trust, Reliability and Reputation systems are tools designed to identify the trustwor-

thiness of an actor, be it a human, a software or a device, in order to detect malicious

actors and marginalize or expel them from the community.

Several general purpose and context specific TRRs have been developed and, on

the one hand malicious actors can perform various misleading behaviors [3±5], even
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simultaneously, for deceiving TRRs and obtaining some undue benefits; on the other

hand, TRRs are designed to be resilient to these attacks [6, 7]. In this setting, the

interactions between the community members are considered as e-services that a

provider agent (the trustee) gives to a client agent (the trustor), and trust can be

formulated [8]:

Definition 2.1 (Trust). Trust is the quantified belief by a trustor with respect to the com-

petence, honesty, security and dependability of a trustee within a specified context.

It is important to highlight that the concept of trust involves several different di-

mensions, depending on the viewpoint under which the interaction between the two

agents is considered, and for each of these issues, trust increases the spectrum of in-

teractions between two agents. Some common dimensions of trust are:

• reliability: ability of effectively and efficiently performing requested activities.

In various contexts, reliability is associated with the ability of a system, person,

or thing to consistently perform a specific function or deliver results with a high

degree of accuracy and consistency over time. In interpersonal relationships, re-

liability may be related to the trustworthiness and consistency of an individual’s

actions and commitments. In the context of machines or systems, reliability of-

ten implies a low probability of failure or malfunction over a specified period,

indicating their consistent and dependable performance.

• honesty: willing to operate a truthful behavior, avoiding fraudulent or mislead-

ing activities.Honesty is a quality characterized by truthfulness, integrity, and

straightforwardness in one’s actions, communication, and interactions. An hon-

est individual (or entity) is someone who adheres to ethical principles, refrains

from deceit or misleading behavior, and is sincere in expressing thoughts, feel-

ings, and information. Honesty involves transparency, openness, and a commit-

ment to upholding the truth even when faced with challenges or difficult situa-

tions. Honest behavior builds trust, fosters credibility, and promotes a positive

and ethical environment.

• security: ability to protect assets, information, systems, and individuals from

various forms of threats, risks, and unauthorized access. It encompasses a wide

range of strategies, technologies, and protocols designed to ensure the confiden-

tiality, integrity, and availability of resources.

We can say that trust is a key element in interpersonal relationships, commercial

transactions, social competitions and online interactions. Building it requires time,

consistency and the demonstration of reliable and respectful behavior.

While trust is a subjective measure, evaluated by a trustor with respect to a

trustee (in a peer-to-peer interaction), reputation is instead a measure of the trust-
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worthiness that the whole community evaluated with respect to a given agent. The

concept of reputation is closely linked to that of trustworthiness, but it is evident

that there is a clear and important difference. For the purpose of this study, we will

define reputation according to the Concise Oxford dictionary.

Definition 2.2 (Reputation). Reputation is what is generally said or believed about a

person’s or thing’s character or standing.

Reputation can also be interpreted as the expectation and perception that a trust-

ing entity holds about a trusted entity from its past actions and behaviours with

other entities.

The concept of reputation assumes a relevant role in all those situations where an

agent x is not provided with a sufficient knowledge about another agent y. In those

cases, x might use the y’s reputation to decide if y can be considered as a reliable

interlocutor. Reputation can be considered as a collective measure of trustworthi-

ness (in the sense of reliability) based on the referrals or ratings from members in a

community. An individual’s subjective trust can be derived from a combination of

received referrals and personal experience. In order to avoid dependence and loops

it is required that referrals be based on first hand experience only, and not on other

referrals. It is possible to abandon this principle for example when the weight of the

trust referral is normalised or divided by the total number of referrals given by a

single entity, and the latter principle is applied in Google’s PageRank algorithm [9]

described in more detail in next chapter.

2.2 Reputation network architectures

In a reputation system, once a transaction between two agents is completed the

agents are required to rate the quality of the transaction (service). The architecture

of the these systems determines the way in which the ratings and reputation scores

are collected, stored and shared between the members of the system. There exist two

main types of reputation network architectures: centralised and distributed.

In a centralised reputation system a central authority collects all the ratings and

constantly updates each agent’s reputation score as a function of the rating the agent

received. This type of system, as reported in [10], requires

(i) a centralised communication protocol in charge of keeping the central authority

updated from all the ratings;

(ii) a reputation calculation method for the central authority to estimate and update

the reputation of each agent.
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In many practical situations, the social networks, in which reputation measures

are computed, are composed by a very large number of agents, and the computa-

tion activity is too loud to be implemented in a unique centralized unit, since such a

centralization would imply obvious problems in terms of efficiency and robustness

of the communication activities. In these situations, the computation of the reputa-

tion values is delegated to a distributed architecture, composed of local computing

nodes, each one associated to a group of agents and which is capable of computing

the reputation values of only the agents belonging to that group. These local values

are then transmitted to higher level nodes in a hierarchical organization, and each

node at a given level collects reputation values from a set of nodes belonging to the

lower level, combining these values to compute reputation values at the given level,

and then sending in its turn these values at the higher level.

In a distributed reputation system each agent individually collects and combines

the ratings from the other agents. That is, an agent A, who wants to transact with an-

other target agent B, has to demand for ratings to the other communitymembers who

have directly interacted with agent B. Consequently, given the distributed nature of

the information, obtaining the ratings from all interactions with a given agent may

be too expensive (time consuming) and so, only a subset of the interactions, usually

from the relying agents’ network are considered to calculate the reputation score.

This type of system requires

(i) a distributed communication protocol to allow agents to get information from

others agent they are considering to transact with;

(ii) a reputation computation method to estimate and update the reputation given

the values of other agents (neighbours).

A well known example of distributed architecture are P2P networks in which each

agent acts as both client and server. It is noted that these networks may introduce

a security threat since they could be used to propagate malicious software or to by-

pass firewalls. Therefore the role of reputation in this particular case is crucial to

determine which nodes in the network are most reliable and which ones should be

avoided.

2.3 Agents and Multi Agent Systems

One of the fields that most use the concepts of Trust and Reputation is the field

of multi-agent systems (MAS). These systems are composed of autonomous agents

that need to interact to each other to achieve their goals. The parallelismwith human
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societies is obvious, and also the problems, specially when we are talking about open

MAS.

2.3.1 An introduction to Agents

Before approaching the study of multi-agent systems, it is essential to rigorously

define the agent itself and its characteristics ([11]).

Definition 2.3 (Agent). An Agent is an entity which is placed in an environment and

senses different parameters that are used to make a decision based on the goal of the entity.

The entity performs the necessary action on the environment based on this decision.

The above definition comprises four keywords which can be further elaborated:

• In the given context, entities or agents can take on various forms, each charac-

terized by unique attributes. Software agents, for instance, may include daemon

security agents that operate in the background, diligently monitoring and safe-

guarding systems against security threats.

On the hardware front, entities like thermostats serve as tangible components

regulating the temperature in environments, particularly within heating and

cooling systems. Sensors, another hardware type, detect and quantify diverse

physical parameters, ranging from temperature to brightness and pressure.

In the virtual realm, entities like virtual assistants demonstrate the prowess of

software in providing virtual support to users. Siri, Google Assistant, and Alexa

are prime examples of these virtual agents. Additionally, simulations represent

software entities replicating the intricate behaviors of complex systems for ana-

lytical purposes, be it in traffic management or market dynamics.

• The term environment refers to the specific context or setting where an agent

operates, such as a network or software environment. The information the agent

gathers from its environment is crucial for decision-making in agent-based sys-

tems.

Key features affecting these systems include accessibility, determining how ac-

curately agents can collect data. Determinism relates to outcome predictabil-

ity, with deterministic environments providing precise outcomes, while non-

deterministic ones yield less predictable results influenced by various factors.

Dynamism addresses changes in the environment independent of agent actions.

Dynamic environments require agents to detect and update information, incur-

ring more overhead compared to static environments where initial information

remains relevant.

Continuity classifies the MAS environment as continuous or discrete. In con-

tinuous environments, the agent’s state is influenced by a continuous function,
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such as movement in a physical environment. Discrete environments confine the

agent to predetermined states.

• In the domain of agent-based systems, parameters refer to the varied data agents

can perceive, contingent on the application. Examples include transportation

systems where agents assess traffic conditions, smart homes monitoring room-

specific data, and production systems overseeingmachinery and inventory. Secu-

rity systems involve agents detecting intrusions, while medical applications fo-

cus on vital signs. In multiplayer games, agents consider player status, and envi-

ronmental management involves monitoring air quality. In e-commerce, agents

analyze user behavior, and financial applications track market trends. These in-

stances exemplify the adaptable nature of agents in diverse contexts.

• Each agent can perform an action that results in some changes in the envi-

ronment. Actions refer to the varied functionalities agents can perform based

on specific applications. For instance, in transportation, agents optimize vehi-

cle trajectories and traffic flow. In smart homes, they regulate temperature and

manage appliances. In production systems, agents control machinery and adjust

production quantities. Security agents respond to intrusions and emergencies.

Healthcare agents administer medication and respond to patient needs. In gam-

ing, agents navigate virtual environments and collaborate with other players.

Environmental agents activate purification systems and monitor climate shifts.

E-commerce agents personalize recommendations andmanage inventory. Finan-

cial agents execute transactions and adapt portfolios. These examples illustrate

the adaptability of agents across diverse applications.

The goal of each agent is to solve its allocated task with some additional con-

straints, e.g. a deadline. To achieve this aim, the agent first senses parameters from

the environment. Empowered with this data, the agent can build up knowledge

about the environment. An agent might also use the knowledge of its neighbors.

This knowledge along with the history of the previous actions taken and the goal

are fed to an inference engine which decides on the appropriate action to be taken

by the agent. While an agent working by itself is capable of taking actions (based on

autonomy), the real benefit of agents can only be harnessed when they work collab-

oratively with other agents. Multiple agents that collaborate to solve a complex task

are known as Multi-Agent Systems (MAS).

2.3.2 Multi-Agent Systems

A multi-agent system is a sophisticated extension of agent technology, in which the

dynamics take place within an environment populated by a collective of autonomous
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and freely connected agents. These agents, similar to independent actors on a dy-

namic stage, engage in purposeful actions within a shared environment, all directed

towards the achievement of a common goal. It is a digital theatre in which each agent

plays a role, contributing to the overall plot through cooperation or competition.

The success of Multi-Agent Systems (MAS) across diverse sectors can be at-

tributed to a set of significant advantages that contribute to their widespread adop-

tion. These systems, representing an advanced extension of agent technology, excel

in coordinating autonomous actions within a shared environment to achieve a com-

mon goal. A key aspect defining MAS is their ability to enhance the speed and effi-

ciency of system operations. This is achieved through the use of parallel computation

and asynchronous operations, creating a synergy of agents working simultaneously

for quicker responses and increased overall agility.

A distinctive feature is the MAS’s capability to address challenges and agent fail-

ures with "graceful degradation." Instead of experiencing a complete collapse in the

event of a failure, the system dynamically adapts, maintaining functionality with

reduced capacity. This flexibility contributes to improving the overall robustness of

the system.

Scalability and flexibility represent another key advantage of MAS. The ability

to dynamically add agents to the system allows for gradual growth and adjustments

without the need for radical changes in the structure. This feature results in a system

that can evolve with changes in requirements and scale. A pragmatic element is the

cost-efficient management facilitated by the decentralized architecture of MAS. Au-

tonomous agents, operating individually, often incur lower costs compared to cen-

tralized solutions. This makes MAS an economically attractive choice.

Moreover, the modular structure of agents in MAS promotes reusability. The re-

placement or upgrade of agents can be executed seamlessly, contributing to greater

flexibility and long-term adaptability of the system.

MAS are composed of autonomous agents that need to interact to each other to

achieve their goals. The parallelism with human societies is obvious, and also the

problems, specially when we are talking about open MAS. The main feature that

characterizes open multi-agent systems is that the intentions of the agents are un-

known. Hence, due to the uncertainty of their potential behavior we need mecha-

nisms to control the interactions among the agents, and protect good agents from

fraudulent entities. Traditionally, as reported in [12], three approaches have been

followed to solve such problems:

1. Security Approach: At this level, basic structural properties are guaranteed, like

authenticity and integrity of messages, privacy, agents’ identities, etc. They can

be secured by means of cryptography, digital signatures, electronic certificates



16 2 Trust and Reputation in Multi-Agent System

etc. However, this approach does not tell anything about the quality of the infor-

mation, although the established control is more than valuable.

2. Institutional Approach: This approach assumes a central authority that ob-

serves, controls or enforces agents’ actions, and might punish them in case of

non-desirable behaviors. It is indisputable that this approach ensures a high con-

trol in the interactions, but it requires a centralized hub. Moreover, the control is

bounded to structural aspects of the interactions: allowed, forbidden and obliged

actions can be checked and controlled. However, the quality of the interactions is

left apart, in part, because a good or bad interaction has a subjective connotation

that depends on the current goals of each individual agent.

3. Social Approach: Reputation and trust mechanisms are placed at this level. In

this approach agents themselves are capable of punishing non-desirable behav-

iors, by for instance, not selecting certain partners. To achieve such distributed

control agents must model other agents’ behaviors, and following the similitude

with human societies, trust and reputation mechanisms arise as a good solution.

This requires however the development of computational models of trust and

reputation, which must cover not only the generation of social evaluations in all

the dimensions, but knowledge on how agents use reputation information to se-

lect partners, how agents communicate and spread reputation, and how agents

handle communicated reputation information. It is important to remark that

these three approaches are complementary and that each one covers a different

typology of problems, all related to the control of interactions on open MAS.

An essential aspect of multi-agent systems is their organization, a topic that will

be explored in the next section

2.4 Agent organization

An integral facet of Multi-Agent Systems lies in the orchestrated arrangement of

agents, where the organizational dynamics play a pivotal role in shaping the col-

laborative or competitive interactions within the system. The strategic deployment

and coordination of autonomous agents contribute significantly to the overall ef-

fectiveness and adaptability of MAS in diverse application domains. The prevailing

approaches for organizing MAS, as reported in [11], are given below.

In the flat organizational structure, all agents are considered equals, with no

designated leader. Communication takes place directly between each agent and its

neighbors, creating a decentralized network.

In hierarchical organization, agents have tree-like relations. Leaf agents, com-

municate with other agents using their parents. Parents control their leaf agents, i.e.,
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children, and may have their own parents. At the highest level, there is one agent

known as root agent. Hierarchical organization may lead to delay or create a bot-

tleneck, particularly at the root agent (or parents) as it is responsible for processing

communications of all leaf agents. Based on the number of authoritative agents, i.e.

those who have control over other agents, the hierarchical organization can be di-

vided into two types namely simple and uniform. In the simple approach, the root

agent has exclusive authority and controls all communications. In the uniform ap-

proach, there are more than one authoritative agents in the hierarchy meaning that

in addition to the root, all or particular parents can also control their children.

In coalition organization, agents are temporarily grouped based on their goal.

Consequently, the agents can reach their own goal with lower (processing delay

and communication) overhead compared to the organization where there is no such

grouping. Each agent can be part of more than one coalition. By reaching their goal,

the agents destroy the coalition. The internal organization of a coalition is normally

flat; however, other organizations, e.g., hierarchical organization, can be used to fur-

ther reduce overheads or apply control over agents. Finding and grouping agents

with the same goal incurs processing and communication overhead on agents. Thus,

there is a trade-off between the decreased overhead resulting from the coalition and

the incurred overhead for finding agents with the same goal and forming them in

coalition. This organization is suited when a collection of agents with similar goals

exists in MAS which their collaboration associates them in reaching their goal.

In team organization, the agents create a group (team) and define a group goal

which differs with their own goal. Depending on the time required to reach the team

goal, a teammay be short-time or longtime. The agents in a team collaborate to reach

the team goal. The team goal can be updated which leads to change in the responsi-

bilities, roles and authorities of agents in the team. Each team can request informa-

tion from agents in other teams to improve its own decision-making process. A team

can have an internal organization (e.g. hierarchical) to improve the performance and

efficiency in reaching the team goal. The final decision of the team is less challenging

in small teams, however, the data used by small teams is limited. Unlike coalition

where agents are grouped to reach their own goal, in a team agents attempt reach-

ing the team goal. Thus, this organization is suited when multiple agents attempt

reaching the same goal.

In congregation organization, agents in a location form a congregation to achieve

their requirements that they cannot achieve alone. Each agent can leave or join con-

gregations but should be part of only one congregation at each point of time. The

satisfaction of an agent in congregation, i.e., the degree in which an agent fulfills its

requirements, depends on other agents in the congregation. A congregation should
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always have at least one member. This organization is affective where each agent

requires the resources of other agents to achieve its goal or perform its tasks.

Given the vast diversity in which agents can be organized within multi-agent

communities, there is a compelling need to employ appropriate trust and reputation

systems tailored to the specific context. The complexity arising from the structural

and functional variations among agents calls for a strategic approach to assess mu-

tual trust and reputation within the system. In this context, the selection and design

of such systems become pivotal aspects to ensure optimal functioning, as trust dy-

namics must adapt to the peculiarities of each organizational setting. Establishing a

trustworthy environment and managing reputations thus become fundamental cor-

nerstones to support effective and collaborative relationships among agents, foster-

ing seamless interaction within multi-agent communities. Namely, the goal of trust

and reputation systems is to mitigate the risks associated with interactions involving

potential malicious agents.These systems focus not only on performance assessment

but also on establishing robust mechanisms to identify and address potential threats

posed by agents that may act maliciously. In this context, the priority is to imple-

ment advanced strategies and algorithms that can effectively evaluate and manage

the trust and reputation of agents, providing a secure foundation for interactions

within a multi-agent environment.

In the next section, we will introduce the key attributes that define malicious

agents and provide a brief explanation of the potential threats such agents may

present.

2.5 Malicious Agents

The interest in implementing appropriate trust and reputation models becomes par-

ticularly acute when considering the potential presence of malicious agents, em-

phasizing the importance of developing robust and adaptive mechanisms that can

effectively mitigate the risk of unethical or fraudulent behavior within the dynamics

of multi-agent communities. While global reputation is efficient and helps quickly

detect misbehavior in the system, it is vulnerable to false ratings. On the other hand,

reputation ratings directly derived from firsthand experience are highly reliable, but

do not help blacklist malicious peers for others. Also, firsthand information only

proves effective if a peer locates honest service providers with which to repeatedly

transact [13]. Since global reputations provide significantly more information than

firsthand reputations, reputation systems predominantly employ them. We enlist,

as reported in [14], some types of ratings misbehavior commonly observed due to

global reputation aggregation.
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• Dishonest agents. An honest agent is one that is truthful in its ratings of other

agents. A dishonest agent, on the other hand, attempts to subvert a system by

falsely rating a bad transaction as good, and vice versa. Such biased ratings pre-

sented due to jealousy, competition, or other malicious reasons adversely affect

the quality of reputation scores generated by a reputation system.

• Dynamic personalities. Some agents exhibit a dynamic personality, switching

between honest and dishonest behavior. Behavior changes can be based on the

type or value of the transaction or the party involved at the other end. Reputation

milkers, or oscillating agents, attack a reputation system by first building a good

reputation and then taking advantage of it to do harm.

