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Abstract: Geomatics is important for agriculture 4.0; in fact, it uses different types of data (remote
sensing from satellites, Unmanned Aerial Vehicles-UAVs, GNSS, photogrammetry, laser scanners
and other types of data) and therefore it uses data fusion techniques depending on the different
applications to be carried out. This work aims to present on a study area concerning the integration
of data acquired (using data fusion techniques) from remote sensing techniques, UAVs, autonomous
driving machines and data fusion, all reprocessed and visualised in terms of results obtained through
GIS (Geographic Information System). In this work we emphasize the importance of the integration
of different methodologies and data fusion techniques, managing data of a different nature acquired
with different methodologies to optimise vineyard cultivation and production. In particular, in
this note we applied (focusing on a vineyard) geomatics-type methodologies developed in other
works and integrated here to be used and optimised in order to make a contribution to agriculture
4.0. More specifically, we used the NDVI (Normalized Difference Vegetation Index) applied to
multispectral satellite images and drone images (suitably combined) to identify the vigour of the
plants. We then used an autonomous guided vehicle (equipped with sensors and monitoring systems)
which, by estimating the optimal path, allows us to optimise fertilisation, irrigation, etc., by data
fusion techniques using various types of sensors. Everything is visualised on a GIS to improve the
management of the field according to its potential, also using historical data on the environmental,
climatic and socioeconomic characteristics of the area. For this purpose, experiments of different
types of Geomatics carried out individually on other application cases have been integrated into
this work and are coordinated and integrated here in order to provide research/application cues for
Agriculture 4.0.

Keywords: vineyards; unmanned aerial vehicles; satellite imagery; agriculture 4.0; sensor networks

1. Introduction

As the concept of digital transformation is making its way into all fields of daily life,
revolutionizing the way we produce and interact, the applications of digital technologies
tend to “specialize” in individual application sectors. Agriculture is often considered a
“traditionalist” sector uninclined to changes; however, in recent years, it has benefited
greatly from the technological evolution underway.

The term “industry 4.0” has been coined to indicate digital transformation in produc-
tion environments; in the same vein, the entry of the technologies of the fourth industrial
revolution into the agrifood sector can be called “agriculture 4.0”. Agriculture 4.0 is the
result of the application of a series of innovative technologies in the agrifood field and
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it can be considered as an upgrade of precision agriculture. This was possible thanks to
the automation of the collection and the integration and analysis of data collected directly
from the fields through various types of sensors. In this context, digital technologies 4.0
are useful to support-thanks to data analysis-the farmer in his daily activity and in plan-
ning strategies for his business, including relationships with all links in the supply chain,
generating a virtuous circle able to create value for the individual company and in cascade
for its partners. Thanks to these new solutions and the application of digital technologies,
from the IoT to artificial intelligence, from the analysis of large amounts of data to self-
driving tractors to the use of drones, farms can increase profitability and the economic,
environmental and social sustainability of its business. The beginning of the application of
technologies for precision agriculture in Italy dates to the 1990s; basically, it involves using
digital solutions for specific interventions, which take into account in particular the needs
of the soil and plants. The aims of these interventions are to improve the production yield
of the plantations as much as possible and contain costs and environmental impact. This
category includes, for example, all interventions to make irrigation more efficient without
wasting water resources or causing the plants to suffer, planting technologies adapted to
the biochemical and physical characteristics of the soil on which the intervention is carried
out, the administration of pesticides commensurate to the specific needs of each area and
plant, or of fertilizers only in the necessary quantity and at the most useful times.

For this reason, precision agriculture, in addition to being the predecessor of agricul-
ture 4.0, is also one of the cornerstones of the latter, because it lays the foundations for
adapting production processes to individual needs thanks to targeted and timely interven-
tions. All these interventions can adapt to the needs of the moment (through GIS, different
types of sensor data, and the use of data fusion techniques, production peculiarities can
also be estimated). The basis for making these technologies more effective is the real-time
use of data coming from the fields. Thanks to sensors able transmit information, installed
on fields or agricultural machinery, it will be possible to make timely and effective deci-
sions, which can also be entrusted to automated systems. In general, the main advantages
of agriculture 4.0 are those, as we said, of a rationalization of resources, with a positive
economic impact for the companies in the supply chain. A path of products-from field to
table-aimed at maximizing sustainability also has a positive impact on health, since it will
be possible to bring better controlled and fresher products to final consumers than with
traditional techniques. To quantify these advantages, there is talk of a saving of around 30%
for production inputs and a 20% increase in productivity, with limited use of chemicals.
Then focusing on the use of data, it must be added that being able to count on the real-time
analysis of the information coming from the fields is extremely useful to manage any
activity related to agriculture in a faster and, therefore, more efficient way. In fact, thanks to
the data analysis, it will be possible to make the use of agricultural machinery as efficient
as possible, or to use only the amount of water needed, without waste. Thanks to the same
set of information, it will also be possible to prevent plant diseases or counteract pests,
limiting damage when problems arise thanks to constant and simultaneous monitoring of
crops. Moreover, it should be emphasized that these are advantages that can be obtained
regardless of the type of crop.

This study starts from work previously carried out on a specific agricultural area, with
the aim of reanalysis with different tools and techniques in order to find a more efficient
monitoring solution.

It is possible to use Geomatics techniques, and thus to use satellite images, multi-
spectral drone images (and there are already numerous analyses on the integration of
satellite images and drone images to improve image quality and productivity), other sen-
sors (humidity, pressure, wind, temperature), merge these data with data fusion techniques,
manage the use of automated vehicles, and collect everything using GIS to optimise the
agricultural production process (fertilisation, irrigation, etc....) according to the needs of
the population.
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The practice of Precision Agriculture (PA) and, recently, Agriculture 4.0, has garnered
a lot of attention in recent years. Through the integration of information technology and
agronomic practices, it has become possible to automate the management of parcels of
land [1].

The literature cited below highlights the research questions and useful information
and underlines the shortcomings of previous studies.

Precision agriculture is a management strategy [2] that utilizes information technology
to collect data from multiple sources in order to use them in decisions regarding field
production activities [3]. The goal of this strategy is to integrate the ideas of business
management and process automation. Agriculture 4.0 additionally brings together var-
ious innovative methodologies applied from time to time in other sectors, such as the
identification of optimal routes for self-driving tractors.