• Collusion. Collusion occurs when two or more agents collaboratively enhance

each other’s reputations or conspire against one or more agents in the network

[15]. In the form of collusion known as ballot stuffing, a colluding group arti-

ficially inflates each other’s reputations, enabling them to exploit the positive

reputation to launch attacks on other system agents. Another manifestation of

collusion is bad-mouthing, wherein a malicious collective conspires against one

or more agents in the network by assigning unfairly low ratings to the target

agents, thereby damaging their reputation. Lastly, positive (and negative) dis-

crimination emerges when agents provide excellent (and poor) service selectively

to a few targeted peers.

• Sybil-based collusion. The Sybil attack occurs in the absence of a centrally

trusted party, when an agent with sufficient resources can establish a potentially

unbounded number of distinct online identities (or Sybils) [16][17][18]. Recently

it was shown that users can use these identities to collude and artificially inflate

their own reputations in order to monopolize service, lure users into scams, or

otherwise gain performance benefits from the system [19].

• Churn attacks. While reputations have been deployed in online marketplaces

suchas eBay.com, they are not necessarily a natural fit for the dynamic nature

of P2P overlay networks. Since reputations assess a peer’s trustworthiness using

historical feedback of its past interactions, longer peer lifetimes lead to more

interactions, and a more accurate reputation. Distributed communities like P2P

file sharing networks, however, experience significant churn (or peer turnover)

which means a high percentage of peers will have relatively ªshort-termº reputa-

tions accrued from a small number of past interactions. For instance, malicious

peers penalized by reputation systems for poor performance have the ability to

rejoin the networkwith newly acquired identities and a clean history. Such churn

attacks result in erroneous or misleading reputations for malicious peers.



20 2 Trust and Reputation in Multi-Agent System

In the upcoming two chapters, we will delve into the examination of adaptive

trust and reputation systems in the presence of colluding malicious agents. This

exploration will involve a detailed analysis of strategies and mechanisms designed

to adapt and respond effectively to the challenges posed by agents who engage in

collusion with malicious intent.
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Identifying Colluding Agents in Social Communities by

Reputation Measures

A particularly dangerous type of fraud in modern social networks is represented by

collusion. Collusion consists in a deceptive agreement or secret cooperation between

two or more agents to restrict free competition by cheating, misleading or defraud-

ing others of their legal right.

Many strategies to deal with malicious agents in social networks have been pro-

posed in the literature.

More in general, among these proposals, one of the most effective is represented

by PageRank [9], the well-known algorithm used by the Google search engine for

determining result rankings. In PageRank, the importance (reputation) of a web page

is measured, in particular, according to the number of links to that specific web page.

An important alternative to PageRank is Eigentrust, which has the primary fo-

cus on determining sureness and authenticity of traffic in P2P Networks. Thanks to

its effectiveness, Eigentrust is also one of the most highly considered benchmarks to

evaluate/train other systems identifying malicious agents.

These two algorithms, are used in our model and then we will analyse them in

detail in Sections 3.1 together with a briefly overview of other strategies.

In a nutshell, the Eigentrust algorithm aims at calculated the reputations of the

agents an detecting the malicious users. To this end, it uses some additional infor-

mation about agents that can be a-priori considered particularly trustworthy (i.e.

the pre-trusted agents), rewarding them in terms of reputation, while the non pre-

trusted agents are penalized. It applies its rewarding operation to all the pre-trusted

agents, regardless of their reputation values.

The method is thus capable to effectively detect malicious agents (that are iden-

tified as the worst reputed agents among the non pre-trusted agents). Unfortunately,

Eigentrust generates the side effect to artificially modify the reputation of the other

agents, which are all indiscriminately awarded. As a consequence, the differences,

in terms of reliability, between honest agents are flattened. We highlight that, since
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the reputation values are upper bounded by the value 1, the operation of indiscrim-

inately rewarding all the honest agents tends to increase the reputation values of

these latter towards the upper bound, thus flattening the differences between those

agents.

Moreover, Eigentrust needs to yield as input the information about pre-trusted

agents, that in the case of collusion is not trivial to be found.

Given the observations above, in this chapter we provide the following contribu-

tions, also included in [20] [21]. First, we propose a simple strategy which allows to

preliminary detect the best candidates as malicious (colluding) agents directly from

the trust matrix T = [tij ]. We use these agents as agents. Second, we introduce a dif-

ferent strategy to compute the agents reputation with respect to that used by Eigen-

trust. In other words, instead of indiscriminately rewarding pre-trusted agents, we

artificially decrease the fraudulent trust values that colluding agents mutually ex-

change. This way, besides of detecting the malicious agents with the same effective-

ness of Eigentrust, we do not modify the real reputation values of the honest agents.

Finally, we introduce a measure of effectiveness in computing reputation in presence

of malicious agents. The consequential metric of error is useful to quantitatively de-

termine how much an algorithm for the identification of malicious agents modifies

the correct reputation values of the honest agents. We have used such a metric to

compare the effectiveness of our result with that generated by Eigentrust.

We have performed an experimental campaign of mathematical simulations on a

dynamic multi-agent environment, showing that our method is more effective than

Eigentrust in determining reputation values. Our method presents an error, defined

as above, which is about a thousand times lower than the error produced by Eigen-

trust on medium-sized social networks. It is important to highlight that our exper-

iments are exclusively devoted to improving the effectiveness of the methodology

used by Eigentrust in terms of precision of the computed reputation values. In fact,

we are not trying to improve the capability of Eigentrust to detect malicious agents.

In particular, the robustness of a reputation system is not an absolute property, but

depends on several aspects such as model characteristics, application scenario, and

class of attack. Although context changes may not be performance-neutral, bench-

marks on major reputation systems confirm that, in the considered context, Eigen-

trust is the best performing approach against collusion attacks [6]. This is also true

for the presence of pre-trusted peers, although with the side effect of ranking other

peers lower despite their honesty. In any case, comparison with other reputation sys-

tems is outside our scope, which is only to minimize the aforementioned Eigentrust

side effect.
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3.1 Related work

Intelligent software agents are largely exploited in many areas for their autonomous,

adaptive, learning, proactive and social capabilities (e.g., in decision support sys-

tems [22], conversational tools [23], hazard scenarios [24], smart factories [25], neu-

ral models [26], transportation [27], control systems [28] and many others). Also

Trust and Reputation Systems (TRSs) exploit agents to simulate a variety of com-

plex, uncertain, dynamic human and agent-to-agent behaviors at different levels of

detail and abstraction.

A number of studies compared the robustness of TRSRs to a variety of misbe-

haviors and contexts. The earliest comparisons [7, 29, 30] did not perform quan-

titative evaluations on strategies, weaknesses, and strengths. Later, several testbeds

where reliable and unreliable actors compete with each other to gain some advantage

were used. Well known is ART (Agent Reputation and Trust) [31] but other remark-

able testbeds are described in [32±34]. Usually, testbeds are unable to autonomously

identify the worst conditions and may lead to errors when TRSs are moved to dif-

ferent contexts. In contrast, mathematical or analytical approaches [35, 36] are more

complex, more effective but lack of generality.

The simplicity of the eBay RS made it popular, although it is exposed to many

threats [37±39]. This RS increases or decreases reputation (starting from 0) based

on feedback issued by users that also have to interpret the reputation scores. Over

time, this RS has been updated to improve its resilience to malicious but without

changing its basic nature. PeerTrust [40] is a distributed agent transaction-based RS,

over a peer-to-peer overlay network, to identify peers to collaborate. It considers di-

rect peers’ feedback, number and context of peer’ transactions, and credibility of

indirect feedback sources to improve resilience against threats. Also Hypertrust [41]

adopts a distributed approach to discover and allocate trusted resources into com-

petitive, large federations of utility infrastructures. Its metric considers reliability

and reputation (from opinions) sources. A decentralized procedure builds an over-

lay network with all the federation nodes to implement an efficient finding process

for computational resources.

3.1.1 Pagerank model

The early web search engines such as Altavista simply presented every web page that

matched the key words entered by the user, which often resulted in too many and

irrelevant pages being listed in the search results. Altavista’s proposal for handling

this problemwas to offer advanced ways to combine keywords based on binary logic.

This was too complex for users, and therefore did not provide a good solution. PageR-
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ank proposed by Page et al. [9] represents a way of ranking the best search results

based on a page’s score according to a specific metric. Roughly speaking, PageRank

computes the score for any Web page as the sum of the normalised weights of hy-

perlinks pointing to it, where a normalised hyperlink weight is determined by the

score of the page containing the hyperlink, divided by the total number of hyper-

links from that page. In other words, it is possible to represent the World Wide Web

as a directed graph, in which Web pages are nodes and an edge from a page P1 to

a page P2 means that there is an hyperlink to P2 on P1. From the description of

the PageRank algorithm, we can see that the probability of going from P1 to P2 is

described exactly by the formula used for computing the weights aP1P2 of a linear

neural network. In this way, the final probabilities, i.e. the ranks of the different

pages, form an eigenvector of the corresponding matrix of the weights.

This can be described as a trust system, because the total set of hyperlinks form

transitive trust chains that can be used as a basis for deriving a relative trust mea-

sures for each page. A single hyperlink to a given web page can be seen as a unidi-

rectional trust relationship between the source and the target page. Google’s search

engine15 is based on the PageRank algorithm, and the rapidly rising popularity of

Google at the cost of Altavista was obviously caused by the superior search results

that the PageRank algorithm delivered. The increasing popularity and economic im-

portance of search engines has also lead to more damaging methods for artificially

boosting the score of Web pages. Such an example is the phenomenon called link

spam which consists of placing many hyperlinks to the same Web page in open web

forums such as online discussion boards, guest books, weblogs and wikis. The mo-

tivation behind this attack is that search engines will give an increased score for

the Web page that these hyperlinks point to. In order to counter the link spam at-

tacks Google announced in early 2005 that hyperlinks marked with the attribute

rel="nofollow" would not influence the hyperlink target’s score in the search en-

gine’s index. PageRank had a significant impact on the evaluation of the quality of

web pages in search engines. Moreover, it is important to note that over the years,

search engine page evaluation algorithms have becomemore complex, incorporating

a number of factors, such as content relevance, user experience, content freshness

and more. However, PageRank continues to be an important component of search

engine ranking algorithms.

3.1.2 Eigentrust Algorithm

The Eigentrust algorithm is a trust and reputation algorithm used in peer-to-peer

(P2P) systems to assess the trustworthiness of users or peers in the network. Eigen-

trust is a variation of the PageRank algorithm [42]. It is based on the concept of
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distributed trust, where each peer assigns a trust score to the other peers it interacts

with. Eigentrust can be effectively used to detect malicious agents in a social agent

network. Eigentrust [43] has been designed for file sharing peer-to-peer networks.

Here, each peer builds its own local trust representation about the whole peer com-

munity. All the normalized peers’ trust reputations, weighted by the trustworthiness

of the peer, are collected in a matrix, called global reputation. The authors show

how such values asymptotically converge to the matrix eigenvalues. The malicious

discrimination uses an arbitrary reputation threshold. To minimize the influence of

colluding activities, some peers are assumed as trusted. This RS is susceptible for

peers’ feedback manipulations [44], and several changes have been introduced to

increase its robustness [45±47] or adapt it to new scenarios [48, 49].

Due to its performance, Eigentrust is a popular benchmark for evaluating other

TRRs [6, 50, 51]. In particular, in Eigentrust, a trust value tij is assigned from each

agent i to each other agent j , while a reputation ri is assigned from the whole com-

munity to each agent i. In this respect, the reputation of an agent i, is computed as a

weighted mean of all the opinions about i provided by the other agents. Therefore,

reputation has to be considered as a synthetic evaluation about the opinion that the

whole community, and not only a single agent, has with regard to i.

We highlight that Eigentrust, in addition to being equivalent to linear neural net-

works, can be usefully applied also to make the training activity of any neural net-

work more effective and efficient. Indeed, often a neural network has to be trained

with data coming from unreliable or even malicious sources. The aforementioned

case of providing rankings of scientific papers based on their importance is an ex-

ample of such a type of situation. In fact, since some authors may adopt unethical

behavior in using citations, for example by flattering themselves in citing each other

(collusion). Eigentrust could be fruitfully exploited to identify such types of mali-

cious sources, eliminating them from the training set or reducing their impact on

the training.

However, two important issues should be highlighted to apply this algorithm,

namely:

1. Eigentrust needs to receive additional information about agents to consider a-

priori particularly trustworthy as inputs. The task to determine such agents is

not trivial in the case of collusion.

2. The application of Eigentrust to a social agent community presents the side-

effect of artificially modifying the reputation values of the non colluded agents.

This is not a desired effect when reputation analysis is a main target of the sys-

tem, besides of the detection of the colluded agents. Indeed, we highlight that

the final goal of any reputation mechanism in presence of malicious agents is
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not only to detect malicious agents. In fact, a main goal is also to determine the

reputation values that the agents would assume in absence of malicious agents in

the system. These values can be considered as ªideal reputation valuesº. Eigen-

trust, although it is very efficient to detect malicious agents, adopts a strategy

that leads to assign to the honest agents reputation values that are relatively

lower than their ideal reputation values.

3.2 Effective reputation computation

In this section we present the recursive reputation model. Before developing the

model, we introduce our notation.

Notation

n # of agents

T = [tij ] n×n original trust matrix where

tij is the trust perceived by member j

with respect to the member i

T̃ n×n Eigentrust matrix

T̂ n×n matrix obtained with our strategy

r n× 1 reputation vector

v n× 1 teleportation vector

u n× 1 vector of ones

d n× 1 row-sums vector of T

P Set of pre-trusted agents

F Set of potential colluded agents

M Set of malicious agents

Table 3.1: Notation

3.2.1 The Recursive Reputation Model

In our scenario, we suppose to have a social network composed by n members, each

member being uniquely identified by an integer i, 1 ≤ i ≤ n.

The reputation ri of each member i of the social network can be seen as the sum

of all the trust values tij , j = 1, . . . ,n, corresponding to a trustor j , weighted by the

reputation rj of j . Without loss of generality, we will consider evaluations over the

interval [0,1], i.e. T = [tij ] ∈ [0,1]
n×n and the reputation vector r ∈ [0,1]n. Moreover,

we assume that each member j may distribute an overall sum of the trust values tij

equal to 1, namely
∑n

i=1 tij = 1, then the matrix T will be column-stochastic.
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The reputation ri can also be viewed as the barycenter of all the trust values

expressed for i by the trustors. Formally:

ri =

∑n
j=1 tij rj∑n
j=1 rj

, i = 1, . . . ,n. (3.1)

It is worthwhile to remark that it can be seen as the transpose of the weighted

adjacency matrix A = [aij ] of a directed graph G where each node is associated with a

user and a non negative value aij is assigned to the edge (i, j), representing the trust

score assigned by the member i to the member j .

The reputation vector r = (r1, . . . , rn)T , whose elements satisfy (6.2), can be com-

puted as solution to the system of linear equations:

T r = r (3.2)

Since the matrix T is column-stochastic (equivalently it is a transition or a

Markov matrix), as it is well-known, if we further assume that its entries are pos-

itive, the solution to (4.2) is guaranteed by the Perron-Frobenius theorem. In partic-

ular, it follows that λ = 1 = ρ(T ) is a simple eigenvalue of T (the other ones being

in modulus less than 1), and there exists a corresponding unique eigenvector r ∈ Rn,

∥r∥1 = 1, that is a unique positive reputation vector whose elements sum up to 1.

This vector (also called the steady-state vector) represents the stable equilibrium

distribution of the Markov chain represented by the transition matrix T .

A modified version of the eigensystem (4.2) is represented by the well-known

PageRank model:

T̃ r = r (3.3)

where

T̃ = αT + (1−α)vuT

represents the new trust matrix, 0 ≤ α ≤ 1, u is the vector of all ones, v is a non-

negative vector with unitary 1-norm, that is uT v = 1.

The vector v is usually called teleportation vector.

PageRank’s original algorithm adopts the uniform choice v =
1
n
u. In such a case,

when α , 0,1, the existence and uniqueness of the solution to (3.3) are guaranteed.

In the 2003 paper by Kamvar et al. [43] a modified model is proposed, known as

Eigentrust algorithm. Its basic version consists in solving the same system as in (3.3),

by choosing v in a way useful to mitigate the final reputation of malicious users. In

particular, by denoting with P the set of the so-called pre-trusted agents, i.e. agents

that can be a-priori considered particularly trustworthy, the entry vi of the vector v

is equal to 1/ |P |, if the i-th user belongs to P , 0 otherwise.
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In this approach, the pre-trusted users are known a priori. They coincide, for

example, with the first few members to join the network.

The detection of potential malicious users, on the other hand, could be better

exploited for a more realistic computation of the reputation vector. In the next sub-

section, we propose a strategy that allows to ªread" such information straight from

the matrix T .

3.2.2 Detection of potential malicious users

We aim at investigating collusion in social networks, so we first provide a definition

of malicious agents and, then, a threshold strategy for concretely detecting them.

We stress that by means of this approach we detect the best candidates as mali-

cious agents directly from the matrix T .

Once the malicious are identified, we can use this information in two ways: either

considering the non-colluding agents as pre-trusted in the Eigentrust model (3.3) or

employing an alternative algorithm which specifically makes use of such data.

We classify a pair of agents i, j as malicious if they collude, i.e. when the two con-

ditions listed below are verified at the same time:

- the trusts tij and tji take high values (and they are similar to each other);

- the sum of the residual trust scores belonging to the rows i and j takes a low

value.

We thus check in the matrix T for high values tij corresponding to high values tji ,

associated with users which receive low values from the most part of the members.

We observe that the collusion relationship is not transitive, since the collusion

between two agents A and B and the collusion between the agents B and C do not

necessarily imply a collusion between A and C, and the transitive property is not

requested by our model.

For a proper mathematical formulation of the above procedure, we introduce the

vector d of the node out-degrees of the graph G, or, equivalently, the vector of the

row-sums of the matrix T , i.e. d = Tu. We furthermore fix two threshold values δi ,

i = 1,2.

We first identify the quasi-symmetric high-valued elements in the matrix T by

constructing an auxiliary matrix C with elements:

cij =



tij , if tij ≥ δ1

0 otherwise
. (3.4)

It corresponds to the weighted adjacency matrix of the (undirected) sub-graph of G

with edges connecting potential colluded agents.
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We then construct the vector d̃ = d−Cu and classify an agent i, for each i = 1, . . . ,n,

as malicious if:

d̃i ≤ δ2.

A proper selection of the threshold values δ1 and δ2 is crucial for achieving an accu-

rate detection of the malicious agents.

The parameter δ1 must be chosen sufficiently large to identify all possible candi-

dates (agents which assign high trust scores to each other). So, in order not to exclude

any of them, we fix it as:

δ1 = min
1≤j≤n

max
1≤i≤n

tij .

As to the threshold δ2, in order to exclude from the first selection honest agents

which receive anyway high trust values from the rest of the honest agents, we set it

as:

δ2 =

∑
i,j∈F (tij − cij )

|F |

where F is the index set of the potential colluded agents identified after the thresh-

olding step (3.4) and cij are the elements of the matrix C. Such information can then

be used to set the proper initial reputation vector in the Eigentrust model. Indeed,

letM be the index set of the malicious users identified as above. The teleportation

vector v has then elements vi which are set to 0 if i ∈M, and to 1/(n−|M|) otherwise.