Crop monitoring, which is based on observations carried out directly on crops in place
in order to obtain data on phenological stages, nutritional status [4–6], phytosanitary status,
production expectations [7] and production maps [8], is of particular interest in order to
accomplish this. The monitoring of crops relies on observations made directly on the crops
in their natural environment. Since massive amounts of data need to be gathered and
processed, process automation is necessary [9].

The monitoring of crops makes use of remote sensing data and is predicated on the link
that exists between several parameters relating to the leaf curtain [10]. These parameters
can express the vegetative–productive responses of plants and evaluate the variability as
a function of the different behaviours of surfaces and bodies [11] to the phenomenon of
absorption or reflection of light in the visible and infrared regions [12].

Large agricultural regions have been monitored using satellite remote sensing ever
since the 1970s for the purpose of stock forecasting [13], which has resulted in the provision
of useful data for the industry of agriculture itself. The unique optical behaviour of plants
in the infrared radiation band makes remote sensing techniques particularly useful for
evaluating vegetative health [14], as these techniques are useful in practice [15]. The time-
consuming and financially burdensome flights of airplanes fitted with specialized cameras
were quickly replaced by satellites that, while continuously orbiting the Earth, acquire data
on the electromagnetic emission of objects on the Earth’s surface, and consequently also of
the crops, with their multispectral sensors, if passive, or radar, if active. This has resulted
in a significant reduction in the cost of collecting this information. However, passive
sensors have limitations; acquisition is necessarily diurnal and hindered by any cloud cover.
Furthermore, the level of detail that is obtainable precludes performing particular kinds of
analyses on smaller parcels of land.

On the other hand, unmanned aerial vehicles (UAVs) have the potential to be very
helpful because they can collect more specific georeferenced information using a variety of
sensors [16–19].

In viticulture in particular, optimising vineyard cultivation and yield procedures
through the use of automatic cultivation machines and data fusion, which faces challenges
during production cycles by defining an adequate crop management, the Agriculture 4.0
approach has as its ultimate goal the improvement of vineyard yield and grape quality while
simultaneously reducing all wastes, costs, and the negative impact on the environment [20].

The information collected by optical sensors in multispectral and hyperspectral imag-
ing systems is utilized in the calculation of a diverse range of indices related to crop
production (such as the Leaf Area Index (LAI) [15,21]). The normalized difference vegeta-
tion index (NDVI) is one of the indices that is utilised the most frequently because of its
relationship to crop vigour and, as a result of this relationship, to the estimated quantity
and quality of field production.

The MultiSpectral Instrument (MSI) of Sentinel 2 covers large areas, and many satellite
programs (i.e., Landsat, Sentinel-1 and Sentinel-2) now freely supply datasets, which
promotes the exploitation of satellite imagery for many applications, including agricultural
applications, as multi-sensor and multiresolution data fusion [22–26]. The Sentinel-2
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satellite, which was developed by the European Space Agency (ESA), has a resolution of
one decametre, a revisitation time of six days, and an efficient resolution for analysing crop
variability and conditions. If, on the other hand, we consider crops to be more like orchards
and vineyards (with breaks in their layouts), then remote sensing becomes more challenging.
Actually, the occurrence of paths between yields and weedy vegetation within the cultivated
land can have a noticeable impact on the overall calculation of spectral indices, which in
turn leads to a less precise evaluation of the crop’s status. New methods and algorithms
were developed that use multispectral information from UAVs for circumventing this
criticality [27]. These advancements have been made in order to resolve this critical issue.

Low-altitude platforms, as Unmanned Aerial Vehicles (UAVs) with airborne sensors,
can differentiate pure canopy pixels from other objects by acquiring images with a high
resolution and having flexible flight planning [28]. This allows for the classification of
details within canopies.

In particular, it is possible to successfully combine an unmanned rotary-wing platform
with a multispectral sensor in order to detect and monitor water-stressed areas of orchards,
vineyards, and olive groves. This is possible thanks to the fact that the two technologies
can be successfully combined.

In PA, the NDVI index is a parameter that is used because it is directly related to the
health of the vegetation. This allows problems such as a lack of nutrients, the presence
of parasitic infections, or conditions of water stress to be discovered. The NDVI index is
calculated by processing images that were taken in the infrared. The early detection of
such situations enables intervention that is both targeted and effective, which results in cost
savings and increased crop yield. Infrared detection is frequently capable of identifying
issues well in advance of their becoming obvious to the human eye [29,30].

In this article we present, among other things, a comprehensive vineyard survey
that also compares MultiSpectral Instrument (MSI) data from a satellite with decametre
resolution and from a low-altitude UAV platform. This allowed us to better understand the
differences between the two types of instruments. The performance of Sentinel-2′s MSI,
WorldVew and the aerial UAV sensors, both with very high resolution, when considering
the relationship between crop vigour and NDVI was determined. In order to investigate
the role played by the various vineyard components, satellite data were compared with
UAV images using the following three NDVI indices [31,32]: (i) the entire agricultural area;
(ii) only the vine canopies; and (iii) only the inter-row soil. These indices were calculated
by comparing the UAV data with satellite images.

The multispectral sensors used on UAVs are capable of recording at least three chan-
nels, as a regular camera would, but one of those channels is replaced by infrared. Although
multispectral sensors can acquire information in more than four bands and multispectral
cameras are capable of recording more than the three channels defined here, for the pur-
poses of this application, each image will consist of two visible colours in addition to
infrared [33–36]. Because of this, the NDVI index can be calculated from a single image
using a modified version of the conventional formula. The processing is handled in an
automated practice by the GIS which we used (QGis). The maps that are obtained after
the processing are false-colour maps known as “Vigour Maps” [37,38]. On these maps, red
represents regions that have the highest possible vitality [39].

Recent literature also exists on data fusion techniques for agriculture: on input devices
synchronised with microcontrollers and sending data from sensors via IoT (Internet of
Things) devices to the cloud [40] and the challenges and complexity of Agriculture 4.0 [41].

It is obvious that the methodology that has been proposed can include other kinds of
crops that are grown in rows, with crop canopies that do not extend over the entire area of
cultivation, or where there is a significant presence of bare soil or grass [42–44].
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2. Materials and Methods
2.1. Remote Sensing

Remote sensing is the acquisition of information about an object or phenomenon
without coming into physical contact with the object. In this case we will refer to Remote
Sensing from Earth Observation by satellite and, although it is used in numerous fields, in
our case it is used for monitoring purposes in agriculture, particularly vineyard cultivation.

It is crucial for winemakers to gain an accurate understanding of the spatial variability
both between and within crops to be able to make accurate predictions regarding yield and
quality. The Normalized Difference Vegetation Index (NDVI) is one of the most widely
used indices because it is related to crop vigour and, as a result, to estimated quantity and
quality of field production.