It has to be noted that, in such a way, we assign the same amount of trust to the

non-malicious agents, irrespective of their initial actual trust values.

3.2.3 Our algorithm to compute the reputation

The strategy of Eigentrust is to penalize all the agents that are not pre-trusted (i.e.,

all the potential colluding agents), with the side-effect of computing an incorrect

final reputation for those agents that are not in the pre-trusted set but also are not

colluded. With the aim to avoid the above strong penalization of all the agents that

are not pre-trusted, we propose an alternative approach to Eigentrust. The idea is to

pre-process the set of the agents to determine a sub-set of suitable candidates to be

considered as colluded, and then assign a low value of trustworthiness only to these

ªsuspectsº, rather than to all the agents that are not in the pre-trusted set.

In particular, once the malicious are identified, we modify the matrix T into a

new matrix T̂ as follows:

- Fix a value ϵ > 0;

- Let t̂ij =



ϵ, i, j ∈M

tij , otherwise

- Make the matrix T̂ column stochastic by normalizing to 1 each column.
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In the choice of ϵ the size of the matrix has to be taken into account, so to guaran-

tee that it keeps a low value as n increases. This is achieved, for example, by setting

ϵ = β/n, with β ≤ 1.

In our experiments, for computational purpose, we adopt the choice β = 2 · 10−3.

For the sake of completeness, the scheme describing the entire procedure (in-

cluding the steps for the detection of malicious) is illustrated in Algorithm 1.

Numerical and experimental examples, as shown later, confirm that, in addition

to detect colluding agents, this strategy allows to keep the reputations of all the

honest agents unchanged.

3.3 An illustrative example

Wepropose an example to illustrate our approach and to compare it to the Eigentrust

approach in the particular situation of a social network of 14 agents. We consider

the trust matrix T given in Table 1. For the choice of α, we follow the traditional

Eigentrust approach, where the value is fixed to 0.85.
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Algorithm 1 Algorithm for malicious detection and reputation computation
Require: T , β, α

1: v = [0,0, . . . ,0]T

2: d← T [1,1, . . . ,1]T

3: δ1←min{max{tij , i = 1, . . . ,n}, j = 1, . . . ,n}

4: F = ∅

5: for i = 1 to n do

6: for j = 1 to n do

7: if tij ≥ δ1 then

8: cij ← tij

9: F ←F ∪ {i} (i added only once)

10: else

11: cij ← 0

12: end if

13: end for

14: end for

15: d← d −C[1,1, . . . ,1]T

16: δ2←
∑

i,j |tij − cij |/ |F |

17: for i = 1 to n do

18: if di > δ2 then

19: vi = 1

20: M←M∪{i}

21: end if

22: end for

23: v← v/
∑

i vi

24: for i, j = 1 to n do

25: if i, j ∈M then

26: tij ← β/n

27: end if

28: end for

29: normalize T

30: solve (αT + (1−α)v[1,1, . . . ,1]T )r = r

31: return r

The suspected malicious users are the ones corresponding to the agents 8, 9 and

10. Moreover, the members 1, 2 and 3 are good agents and receive high values of

trust from all honest agents, whereas the remaining honest members receive only

low trust values from all other agents.

We assume that tii = 0, i = 1, . . . ,n, so that the trust self assigned by a member is

not considered.
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Table 1Matrices used for our example in Section 4

T =




0 0.4 0.39 0.33 0.26 0.23 0.2 0.001 0.002 0.003 0.25 0.19 0.23 0.24

0.36 0 0.43 0.28 0.3 0.189 0.22 0.002 0.003 0.002 0.22 0.2 0.25 0.223

0.42 0.41 0 0.19 0.28 0.195 0.23 0.001 0.005 0.001 0.23 0.21 0.196 0.196

0.08 0.0351 0.07 0 0.1 0.14 0.11 0.003 0.001 0.009 0.1 0.095 0.12 0.09

0.04 0.07 0.06 0.1 0 0.09 0.091 0.006 0.003 0.008 0.09 0.08 0.093 0.086

0.02 0.019 0.01 0.06 0.02 0 0.1 0.009 0.01 0.006 0.08 0.1 0.055 0.076

0.025 0.015 0.003 0.02 0.03 0.125 0 0.019 0.03 0.006 0.01 0.11 0.035 0.066

0.01 0.0049 0.006 0.002 0.003 0.006 0.009 0 0.46 0.46 0.002 0.002 0.006 0.009

0.009 0.006 0.003 0.006 0.001 0.002 0.001 0.42 0 0.42 0.003 0.001 0.005 0.003

0.015 0.019 0.008 0.001 0.002 0.009 0.002 0.48 0.43 0 0.008 0.002 0.003 0.005

0.009 0.009 0.005 0.003 0.001 0.008 0.006 0.01 0.009 0.001 0 0.002 0.002 0.002

0.002 0.003 0.005 0.005 0.001 0.001 0.009 0.02 0.01 0.06 0.003 0 0.003 0.001

0.004 0.008 0.001 0.002 0.001 0.002 0.01 0.009 0.02 0.02 0.003 0.004 0 0.003

0.006 0.001 0.009 0.001 0.001 0.003 0.012 0.02 0.017 0.004 0.001 0.004 0.002 0




T̃ =




0.1925 0.2725 0.2705 0.2585 0.2445 0.2385 0.2325 0.1927 0.1929 0.1931 0.2425 0.2305 0.2385 0.2405

0.2612 0.1892 0.2752 0.2452 0.2492 0.2270 0.2332 0.1896 0.1898 0.1896 0.2332 0.2292 0.2392 0.2338

0.2650 0.2630 0.1810 0.2190 0.2370 0.2200 0.2270 0.1812 0.1820 0.1812 0.2270 0.2230 0.2202 0.2202

0.0833 0.0743 0.0813 0.0673 0.0873 0.0953 0.0893 0.0679 0.0675 0.0691 0.0873 0.0863 0.0913 0.0853

0.0657 0.0717 0.0697 0.0777 0.0577 0.0757 0.0759 0.0589 0.0583 0.0593 0.0757 0.0737 0.0763 0.0749

0.0439 0.0437 0.0419 0.0519 0.0439 0.0399 0.0599 0.0417 0.0419 0.0411 0.0559 0.0599 0.0509 0.0551

0.0399 0.0379 0.0355 0.0389 0.0409 0.0599 0.0349 0.0387 0.0409 0.0361 0.0369 0.0569 0.0419 0.0481

0.0062 0.0052 0.0054 0.0046 0.0048 0.0054 0.0060 0.0042 0.0962 0.0962 0.0046 0.0046 0.0054 0.0060

0.0046 0.0040 0.0034 0.0040 0.0030 0.0032 0.0030 0.0868 0.0028 0.0868 0.0034 0.0030 0.0038 0.0034

0.0082 0.0090 0.0068 0.0054 0.0056 0.0070 0.0056 0.1012 0.0912 0.0052 0.0068 0.0056 0.0058 0.0062

0.0065 0.0065 0.0057 0.0053 0.0049 0.0063 0.0059 0.0067 0.0065 0.0049 0.0047 0.0051 0.0051 0.0051

0.0091 0.0093 0.0097 0.0097 0.0089 0.0089 0.0105 0.0127 0.0107 0.0207 0.0093 0.0087 0.0093 0.0089

0.0069 0.0077 0.0063 0.0065 0.0063 0.0065 0.0081 0.0079 0.0101 0.0101 0.0067 0.0069 0.0061 0.0067

0.0069 0.0059 0.0075 0.0059 0.0059 0.0063 0.0081 0.0097 0.0091 0.0065 0.0059 0.0065 0.0061 0.0057




T̂ =




0 0.4000 0.3900 0.3300 0.2600 0.2300 0.2000 0.0100 0.0182 0.0250 0.2500 0.1900 0.2300 0.2400

0.3600 0 0.4300 0.2800 0.3000 0.1890 0.2200 0.0200 0.0273 0.0167 0.2200 0.2000 0.2500 0.2230

0.4200 0.4100 0 0.1900 0.2800 0.1950 0.2300 0.0100 0.0454 0.0083 0.2300 0.2100 0.1960 0.1960

0.0800 0.0351 0.0700 0 0.1000 0.1400 0.1100 0.0300 0.0091 0.0750 0.1000 0.0950 0.1200 0.0900

0.0400 0.0700 0.0600 0.1000 0 0.0900 0.0910 0.0600 0.0273 0.0667 0.0900 0.0800 0.0930 0.0860

0.0200 0.0190 0.0100 0.0600 0.0200 0 0.1000 0.0900 0.0909 0.0500 0.0800 0.1000 0.0550 0.0760

0.0250 0.0150 0.0030 0.0200 0.0300 0.1250 0 0.1900 0.2727 0.0500 0.0100 0.1100 0.0350 0.0660

0.0100 0.0049 0.0060 0.0020 0.0030 0.0060 0.0090 0 0.0001 0.0001 0.0020 0.0020 0.0060 0.0090

0.0090 0.0060 0.0030 0.0060 0.0010 0.0020 0.0010 0.0001 0 0.0001 0.0030 0.0010 0.0050 0.0030

0.0150 0.0190 0.0080 0.0010 0.0020 0.0090 0.0020 0.0001 0.0001 0 0.0080 0.0020 0.0030 0.0050

0.0090 0.0090 0.0050 0.0030 0.0010 0.0080 0.0060 0.1000 0.0818 0.0083 0 0.0020 0.0020 0.0020

0.0020 0.0030 0.0050 0.0050 0.0010 0.0010 0.0090 0.2000 0.0909 0.4999 0.0030 0 0.0030 0.0010

0.0040 0.0080 0.0010 0.0020 0.0010 0.0020 0.0100 0.0900 0.1818 0.1666 0.0030 0.0040 0 0.0030

0.0060 0.0010 0.0090 0.0010 0.0010 0.0030 0.0120 0.2000 0.1545 0.0333 0.0010 0.0040 0.0020 0



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In our example we fix δ1 = 0.21 and δ2 = 0.96.

Applying our threshold strategy, the agents 8,9 and 10 are actually considered as

the only malicious agents, so thatM = {8,9,10}.

Following the Eigentrust model, the teleportation vector is

v =
1
11

(1,1,1,1,1,1,1,0,0,0,1,1,1,1)T

and the trust matrix T̃ , that is used in (3.3), is given in Table 1.

To construct the matrix T̂ following our new method, we fix ϵ = 0.00014, taking

into account the size of matrix T . For i, j ∈M = {8,9,10}, let t̂ij = ϵ and by normaliz-

ing to 1 each column we get the column stochastic matrix T̂ in Table 1.

In Fig. 3.1 we illustrate, for comparison, the original trust matrix T and the T̃ , T̂

matrices obtained with the two different methods, where trust values are differenti-

ated by color tone. It is evident that in the original trust matrix the rows 8, 9 and 10

exhibit unusual high values of trust and are classified as malicious users. We high-

light that, unlike the Eigentrust matrix, the trust values of the honest agents remain

unchanged in the matrix obtained by applying our method.

The respective corresponding reputation vectors, obtained by solving the eigen-

system (4.2) with T̃ , T̂ matrices are plotted in Fig. 3.2. We note that the method

we propose does not modify the real reputation scores of the honest agents unlike

Eigentrust.

3.4 Error measure

To compare the results obtained by using different methods, we propose an error

metric to measure how each method affects the reputation of the non colluded (pre-

trusted) agents (once they are identified with our strategy) while lowering the repu-

tation of malicious ones.

The idea is to evaluate the distance between the reputation values associated

only with the pre-trusted users obtained with each algorithm and the solution to

(4.2) once in the original matrix T the trust values associated with malicious agents

are deleted.

More formally, let P be the set of indexes associated to the pre-trusted users,

obtained as P = {1,2, . . . ,n}\M and let p = |P |. Let E be the n×pmatrix whose columns

are the standard unit coordinate (column) vectors ej = [0, . . . ,1, . . . ,0]T , j ∈ P , with

the only nonzero coefficient 1 at the j-th entry. Premultiplication by the transpose

of such a matrix allows to extract only the rows associated to the pre-trusted-users,

while postmoltiplication by E perfoms a similar extraction on the columns.
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Fig. 3.1: T , T̃ , T̂ matrices corresponding to the Example in Section 4.3.

Fig. 3.2: Reputation vectors obtained with the two different approaches.
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Table 2 Errors with Eigentrust and our method, as functions of the number of agents

and the percentage of malicious users

%mal- Eigentrust Our method
n

icious e2 e∞ e2 e∞

50

10% 6.2 ·10−1 1.3 ·10−2 1.2 ·10−3 2.3 ·10−3

20% 7.2 ·10−2 1.4 ·10−1 2.1 ·10−3 4.0 ·10−3

30% 8.1 ·10−2 1.5 ·10−1 3.2 ·10−3 7.1 ·10−3

40% 8.1 ·10−2 1.5 ·10−1 4.8 ·10−3 8.8 ·10−3

50% 8.9 ·10−2 1.6 ·10−1 6.9 ·10−3 1.2 ·10−2

100

10% 4.8 ·10−2 1.1 ·10−1 4.2 · 10−4 9.5 ·10−4

20% 4.9 ·10−2 1.1 ·10−1 6.7 ·10−4 1.5 ·10−3

30% 5.5 ·10−2 1.2 ·10−1 1.0 ·10−3 2.2 ·10−3

40% 5.9 ·10−2 1.2 ·10−1 1.6 ·10−3 3.2 ·10−3

50% 6.4 ·10−2 1.3 ·10−1 2.3 ·10−3 4.2 ·10−2

10% 3.3 ·10−2 9.1·10−2 1.5 ·10−4 3.8 ·10−4

20% 3.4 ·10−2 9.5 ·10−2 2.6 ·10−4 7.9 ·10−4

30% 3.8 ·10−2 9.6 ·10−2 3.8 ·10−4 1.1 ·10−3

40% 4.2 ·10−2 1.0 ·10−1 5.5 ·10−4 1.3 ·10−3
200

50% 4.5 ·10−2 1.1 ·10−1 8.0 ·10−4 1.8 ·10−3

10% 2.7 ·10−2 7.5 ·10−2 8.4 ·10−5 2.5 ·10−4

20% 2.9 ·10−2 7.9·10−2 1.4 ·10−4 3.6 ·10−4

30% 3.0 ·10−2 8.6 ·10−2 1.9 ·10−4 5.5 ·10−4

40% 3.5 ·10−2 9.9 ·10−2 3.0 ·10−4 8.7 ·10−4
300

50% 3.8 ·10−2 1.0 ·10−1 4.2 ·10−4 1.1 ·10−3

10% 2.4 ·10−2 6.8 ·10−2 5.3 ·10−5 1.6 ·10−4

20% 2.5 ·10−2 7.0 ·10−2 9.0 ·10−5 2.5 ·10−4

30% 2.6 ·10−2 7.2 ·10−2 1.2 ·10−4 3.7 ·10−4

40% 3.0 ·10−2 8.5 ·10−2 2.0 ·10−4 5.2 ·10−4
400

50% 3.3 ·10−2 8.9 ·10−2 2.8 ·10−4 7.2 ·10−4

10% 2.1 ·10−2 6.9 ·10−2 3.7 ·10−5 1.1 ·10−4

20% 2.3 ·10−2 7.1 ·10−2 6.6 ·10−5 1.8 ·10−4

30% 2.3 ·10−2 7.2 ·10−2 9.5 ·10−5 2.6 ·10−4

40% 2.6 ·10−2 7.4 ·10−2 1.3 ·10−4 3.9 ·10−4
500

50% 2.9 ·10−2 8.0 ·10−2 2.1 ·10−4 6.1 ·10−4

%mal- Eigentrust Our method
n

icious e2 e∞ e2 e∞

1000

10% 1.5 ·10−2 4.9 ·10−2 1.3 ·10−5 4.2 ·10−5

20% 1.6 ·10−2 5.3 ·10−2 2.2 ·10−5 7.4 ·10−5

30% 1.7 ·10−2 6.0 ·10−2 3.4 ·10−5 1.1 ·10−4

40% 1.8 ·10−2 5.7 ·10−2 4.8 ·10−5 1.4 ·10−4

50% 2.0 ·10−2 6.8 ·10−2 7.3 ·10−5 2.1 ·10−4

2500

10% 0.9 ·10−2 3.4 ·10−2 3.4 ·10−6 1.2 ·10−5

20% 1.0 ·10−2 3.4 ·10−2 5.7 ·10−6 2.1 ·10−5

30% 1.0 ·10−2 3.6 ·10−2 8.6 ·10−6 2.8 ·10−5

40% 1.2 ·10−2 4.0 ·10−2 1.2 ·10−5 4.1 ·10−5

50% 1.3 ·10−2 4.4 ·10−2 1.8 ·10−5 5.9 ·10−5

5000

10% 6.9 ·10−3 2.5 ·10−2 1.2 ·10−6 4.5 ·10−6

20% 7.3 ·10−3 2.7 ·10−2 2.0 ·10−6 7.7 ·10−6

30% 7.8 ·10−3 2.8 ·10−2 3.0 ·10−6 1.2 ·10−5

40% 8.4 ·10−3 2.8 ·10−2 4.4 ·10−6 1.8 ·10−5

50% 9.2 ·10−3 3.2 ·10−2 6.5 ·10−6 2.1 ·10−5

7500

10% 5.7 ·10−3 2.2 ·10−2 6.5 ·10−7 2.3 ·10−6

20% 6.0 ·10−3 2.2 ·10−2 1.1 ·10−6 4.2 ·10−6

30% 6.4 ·10−3 2.4 ·10−2 1.6 ·10−6 6.5 ·10−6

40% 6.9 ·10−3 2.5·10−2 2.4 ·10−6 9.3 ·10−6

50% 7.5 ·10−3 2.5 ·10−2 3.5 ·10−6 1.3 ·10−5

10000

10% 4.9 ·10−3 1.9 ·10−2 4.2 ·10−7 1.7 ·10−6

20% 5.1 ·10−3 1.9 ·10−2 7.1 ·10−7 2.5 ·10−6

30% 5.5 ·10−3 1.9 ·10−2 1.0 ·10−6 3.5 ·10−6

40% 6.0 ·10−3 2.1 ·10−2 1.5 ·10−6 5.5 ·10−6

50% 6.5 ·10−3 2.4 ·10−2 2.3 ·10−6 8.2 ·10−6

25000

10% 3.8 ·10−3 1.5 ·10−2 1.1 ·10−7 4.2 ·10−7

20% 4.0 ·10−3 1.5 ·10−2 1.9 ·10−7 5.9 ·10−7

30% 4.3 ·10−3 1.6 ·10−2 3.0 ·10−7 7.8 ·10−7

40% 4.7 ·10−3 1.9 ·10−2 4.4 ·10−7 9.1 ·10−7

50% 5.1 ·10−3 1.9 ·10−2 5.8 ·10−7 2.1 ·10−6

Suppose we have found a solution to (4.2), where T is replaced either by the

matrix T̃ as in (3.3) in the case of the Eigentrust method, with teleportation vector

v =
1
n
u, or the matrix T̂ as in our strategy.

Once the reputation vector r has been computed by one of the two methods,

we extract only the values associated to the pre-trusted users, that is we compute

r̂ = ET r̂.

We now use the original trust matrix T and solve the system

ETTE r̃ = r̃ ,

which is associated to the "ideal" situation, where only the pre-trusted agents are

taken into account.