Plants absorb solar radiation in the spectral region via photosynthetically active radia-
tion (PAR), which they then use as an energy source in the photosynthesis process. Strong
absorption at these wavelengths will only overheat the plant and potentially damage its
tissue. As a result, plants appear relatively dark in the PAR spectrum and relatively bright
in the near infrared spectrum. Clouds and snow, on the other hand, tend to be bright in the
red band (as well as other visible wavelengths) and dark in the near infrared. Chlorophyll,
a pigment found in leaves, strongly absorbs visible light for use in photosynthesis. In
contrast, the cellular structure of leaves strongly reflects near-infrared light. The more
leaves a plant has, the more wavelengths are affected, and thus the greater the amount
of light involved. Because earth observation instruments collect data in the visible and
near-infrared ranges, it was natural to use the large differences in reflectance of plants to
determine their spatial distribution in satellite images.

The following formula is used to calculate the NDVI:

NDVI =
(NIR− Red)
(NIR + Red)

(1)

Red and NIR are abbreviations for spectral reflectance measurements obtained in the
visible (red) and near-infrared regions, respectively.

2.2. UAVs/Sensors

Unmanned aerial vehicles (UAVs) are a type of robotic aircraft that are controlled
by radio and have their own built-in control systems. They were initially developed in
the 1920s for use in the military as a replacement for human pilots serving on hazardous
missions. In the past, the disadvantages of high cost, large sensors, poor endurance,
and primitive flight control systems caused civilian UAV use to develop slowly. At the
beginning of the twenty-first century, only a few low-quality products were available for
use in scientific research. These disadvantages still exist today. The market for low-cost
unmanned aerial vehicles (UAVs) has expanded at a rapid rate thanks to the development of
new technologies and the appearance of UAV manufacturers such as DJI (Shenzhen, China).

The successful transition of UAVs from military to civilian uses has been facilitated by
the development of several different technologies. There is now an abundance of UAVs
available to meet the demand in various fields of use, including scientific research.

The development of remote sensing technology has made it possible to devise a
workable strategy for the collection of specific data used for mapping land-cover changes,
monitoring drought conditions, and analysing complex characteristics across space and
time. This technology uses a variety of sensors onboard satellites, airborne or unmanned
aerial vehicles (UAVs), and it offers a variety of classification methods for vegetation at both
large and small scales. A practical approach to designing strategies for the management
of forest disasters can be found by employing the techniques of remote sensing. This can
include evaluating landslide-prone areas through airborne, UAV, and ground-based remote
sensing, as well as evaluating changes in vegetation cover after a wildfire for post-fire
management by using satellite-based remote sensing and UAV.
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There is technology available today that can automatically steer agricultural vehicles
such as tractors [45–47] and harvesters along predefined paths using precise global navi-
gation satellite systems (GNSS). Examples of these types of vehicles include tractors and
combine harvesters. However, a human operator is still required in order to monitor the
surrounding environment and take corrective action if any potential hazards come into
view in front of the vehicle in order to guarantee its safe operation.

It is necessary for there to be no need for a human operator whatsoever for the
autonomous farming vehicles to be able to operate in a manner that is both productive and
risk-free without any assistance from a person. A safety system must be able to perform
accurate obstacle detection and avoidance in real time while maintaining a high degree of
reliability. Furthermore, in order to handle a wide variety of shifts in the illumination and
weather conditions, multiple sensing modalities need to complement each other.

For a technological development of this magnitude, extensive research and experi-
ments are required to investigate various sensor, detection algorithm, and fusion
strategy combinations.

Today platforms such as drones support the integration of a wide variety of sensors
employed for agriculture 4.0. However, the utilisation of these sensors in agriculture 4.0 is
closely linked to their capacity to detect the signal over a greater spectral range. Fundamen-
tally, in agricultural sensing technology four parameters must be analysed: the spectral,
spatial, temporal, and radiometric resolutions. However, in most cases the sensors provide
information based on their spectral resolution (multispectral, super-spectral and hyperspec-
tral). Multispectral sensors typically use from 3 to 10 bands to cover the relevant spectrum.
Early detection of the disease, improved irrigation, water management, faster and more
accurate plant counts to optimize fertilizer application and pest control represent some
advantages of this sensor. Super-spectral sensors use from 10 to 20 bands to cover broad
portions of the spectrum. Hyperspectral sensors compared to multispectral sensors cover
hundreds or thousands of narrower bands (10 to 20 nm), providing greater resolution and a
highly detailed electromagnetic spectrum of agricultural fields. In addition, higher spatial
resolution, ability to distinguish smaller elements, higher temporal resolution, higher ra-
diometric sensitivity and the ability to detect small differences in radiated energy represent
only some of the advantages.

2.3. Self-Driving Tractors/GIS/Other Sensors

Tractors used in agriculture are typically capable of working in any terrain. Moreover,
the signals coming from the navigation sensors are subject to a great deal of unpredictability
in terms of disturbances and noise sources. As a consequence of this, it is essential for the
sensor fusion module to contain efficient methods for signal conditioning and estimating
the state of the system.

When it comes to automated tractor guidance in the field, an accurate position mea-
surement is absolutely necessary. Because the GPS antenna was mounted on the roof of the
tractor cab, which was approximately three meters above the ground, any inclination of
the tractor would result in an inaccurate position reading (roll and pitch). An architecture
that uses edge devices to carry out a substantial amount of computation (edge computing),
storage, and communication locally and routes it over the Internet backbone is called fog
computing or fog networking, also known as fogging. A FOG was used to measure heading
angle on this research platform. Utilizing Euclidean angles, a method of correction that
compensates for positional errors caused by inclination-related factors was developed.

Hardware design and software design are the two components that make up the
entirety of the overall structural design of unmanned agricultural machinery. The de-
sign of the hardware encompasses both the mechanical design and the circuit design.
Programming for the control system execution process and algorithmic formulations for
path tracking control are components of software design. By contrasting the traditional
Proportional–Integral–Derivative (PID) control, fuzzy control, and fuzzy PID control, this
article concludes that the fuzzy PID control algorithm should be used to control the steering
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of agricultural machinery, while the traditional incremental PID control algorithm should
be used to control the speed of the vehicle body while it is in motion [48,49].

The quantity of sensors used to collect data in various settings, as well as the quality
of the data collected by those sensors, has been steadily increasing. Even complex environ-
ments, such as agricultural areas, can now be “sensed” via a wide variety of equipment,
which generates vast amounts of data that can be explored to provide helpful information
about the area that is being observed. Examples of such environments include urban and
wilderness areas. Because of this, an increased number of studies have been carried out in
an effort to research the vast amounts of information that are hidden within the sensed data.
However, it can be extremely difficult to transfer the advances made in experiments to the
real-world conditions that are encountered in practice. There are two primary explanations
for this phenomenon. To begin, the scope of the research projects that are described in
scientific texts is typically restricted. This is due to the fact that the data that are utilized
in these experiments typically do not cover all of the variables that are connected to the
issue at hand. As a consequence of this, the results that are reported in those articles,
despite the fact that they might appear to be encouraging, typically reveal nothing about
the performance of the proposed technique under real-world conditions that are unre-
stricted. Second, even if the data adequately cover the variable conditions that are found
in practice, the chosen sensing technology may not be able to acquire enough information
to unambiguously resolve the data and provide enough information. This is a possibility
even if the data adequately cover the variable conditions that are found in practice. For
instance, even powerful artificial intelligence models that are fed with RGB digital images
frequently fail to correctly identify plant diseases based on their symptoms. This is due to
the fact that different disorders can produce visual signs that are similar to one another.

There are many sensors that can be used in Agriculture 4.0, for example, the Soil
Moisture Sensor used in our case study, but also other environmental sensors, capable of
providing data that can be used for cultivation decisions, also collected in time series that
can therefore provide trends. Meteorological data [50] can also provide useful time series
in agriculture.

As is well known, G.I.S. (Geographical Information System)/WebGIS is a tool for
analysing, reporting and querying entities or events occurring in the territory. Particularly
in Agriculture 4.0, the use of GIS allows researchers to integrate and manage data of
different natures and, if properly implemented (open source), it also allows identification
of optimal routes for vehicles and areas of greater interest in different areas if integrated
with historical data.

The GIS makes use of images captured by UAVs as well as Very High-Resolution
(VHR) satellite imagery categorized using OBIA. The Geographic Information System
(GIS) is helpful for agriculture in general, and not just for the management of vineyards
specifically. It takes into account the geomorphology of the land, as well as the climatic
conditions (wind, rain, etc.), and the moisture conditions of the soil for the crops. This
system is able to provide alerts in the event that interventions are required depending on
the water stress experienced by the crop. As a result, we are able to highlight the optimal
route for the tractor.

2.4. Data Fusion

Utilizing data fusion techniques is one approach to minimizing the gaps in coverage
that are the result of insufficient data. The process of combining data from several different
sources in order to produce information that is more precise, consistent, and concise than
that which is provided by any individual data source is referred to as “data fusion.” There
are also other definitions that are more stringent, which better fit specific contexts. Since
the first half of the 1990s, people have been applying this method to solve agricultural
problems, and recently, there has been an increase in the number of cases in which this
method is used. Finding the most effective method to completely explore the synergy
and complementarities that may exist between various kinds of data and sources of data
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is arguably the most difficult part of using techniques that involve the fusion of data.
This is one of the main challenges that is involved in the use of data fusion techniques.
This is especially the case when the data being compared have significantly different
characteristics (for example, digital images and meteorological data). Given the wide
variety of data sources and methods utilized in agricultural applications [40,41], it can be
challenging to find a formalization for the data fusion process that is suitable for all of these
applications. A perspective on the data fusion process is given here, broken down into
three stages and applicable to the vast majority of situations. In the first, the corresponding
attributes used for describing information in the various sources must be identified. This
must be done before moving on to the next step. If the data sources are comparable, then
finding such a correspondence is not difficult; however, if different types of data are used,
then finding such a correspondence may be more difficult. This is one of the primary
reasons that led to the development of the three distinct types of data fusion that are
discussed in the paragraph that follows this one. In the second step, all of the distinct
objects that are mentioned in the various data sources have to be located and arranged in
the correct order. Because misalignments can lead to inconsistent representations and, as
a result, unreliable answers, this step is particularly important when the data sources are
images. Alignment errors are a common cause of these problems. The third step, which
is the application of the actual data fusion, can be carried out once the data have been
correctly identified and are consistent. In actual practice, addressing the inconsistent data
that already exist is frequently ignored. Auxiliary tools, such as data profile techniques,
which can reduce inconsistencies by extracting and exploring the metadata associated to
the data being fused, have the potential to (at least partially) rectify this situation and bring
it closer to an acceptable state.

We essentially perform data fusion on satellite images and drone images and then on
various types of sensors using two different methodologies.

Geomatics uses various types of data (remote sensing from satellites, UAVs, and
other data), so data fusion techniques are natural depending on the various applications
to be carried out. This work aims to present on a study area the integration of remote
sensing techniques, UAVs, autonomous driving machines, data fusion, and GIS in order
to optimize the vineyard by optimizing cultivation and production by managing data
of various types acquired with different methodologies. Geomatics-type methodologies
used in other works and integrated here are specifically applied in this note for use and
optimisation to contribute to agriculture 4.0.

3. Case Study

In the course of our research on a broader study area, focusing in particular on a
vineyard that was located in Bova Superiore, a small municipality in the province of
Reggio Calabria (South Italy), neighbourhood Briga, and that encompassed an area of
approximately 2.2 hectares. The cultivated territory includes a series of parcels cultivated
as vineyards, the most representative of which have, respectively, extensions of about 3.2 ha
and 1.8 ha (Figure 1).

The vineyard is located on a sloping land with a varied morphology, with an alti-tude
ranging from 600 to 800 m above sea level and an orientation mainly facing south.

The distance between rows is two meters, there is a gap of one metre between each
row, and the width of the canopy along each row is approximately one metre. The planting
took place in 2016 at the earliest.

There were differences in the vine’s vigour both within and between the plots that
are likely to be found in the vineyard due to the irregular land morphology, such as soil
characteristics and elevation.
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Figure 1. Study area: Bova Superiore in Calabria, Southern Italy. 

The vineyard is located on a sloping land with a varied morphology, with an alti-
tude ranging from 600 to 800 m above sea level and an orientation mainly facing south. 

The distance between rows is two meters, there is a gap of one metre between each 
row, and the width of the canopy along each row is approximately one metre. The plant-
ing took place in 2016 at the earliest. 

There were differences in the vine’s vigour both within and between the plots that 
are likely to be found in the vineyard due to the irregular land morphology, such as soil 
characteristics and elevation. 