After normalizing the vectors r̂ and r̃, we evaluate the error both as
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e2 =
∥r̃ − r̂∥2
∥r̃∥2

=

√√∑n
j=1(̃rj − r̂j )

2

∑n
j=1 r̃

2
j

(3.5)

and

e∞ =
∥r̃ − r̂∥∞
∥r̃∥∞

=
max
1≤j≤n

|̃rj − r̂j |

max
1≤j≤n

r̃j
(3.6)

In Section 4.4 we perform several mathematical simulations, illustrating the re-

sults obtained for different values of the matrix size and different ratios of malicious

users in the network. We make a quantitative analysis of the results by means of the

error measures (3.5) and (3.6).

3.5 Experimental Results

We present the results of an experimental campaign of simulations for testing our

method, comparing it with the Eigentrust algorithm.

We stress that we obtain the information on the malicious users straight from the

matrix T in the pre-processing phase in both cases. In fact, the information on the

pre-trusted agents needed by Eigentrust relates to the agents that are not identified

as malicious in such a phase. In other words, in order to make the comparison be-

tween the two approaches meaningful, we use the same information both in Eigen-

trust and in our algorithm, i.e. we inform Eigentrust that the agents which are not

identified as malicious could be considered honest, and then pre-trustable.

Our numerical code has been implemented using MATLAB Release 2022a fol-

lowing the steps summarized in our Algorithm 1. Our numerical experiments were

run on a 64-bit workstation with a Intel(R) Core(TM) i7-10875H CPU @ 2.30 GHz

and 128 GB of RAM.

The major computational load in the entire procedure corresponds to the com-

putation of the solution to the system of linear equations (line 30). Our code uses

the MATLAB function eig to solve it by finding the eigenvector corresponding to

the eigenvalue 1, with a cost corresponding to O(n3). The running time of the larger

experiment (corresponding to n = 25.000) was equal to 1821 seconds.

Our algorithm, if implemented by a centralized architecture, generates running

times that are reasonable for small networks (10.000-50.000 nodes). We only re-

fer to a centralized architecture, where a recomputation of the reputation values is

needed whenever some users are added or removed from the system. Generally, on

large-scale communities centralized architectures [10] are more expensive than dis-

tributed ones in terms of costs for data storage, retrieval tasks, computational and

communication overheads [25]. In contrast, distributed architectures [40, 52, 53]

may perform better than centralized approaches in terms of computational costs,
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although they are more complex to implement and more vulnerable to malicious

attacks. It is of course possible to implement the algorithm in a distributed architec-

ture fashion, to improve efficiency.

We considered different cases, for different values of n, i.e. the dimension of the

social network, and different ratios of malicious users in the network. For each case

we have performed several simulations. We report in Table 2 the average error ob-

tained by both algorithms.

As shown in the table, our method is more effective than Eigentrust for each value

of the dimension and for each value of the ratio, presenting a lower error than the

one produced by Eigentrust.

Fig. 3.3: Average errors in 2-norm with 10% of malicious users for different values

of the matrix size.

As n increases, both errors decrease, but with our method the error becomes very

small: for example, for n = 25000, with 20% of malicious members, the 2-norm error

order is 10−7 against 10−3 of the Eigentrust algorithm.

Finally, we may observe that, as the ratio of malicious agents increases, the error

increases for both methods, but our algorithm still produces a very small error (for

n = 25000, the 2-norm error order with 10% of malicious members is 10−7 and it

increases with 50% of malicious users but with the same 10−7) magnitude.

In Fig. 3.3, we compare the 2-norm average errors obtained with the two meth-

ods, varying the number of users from 1000 to 25000 with a fixed ratio of 10% of

malicious agents and in Fig. 3.4 and 3.5 we compare the 2-norm average errors ob-

tained with the two methods in a social network of 5000 and 25000 users, varying

the ratios of malicious users from 10% to 50%. The graphics in the other cases are

analogous. Let us note that the behavior of the ∞-norm error is analogous to the

one of 2-norm error. The significant improvement of the precision in determining
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Fig. 3.4: Average errors in 2-norm for a social network with n = 5000 and different

ratios of malicious users

.

Fig. 3.5: Average errors in 2-norm for a social network with n = 25000 and different

ratios of malicious users

.

the real reputation of the agents (i.e., that reputation that would be obtained if all

the colluded agents were removed from the community) is due to the fact that our

algorithm, differently from Eigentrust, avoids a strong penalization of pre-trusted

(non-colluding) agents, while lowering the final reputation of malicious ones. This

is possible since our algorithm performs a specific pre-processing phase (not present

in EigentTrust) to detect potential colluded candidates. This then allows to assign a

low value of trustworthiness only to these colluded candidates, without penalizing

all the non pre-trusted agents (which is the strategy adopted by EigentTrust and

that leads to the side-effect of generating incorrect reputation values for these non

pre-trusted agents).
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3.6 Benefits and Limitations.

In this chapter, we have focused on the problem of identifying, in a social network,

the trustworthiness of an agent (human or software entity), in order to detect ma-

licious actors and marginalize or expel them from the community. We have consid-

ered the Eigentrast algorithm, recognized as one of the most effective solution both

to measure the reputation in a set of social agents and as benchmark or training as-

sistant. But we have highlighted a possible limitation in the Eingentrust algorithm,

observing that it increases the reputation of all the pre-trusted agents, regardless of

their reliability. To address the problem above, in this chapter we have proposed a

different strategy, based on a decrement of the fraudulent trust values that collud-

ing agents mutually exchange. Our strategy introduces the advantage, with respect

to Eigentrust, of estimating the reputation values of the honest actors in a manner

more adherent to the actual reliability of these agents. This elevated precision of our

method is particularly important, when the reputation of the agents is computed in

a distributed environment, when different reputation values are continuously com-

bined from different sources.

As limitations, in this work we have considered only one category of malicious

agents, precisely colluding agents, as if they were organised in a single group. We

have designed a strategy to determine malicious candidates in a pre-processing

phase, before computing the reputation values of the agents. We thus highlight that

our approach is limited to environments presenting only the collusion as malicious

activities. We notice that the results of our algorithm in terms of effectiveness strictly

depends on the richness of the information contained in the network, that is max-

imum for a complete network. Conversely, for other types of less rich and more

sparse network it would inevitably lead to a deterioration of performances. Finally,

our algorithm is currently limited to be applied on static networks.

In the next chapter, we propose an alternative strategy to detection of malicious

colluding agents, considering the case of several malicious cluster in coalition.
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A Graph Clustering algorithm in Trust and Reputation

Systems

As it has been previously discussed, a common and crucial issue in all social network

environments is the need to ensure a high level of trustworthiness, a fundamental

prerequisite for fostering authentic connections and ensuring a secure and positive

digital experience for members of communities.

The main challenge arises due to the presence of malicious agents engaging in

deceptive behaviors or fraud. A prevalent form of malicious behavior is collusion,

characterized by clandestine cooperation between multiple agents providing recip-

rocal positive feedback to manipulate perceptions and gain undeserved advantages.

As highlighted in Chapter 3, the EigenTrust algorithm is an effective method for

detecting malicious agents in social networks.

Although EigenTrust can be fruitfully used to detect agents performing several

different malicious behaviours in a social network, however three important issues

arise which limit its effectiveness when the particular malicious behaviour is the

collusion:

• (i) EigenTrust algorithm needs to yield as inputs the information about those

agents that can be a-priori considered particularly trustworthy, and detecting

such agents is not a trivial task in the particular case of collusion;

• (ii) Eigentrust detects malicious agents by artificially rewarding, in terms of

trust, non honest agents, without considering the reliability of these agents, i.e.

the effectiveness in performing their tasks; this generates an artificial modifica-

tion of the actual reputation values;

• (iii) finally, EigenTrust is not designed to face the situation in which we have

several, different groups of colluded agents.

In this latter case, the presence of different clusters of malicious agents leads Eigen-

trust to confuse malicious agents, which have low reputation, with non-malicious

but not very effective ones, which also have low reputation. This confusion gener-

ates, in these particular cases, a significant number of false positive agents. In par-

ticular, we highlight an important issue arising when it is necessary to compute rep-
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utation measures in presence of several, distinct groups of colluded agents. In this

situation, the agents of each group operate independently from the colluded agents

of each other group, with the result that the effect of the malicious activities of a

given group of colluded agents could also falsify the reputation of another group

of colluded agents, making harder to detect all the malicious agents. We have faced

the first two issues in the previous Chapter, introducing an automatic procedure to

provide to EigenTrust the necessary inputs mentioned in (i) and adopting a strat-

egy that detects malicious agents without modifying reputation values of the other

agents. Here we refer to the method introduced in Chapter 3 as Efficient Reputation-

Eigentrust (ER-EingenTrust).

In this Chapter, we provide a contribution to face the issue (iii) (see [54]). To this

purpose, we will introduce an apposite algorithm that combines EigenTrust with a

clustering procedure, which groups agents based on their reputation scores.

4.1 Literature review on Spectral Clustering Algorithms

There are a number of studies and surveys of TR systems in the literature that ana-

lyze the robustness of TRs to a variety of malicious behaviors, although sometimes

it can be complicated to compare systems designed for different specific application

contexts.

In section 3.1 we introduced the main Trust and Reputation systems, as well as

the mechanisms found in the literature that focus on identifying malicious users

or restricting their fraudulent activities. In this section, we will mainly focus on a

general overview on the clustering techniques, used for the classification of objects,

data or, as in our specific context, agents. In particular we analyze in detail the Spec-

tral clustering technique (see [55]), a particular algorithm that exploits the spectral

properties of a matrix called Laplacian.

Spectral clustering goes back to Donath and Hoffman (1973), who first suggested

to construct graph partitions based on eigenvectors of the adjacency matrix. In the

same year, Fiedler (1973) discovered that bi-partitions of a graph are closely con-

nected with the second eigenvector of the graph Laplacian, and he suggested to use

this eigenvector to partition a graph. In the machine learning community, spectral

clustering has been made popular by the works of Shi and Malik (2000), Ng et al.

(2002), Meila and Shi (2001), and Ding (2004).

The success of spectral clustering is mainly based on the fact that it does not

make strong assumptions on the form of the clusters. Spectral clustering can solve

very general problems like intertwined spirals, whereas other clustering tecniques

require strongly assumption, for example k-means, where the resulting clusters form
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convex sets (or, to be precise, lie in disjoint convex sets of the underlying space).

Moreover, spectral clustering can be implemented efficiently even for large data sets,

as long as we make sure that the similarity graph is sparse. Once the similarity graph

is chosen, we just have to solve a linear problem, and there are no issues of getting

stuck in local minima or restarting the algorithm for several times with different

initializations.

4.1.1 Similarity graphs

Given a set of data points x1, . . . ,xn and some notion of similarity sij ≥ 0 between all

pairs of data points xi and xj , the intuitive goal of clustering is to divide the data

points into several groups such that points in the same group are similar and points

in different groups are dissimilar to each other. If we do not have more information

than similarities between data points, a nice way of representing the data is in form

of the similarity graph G = (V ,E). We assume that the graph G is weighted and

undirect with vertex set V = {v1, . . . , vn}. Each vertex vi in this graph represents a data

point xi . Two vertices are connected if the similarity sij between the corresponding

data points xi and xj is positive or larger than a certain threshold, and the edge is

weighted by sij . The weighted adjacency matrix of the graph is the matrix W =

(wij )i,j=1,...,n. If wij = 0 this means that the vertices vi and vj are not connected by

an edge. As G is undirected we require wij = wji . The degree of a vertex vi ∈ V is

defined as

di =
n∑

j=1

wij .

Note that, in fact, this sum only runs over all vertices adjacent to vi , as for all other

vertices vj the weight wij is 0. The degree matrix D is defined as the diagonal matrix

with the degrees d1, . . . ,dn on the diagonal. There are several popular constructions to

transform a given set x1, . . . ,xn of data points with pairwise similarities sij or pairwise

distances dij into a graph, for example:

• The ϵ-neighborhood graph:: We connect all points whose pairwise distances

are smaller than ϵ. The ϵ-neighborhood graph is usually considered as an un-

weighted graph.

• k-nearest neighbor graphs: We connect vertex vi with vertex vj if vj is among

the k-nearest neighbors of vi . However, this definition leads to a directed graph,

as the neighborhood relationship is not symmetric. To solve this problem we can

simply ignore the directions of the edges, that is we connect vi and vj with an

undirected edge if vi is among the k-nearest neighbors of vj or if vj is among the

k-nearest neighbors of vi .



44 4 A Graph Clustering algorithm in Trust and Reputation Systems

• The fully connected graph: We simply connect all points with positive simi-

larity with each other, and we weight all edges by sij . An example for such a

similarity function is the Gaussian similarity function

s(xi ,xj ) = e−(||xi−xj ||/(2σ
2)),

where the parameter σ controls the width of the neighborhoods. This parameter

plays a similar role as the parameter ϵ in case of the ϵ-neighborhood graph.

4.1.2 Graph Laplacians

The Laplacian of a graph, also known as the graph Laplacian or Laplacian matrix, is

a matrix associated with an undirected graph. This matrix is defined as the difference

between the adjacency matrix of the graph and a diagonal matrix representing the

degrees of the nodes, L = D −W . An important property of the Laplacian is its sym-

metry. The eigenvalues of the Laplacianmatrix are all non-negative, and the smallest

eigenvalue is always 0, with a multiplicity equal to the number of connected compo-

nents in the graph. This relationship implies that the graph is connected if and only

if its minimum eigenvalue is 0. The eigenvalues of the Laplacian matrix can provide

information about the graph’s structure, such as the number of connected compo-

nents and bipartite structures. Moreover, there are two matrices which are called

normalized graph Laplacians in the literature. Both matrices are closely related to

each other and are defined as

Lsym :=D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw :=D−1L = I −D−1W.

We denote the first matrix by Lsym as it is a symmetric matrix, and the second one by

Lrw as it is closely related to a random walk.

As it is the case for the unnormalized graph Laplacian, the multiplicity of the

eigenvalue 0 of the normalized graph Laplacian is related to the number of con-

nected components. The properties of the Laplacian make it a fundamental tool for

analyzing the structure and topological properties of graphs, with applications in

various fields, includingmachine learning, graph theory, and complex network anal-

ysis.

4.1.3 Spectral Clustering Algorithms

We state the most common spectral clustering algorithms:

Unnormalized spectral clustering

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.
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• Construct a similarity graph by one of the ways described above. Let W be its

weighted adjacency matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k eigenvectors u1, . . . ,uk of L.

• Let U ∈ Rn×n be the matrix containing the vectors u1, . . . ,uk as columns.

• For i = 1, . . . ,n, let yi ∈ Rk be the vector corresponding to the i-throw of U .

• Cluster the points (yi )i=1,...,n inR
k with k-means algorithm into clustersA1, . . . ,Ak

Output: Clusters C1, . . . ,Ck with Ci = {j | yj ∈ Ai }.

There are two different versions of normalized spectral clustering, depending

which of the normalized graph Laplacians is used.

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.

• Construct a similarity graph by one of the ways described above. Let W be its

weighted adjacency matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k generalized eigenvectors u1, . . . ,uk of the generalized eigen-

problem Lu = λDu.

• Let U ∈ Rn×n be the matrix containing the vectors u1, . . . ,uk as columns.

• For i = 1, . . . ,n, let yi ∈ Rk be the vector corresponding to the i-throw of U .

• Cluster the points (yi )i=1,...,n inR
k with k-means algorithm into clustersA1, . . . ,Ak

Output: Clusters C1, . . . ,Ck with Ci = {j | yj ∈ Ai }.

Note that this algorithm uses the generalized eigenvectors of L which correspond

to the eigenvectors of the matrix Lrw. The next algorithm also uses a normalized

Laplacian, but this time the matrix Lsym instead of Lrw.

Normalized spectral clustering according to Ng, Jordan andWeiss (2002)

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.

• Construct a similarity graph by one of the ways described above. Let W be its

weighted adjacency matrix.

• Compute the normalized Laplacian Lsym.

• Compute the first k eigenvectors u1, . . . ,uk of Lsym.

• Let U ∈ Rn×n be the matrix containing the vectors u1, . . . ,uk as columns.
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• Form the matrix T ∈ Rn×k from U by normalizing the rows to norm 1, that is set

tij = uij /(
∑

k u
2
ik)

1/2.

• For i = 1, . . . ,n, let yi ∈ Rk be the vector corresponding to the i-throw of T .

• Cluster the points (yi )i=1,...,n inR
k with k-means algorithm into clustersA1, . . . ,Ak

Output: Clusters C1, . . . ,Ck with Ci = {j | yj ∈ Ai }.

All three algorithms stated above look rather similar, apart from the fact that

they use three different graph Laplacians. A fundamental question related to spec-

tral clustering is related to which of the three graph Laplacians should be used to

compute the eigenvectors. One should always look at the degree distribution of the

similarity graph. If the graph is very regular and most vertices have approximately

the same degree, then all the Laplacians are very similar to each other, and will work

equally well for clustering. However, if the degrees in the graph are very broadly dis-

tributed, then the Laplacians differ considerably and it would be appropriate to use

normalized rather than non-normalized spectral clustering. To use these algorithms,

as evident, it is essential to have an availability of a similarity matrix and the appro-

priate number of clusters. Constructing the similarity graph for spectral clustering

is not a trivial task, and little is known on theoretical implications of the various con-

structions. Choosing the number k of clusters is a general problem for all clustering

algorithms, and a variety of more or less successful methods have been devised for

this problem. In model-based clustering settings there exist well-justified criteria to

choose the number of clusters from the data. Those criteria are usually based on the

log-likelihood of the data, which can then be treated in a frequentist or Bayesian

way.

4.2 Computing the reputation

4.2.1 The model

For the sake of clarity we recall now the model described in subsection 3.2.1. Sup-

pose to have a social network composed by nmembers, each member being uniquely

identified by an integer i, 1 ≤ i ≤ n.

The trust perceived by the member j with respect to the member i is represented

by the real number tij , 0 ≤ tij ≤ 1, ∀i, j = 1, . . . ,n.

The reputation ri of each member i of the social network can be seen as the sum

of all the trust values tij , j = 1, . . . ,n, corresponding to a trustor j , weighted by the

reputation rj of j . In other words, ri can be viewed as the barycenter of all the trust

values expressed for i by the trustors. Formally:
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ri =

∑n
j=1 tij rj∑n
j=1 rj

, i = 1, . . . ,n. (4.1)

Let us denote with T = [tij ] the trust matrix.

The reputation vector r = (r1, . . . , rn)T can then be computed by solving the follow-

ing eigenvector problem:

T r = r, ∥r∥1 = 1, (4.2)

where the 1-norm is defined as the sum of the values of the vector components and

with the assumption
n∑

i=1

tij = 1, (4.3)

which is equivalent to say that the matrix T is column-stochastic.

To mitigate the final reputation of malicios users, a modified model, known as

Eigentrust algorithm has been proposed [43]. Nevertheless, in this approach, the pre-

trusted users have to be known a priori and Eigentrust does not suggest any kind of

procedure for a priori discriminating honest and malicious agents.

Such a detection can lead to amore realistic computation of the reputation vector.

In Chapter 3 a strategy has been proposed to ªreadº such information straight from

the matrix T and to use it in the computation of the final reputation vector.

To this purpose, a proper definition of malicious user has been conveniently

given in the following way:

We classify a group of agents as malicious if they collude, i.e. if they have a bi-

directional exchange of high trust values and, at the same time, they are given low

trust values by the other members.

For such a definition of malicious, it is natural to think of clustering techniques

for identifying groups and to use such information to compute the final actual rep-

utation, as described in the next subsection.

4.2.2 Detection of malicious users through graph clustering

An appropriate model for a social network can be given in terms of a graph G =

(V ,E), where each vertex (or node) vi corresponds to a user. In our scenario G is a

directed weighted graph, the value tji (i.e. the trust value assigned by the member i

to the member j) representing the weight of the edge (i, j).

Note that the adjacency matrix A of such graph corresponds to the transpose of

the trust matrix T .

A common feature of social networks is the presence of community structure

properties, so that the graph can be often considered organized into subgraphs, each

of them representing a cluster.



48 4 A Graph Clustering algorithm in Trust and Reputation Systems

In our scenario, the maliciousness property of a pair of agents can be reviewed in

terms of similarity and an appropriate definition of similarity is the crucial aspect for

every clustering process. Roughly speaking, two nodes belonging to a certain cluster

are much more "similar" than two nodes belonging to different clusters.

Therefore, the concept of similarity is fundamental for grouping together items

that share similar characteristics or neighbouring behaviours. Similarity can be de-

fined through different metrics, depending on the type of data or characteristics

being considered. Then, to precisely define the similarity between users we base it

on their distinguishing characteristics. For example, good honest users are charac-

terised by exchanging high trust values with each other and receiving high trust

values. On the other hand, malicious colluding users are identified by the practice

of exchanging high trust values with each other and receiving low trust values from

other users.

Our aim is to use techniques for graph clustering for detecting malicious be-

haviours in order to use such information for a more reliable computation of the

final reputation.

The problem of identifying clusters over a network have been addressed in sev-

eral contributions (see, for example, [56, 57] and references therein). However, the

case of undirected graphs has been mainly considered. Finding clusters in directed

graphs is a more challenging task and is the topic of an increasing research activity

(see [58] for a review).

For the purpose of our work, we found out that the use of spectral clustering

techniques, originally designed for undirected graphs, can be adopted by means of

a proper reformulation of the problem.

Since spectral clustering only operates on symmetric adjacencymatrices, a proper

redefinition of such matrix must be given.

Typical transformations to the adjacency matrix in order to obtain a symmetric

one, include Ã = AAT , Ã = ATA.

Nevertheless, due to its simplicity, most of the algorithms use Ã = A +AT . This

approach almost ignores the directionality of the edges, except that in the case of

pairs of nodes with directed edges in both directions, which is indeed the situation

we are facing in this work (malicious pairs). On the other hand, the information

about the low trust values received by malicious agents by the other members risks

to be lost.

We thus propose to adopt the following transformation for the elements in the

new adjacency matrix:

ãij =
aij + aji

2(0.1+ |aij − aji |).
(4.4)
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This transformation allows us to create an adjacency matrix with optimal attributes

for our goals. Dividing the average of elements aij and aji for their difference, with

the addition of a constant 0.1, we obtain the connection between users. A larger dis-

parity between elements produces a value of ãij lower, while a smaller difference

generates a higher value for ãij . Then, by construction, Ã = [ãij ] is a symmetric ma-

trix, whose elements ãij attain high values if the users i and j are "similar", low values

if the users i and j are "not similar", thus satisfying the definition of similarity given

above.

Spectral clustering is a strategy for clustering graph data which operates on the

Laplacian matrix L, or on some normalized version of it, performing dimensionality

reduction before using a standard clustering procedure, as k-means.

In particular, we make use of the normalized spectral clustering procedure, in ac-

cording to Ng, Jordan and Weiss, described in [59]. Our input data consist in: the

similarity matrix Ã as in (4.4) and the number k of clusters.

Thus the process consists of the following steps:

1. Construct the normalized graph Laplacian matrix

L =D−1/2(D − Ã)D1/2

where D is the degree matrix defined as the diagonal matrix with diagonal ele-

ments dii =
∑n

j=1 ãij

2. Evaluate the k eigenvectors corresponding to the k smallest eigenvalues of the L.

Obtain a reduced-dimensional representation of the data arranging such eigen-

vectors in the columns of a matrix V of size n× k

3. normalize the each row vi ∈ R
k of V so that its 2-norm is equal to 1

4. Use k-means to cluster the rows vi , i = 1, . . . ,n, of V , into the clusters C1, . . . ,Ck

An important role in the above described procedure is played by the parameter k

connected to the number of clusters, which must be judiciously chosen according to

the number of users and the type of social network. A possible automatic choice can

be performed in terms of eigengap heuristic in the following way: choose k such that

the first k eigenvalues of L are very small and the following one is relatively large.

This idea works well in case of very distinct clusters, but fails in case there is some

kind of "overlapping". If we consider very large communities, an effective approach

present in literature is to approximate the number of clusters k with log(n), where

n is the number of users. In our case, with small to medium communities, we have

heuristically determined this number by an analysis of sensitivity, testing different

values and using the value leading to the best results.

Once the clusters C = {C1, . . . ,Ck} have been obtained, we proceed recursively as

follows
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1. Compute the reputation vector r as in (4.2)

2. Compute the j-th cluster reputation as

Årj =

∑
i∈Cj

ri

|Cj |
, ∀j = 1, . . . , k

3. Fixing δ > 0, identify as "colluding clusters" all those that possess a reputation

less or equal to δ

4. Remove from the network all the agents belonging to such clusters, i.e. delete

the corresponding rows and columns from the matrix T . Let C ← C \ {Cj : Årj ≤ δ},

k = |C|

5. Repeat from step 1 and stop when all clusters in C have a reputation greater than

δ.

4.3 An explicative example

We propose an example to illustrate our approach in the particular situation of a

social network of 8 agents. We consider the original trust matrix

T =




0 0.9 0.7 0.7 0.2 0.2 0.8 0.9

0.9 0 0.8 0.7 0.3 0.1 0.9 0.8

0.25 0.25 0 0.9 0.95 0.95 0.2 0.2

0.25 0.25 0.9 0 0.95 0.95 0.15 0.2

0.1 0.1 0.1 0.1 0 0.9 0.3 0.25

0.1 0.1 0.1 0.1 0.9 0 0.25 0.3

0.4 0.4 0.4 0.4 0.4 0.4 0 0.4

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0




.

The suspected malicious colluding group are the ones corresponding to the clus-

ters ( 3,4) and (5,6).

We assume that tii = 0 ,∀i = 1, . . . ,8, so that the trust assigned by member to itself

is not consideredand compute similarity matrix S.

S =




0 9 0.86 0.86 0.75 0.75 1.2 1.08

9 0 0.8 0.86 0.66 1 1.08 1.2

0.86 0.8 0 9 0.55 0.55 1 1

0.86 0.86 9 0 0.55 0.55 0.78 1

0.75 0.66 0.55 0.55 0 9 1.75 1.3

0.75 1 0.55 0.55 9 0 1.3 1.75

1.2 1.08 1 0.78 1.75 1.3 0 4

1.08 1.2 1 1 1.3 1.75 4 0




.
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We apply Spectral Clustering, after choosing the appropriate number k of clusters, in

this case k = 4.

Agents i = 1, . . . ,8 are clustered as follows:

C1 = (1,2), C2 = (3,4), C3 = (5,6), C4 = (7,8).

By computing the reputation score of users, we obtain the average reputation

r̃(Ck) associated with each cluster:

r̃(C1) = 0.20 r̃(C2) = 0.12

r̃(C3) = 0.06 r̃(C4) = 0.12

In corrispondence of δ = 0.11, we have r̃(C3) ≤ δ, then the users 5 and 6 are classified

as malicious colluding agents and removed from the network.

We recalculate the new reputation score of the remaining users then the new

average reputation of the remaining clusters:

r̃(C1) = 0.25 r̃(C2) = 0.10 r̃(C4) = 0.14

We note that r̃(C2) ≤ δ, then the users 3 and 4 are classified as malicious colluding

agents and removed from the network.

By iterating the process, we observe that the two remaining clusters (C1 and C4) have

a greater average reputation than δ, so we stop the algorithm.

Fig. 4.1: Reputations obtained by using and not using malicious

In Figure 4.1, we present, for information purposes only, the user reputations ob-

tained through the use of ER-EigenTrust. In case A, no malicious users are taken into
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account, while in case B we incorporate data onmalicious users obtained through the

Cluster Method.

It is evident how the presence of malicious users in a social network impacts all

reputations, thus underlining the importance of a method that accurately identi-

fies malicious users at a prior phase to the calculation of the final reputations. This

would ensure the provision of correct information to users, preserving the integrity

of the reputational assessment process.

4.4 Experimental Results

We present the results of an experimental campaign of simulations for testing our

Clustering method, comparing it with our previous algorithm. We stress that we ob-

tain the information on the malicious colluding cluster (namely users) straight from

the matrix T. Our numerical code has been implemented using MATLAB Release

2023a following the steps summarized in section 4.2.2. Our numerical experiments

were run on a 64-bit workstation with a Intel(R) Core(TM) i7-10875H CPU @ 2.30

GHz and 128 GB of RAM. We considered different cases, for different values of n,

i.e. the dimension of the social network, and different ratios of malicious users in the

network. For each case we have performed several simulations. As shown in Table 1

and Table 2, to evaluate the performance of our algorithm, we used the well-know

metrics precision, recall and F-score, making a comparison with the values obtained

with the threshold strategy in our previous algorithm.

precision =
T ruePositives

T ruePositives +FalsePositives

recall =
T ruePositives

T ruePositives +FalseNegatives

F − score =
2 ∗ (Precision ∗Recall)
Precision+Recall

To clarify and make more accessible the fundamental concepts used in the above-

mentioned evaluation metrics, we recall that:

• True Positives are the positive elements that have been correctly classified as pos-

itive by the model, in our case the malicious colluding agents;

• False Positives are the negative elements that have been wrongly classified as pos-

itive by the model, in our case the honest agents;

• True Negatives are the negative elements that have been correctly classified as

negative by the model;

• False Negatives are the positive elements that have been misclassified as negative

by the model.
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In particular, precision measures how much of the cases classified as positives are

actually positives, while recall measures how much of the true positives have been

identified by the model. Instead, the F-score provides a single number that balances

precision and recall. This metric is particularly useful in situations where classes are

unbalanced, as it takes into account both type I errors (false positives) and type II

errors (false negatives). A high F-score indicates a good balance between precision

and recall.

n % of malicious
Cluster method ER-EigenTrust method

precision recall F-score precision recall F-score

100

5% 1 1 1 0.13 1 0.23

10% 1 1 1 0.2 1 0.3

15% 0.94 1 0.96 0.27 1 0.42

20% 1 0.8 0.88 0.34 1 0.51

25% 1 0.91 0.95 0.38 1 0.55

200

5% 1 1 1 0.16 1 0.27

10% 1 1 1 0.34 1 0.51

15% 1 0.8 0.88 0.44 1 0.61

20% 1 0.85 0.91 0.55 1 0.71

25% 1 0.92 0.95 0.51 1 0.68

300

5% 1 0.87 0.93 0.12 1 0.21

10% 1 0.8 0.88 0.19 1 0.32

15% 1 0.82 0.9 0.38 1 0.55

20% 1 0.83 0.9 0.4 1 0.57

25% 1 0.82 0.9 0.57 1 0.73

400

5% 1 1 1 0.13 1 0.23

10% 1 0.8 0.88 0.17 1 0.29

15% 1 1 1 0.26 1 0.41

20% 1 0.87 0.93 0.39 1 0.56

25% 0.98 0.94 0.96 0.46 1 0.63

500

5% 1 0.92 0.96 0.11 1 0.20

10% 1 0.88 0.93 0.2 1 0.33

15% 0.98 0.97 0.98 0.32 1 0.49

20% 0.98 0.91 0.94 0.42 1 0.60

25% 0.99 0.91 0.95 0.46 1 0.63

Table 4.1: Results of common evaluation metrics for small communities.
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n % of malicious
Cluster method ER-EigenTrust method

precision recall F-score precision recall F-score

1000

5% 1 1 1 0.16 1 0.28

10% 1 0.96 0.97 0.25 1 0.40

15% 0.98 1 0.99 0.31 1 0.47

20% 0.96 0.89 0.92 0.42 1 0.59

25% 0.96 0.94 0.95 0.51 1 0.68

2500

5% 0.92 1 0.96 0.14 1 0.25

10% 0.96 0.99 0.97 0.27 1 0.42

15% 0.97 0.98 0.98 0.34 1 0.51

20% 0.96 0.66 0.78 0.28 1 0.43

25% 0.95 0.95 0.93 0.61 1 0.54

5000

5% 0.92 1 0.96 0.13 1 0.23

10% 0.96 0.98 0.97 0.26 1 0.42

15% 0.97 0.99 0.98 0.37 1 0.54

20% 0.96 0.85 0.90 0.78 1 0.87

25% 0.93 0.59 0.72 0.55 1 0.71

7500

5% 0.94 0.99 0.97 0.14 1 0.24

10% 0.97 0.99 0.98 0.26 1 0.42

15% 0.98 0.97 0.97 0.4 1 0.57

20% 0.98 0.88 0.92 0.86 1 0.92

25% 0.99 0.89 0.94 0.87 1 0.93

10000

5% 0.89 1 0.94 0.15 1 0.27

10% 0.98 0.98 0.98 0.27 1 0.43

15% 0.98 0.97 0.97 0.35 1 0.52

20% 0.93 0.37 0.53 0.75 1 0.86

25% 0.97 0.74 0.84 0.77 1 0.87

Table 4.2: Results of common evaluation metrics for medium communities.

It is very clear that our method having a very high recall maintains the same

effectiveness as Eigentrust in detecting malicious agents (also considering the im-

provement introduced by ER-EigentTrust). But the advantage is mainly in terms of

precision: it is significantly better at avoiding false positives.

For example, as shown in the Figure 4.2, as n increase, leaving the percentage of

malicious stable at 15%, the precision of Cluster Method is high, in many cases with

values of 1 for small communities. Instead, the precision of ER-EigenTrust Method is

low, varying with values between 0.27 and 0.55.

In Figure 4.3 we analyse the precision obtained in a social network with 500 users,

varying the percentage of malicious from 5% to 25%. Regarding the Cluster Method,
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Fig. 4.2: Precision of Cluster and ER-EigenTrust methods as agents increase.

we note that as the percentage of maliciousness varies, the precision remains stable

at high values, while as regards ER-EigenTrust Method, the precision is very low but

increase as the percentage of malicious increase.

The significant improvement in precision achieved through the application of the

Cluster Method is attributable to its ability to aggregate malicious users into appro-

priate clusters and honest users into others. This subdivision facilitates a distinct

disparity in average reputations between individual clusters, mitigating the risk of

misclassifying honest users as malicious. This is particularly relevant since honest

users are generally expected to maintain a higher level of reputation.

In contrast, the ER-EigenTrustMethod directly classifiesmalicious users based on

the trust matrix, determining that all users, including honest ones, who receive low

trust ratings are tagged as malicious. This process leads to a situation in which any

honest users who receive low trust ratings and, consequently, possess a low reputa-

tion, are also wrongly identified as malicious. This procedure increases the number

of false positives and ultimately reduces the precision of the model.
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Fig. 4.3: Precision of Cluster and ER-EigenTrust methods as malicious agents

increase.

4.5 Benefits and Limitations

In this Chapter, we have focused on the problem of detecting colluded agents in a

social networks, trought cluster tecniques, and marginalize or expel them from the

community.

In this context, several TRR systems have been proposed in the literature, and

here we have examined the particular case represented by the well-known algo-

rithm Eigentrust, that is recognized as one of the most effective solution to mea-

sure the reputation in a set of social agents. We had already faced, in Chapter 3,

two important problems affecting Eigentrust, i.e. the use of some additional infor-

mation about agents that can be a-priori considered particularly trustworthy, and

the strategy that EigenTrust uses of rewarding these trustworthy agents in terms of

trust, while the other agents are penalized, producing the side effect to flattening the

differences, in terms of reliability, between honest agents. However, we have high-

lighted as ER-EigenTrust, similarly to the original version of EigenTrust, presents an

important limitation in terms of false positives that are generated when colluded

agents are partitioned in different groups. We have proposed a new algorithm for

detecting colluded agents, which combines EigenTrust with a clustering procedure,

grouping agents based on their reputation scores. Our experimental campaign, de-

scribed in the previous section, shows that our method, besides of maintaining the
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same effectiveness of Eigentrust in detecting malicious agents (also considering the

improvement introduced by ER-EigentTrust), is significantly more capable of avoid-

ing the presence of false positives. This advantage, in terms of precision, increases

from a 55 percent achieved by ER-EigenTrust to a 89 percent reached by our pro-

posed method an a social networl having 10.000 users and a 25 percent of malicious

agents, and this difference is even higher when the percentage of malicious agents is

smaller.

It is important to highlight two current limitations of our approach. First, the

reputation threshold under which a group should be considered as colluded is arbi-

trarily decided from the human administrator of the social network; although this

can be reasonable to take into account the personal opinion of the administrator

about the level of reputation that a group of agents must have to be considered as

colluded, however we argue that some more deep considerations should be made

about the possibility to help the administrator with additional information auto-

matically extracted from the social network. Secondly, the clustering algorithm we

have used needs as input the number of clusters to be formed. Currently, we are

heuristically determining this number by an analysis of sensitivity, testing different

values and using that value leading to the best results. However, an apposite proce-

dure to automatically determining the reputation threshold in a more efficient way

would increase the efficiency of the approach. Moreover the computational cost of

our algorithm isO(n3), making it difficult to scale. In our experimental campaign, we

adopted a centralized approach with acceptable execution times. However, for larger

communities, it is advisable to move towards a distributed approach that may per-

form better than centralized approaches in terms of computational costs, although

they are more complex to implement and more vulnerable to malicious attacks.
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Variational Problems

Throughout the research on trust and reputation in information systems, this thesis aims

to explore new perspectives and deepen the understanding of these concepts by adopting

an innovative methodological framework in its second part. Specifically, while the first

part examined trust and reputation systems from a well-established perspective, the sub-

sequent part of the thesis distinguishes itself by adopting an approach based on variational

inequalities and the application of Lagrange multipliers.

5.1 Model-optimizing approach

Mathematical models are often applied to real phenomena or situations and they are

used in many fields, such as the natural sciences (physics, biology, earth science, me-

teorology), the engineering disciplines (artificial intelligence, mechanics, computer

science), in the social sciences (economics, psychology, sociology, management sci-

ence and political science) and other important areas. This is because a model can

be useful to explain what we are describing and to make predictions about the fu-

ture, allowing us to adopt the best strategy andmake the correct decision. Therefore,

mathematical modelling is one of the main approaches that mathematicians use to

describe real situations.