3.1. Remote Sensing and UAV 
In this study area, some experiments were conducted to test what we said above for 

agriculture 4.0. with particular reference to vineyards. 
We conducted survey campaigns using satellites and drones between May and Oc-

tober of 2021 in order to extend the scope of the study to include different phenological 
phases of vines. Since the vigour does change over the course of the phenological cycle, 
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Figure 1. Study area: Bova Superiore in Calabria, Southern Italy.

3.1. Remote Sensing and UAV

In this study area, some experiments were conducted to test what we said above for
agriculture 4.0. with particular reference to vineyards.

We conducted survey campaigns using satellites and drones between May and October
of 2021 in order to extend the scope of the study to include different phenological phases of
vines. Since the vigour does change over the course of the phenological cycle, we decided
to acquire images at four different stages between flowering and ripening so that we could
examine the plant in its various vegetative states. On the other hand, certain climatological
patterns (such as below-average rainfall), which impeded the growth of plants, contributed
to the stress that was experienced by the crops.

As satellite data were used, a Sentinel-2 Level 2A image was acquired on 24 May, 28
July, 27 August, and 21 September 2020 at 09:40 UTC and the image characteristics are
reported in Table 1, and a WorldView-3 image acquired on 21 October 2021 (you can see an
example of this in Figure 2).

Table 1. Characteristics of satellite Sentinel 2 imagery.

Sentinel 2

No. channels 13

Spectral bands used B4-Red 650–680 nm
B8-NIR 770–810 nm

Ground Sampling Distance (GSD) per band 10 m

Ground Dimension of the image 100 km × 100 km

Regarding instead the multispectral images obtained by drone, it is noted that a DJI
Matrice 600 Pro drone [51] was used, integrating a multispectral sensor, Micasense Altum
Camera [52] suitable for use in agriculture and with the ability to capture images of crops
in both the visible spectrum and the infrared spectrum simultaneously. The following
components are included in this system:

• A multispectral sensor recording crop images of crops in four spectral bands: Green
(500 nm Bandwidth 40 nm), Red (660 nm Bandwidth 40 nm), Red-edge (735 nm
Bandwidth 10 nm) and Near Infrared (790 nm Bandwidth 40 nm).

• An RGB camera (16 MP).
• An integrated 64 GB memory.
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• A built-in brightness sensor (‘sunshine’ sensor) that records light situation and cali-
brates automatically the four multispectral sensors. The ‘sunshine’ sensor inte-grates
an SD card slot to expand storage capacity.

• GPS and IMU (Inertial Measurement Unit).
• Table 2 shows UAV, sensor’s image and characteristics.
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No. channels 4

Spectral bands B2–Red 640–680 mm
B4–NIR 770–810 nm

GSD per band 5.2 cm

Flight speed 30 km/h

Flight altitude 30 m

FOV–Field-of-view 48◦ × 36.8◦

Ground Dimension of
the Image

160 m × 30 m
100 m × 35 m

By carefully defining the sets of waypoints along the UAV route, it was possible to
ensure that the aircraft would fly at a height of approximately 30 m above the ground. With
these parameters, the aerial GSD images measure 5 cm (Table 2).

3.2. Self-Driving Vehicles/GIS

Regarding self-driving vehicles, an old experiment was adapted to simulate the be-
haviour of one or more tractors. The experiments we have conducted in the past concern
self-driving vehicles intended for road monitoring, in Figure 3.

In this case, they are applied to agriculture monitoring.
The following items make up the standard instrumental equipment for such surveys:

• cameras that can capture images and movies and enable the acquisition and possibly
later categorisation of objects, as well as integration with the mapping of the network
technology in the area (water, electric, telephone, gas, etc.);

• Odometers and GPS.
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The combination of uses will be determined by the kind of survey being conducted or
the result that is to be obtained.

The use of Global Navigation Satellite System (GNSS) data and the transfer of infor-
mation between the vehicle and the processing centre are essential components of any
tracking system. In order to determine the position of the vehicle automatically, an ex-
periment was carried out in advance to assess the efficacy of the various configurations;
we selected the European Geostationary Navigation Overlay System (EGNOS) and the
Real-Time Kinematic (RTK) method to check their respective performances.

The technological components of the system consist of a device for detecting the posi-
tion (GPS), a transmission device (mobile phone), and a data processing centre equipped
with a GIS platform. In addition to other information that is gleaned from active sensors
on the vehicle, the data pertaining to the vehicle’s position and its instantaneous speed
are transmitted from the vehicle to a processing point that is in charge of maintaining a
database of field data.

Using a digital map of the area, special algorithms were applied to reduce errors, as
positioning errors were present. These algorithms combine the position and trajectory of
the vehicle as determined by the sensors with the routes that are available on the digital
map. In the meantime, the information that is sent from the vehicle using the various
sensors used enables an update to be made to the maps in terms of the routes to optimise
the tractor’s path.

In order to determine the location of the vehicle, we analysed the results of both the
EGNOS and RTK positioning systems and compared them. However, in order to calculate
the position object, the RTK method requires real-time data processing, whereas the EGNOS
system immediately provides location data. Although it requires more computational work,
RTK provides more precise results than EGNOS does. When it comes to hardware instru-
mentation and software, the use of EGNOS is reliant on commercially available devices,
whereas the RTK method necessitates the creation of customized software architecture.

In terms of communication systems, the possibility of using a Wi-Fi network offers
benefits in terms of costs and speed as a result of the extremely low latency, but it also offers
drawbacks in terms of the distance limits that can exist between antennas and the signal
quality that can be achieved. In most cases, the maximum permissible distance between
antennas is one hundred meters when the weather is clear, there is a direct line of sight
between them, and there are no obstructions in the way. The signal quality can be affected
by a variety of parameters, including the kind of antenna that is used and the possibility
of interference.

The use of the mobile phone network, on the other hand, has a number of benefits,
including complete independence among stations and vehicles, increased reliability due
to the fact that it does not require compliance with minimum distances, and the capacity
to process remote data remotely. The disadvantages include significantly higher latencies
and increased costs. This is due to the fact that every device needs to be outfitted with a
mobile network modulus and a SIM card that is associated with a particular data plan or a
phone contract.
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An open-source GIS/WebGIS was used for the processing and visualisation of the
various data acquired. The GIS/WebGIS displays the results of the processing and the
optimal routing of the routes, as well as highlighting the needs and requirements of the
area, such as the need for irrigation timing, fertilisation timing, and anything else that may
be useful for Agriculture 4.0, with appropriate alerts based on data fusion with other data.