Over the years, numerous results have been achieved in the area of Operational Re-

search thanks to the contribution of several scholars: J.L. von Neumann, who de-

veloped a series of models for studying economic grow thin conditions of competi-

tive equilibrium, decision-making in a multidisciplinary envoronment, and how to

run computing programs; P.M.S. Blackett and T.C. Koopmans studying models for

logistic applications; G.B. Dantzing who contributed to the development of linear

programming with the introduction of a resolution operating method known as the

"simplex method". Around 1950 the first results in the area of network optimization

algorithms began to appear and in the 1960s the researchers focused the problem of

assessing the efficiency of solving decision-making algorithms.
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Thus, the central contribution of Operations Research consists of the introduction

of the so-called model-optimizing approach for the solution of a decision problem. In

this approach, the analysis of a real problem is organized into two phases:

• representation of the problem means of a mathematical model that should ex-

tract the essential aspects and outline the interrelations existing between the

different aspects of the phenomenon under examination;

• development of efficient mathematical methods to determine an optimal solu-

tion of the problem.

To build amathematical-optimizingmodel which represents a particular phenomenon,

the significant control parameters must be identified. Having determined the cor-

rect model, the OR is responsible for providing an explicit procedure to determine

a solution to a problem. This procedure can be represented by analytical mathemat-

ical methods or numerical methods which determine the solution of the problem

through specific calculation algorithms.

The modeling approach is achieved through different phases:

• Problem analysis,

• Model construction,

• Model analysis,

• Numerical solution,

• Validation of the model.

The first phase consists in analyzing the structure of the problem to identify the

logical-functional links and objectives, to collect the data. In the subsequent con-

struction phase of the model, also called formulation, the main characteristics of the

problem are described in mathematical terms. Then follows the analysis of the model

which provides the analytical deduction of some important properties, such as the

existence and uniqueness of the optimal solution, the optimality conditions, that is:

the analytical characterization of the optimal solution and the stability of the solu-

tions when the data or any parameters change.

The next phase of numerical solution takes place by means of suitable calculation al-

gorithms and the numerical solution thus obtained must then be interpreted from

an applicative point of view. Thismodel validation can be carried out by experimental

verification or simulation methods.

5.2 Optimization models

Many real problems, studied in different disciplines, consist in finding the maxi-

mum or the minimum value of a determined function. The branch of study dealing
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with such problems takes the name of Optimization Theory. Among the various op-

timization problems there are those where it is necessary to determine the optimal

values of a function, whose decision-making variables are subject to constraints ex-

pressed by equalities and/or inequalities. Given a function f : Rn → R and the set

K ⊆ R
n, an optimization problem, called alsomathematical programming problem (term

introduced by Robert Dorfman in 1949), can be formulated as follows:

min
x∈K

f (x).

Therefore, an optimization problem consists in determining, if it exists, a minimum

point of the function f between the points of the set K .

The function f is called objective function and K is the feasible set, that is the set of

all possible solutions to the problem. A point x ∈ K is called feasible solution or

candidate solution.

The feasible set K is a subset of Rn and therefore x = (x1, . . . ,xn)T is a n-dimensional

vector and the objective function f is a function of n real variables.

We underline that it is possible to speak indifferently about problems of maximum

or minimum because the following relation is valid:

min
x∈K

f (x) = −max
x∈K

(−f (x)).

Definition 5.1. An optimization problem is said to be infeasible if K = ∅.

Definition 5.2. It is said that the optimization problem admits an optimal solution if

there exists a point x∗ ∈ K such that it results f (x∗) ≤ f (x) for all x ∈ K . Point x∗ is called

optimal solution or global minimum and the corresponding value f (x∗) is called optimal

value.

A first classification of the optimization problems is based on the structure of

the feasible set K . If K = R
n then the problem is said to be unconstrained. If the set

K is described by a finite number of inequalities and/or equalities, K = {x ∈ R
n :

g(x) ≤ 0, h(x) = 0}, then the problem is said to be constrained and has the following

formulation: 

min f (x)

gi (x) ≤ 0 ∀i = 1, . . . ,m

hj (x) = 0 ∀j = 1, . . . ,p

x ∈ Rn.

(5.1)

Moreover, the Mathematical Programming problems can be classified also ac-

cording to the nature of the functions that define them:

- Linear Programming Problem (LP) if the objective function f and all the func-

tions that define the constraints are linear;
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- Nonlinear Programming problem (NLP) if at least one of the functions defining

the problem is not linear.

Finally, depending upon the values permitted for the variables, optimization prob-

lems can be classified as integer (if all the variables can only take integer values),

mixed integer (if only some of the variables are constrained to take integer value) or

real valued, and deterministic or stochastic.

Thanks to the generality of the models, an outsize number of real problems can

be represented by programming models.

The kind of model that must be studied and the most suitable approach shape

the choice of the mathematical tools to be used, such as dynamic systems, variational

inequalities, game theory and many others.

Furthermore, the main role in the formulation of a mathematical model and in

decision-making processes is played by the definition of the network on which the

whole model is based. Indeed, the network allows the definition the different layers

of decision-makers involved in the whole process. The related flows and the meth-

ods of analysis are applicable not only to physical networks, such as transport and

energy networks, production and logistics, but also to complex networks such as

supply chains, financial, social and economic networks.

5.3 A brief recall to Lagrange Theory

Modern optimization problems originated towards the end of the last century, but

the history of mathematical programming dates back the end of the 1700s, although

limited to the case of equality constraints. Indeed, in the second half of the 18th cen-

tury, G.L. Lagrange studied mathematical programming problems which consisted

in minimizing (or maximizing) a given function, subject to a system of constraints

expressed by equality.

The well known multiplier method was introduced by Lagrange in 1788, in the first

part of his book titledMècanique Analytique, as a tool to determine the stable equilib-

rium configuration in a specific issue of Mechanics. The Lagrange multipliers were

presented for general optimization problems, not referring to any mechanical sys-

tem, in Thèorie de fonctions analytiques (1797).

Given the optimization problem 5.1, the function

L(x,λ,µ) = f (x) +
m∑

i=1

λg(x) +
p∑

j=1

µh(x)

is called the Lagrangian function of the problem.
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Assume x∗ = (x∗1,x
∗
2, . . . ,x

∗
n) minimizes f (x) subject to the constraints gi (x) ≤ 0, for

i = 1,2, . . . ,m and hj (x) = 0, for j = 1,2, . . . ,p.

Then either:

(i) the vectors ∇g1(x∗), . . . ,∇gm(x∗),∇h1(x∗), . . . ,∇hp(x∗) are linearly independent, or

(ii) there exists a vector λ∗ = (λ∗1, . . . ,λ
∗
m) and µ∗ = (µ∗1, . . . ,µ

∗
p) such that

∇f (x∗) +
m∑

i=1

λ∗i∇gi (x
∗) +

p∑

j=1

µ∗j∇hj (x
∗) = 0,

gi (x
∗) ≤ 0 ∀i = 1,2, . . . ,m,

hj (x
∗) = 0 ∀j = 1,2, . . . ,p,

λ∗igi (x
∗) = 0 ∀i = 1,2, . . . ,m, (Complementarity),

λ∗i ≥ 0 ∀i = 1,2, . . . ,m.

The above conditions are called the Karush-Kuhn-Tucker conditions (see [60]

and [61]) and are the necessary conditions for the solution of a nonlinear program-

ming problem.

This is a generalization of the Lagrange multiplier method, applied to problems in

which there are also inequality constraints. The first condition is that of the cancel-

lation of the gradient of the Lagrangian function associated with the problem. The

second and third conditions are the constraints of the admissibility of point x∗, while

the fourth condition is called a complementarity condition or a ªcomplementary de-

viationº, since the multiplier of an inactive constraint must be null. Finally, the last

condition is the non-negativity condition of the multiplier associated with the in-

equality constraints.

5.4 Variational Inequality Theory

A great variety of problems in the real world can be traced back to variational mod-

els that are much closer to reality, when their equilibrium condition is expressed as

a solution to a system of Variational Inequalities (VI).

The scientific life of the Variational Inequalities Theory has immediately proved to

be eventful and surprising. This theory was developed in the seventies as an innova-

tive and effective method to solve a series of equilibrium problems. It was advanced

by mathematical physicists to solve, for example, the problem of Signorini (1959),

the problem of the obstacle and that of elasto-plastic twisting.

Therefore, the first variational inequality problem was the problem known as the

Signorini problem (see [62]). His student, Gaetano Fichera, dedicated the name to
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him and resolved it in 1963. In 1964, Guido Stampacchia, a 20th-century Italian

mathematician, known for his work on the theory of variational inequalities, gener-

alized the Lax-Milgram theorem (see [63]) in order to study the regularity problem

for partial differential equations and the name ªvariational inequalityº was coined

by him for all the problems involving inequalities of this kind. Further in-depth

analyses of previous studies date back to 1966 by Hartman and Stampacchia (see

[64]) and to 1967 by Stampacchia and Jacques-Louis Lions (see [65]).

An explanation of infinite-dimensional variational inequalities and numerous refer-

ences can be found in the text by Kinderlehrer and Stampacchia (see [66]).

After an intense period of successes and fundamental results obtained with the Vari-

ational Inequalities theory, the interest waned, perhaps because of the early death of

Stampacchia in 1979, and it seemed that this theory had nothing more to communi-

cate.

On the contrary, in 1980, the breakthrough in finite-dimensional theory occurred

when S. Dafermos recognized that the problem of traffic equilibrium, as stated by

M.J. Smith (1979), could be formulated in terms of a finite dimensional inequality

and, moreover, in this way it is possible to study the existence, uniqueness and sta-

bility of the traffic equilibrium problem and calculate the solutions. So began the use

of this methodology for the study of problems in economics, management science/-

operations research, and also in engineering, with a focus on transportation.

At the end of the nineties, researchers started to investigate optimization prob-

lems, through a variational approach, by considering also time-dependence. Daniele,

Maugeri and Oettli, in [67] and [68] (see also [69]), first studied and analyzed the

traffic network equilibrium problem with feasible path flows which have to satisfy

capacity constraints dependent from time and traffic demands.

As a result of this, the last decades have witnessed an exceptional interest in Varia-

tional Inequalities both in the development of VI theory and its application to equi-

librium problems arising in many different contexts and an enormous amount of

papers and books have been dedicated to this topic.

For the analysis of economic phenomena, equilibrium is a central concept, there-

fore, various problems from the world of economics, such as those of spatially dis-

tributed economic and oligopolistic markets, migration, pollution and many other

problems, have been formulated in terms of a finite dimensional variational inequal-

ity and, by means of this theory, they have been solved.

Recently, a lot of problems coming from fields of applied sciences such Operation

Reasearch, Physics, Engineering, Biology and Economics are studied as optimization

problems with a variational approach.

Now, we introduce the definition of Variational Inequality:
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Definition 5.3 ( Variational Inequality Problem). The finite-dimensional variational

inequality problem, V I(F,K), is the problem to find a vector x∗ ∈ K ⊂ R
n, such that

〈
F(x∗)T ,x − x∗

〉
≥ 0, ∀x ∈ K, (5.2)

where F is a given continuous function from K toRn, K is a given closed convex nonempty

set and ⟨ . , . ⟩ denotes the inner product in n-dimensional Euclidean space.

In geometric terms (see Figure 5.1), the variational inequality 5.2 states that

F(x∗)T is ªorthogonalº to the feasible set K at the point x∗.

We recall that, for two vectors u,v ∈ R
n, the inner product

〈
uT , v

〉
= ∥u∥∥v∥cosθ,

where θ is the angle between the vectors u and v. Hence, for θ in the range:

0 ≤ θ ≤ 90◦, we have that
〈
uT , v

〉
≥ 0. Thus, one can see from Figure 5.1 that x∗

is a solution of V I(F,K) if and only if the angle between the vectors F(x∗)T and x−x∗,

with x and x∗ both in K , is a non-obtuse angle, that is: less than or equal to 90◦.

This formulation is particularly convenient because it permits a unified treatment of

equilibrium problems and optimization problems.

Fig. 5.1: Geometric interpretation of V I(F,K)

We may formalize this observation using the concept of the normal cone.

Specifically, associated with the set K and any vector x′ belonging to K , we define

the normal cone to K at x′ the following:

N (x′ ,K) = {d ∈ Rn : dT (x − x′) ≤ 0, ∀x ∈ K}.

Therefore, the Variational Inequality 5.2 affirms that a vector x∗ ∈ K solves the

V I(F,K) if and only if −F(x∗) is a normal vector to K at x∗.
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It is interesting to outline the relationships between variational inequalities and

optimization problems. Indeed, a variational inequality is related to an optimization

problem when the objective function is a primitive of the operator involved in the

inequality itself and optimization problems, constrained and not, can be formulated

as Variational Inequality Problems.

The connections between minimum problems and the variational inequalities have

been widely studied in the case in which K is a convex set and the objective function

f : Rn → R, defined and differentiable on a open set containing K , is a primitive of

F, that is f ′(x) = F(x).

The precise connection between the V I(F,K) and the Optimization Problem in de-

scribed in the following results.

Proposition 5.4. Let x∗ be a solution to the optimization problem:

min f (x)
(5.3)

subject to: x ∈ K,

where f is continuously differentiable and K is closed and convex. Then x∗ is a solution to

the variational inequality problem:

〈
∇f (x∗)T ,x − x∗

〉
≥ 0, ∀x ∈ K. (5.4)

Proof. Let φ(t) = f (x∗ + t(x − x∗)), for t ∈ [0,1]. Since φ(t) achieves its minimum at

t = 0,0 ≤ φ′(0) = ∇f (x∗)T · (x − x∗), that is, x∗ is a solution to (5.4).

Proposition 5.5. If f (x) is a convex differentiable function and x∗ is a solution to

V I(∇f ,K), then x∗ is a solution to the optimization problem (5.3).

Proof. Since f (x) is convex,

f (x) ≥ f (x∗) +∇f (x∗)T · (x − x∗), ∀x ∈ K. (5.5)

But ∇f (x∗)T · (x−x∗) ≥ 0, since x∗ is a solution to V I(∇f ,K). Therefore, from (5.5) one

concludes that

f (x) ≥ f (x∗), ∀x ∈ K,

that is, x∗ is a minimum point of the mathematical programming problem (5.3).

In the upcoming chapter, our focus will shift towards crafting an advancedmodel for

trust and reputation systems, employing approaches based on variational inequali-

ties. This methodology proves crucial in navigating the intricate dynamics of trust

and reputation assessment in digital contexts, where agents interact with diverse
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entities. We will delve into the application of variational inequalities as a key math-

ematical tool to model trust relationships, ensuring flexibility in evaluating trust

between agents and the entities they engage with. Simultaneously, we will utilize

Lagrange multipliers to gain a more profound understanding of the model’s solu-

tions, enhancing our ability to analyze and manage the complexities of trust and

reputation. The aim is to develop a model that accurately reflects the trust agents

place in various entities, contributing to fostering a more reliable and secure online

environment.





6

A Variational Formulation for a Trust and Reputation

System

The concept of Equilibrium is central in several disciplines, for examples Mathe-

matics, Economics, Engineering and so on. Many methodologies have been applied

to formulate the model describing an equilibrium problem, among these the opti-

mization theory, the fixed point theory, the complementarity theory.

Recently, there has been a sharp increase in interest in variational inequalities

([70, 71]), that have become one of the most challenging and dynamic topics of

mathematics and represent an excellent tool in the study of real-world problems.

Indeed, they cover a large variety of applications of extreme importance related to

computer science, mathematical physics, engineering, statistics, economics, finan-

cial networks, and generalized complementarity problems.

Variational inequalities theory is a powerful instrument, that has been used to

study a large variety of equilibrium problems, to analyze them in terms of existence,

uniqueness and stability of the solution to provide a sensitivity analysis and algo-

rithms for the calculus of the solution.

The kind of equilibrium, we are dealing with in the thesis, is not only the one

coming from the minimization of a functional such as energy or utility, but also the

one coming from another concept of equilibrium, which, in the economic case, is

called "user equilibrium". This type of equilibrium usually leads to a variational in-

equality, or, to a quasi-variational inequality. Examples of such a formulation, that

have been already partially reached, are the financial equilibrium problem, the eco-

nomic markets, the traffic equilibrium problem, the spatial price equilibrium prob-

lem, oligopolistic market problem, pollution emission price problem, obstacle prob-

lem, Signorini problem, elastic-plastic torsion problem, Walrasian, migration prob-

lem and many others (see [72±82] ).

Then, in the thesis our contribution is to develop an effective equilibrium model

in trust and reputation systems by means of the variational inequalities theory.

In today’s digital age, consumers are no longer passive recipients of products and

services; they have a significant role to play in shaping the market. One of the most
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impactful ways they can contribute is by voting for products. Whether it’s a simple

star rating or a detailed review, user votes have become a driving force behind the

success and improvement of products and services. Indeed, a user vote and review

can help potential buyers make informed decisions, ensuring they get the best value

for their money. In such a way, the user becomes a trusted source of information for

others. On the other hand, by expressing a personal satisfaction or disappointment,

users contribute to maintaining high standards in the market. Companies often pay

close attention to user feedback to make necessary improvements. Moreover, when

users vote for products and point out their strengths and weaknesses, businesses

have the opportunity to refine and enhance their offerings.

6.1 Literature Review

As already recalled in the introduction of the thesis, Trust and Reputation systems

have been implemented in social networks, thematic social networks, e-commerce

platforms, comparison shopping websites.

They also find applications in many other different domains, as wireless sensor

networks [83], energy optimization [84], security for vehicular networks [85], Inter-

net of Things [86] and so on.

Several techniques have been applied to further understand and improve these

systems. In [87] the authors propose to use fuzzy techniques in the design of repu-

tation systems based on collecting and aggregating peers’ opinions. Such techniques

are compared with probabilistic approaches. In [88] an iterative computing of the

reputation in terms of weighted trust is introduced together with an algorithm, that

linearly converges to the unique vector of reputations.

A game theory approach is provided in [89±91] in different frameworks.

In [92] the author describes a new paradigm for modeling traffic levels on the

world wide web (WWW), using a maximization method. The objective function is

the famous entropy function and a fast iterative algorithm for computing the vari-

ables is provided. Tomlin specifically applies the primal and dual solutions of this

model to the ranking (reputation) of web sites. The first of these uses an imputed

measure of total traffic through a web page, the second provides an analogy of local

ªtemperatureº, allowing to quantify the ªHOTnessº of a page (see also [93]).

Finally, we refer to [94, 95] for Trust and Reputation Model Based on Bayesian

Networks.

Our contributions to the literature lie in proposing a different approach to trust

and reputation systems, in which n users vote m objects. In particular, to the best
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of our knowledge, for the first time we formulate the problem as a variational one,

allowing to apply the variational inequality theory to analyze it.

6.2 The Mathematical model (for users and objects)

In this Section, we present the mathematical model of a trust and reputation system,

where users provide votes or ratings to express their satisfaction or dissatisfaction

with products.

Assume we have:

• n users, where the typical one is denoted by i, and

• m objects, where the typical one is denoted by j .

In a trust and reputation model, users can indeed provide feedback or ratings us-

ing either stars (symbolic representation) or real numbers (numeric representation).

This dual approach allows users to express their opinions and evaluations in a way

that suits their preferences and the platform’s design. Both methods serve the same

purpose of collecting user feedback and assessing trust or reputation. Using stars

can make it simpler and more intuitive for users to provide quick feedback, while

numeric ratings allow for more granularity and precision in expressing opinions. In

our model we assume that users can give a numerical rating, typically on a scale

(e.g., 0 to 1), where a higher number signifies a higher level of trust or reputation,

and a lower number indicates the opposite.