In order to verify the effectiveness of the development, a platform for transmission to
the GIS and user interface is created; it runs a procedure called Data Transfer GIS (DTGIS)
for the subsequent export of the data acquired within the GIS, where the “historical” update
is managed in the existing database.

In more detail, the DTGIS was designed to automatically transfer data acquired in
three software modules, each with its own set of functions, to the GIS:

The Plug-in Module, which increases the number of recognizable and classifiable
objects that can be represented;

The kernel, which interacts with users and coordinates the different modules, pre-
processing and post-processing the Input/Output data of the modules themselves;

The GIS I/O (Input/Output) Module, which manages the interface with the GIS software.
In particular, the files (space database where the various attributes have been assigned

to the objects) are given in Input in the GIS I/O module, returning Output polylines and
polygons in shp-dbf format.

To implement the proposed system, a variety of algorithms and methodologies were
used. Specifically, a multi-objective function based on Genetic Algorithms was used to
determine the tractor’s route.

Furthermore, using Machine Learning algorithms, real-time hourly and continuous
cycle trend information was obtained based on a comparison with recent and historical
data (including the Backpropagation algorithm for the historical series).

IFTTT (If This Then That) is a programming language that allows for the real-time
creation of condition chains called applets that are triggered by other services (e.g., Gmail,
Facebook, Instagram, etc.) and can send a message when the user, for example, uses a
hashtag in a tweet, or can send a copy of a Facebook photo to an archive when the user is
tagged in it. IFTTT can automate processes related to home automation or web applications,
such as receiving personalized weather forecasts or alerts in the event of an emergency,
such as a flood. In our case, we used this service to send alerts and to automate tractor’s
route when an alert is received.

Applet programming logic is of the following type: if a predetermined event occurs
(trigger), then perform a predetermined action.

3.3. Other Types of Sensors

A wide range of available sensors can contribute significantly to agricultural practices.
With the availability of low-cost data processing, solar panels, improved batteries and
communications technology, the trend is now for these to operate wirelessly and transmit
data to the user rather than relying on manual data collection. A variety of sensors are
available for this purpose, including soil temperature, soil moisture content, air temperature
and relative humidity, rainfall, solar radiation, barometric pressure, leaf wetness and wind
speed and direction.

3.3.1. Soil Moisture Sensor

As mentioned above, the ability to integrate several sensors is of crucial importance.
For example, the Soil Moisture Sensor is used to measure volumetric moisture content of
soils and other material for scientific research and agricultural applications. The sensor
measures volumetric water content via the dielectric constant of the soil using capacitance
technology. It uses a 70 MHz frequency, which minimizes salinity and textural effects,
making it an ideal sensor in agricultural and standard scientific projects. Specifications on
characteristics of the Soil Moisture Sensor are given in Table 3.
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Table 3. Characteristics of the Soil Moisture Sensor.

Property Characteristics

Accuracy

Apparent Dielectric Permittivity (εa): ±0.5 from εa of 2 to 10, ±2.5
from εa of 10 to 50
Soil Volumetric Water Content (VWC): Using standard calibration
equation: ±0.03 m3/m3 (±3% VWC) typical in mineral soils that have
solution electrical conductivity < 10 dS/m; using soil specific
calibration, ±0.02 m3/m3 (±2% VWC) in any soil

Resolution
εa: 0.1 from εa of 1 to 30, 0.2 from εa of 30 to 50
VWC: 0.0008 m3/m3 (0.08% VWC) in mineral soils from 0 to 0.50
m3/m3 (0–50% VWC).

Range
εa: 1 (air) to 50
VWC: Calibration dependent; up to 0–57% VWC with
polynomial equation

Sensor Type Capacitance (frequency domain)

Dimensions 14.5 cm × 3.3 cm × 0.7 cm

5.5 Reduced soil microbial activity

Cable length
Sensors come standard with 5 m cable. Custom cable lengths available.
Maximum cable length of 40 m. Please contact Decagon if you need
longer cable lengths.

Measurement Time 10 ms

Power 3 VDC @ 12 mA–15 VDC @ 15 mA

Output 300–1250 mV, independent of excitation voltage

Operative
Environment

Survival Temperature: −40–50 ◦C
Operating Temperature: 0–50 ◦C

Connector Types 3.5 mm “stereo” plug or stripped and tinned lead wires

3.3.2. Leaf Wetness Sensor

Most of these are based on well-known techniques and are used in other applications,
but the leaf wetness sensor is aimed specifically at agricultural use and comprises a surface
of conductive combs with a resistance of 2 MΩ when dry. This falls when condensation
occurs on the surface, reaching approximately 5 kΩ when completely wet. The sensor
generates a voltage that is inversely proportional to the degree of condensation.

3.3.3. PH Sensor

The PH (Potential Hydrogen) meter is a device used to measure acidity and alkalinity
levels in water, soil and photo chemicals. The PH meter consists of a voltmeter attached to
a pH-responsive electrode varying in the range of 0 to 14.

The solutions with a pH value between 0 and 7 are acidic solutions with a large
concentration of hydrogen ions, whereas solutions with a pH value between 8 and 14 have
basic solutions with small concentrations of hydrogen. Solutions with a pH value of 7 are
neutral solutions. In this process, we can detect the pH levels in the soil, in Table 4.

3.3.4. Temperature and Humidity Sensor

The sensor has a humidity measuring module, a thermistor and an integrated circuit on
the back of the sensor unit. The humidity measurement module consists of two electrodes.
Sandwiched between the two electrodes is a substrate that is capable of holding moisture.
Change in humidity alters the conductivity of the moisture-holding substrate, which at the
same time changes the resistance. The integrated circuit then processes the change in the
resistance and the humidity value is measured. On the other hand, a change in temperature
changes the resistance of the thermistor, which is processed by the integrated circuit and
the calibration results in a temperature value.



Sensors 2022, 22, 7910 14 of 23

Table 4. PH (potential of Hydrogen) values and plants growth.