Therefore, let:

• vij ∈ [0,1] be the trust value assigned by user i to object j ;

• ai be the weight associated with user i; it is a kind of reliability of user i in order

to weight the trusts he has to assign; such a weight could be equal for all users, as

in Ebay, or can be higher for the founders of the social network, as in Eigentrust;

• wij = aivij be the weighted trust assigned by i to j ; we remark that, since each

object may obtain a trust value rate from zero to one, we have the following

capacity constraints:

0 ≤ wij ≤ ai , ∀i = 1, . . . ,n, ∀j = 1, . . . ,m; (6.1)

• bij be a boolean parameter which indicates whether object j is rated by user i

(bij = 1 if user i rates object j , bij = 0 otherwise). Observe that a user i is taken

into account if she/he assigns a rating to at least one object and, similarly, an

object j is considered if it receives at least one rating from users.

As previously mentioned, trust (or weighted trust) and reputation are strictly

connected. Such a connection lies in how the trust values, especially when weighted
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differently, can impact and contribute to an object’s overall reputation within a net-

work or community. Indeed, high levels of trust values, especially from sources with

significant weight or credibility in a network, can positively impact an object’s rep-

utation. Recommendations or endorsements from highly trusted sources are likely

to enhance an object’s reputation more significantly than those from less credible

sources. Moreover, reputation, being a collective evaluation, affects how much trust

an object might garner from users. A positive reputation implies that the object is

reliable, that is, it conforms to the description and expectations of the user who pur-

chases it, leading others to be more likely to purchase it. Therefore, if an object is

ªnew" in the system (that is, it has never been rated before), the reputation of object

j , denoted by rj , is related to the weighted trust values it receives, and it is defined

as the (arithmetic) average of all the weighted trust values obtained by j :

rj =

∑
iwij∑
i aibij

. (6.2)

Observe that, since we assumed that each object is rated by at least one user, the

denominator is never zero.

On the other hand, if r̂j is the initial reputation of object j , obtained by the valuation

of Nj users, and denoting by Bj =
∑

i

bij the number of new ratings, the final repu-

tation Rj is given by the average of all the weighted trust values (both, the previous

ones and the current ones), as follows:

Rj =
r̂jNj + rjBj

Nj +Bj
. (6.3)

For our purposes, we will assume that the initial reputation of each individual ob-

ject is non-null, as assigning a zero initial reputation to an object would be of lim-

ited significance within our system. Moreover, we now introduce the utility and cost

functions. Let:

• ûj be the utility function of object j in terms of the final reputation Rj , in terms

of the variable rj (see (6.3)), that is ûj = ûj (rj ); moreover, since the reputation is

obtained by the weighted trust values (see (6.2)), we may express the utility of j

in terms of w, namely, ûj (rj ) = uj (w), where w = (wij ) i=1,...,n
j=1,...,m

;

• cij be the cost of i to valuate j ; such a cost can be interpreted as an expense in

terms of time to buy an object or to go to a restaurant/hotel to evaluate it, or as

the payment of a fee to access evaluation tools or it can be the damage incurred

by object j depending on a low trust from i. In any case object j aims at a low

value of cij in order to have a trust from i or to have a low damage. We assume

that such a cost depends on w: cij = cij (w);

• ĉj (rj ) be the cost payed by object j to increase its initial reputation. It depends

on the difference between the final and initial reputation (Rj − r̂j ), therefore, it
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depends on the reputation rj . It could be interpreted as an economic cost, in

terms of advertisements, taxes or a cost in terms of time and efforts, which allows

the object j to improve its reputation. Also in this case, since equation (6.2) holds,

we have that ĉj (rj ) = cj (w).

We assume that the utility function ûj and the cost functions cij and ĉj (rj ) are all

continuous.

In order to define the equilibrium conditions for trust and reputation systems

(which allow us to determine the equilibrium weighted trust values), we introduce

the Lagrange multipliers λij , i = 1, . . . ,m, j = 1, . . . ,n, associated with the capacity

constraints wij ≤ ai , and αij , i = 1, . . . ,m, j = 1, . . . ,n, associated with the capacity

constraints wij ≥ 0, respectively.

Then, we provide the following definition.

Definition 6.1 (Equilibrium Definition).

A vector (w∗,λ∗,α∗) ∈ K1 ≡ R
n×m
+ ×Rn×m

+ ×Rn×m
+ is an equilibrium if it satisfies the

following equilibrium conditions:

uj (w
∗)− cij (w

∗)− cj (w
∗)



≤ λ∗ij −α
∗
ij if w∗ij = 0

= λ∗ij −α
∗
ij if 0 < w∗ij < ai

≥ λ∗ij −α
∗
ij if w∗ij = ai

∀i = 1, . . . ,n and j = 1, . . . ,m,

(6.4)

λ∗ij


≥ 0 if w∗ij = ai

= 0 if w∗ij < ai
∀i = 1, . . . ,n and j = 1, . . . ,m (6.5)

and

α∗ij


≥ 0 if w∗ij = 0

= 0 if w∗ij > 0
∀i = 1, . . . ,n and j = 1, . . . ,m. (6.6)

Conditions (6.4)-(6.6) mean that:

if j gets a null rating (w∗ij = 0), then j has non-positive net gain, that is:

uj (w
∗)− cij (w

∗)− cj (w
∗) ≤ −α∗ij ≤ 0, (6.7)

since α∗ij ≥ 0 and λ∗ij = 0; if j gets a good rating from i, which is not the case corre-

sponding to a zero or maximum vote, then j has neither losses nor gains:

uj (w
∗) = cij (w

∗) + cj (w
∗); (6.8)

lastly, if j gets the maximum rating from i (w∗ij = ai ), then j has a higher gain in

utility, that is:
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uj (w
∗) ≥ cij (w

∗) + cj (w
∗) +λ∗ij (6.9)

and λ∗ij ≥ 0 if j obtains from i = 1, . . . ,n the highest rate.

We now present the variational inequality formulation of the equilibrium condi-

tions (6.4)-(6.6).

Theorem 6.2. A vector (w∗,λ∗,α∗) ∈ K1 is an equilibrium if and only if it satisfies the

following variational inequality

n∑

i=1

m∑

j=1

(−uj (w
∗) + cij (w

∗) + cj (w
∗) +λ∗ij −α

∗
ij )× (wij −w

∗
ij )

+
n∑

i=1

m∑

j=1

(ai −w
∗
ij )× (λij −λ

∗
ij ) +

n∑

i=1

m∑

j=1

(w∗ij )× (αij −α
∗
ij ) ≥ 0, ∀(w,λ) ∈ K1

(6.10)

Proof. ⇒) Let (w∗,λ∗) ∈ K1 be an equilibrium, then ∀i = 1, . . . ,n and ∀j = 1, . . . ,m we

have

(−uj (w
∗) + cij (w

∗) + cj (w
∗) +λ∗ij −α

∗
ij )× (wij −w

∗
ij ) ≥ 0.

Indeed, for a fixed i, j we obtain that:

• if w∗ij = 0 ⇒ then −uj (w∗)+ cij (w∗)+ cj (w∗)+λ∗ij −α
∗
ij ≥ 0 and wij −w

∗
ij = wij ≥ 0,

namely

(−uj (w
∗) + cij (w

∗) + cj (w
∗) +λ∗ij −α

∗
ij )× (wij −w

∗
ij ) ≥ 0;

• if 0 < w∗ij < ai ⇒ then

−uj (w
∗) + cij (w

∗) + cj (w
∗) +λ∗ij −α

∗
ij = 0;

• if w∗ij = ai ⇒ then −uj (w∗)+cij (w∗)+cj (w∗)+λ
∗
ij−α

∗
ij ≤ 0 and wij−w

∗
ij = wij−ai ≤

0, namely

(−uj (w
∗) + cij (w

∗) + cj (w
∗) +λ∗ij −α

∗
ij )× (wij −w

∗
ij ) ≥ 0.

If we sum, ∀i = 1, . . . ,n and ∀j = 1, . . . ,m we have:

n∑

i=1

m∑

j=1

(−uj (w
∗)+cij (w

∗)+cj (w
∗)+λij−α

∗
ij )×(wij−w

∗
ij ) ≥ 0, ∀w ∈ Rn×m

+ , 0 ≤ wij ≤ ai .

Moreover, since (w∗,λ∗,α∗) ∈ K1 is an equilibrium, for a fixed i, j we obtain that:

• if w∗ij − ai < 0 ⇒ λ∗ij = 0 ⇒ (ai −w
∗
ij )× (λij −λ

∗
ij ) ≥ 0;

• if ai −w
∗
ij = 0⇒ (ai −w

∗
ij )× (λij −λ

∗
ij ) = 0.

If we sum, ∀i = 1, . . . ,n and ∀j = 1, . . . ,m we obtain that:

n∑

i=1

m∑

j=1

(ai −w
∗
ij )× (λij −λ

∗
ij ) ≥ 0.

Furthermore, we have that:
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• if w∗ij > 0 ⇒ α∗ij = 0 ⇒ (w∗ij )× (αij −α
∗
ij ) ≥ 0;

• if w∗ij = 0⇒ (w∗ij )× (αij −α
∗
ij ) = 0.

If we sum, ∀i = 1, . . . ,n and ∀j = 1, . . . ,m we obtain that:

n∑

i=1

m∑

j=1

(w∗ij )× (αij −α
∗
ij ) ≥ 0,

and then, variational inequality (6.10) holds.

⇐)

Now, suppose that (w∗,λ∗) is a solution to variational inequality (6.10). Set λij =

λ∗ij and αij = α∗ij ∀i, j , andwij = w∗ij , ∀i, j except for i =
Åi e j = Åj . Variational inequality

(6.10) reduces to:

(−u Åj (w
∗) + cÅi Åj (w

∗) + cÅi (w
∗) +λ∗Åi Åj −α

∗
Åi Åj )× (wÅi Åj −w

∗
Åi Åj ) ≥ 0

and equilibrium condition (6.4) holds.

If we set wij = w∗ij and αij = α∗ij ∀i, j , and λij = λ∗ij , ∀i, j except for i =
Åi e j = Åj ,

then variational inequality (6.10) reduces to:

(aÅi −w
∗
Åi Åj )× (λÅi Åj −λ

∗
Åi Åj ) ≥ 0,

and equilibrium condition (6.5) holds.

Similarly, if we set wij = w∗ij and λij = λ∗ij ∀i, j , and αij = α∗ij , ∀i, j except for i =
Åi

e j = Åj , then variational inequality (6.10) reduces to:

(w∗Åi Åj )× (αÅi Åj −α
∗
Åi Åj ) ≥ 0,

and equilibrium condition (6.6) holds.

6.3 An equivalent formulation

In this Section, we provide an alternative variational inequality formulation, in

which the Lagrange multipliers do not appear.

Let us consider the feasible set:

K2 =
{
w ∈ Rn×m

+ : wij ≥ 0, wij ≤ ai , ∀i = 1, . . . ,n, and ∀j = 1, . . . ,m
}
,

and the following variational inequality:

Find w∗∗ ∈ K2 such that

n∑

i=1

m∑

j=1

(−uj (w
∗∗) + cij (w

∗∗) + cj (w
∗∗))× (wij −w

∗∗
ij ) ≥ 0, ∀w ∈ K2. (6.11)
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Theorem 6.3. The solution w∗∗ to variational inequality (6.11) also satisfies equilibrium

conditions (6.4), (6.5), and (6.6), where λ∗ij is the Lagrange multiplier associated with

constraints ai −w
∗
ij ≥ 0, and α∗ij is the Lagrange multiplier associated with constraints

w∗ij ≥ 0, ∀i, j .

Proof. If we set

f (w) =
n∑

i=1

m∑

j=1

(−uj (w
∗∗) + cij (w

∗∗) + cj (w
∗∗))× (wij ),

since w∗∗ is the solution to (6.11), then

f (w) ≥ f (w∗∗) ∀w ∈ K2,

namely, w∗∗ is a minimum point for f in K2.

Since the constraints are linear, from KKT conditions it follows:


−uj (w∗∗) + cij (w∗∗) + cj (w∗∗)− α̈ij +λ∗ij = 0 ∀i, j

α̈ij (−w
∗∗
ij ) = 0, α̈ij ≥ 0

λ∗ij (w
∗∗
ij − ai ) = 0, λ∗ij ≥ 0.

and, then, the equilibrium conditions hold.

The converse part also holds true and, then, the two formulations are equivalent.

Following the classical theory of variational inequalities (see, for instance, [96]), the

existence of a solution to variational inequality (6.11) is guaranteed since the under-

lying feasible set K2 is compact and the functions uj , cij and cj are assumed con-

tinuous. Furthermore, it follows that, if the function F(w) = −uj (w) + cij (w) + cj (w)

is strictly monotone, then the solution is unique. It is worth noting that the sum of

a monotone function and a strictly monotone one is also strictly monotone. Hence,

not all the functions in variational inequality (6.11) need to be strictly monotone for

uniqueness of the equilibrium to hold. For the safe of clarity we recall the following

existence and uniqueness results ([96]).

Theorem 6.4 (Existence). Variational inequality (6.11) admits at least a solution if uj ,

cij and cj are continuous functions (since K
2 is a compact and convex set).

Theorem 6.5 (Uniqueness). Under the assumptions of Theorem 6.4, if the function

F(w) = −uj (w) + cij (w) + cj (w) in (6.11) is strictly monotone on K2, that is:

⟨(F(w1)−F(w2))
T ,w1 −w2⟩ > 0, ∀w1, w2 ∈ K

2,w1 , w2,

then variational inequality (6.11) admits a unique solution.



6.4 Numerical simulations 79

6.4 Numerical simulations

We now provide some numerical simulations, in order to study the trust and rep-

utation system and to gain insights into the behavior of the proposed model. We

first analyze some numerical simulations paying particular attention to the optimal

values assumed by the Lagrange multipliers; then we report the optimal solutions

obtained by solving a more realistic simulation in terms of problem size (that is,

with a higher number of users and objects). Furthermore, we also performed some

sensitivity analysis. The optimal results are computed by solving the variational in-

equality (6.10), given in the previous section, implementing the projection method

in Matlab on an LG laptop with a 12th Gen Intel(R) Core(TM) i7-1260P, 16 GB RAM.

6.4.1 Simulation 1 (with Lagrange multipliers)

The first simulation consists of n = 3 users and m = 4 objects.

The small number of users and objects in this simulation is justified in order to

clearly illustrate the results. In particular, in this first simulation we focus on the op-

timal values of the Lagrange multipliers. Therefore, we solve Variational Inequality

(6.10).

All the used parameters are reported in Table 6.1.

Users’ weight a1 = 0.6, a2 = 0.4, a3 = 0.3

b11 = b13 = 1, b12 = b14 = 0

Boolean parameters b2j = 1, ∀j = 1, . . . ,4

b32 = 1, b31 = b33 = b34 = 0

Initial reputations r̂1 = 0.9, r̂2 = 0.6, r̂3 = 0.2, r̂4 = 0.3

Number of initial rates N1 = 2, N2 = 1, N3 = 3, N4 = 4,

Table 6.1: Parameters used in Simulation 1

The chosen utility and cost functions are the following (but any type of expres-

sion which satisfies the assumption could be used):

• the utility functions ûj (rj ) = uj (w) are assumed to be increasing by varying the

reputation rj , ∀j = 1, . . . ,m:

ûj (rj ) = ρjrj + k = ρj

∑
iwij∑
i aibij

+ k,

where ρj , k > 0.

• the costs cij (w) are assumed to be decreasing by varying the weighted trust:

cij (w) = αij − βijwij ,
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where αij = Dij > 0, βij =
Dij

r̂j
> 0 and Dij represents the maximum damage in-

curred by object j when receives the minimum trust from i, namely if wij = 0,

then cij = Dij . Moreover, if object j receives from i the same trust as its initial

reputation, the damage is null: if wij = r̂j , then cij = 0. Clearly, wij < r̂j means

that object j incurs in a damage (since cij (w) > 0); otherwise (if wij > r̂j ) object j

gets a profit.

• the cost payed by each object to increase its initial reputation ĉj (rj ) = cj (w) de-

pends on the difference between the final and initial reputation, that is Rj − r̂j =
(rj − r̂j )Bj

Nj −Bj
:

c̃j (Rj − r̂j ) = c̃j

(
(rj − r̂j )Bj

Nj −Bj

)
= δj

(
(rj − r̂j )Bj

Nj −Bj

)
+γj ,

where δj ,γj > 0 and we assume that such costs are all positive.

We established all the parameters of the functions, for all the simulations, so

that all the assumptions described above are satisfied (positive coefficients, posi-

tive function ĉj (rj )) and the function F(w) in (6.11) is strictly monotone on K2. Fur-

thermore, for the first simulation S1.1, we used high values for the parameters of

the utility function: ρj = 10, ∀j = 1, . . . ,4, and k = 7. On the contrary, we used low

values for simulations S1.2 and S1.3 (ρj = 0.5, ∀j = 1, . . . ,4 for both the two sim-

ulations, and k = 1 for S1.2 and k = 0.7 for S1.3). Simulations S1.1, S1.2 and S1.3

have the same following parameters (related to the cost functions): Dij = 0.7, ∀i,∀j

(hence, αij = Dij = 0.7, ∀i,∀j and βi1 =
Dij

r̂1
= 0.78, βi2 =

Dij

r̂2
= 1.17, βi3 =

Dij

r̂3
= 3.50

and βi4 =
Dij

r̂4
= 2.33); γ1 = 0.8192, γ2 = 0.5444, γ3 = 3.5800, γ4 = 1.2600; δ1 =

1.2385, δ2 = 0.5167, δ3 = 8.4500, δ4 = 5.3000.

Simulation 1 consists of 36 variables and the optimal solutions are obtained in

less than one second. The optimal solutions are reported in Table 6.2.

We can see that in Simulation 1.1 all the optimal solutions assume their maxi-

mum value, that is w∗ij = si = ai . In accordance with the equilibrium condition (6.6),

since w∗ij > s, we obtain that α∗ij = 0, ∀i = 1, . . . ,3 and ∀j = 1, . . . ,4. Moreover, we ob-

tain that λ∗ij = 0.5 > 0, ∀i = 1, . . . ,3 and ∀j = 1, . . . ,4, as established by condition (6.5).

Lastly, according to the first condition (6.4) of the Equilibrium Definition, we obtain

that since all the optimal solutions assume their maximum value, all the objects have

a positive gain in utility (see Table 6.3 for the difference between the utility and the

costs).