Soil pH Plant Growth

>8.3 Too alkaline for most plants
7.5 Iron availability becomes a problem on alkaline soils.
7.2 6.8 to 7.2–near neutral

6.0 to 7.5–acceptable for most plants7.0
6.8
5.5 Reduced soil microbial activity

<4.6 Too acidic for most plants

3.3.5. Barometric Pressure Sensor

Barometric pressure sensors measure the absolute pressure of the air around them.
This pressure varies with both the weather and altitude. Depending on how you interpret
the data, you can monitor changes in the weather, measure altitude, or any other tasks that
require an accurate pressure reading. The sensor consists of a piezoelectric transducer based
on the characteristic of silicon to generate an electrical potential difference proportional to
the mechanical stress applied on its surface. This type of transducer is characterized by
extremely accurate performance and stable measurements of atmospheric pressure, with
excellent repeatability and low hysteresis. An electronic amplifier circuit normalizes the
output signal in the most common formats used by acquisition circuits (0–1 V, 4–20 mA).
An electrical circuit for compensating the temperature allows more accurate measurements.

3.4. Data Fusion

As mentioned in Section 2.4, we use two different methodologies to perform data
fusion on satellite and drone images, as well as data fusion on various types of sensors.

Sensors are used in agriculture for everything from weather monitoring to self-
watering. Designers can create a prototype for a hardware environment to implement
the data acquisition and mining process by using low-cost sensors. Thus, the relationship
between sensors can be understood, and a sensor fusion test environment can be created.
Various input devices are synchronized using a microcontroller system, and all data ob-
tained from the sensors is wirelessly sent to the cloud by an IoT (Internet of Things) device,
by recording and monitoring from the graphical user interface on the web as a real-time
environment to apply data mining algorithms later. So, we obtain sensor data relations
from various different data sources, such as soil moisture, but it is also possible to obtain
data on light, temperature, humidity, rain, atmospheric pressure, air quality, and dew point.
In the first experiment illustrated here, we use the soil moisture sensor. Each sensor data
reading has a different effect on agricultural monitoring; however, reducing the number of
sensors can reduce the cost of a system while still providing accurate observations via the
proposed sensor substitution. A hardware test prototype, as well as a software design, are
created for data monitoring and sensor fusion in various combinations.

Acquiring useful data from agricultural areas has always been difficult because they
are often vast, remote, and vulnerable to weather events. Despite these obstacles, as
technology advances and prices fall, a flood of new data is being collected. Although
a wealth of data is being collected at various scales (e.g., proximal, aerial, satellite, and
ancillary data), this has been geographically unequal, leaving some areas virtually devoid
of useful data to help them face their specific challenges. However, even in areas with
abundant resources and well-developed infrastructure, data and knowledge gaps persist,
owing to the fact that agricultural environments are mostly uncontrolled and there are
a plethora of factors that must be considered and properly measured in order to fully
characterize a given area. As a result, even with very effective algorithms and a well-
defined and limited-scope problem, data from a single sensor type are frequently unable to
provide unambiguous answers. One possible solution that has been researched for decades
is fusing the information contained in different sensors and data types. The concept behind
data fusion is to investigate the complementarities and synergies of various types of data in
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order to extract more reliable and useful information about the areas being studied. While
some success has been achieved, there are still many obstacles that prevent this type of
approach from becoming more widely adopted. This is especially true in agricultural areas,
which have highly complex environments.

Among the various data fusion methods, kriging was used, the weights of which were
thought of as space variants and determined from calculations applied to plant growth
phenomenology. In other words, rainfall and weather values in general, NDVI at varying
seasons, and soil type were sampled at certain target points, from which a certain value of
soil moisture was estimated. From these values, kriging was carried out at the location of
the moisture sensor and compared with this truth value. The typical abatement parameters
of the method are varied until a configuration of minima is found for which the value
calculated by kriging and the value measured by the sensor are small. At this point, these
abatement parameters can be used for kriging applicators to neighbouring areas, either
from points observed by humidity sensors or derived from other devices.

So far, we have talked about data fusion between different sensors, but data fusion
between images and sensors is also possible, as is the use of neural networks to improve
image resolution.

The technology associated with the use of drones has undergone strong development
in the last decade by improving the stability of the craft, lightening the structure, perfect-
ing the precision and accuracy of acquisition and optimising the software for processing
data. Among other things, this technology finds application in environmental monitoring,
combining data acquisition over a wide area with high resolution and multispectral infor-
mation. However, surveying with UAVs (Unmanned Aerial Vehicles) is not always cheaper
than using satellite data. This is where the use of machine learning, and in particular,
SuperResolution, comes in.

The freely available satellite data, as far as the Sentinel missions of the Copernicus
programme are concerned, give a considerable advantage, but the resolution of these data
may be too low for the studies to be carried out. It is therefore necessary to intervene
with processing methods to improve the quality of the data. Furthermore, the timing of
acquisition favours the use of satellite data over the drone survey and the processing of the
related data because it is time-consuming. The satellite data, on the other hand, supplied
already corrected in terms of reflectance, are directly usable after downloading.

With the use of a convolutional neural network, a procedure is applied that uses the
satellite images as the basic data and allows a higher resolution product to be obtained. To
achieve this, the VDSR (Very Deep Super Resolution) neural network is iplemented, using
images acquired by drone for training the network. The aim of this work is to study the
applicability of the VDSR (Very Deep Super Resolution) neural network in the context of
remote sensing, using drone images as data.

Super-resolution, a process for obtaining high-resolution images from low-resolution
images, compensates in Remote Sensing for limitations due to a spatial resolution that is
not always adequately detailed. Single Image Super-Resolution (SIRS), in particular, aims
to construct a high-resolution image from a single low-resolution image. A basic approach
to achieve the improvement of an image’s resolution is interpolation, but there are other,
more elaborate strategies that have the same goal.

The deep learning algorithm VDSR (Very-Deep Super-Resolution) is one of the possible
techniques that can be used to perform the SISR process. Initially, the training of the
neural network is necessary in order to then use the VDSR network to obtain a high-
resolution image from a single low-resolution image. VDSR is a convolutional neural
network CNN (Convolutional Neural Network) with the aim of relating high- and low-
resolution images that differ mainly in high-frequency detail. The procedure is based on
determining the residuals between the two images, i.e., a high-resolution reference image
and a low-resolution image scaled to the same size as the reference image by means of
bicubic interpolation.
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The objective of the multispectral analysis was the calculation of the NDVI index,
which can be obtained from the Red and NIR band.