In Simulation 1.2, some optimal variables take on minimum values and others take

on maximum values (see Table 6.2). In this case, if the optimal solution is the mini-

mum (w∗ij = 0), then λ∗ij = 0 and the object has a loss (that is a negative value in Table

6.3). On the contrary, if the optimal solution is the maximum (w∗ij = ai ), then α∗ij = 0
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i = 1 i = 2 i = 3

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

S1.1

w∗ij 0.60 0.60 0.60 0.60 0.40 0.40 0.40 0.40 0.30 0.30 0.30 0.30

λ∗ij 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

α∗ij 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S1.2

w∗ij 0.60 0.60 0.00 0.00 0.00 0.40 0.00 0.00 0.30 0.30 0.00 0.00

λ∗ij 0.23 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00

α∗ij 0.00 0.00 0.50 0.39 0.00 0.00 0.50 0.40 0.00 0.00 0.50 0.45

S1.3

w∗ij 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

λ∗ij 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

α∗ij 0.07 0.02 0.50 0.43 0.20 0.21 0.50 0.43 0.05 0.16 0.50 0.45

S1.4

w∗ij 0.50 0.50 0.50 0.50 0.30 0.30 0.30 0.30 0.20 0.20 0.20 0.20

λ∗ij 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

α∗ij 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.2: Optimal solutions of Simulation 1

j = 1 j = 2 j = 3 j = 4

S1.1

i = 1 70.7008 98.7497 66.1020 166.0400

i = 2 70.5470 98.5941 65.4020 165.4800

i = 3 70.4700 98.5163 65.0520 165.2000

S1.2

i = 1 0.3985 0.8211 -2.6040 -0.6950

i = 2 -0.0630 0.6656 -2.6040 -0.6950

i = 3 0.1677 0.5878 -2.6040 -0.6950

S1.3

i = 1 -0.2557 -0.2344 -2.9040 -0.9950

i = 2 -0.2557 -0.2344 -2.9040 -0.9950

i = 3 -0.2557 -0.2344 -2.9040 -0.9950

S1.4

i = 1 0.00 0.00 0.00 0.00

i = 2 0.00 0.00 0.00 0.00

i = 3 0.00 0.00 0.00 0.00

Table 6.3: Difference between the utility and the sum of costs: uj (w)− cij (w)− cj (w).

and the object has a gain.

In Simulation 1.3, we can observe that all the optimal weighted trusts are null, as

well as all the optimal Lagrange multipliers related to the upper bound constraints,

while the optimal Lagrange multipliers related to the lower constraints are non-zero.

Finally, in Simulation 1.4, we can note that all the optimal values are neither zero nor

maximum and all the Lagrange multipliers are null. We obtain this case, according

to the conditions of Equilibrium Definition (particularly, the second condition of

(6.4), (6.5) and (6.6)), because the utility equals the sum of costs (see Table 6.3).
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i = 1 i = 2 i = 3

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

S1.1 v∗ij 1 1 1 1 1 1 1 1 1 1 1 1

S1.2 v∗ij 1 1 0 0 0 1 0 0 1 1 0 0

S1.3 v∗ij 0 0 0 0 0 0 0 0 0 0 0 0

S1.4 v∗ij 0.83 0.83 0.83 0.83 0.75 0.75 0.75 0.75 0.67 0.67 0.67 0.67

Table 6.4: Optimal trust values

In Table 6.4 the optimal trust values are reported. Clearly, we obtain the maxi-

mum trust value when the weighted trust is maximum, zero when the weighted trust

is zero, otherwise we obtain a value between 0 and 1.

6.4.2 Simulation 2 (with a realistic community)

As an additional simulation, we choose to apply our mathematical model to the

study of trust and reputation systems in a realistic and restricted community of 100

users that evaluate 60 objects. A small community can enhance the overall experi-

ence by promoting positive behavior, fostering trust, and providing a mechanism

for community members to identify and engage with reliable contributors. Knowing

that their actions are being tracked and will contribute to their overall reputation,

community members are likely to engage in positive behaviors. This can include

providing helpful information, contributing to discussions, and supporting others.

Moreover, communication could be more direct and users could have more influence

on community dynamics by facilitating quality control of discussions and manage-

ment of the misleading or fraudulent behavior (these behaviors will be the subject

of future studies).

Due to the manageable size, we assume that each user evaluates all objects. The

weight ai associate with each user i, ∀i = 1, . . . ,100 ranges from 0.1 to 0.7. The initial

reputations r̂j of objects j = 1, . . . ,60 are variable between 0.1 and 0.6, instead the

number of users Nj , that initially rated the objects, ranges from 30 to 50. Finally, the

number of variables is 6000, the number of constraints is 12000, the number of pa-

rameters used is 18402 and all of them satisfy the assumptions described previously.

Figure (6.1) shows the optimal solutions of the system.

In particular, we obtained 1100 solutions equal to zero, 700 solutions equal to

0.1, i.e. the minimum reliability value, instead 580 solutions equal to 0.7 i.e. the

maximum reliability value possessed. Finally, the remaining solutions vary between

intermediate values. The run times were about 100 seconds.

In a broader context, it is worth noting that the ability to address equilibrium prob-

lems in scenarios with a substantial number of users and objects can be achieved
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Fig. 6.1: Range of Optimal Solutions

by leveraging devices with larger memory count while still maintaining reasonable

computation times.

6.4.3 Simulation 3: Sensitivity analysis

In order to evaluate the impact of changes in input parameters on the outcomes of

our system, we performed some sensitivity analysis. Particularly, we first investi-

gated on changes on the weight associated with the third user, then on the initial

reputations of the objects.

Simulation 3.1 (sensitivity analysis on ai)

We performed seven additional simulations, in order to investigate how sensitive

the results are to variations in ai , that is the weight associated with each user i, ∀i =

1, . . . ,n. We used the same values for parameters and functions as in Simulation 1.

In the different simulations we kept the value relating to the weight associated with

the first two users constant, whereas we changed the value of the weight associated

with the third user, in an increasing manner, as follows: a1 = 0.6, a2 = 0.4 and a3 ∈

{0.1, 0.4, 0.8, 1.2, 2, 2.8, 3}.

We reported the optimal solutions (w∗ij ) in Table 6.5. The results show that the

optimal values of the variables related to i = 1 and i = 2 do not change. On the

contrary, the optimal values of the variables related to i = 3 could change. More

specifically, we note that:

• w31 is always zero;
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w∗ij i = 1 i = 2 i = 3

j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

S3.1 0.00 0.00 0.60 0.60 0.00 0.40 0.40 0.40 0.00 0.10 0.10 0.10

S3.2 0.00 0.60 0.60 0.60 0.00 0.40 0.40 0.40 0.00 0.40 0.40 0.40

S3.3 0.00 0.60 0.60 0.60 0.00 0.40 0.40 0.40 0.00 0.80 0.80 0.80

S3.4 0.00 0.60 0.60 0.60 0.00 0.40 0.40 0.40 0.00 0.73 1.20 1.20

S3.5 0.00 0.00 0.60 0.60 0.00 0.00 0.40 0.40 0.00 0.00 2.00 0.00

S3.6 0.00 0.00 0.60 0.60 0.00 0.00 0.40 0.40 0.00 0.00 2.80 2.80

S3.7 0.00 0.00 0.60 0.60 0.00 0.00 0.40 0.40 0.00 0.00 3.00 3.00

Table 6.5: Sensitivity analysis on ai

• w∗32 = a3 for the first three simulations (that is, until ai ≤ 0.80), w∗32 = 0.73 in

simulation S3.4 (that is, the optimal value is between the maximum and the

minimum, excluded) and w∗32 = 0 in the last three simulations;

• w∗33 = a3 for all the simulations;

• w∗34 = a3 for all the simulations, except S3.5 where the optimal solution is zero.

Simulation 3.2 (sensitivity analysis on r̂j )

We also performed a sensitivity analysis on r̂j , that is the initial reputation of each

object. The results show that if the initial reputation of the first object r̂1 is less

than or equal to 0.13, then the optimal solutions w∗i1 are zero, otherwise (namely,

if r̂1 ≥ 0.135) the optimal solutions w∗i1 equal the maximum (the weight associated

with user i). This equivalently holds for all the users. It is obvious that, if the initial

reputations of objects j = 2,3,4 do not change, the values of the related variables

remain constant.

Similarly, if the initial reputation of the second object r̂2 is less than or equal to

0.155, then the optimal solution w∗12 is zero, otherwise (namely, if r̂2 ≥ 0.16) the

optimal solution w∗12 equals the maximum. Observe that such a threshold holds only

for the first user i = 1, while w∗i2 = ai , ∀i = 2,3.

The results also show that if the initial reputation of the third object r̂3 is less than

or equal to 0.14, then the optimal solutions w∗i3 are zero, otherwise (namely, if r̂3 ≥

0.145) the optimal solutions w∗i3 equal the maximum (the weight associated with

user i, for all the users).

Finally, if the initial reputation of the last object r̂4 is less than or equal to 0.040,

then the optimal solutions w∗i4 are zero, otherwise (namely, if r̂4 ≥ 0.045) the optimal

solutions w∗i4 equal the maximum (the weight associated with user i).

Therefore, the performed sensitivity analysis on the initial reputations of all the

objects allows us to identify the threshold at which a change in such an input pa-
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rameter causes a significant shift in the results. More specifically, the results of such

simulations mean that if the initial reputation of an object is very small (that is, less

than a certain threshold), the object does not have a positive gain, but has a loss and

even trying to increase the reputation (or, equivalently, the weighted trust) does not

lead to a profit, hence, it is convenient not to invest and keep the weighted trust

null. On the contrary, if the initial reputation is greater than a certain value, the ob-

ject has a profit and it is convenient to invest in order to put the weighted trust at

their maximum values (obtaining the maximum gain).

6.5 Observations

The establishment of trust and reputation systems where users actively contribute

by voting or rating products plays a pivotal role in shaping the modern digital land-

scape. These systems not only assist consumers in making informed decisions but

also cultivate accountability among product or service providers. The democratiza-

tion of opinions through user-generated ratings empowers individuals to influence

and navigate their choices in an increasingly interconnected world.

Variational formulations emerge as a fundamental framework in understanding

and modeling trust and reputation systems due to their inherent flexibility and abil-

ity to capture intricate dynamics. Leveraging variational methods allows for a com-

prehensive representation of user behaviors, product evaluations, and network in-

teractions within a unified mathematical framework.

Moreover, the application of variational inequalities within trust and reputation

systems provides a formalism that enables the modeling of interactions among users

and products, considering the competitive nature of influence and reputation dy-

namics.

The development and presentation of the variational formulation for a trust and

reputation system in this paper offer a promising framework for enhancing the re-

liability and effectiveness of online interactions. By leveraging variational methods,

we have provided a novel approach that integrates trust and reputation mechanisms

into a unified framework, allowing for a more robust assessment of trustworthiness

in complex networked environments.

This research contributes to addressing the challenges associated with trust and

reputation systems by introducing a mathematically grounded model that considers

both individual behavior and network dynamics. The proposed formulation offers a

solid foundation for further exploration and application in diverse domains, includ-

ing e-commerce, social networks, and decentralized systems.
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Conclusions and Future Works

This thesis is devoted to the analysis and development of trust and reputation sys-

tems, focusing on the development of accurate models for the computation of repu-

tation, especially in virtual contexts such as social networks. In these environments,

where users share feedback based on their experiences, we investigated the dynamics

that influence reputation formation. By analysing what causes users to assign trust

and how reputation is perceived, we have proposed advanced models that aim at ac-

curately capturing the complexity of these interactions. Due to vastness of the topic,

we have divided the thesis into two distinctive parts. In the first part, we focused on

model development with an engineering approach, adopting a data processing en-

gineering perspective. After a brief introduction to the state of the art and the main

definitions, such as trust, reputation, multi-agents system and agents organization,

we delved into the field by presenting two key algorithms. These algorithms were

specifically designed to identify malicious and colluding users present in the virtual

environment. Through these tools, we were able to more precisely identify users who

act maliciously and who could compromise the integrity of virtual environments. A

crucial result of this first part was the ability to calculate the actual reputation of

honest users, taking into account the fraudulent actions and interactions present in

such contexts. In this way, our research has contributed to providing a more accu-

rate and reliable picture of user reputation in online environments, improving the

understanding and management of the complex dynamics related to trust and vir-

tual reputation.

In particular, in the first chapter of the thesis, we provided a general background

on the topic discussed, presenting preliminary information and illustrating the mo-

tivations behind the decision to explore this specific research topic. Moreover, we

emphasised the importance of addressing the field of trust and reputation systems

in detail.

In the second chapter, we focused on the state of the art, exploring in detail how

trust and reputation systems are used and analysing the main scenarios in which
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they are applied. In particular, we examined multi-agent systems, providing an ex-

tensive analysis of their relevance and the situations in which they are employed.

In this context, we examined the organisational structure of agents, with a specific

focus on malicious agents, who operate in secret to take advantage at the cost of hon-

est agents. We analysed the nature of such agents and the challenges associated with

recognising and managing fraudulent activities, thus contributing to a better insight

into the contexts in which trust and reputation systems develop.

In Chapter 3, we have focused on the problem of identifying, in a social network,

the trustworthiness of an agent (human or software entity), in order to detect ma-

licious actors and marginalize or expel them from the community. In this context,

several TRR systems have been proposed in the literature, and here we have exam-

ined the particular case represented by the well known Eigentrust algorithm. This

algorithm is recognized as one of the most effective solution both to measure the

reputation in a set of social agents and as benchmark or training assistant. How-

ever, Eigentrust, in order to detect malicious agents, uses some additional informa-

tion about agents that can be a priori considered particularly trustworthy, rewarding

them in terms of reputation, while the other agents are penalized. In this setting, we

have highlighted a possible limitation in the Eingentrust algorithm, observing that

it increases the reputation of all the pre-trusted agents, regardless of their reliability.

This way, the method is capable to effectively recognize colluding agents, but pro-

ducing the side effect to flattening the differences, in terms of reliability, between

honest agents. To address the problem above, we have proposed a different strategy,

based on a decrement of the fraudulent trust values that colluding agents mutually

exchange. Our strategy introduces the advantage, with respect to Eigentrust, of es-

timating the reputation values of the honest actors in a manner more adherent to

the actual reliability of these agents. This elevated precision of our method is par-

ticularly important, when the reputation of the agents is computed in a distributed

environment, when different reputation values are continuously ombined from dif-

ferent sources. In order to measure this improvement of effectiveness we have in-

troduced a metric of error to quantitatively determine how much an algorithm for

the identification of malicious agents modifies the correct reputation values of the

honest agents. We have used such a metric in an experimental simulation, in which

we have compared the effectiveness of our result with repsect to the one generated

by Eigentrust. We have shown that our method is more effective than Eigentrust in

determining reputation values, presenting an error, which is about a thousand times

lower than that produced by Eingentrust on medium-size social networks.

In Chapter 4 we have focused on the problem of detecting clusters of colluded

agents in a social networks and marginalize or expel them from the community. We



7 Conclusions and Future Works 89

have already faced, in previous Chapter, two important problems affecting Eigen-

trust, i.e. the use of some additional information about agents that can be a-priori

considered particularly trustworthy, and the strategy that EigenTrust uses of reward-

ing these trustworthy agents in terms of trust, while the other agents are penalized,

producing the side effect to flattening the differences, in terms of reliability, between

honest agents. However, we have highlighted as ER-EigenTrust (our first algorithm),

similarly to the original version of EigenTrust, presents an important limitation in

terms of false positives that are generated when colluded agents are partitioned

in different groups. So, we have proposed a new algorithm for detecting colluded

agents, which combines EigenTrust with a clustering procedure, grouping agents

based on their reputation scores. Our experimental campaign showed that our Clus-

ter method, besides of maintaining the same effectiveness of Eigentrust in detecting

malicious agents (also considering the improvement introduced by ER-EigentTrust),

is significantly more capable of avoiding the presence of false positives. The experi-

ments conducted on communities of users with medium-high dimensions produced

highly satisfactory results that were very similar to the cases with small communi-

ties. The Cluster method also proved adaptable to large communities, showing high

precision and recall both as the size of the community increased and as the per-

centage of malicious users increased. At the same time, the ER EigenTrust Method

continues to prove effective especially in the presence of a high percentage of mali-

cious users, showing a significant improvement in precision as the size of communi-

ties increases. The execution times of the algorithms used to detect malicious users

vary considerably. The Cluster method takes around 1700 seconds to complete the

process while ER EigenTrust method takes just over 100 seconds for a community

of 10000 users. The significantly different execution times between the two detec-

tion methods should not be misinterpreted as a direct indicator of the overall effi-

ciency of the two approaches. Despite the longer time involved, the cluster method

demonstrates significantly higher precision in detecting malicious users and in not

generating false positives, underlining the trade-off between execution time and the

accuracy of the results obtained.

In the second part of the thesis, we dedicated to study trust and reputation mod-

els by adopting both a different methodological approach and examining a different

context. We have embraced a mathematical approach, employing the theory of vari-

ational inequalities as an analysis tool. This methodology was applied in a virtual

environment, in which users evaluated specific objects. Our analysis focused on how

these mathematical models could be effectively applied to understand and improve
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the concept of reputation in digital environments, thus adding a level of detail and

precision to the evaluation of the objects in question.

In Chapter 5 we provided an overview of the theory of variational inequalities,

examining its application to optimization problems. Furthermore, we have provided

some insight into Lagrangian theory, highlighting the key role played by Lagrange

multipliers in the context of solution analysis. These multipliers, with their interpre-

tative value, have contributed to illuminating the underlying dynamics, providing

a more complete and in-depth picture of the optimal search for solutions. We have

tried to show the relevance of these theoretical concepts in the context of our analy-

sis based on variational inequalities and optimization.

Finally, in Chapter 6 we introduce a variational formulation approach to model

and analyze trust and reputation systems. By formulating trust and reputation as

variational problems, this approach gives us a new perspective on understanding

mechanisms that govern the creation of trust. In order to define the equilibrium con-

ditions that allow to determine the equilibriumweighted trust values, we introduced

the Lagrange multipliers associated with the capacity constraints. We demonstrate

that the equilibrium conditions can be formulated as a variational inequality prob-

lem and we provide a novel alternative formulation. In the chapter we illustrate the

applicability of this variational formulation through various simulations, demon-

strating its effectiveness in modeling trust and reputation systems. Over the course

of the simulation, we explored the robustness of our model across different condi-

tions, introducing significant variations in both user trustworthiness and initial item

reputation ratings. This sensitivity analysis allowed us to evaluate how the system

responded to changes in key variables, providing valuable insights into its adapt-

ability and reliability in diverse contexts. Furthermore, the limited but representa-

tive size of the simulated community and reasonable execution times contributed to

providing concrete and applicable results, underlining the practical applicability of

our approach in realistic scenarios.

In future research, we intend to devote additional efforts to the development

of trust and reputation systems, focusing in particular on the creation of new algo-

rithms suitable for less restrictive and more realistic contexts. This involves address-

ing limitations related to various types of malicious agents (only colluding) and vari-

ations in the networks used, that we exposed in section 3.6. Specifically, we aim to

overcome current restrictions associated with the static and complete nature of net-

works, instead opting for dynamics networks and distributed approaches. Regarding

the algorithm introduced in Chapter 4, we aim to construct an automated procedure
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to determine the actual number of clusters within the social community, without re-

lying on approaches already documented in the literature. Furthermore, we aim to

establish better parameters for classifying groups of malicious agents again without

limiting ourselves only to the category of colluding malicious agents.

In addition, would like to continue the study of the variational formulation of

trust and reputation systems, to provide an even more adherent model to real sys-

tems. The first step will be the formulation of a model with an iterative computing

of the reputation in terms of a quasi-variational inequality. Moreover, we would like

to provide a variational formulation for trust and reputation system with n agents,

evaluating each other too. Since Game theory represents an excellent methodologi-

cal framework for the investigation of decision-makers who compete amongst them-

selves (see [97±100]), and Nash equilibrium problems are naturally associated with

variational inequalities ([101]), we would like to develop a a non cooperative model

for trust and reputation systems, in which the underlying equilibrium concept is a

generalized Nash equilibrium ([102, 103]).
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