The tests carried out on areas of different extension highlight the different possibility of
using the image processed with the VDSR network as the survey area varies. For a portion
of territory of the order of magnitude of one hundred metres, the data acquired with a
drone possess resolution and detail that the other images cannot represent. For an area of
approximately 25 hectares, the improvement obtained by processing with the VDSR neural
network is enhanced; the extension is high enough to evaluate the use of the drone carefully,
but not so large as to accept the detail of the satellite image. Here, the use of the neural
network emphasises the edges of the framed elements more strongly, making them more
easily recognisable. For an analysis area of the order of magnitude of several kilometres
sideways or larger, processing with a VDSR neural network offers an improvement, but
the detail required by the study can also be satisfied by using the original satellite image.
A crucial aspect in the application of deep learning, which must be carefully evaluated in
combination with the desired image enhancement, is the computing power required to
perform the processing. The processing time for both the training of the neural network
and its activation is non-negligible if adequate equipment is not available. To give an
example, the training of the VDSR network used for the analyses in this study would have
taken about ten days on an average commercial laptop with an Intel Core i5 5th Generation
processor and 8-Gigabyte RAM. Furthermore, obtaining an image with a larger pixel size
than the satellite image also increases the calculation time for subsequent processing, such
as classification. The time factor negatively affects the evaluation of the practical use of the
neural network, particularly when compared to other methods of improving the resolution
of an image, such as interpolation.

4. Results

After selecting from the Sentinel and WorldView images and UAVs multispectral im-
ages, and other sensor (Soil Moisture Sensor) data, a data fusion procedure was performed
with particular reference to areas A and B (Figure 4). So, a procedure has been put into place
so that the value of the NDVI can be automatically determined from satellite images. In
order to achieve homogenization of Sentinel and UAV data, it is necessary to automatically
determine the value of NDVI derived from satellites (NDVIsat), through a downsampling
of correlation between pixels s(i,j) from satellite and P(i,j) from UAV), to calculate the NDVI
from UAV (NDVIuav) and to calculate both the NDVI for the leaf canopies of the vines
(NDVIvin) and NDVI of inter-row area (NDVIint). In fact, an important tool for evaluating
the variability in the vineyard and therefore the vines’ vigour is the NDVI index, thus
calculated for the pixels of the Sentinel and WorldView image s(i,j) thanks to the spectral
data) in RED and NIR bands:

NDVIsat(i, j) =
nN(i, j)− nR(i, j)
nN(i, j) + nR(i, j)

(2)

A preliminary downsampling method of the high-resolution UAV images was used to
allow the comparison of the UAV-based MSI and the satellite imaging. So, we proceeded to
sampling the UAVs, data (at higher resolution) for comparing them with the corresponding
satellite data, i.e., the set of UAV data D corresponding to P(i,j):

G(i, j) = {d(u, v) ∈ D|αs(i, j + 1) ≤ αd(u, v) < αs(i, j), βs(i, j) ≤ βd(u, v) < βs(i + 1, j), ∀u, v} (3)

Thus the satellite data s(i,j) and UAV data P(i,j) show the same subset of the vineyard.
Three NDVIs were analysed from the VHR 2 data from the multispectral sensor mounted
on the UAV, then compared with the satellite data on:

• (i) the entire cultivated area P(i,j):
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NDVIuav(i, j) =
∑u ∑v

mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

card P(i, j)
∀d(u, v) ∈ P(i, j) (4)

• (ii) the pixels of the canopies:

NDVIvin(i, j) =
∑u ∑v

mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

card P(i, j)
∀d(u, v) ∈ Pvin(i, j) (5)

• (iii) the pixels of the inter-rows:

NDVIint(i, j) =
∑u ∑v

mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

card P(i, j)
∀d(u, v) ∈ Pint(i, j) (6)
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Figure 4. Complete NDVI (Normalized Difference Vegetation Index) maps: (a) NDVIsat map, with
pixels fully included in “Area A” and “Area B”, derived from satellite images S2, and (b) NDVIuav

obtained from UAV images D2. (c) Vineyard NDVIvin map from UAV images D2 obtained only on
canopy pixels Pvin, (d) NDVIint map that considers inter-row ground Pint.

In Figure 4 the results are shown.
Figure 4a shows the full set of pixels obtained from the NDVIsat map, selected from

Satellite imagery.
In Figure 4b an NDVIuav map congruent (correctly aligned, at the same spatial resolu-

tion) to those derived from satellite imagery (NDVIsat) is shown.
In Figure 4c a complete NDVIvin map is shown.
In Figure 4d the NDVIint map of the inter-row ground, derived by processing the UAV

images is shown.
Table 5 shows the nomenclature of the symbols used.
The use of an image with a resolution of approximately 30 centimetres, such as a

WorldView-3, would still enable a better definition of the vigour of the vines and, more
generally, of the row crops. This is despite the fact that the resolution of the drone data is
not comparable to that of the image.
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Table 5. Nomenclature.

Term Nomenclature

d(u,v) Pixel in row u and column v of D, raster matrix
D High-resolution UAV multispectral image

P(i,j) UAV pixels d(u,v) depicting the area of satellite pixels s(i,j)
Pvin(i,j) UAV pixels d(u,v) showing only vines canopy
Pint(i,j) UAV pixels d(u,v) depicting only inter-row ground

NDVIsat(i,j) NDVI estimated using satellite images S
NDVIuav(i,j) Entire NDVI calculated on UAV pixels in P(i,j)
NDVIvin(i,j) NDVI calculated only on UAV pixels Pvin(i,j) that represent the vine canopy
NDVIint(i,j) NDVI calculated only on UAV pixels Pint(i,j) showing inter-row ground

mN(i,j) Reflectance values in the NIR band of pixels d(u,v)
mR(i,j) DNs in the red band of pixels d(u,v)
nN(i,j) DNs in the NIR band of pixels s(i,j)
nR(i,j) DNs in the red band of pixels s(i,j)
s(i,j) Pixels of row i and column j in the raster matrix S

S Multispectral image 10 m resolution from Sentinel satellite
αd(u,v) Latitude coordinate (in WGS84) of pixel d(u,v) centre
αs(i,j) Latitude coordinate (in WGS84) of the upper left corner of pixel s(i,j)
βd(u,v) Longitude coordinate (in WGS84) of pixel d(u,v) centre
βs(i,j) Longitude coordinate (in WGS84) of the upper left corner of pixel s(i,j)

The ground sampling distance (GSD) for the panchromatic band on WorldView-3
is 31 centimetres, while the GSD for the eight multispectral bands is 124 centimetres.
Proceeding in the same manner as here with the UAV and using imagery obtained from
the WorldView-3 satellite would result in an analysis of the vigour that is significantly
more accurate. We could also provide a verification with Object-Based Image Analysis
(OBIA), first using segmentation of the canopies and inter-row areas, then proceeding
separately to the classification of the vigour through the various NDVIs found in the
extraction of the objects formed with OBIA. Because the spaces between the rows are
distinguishable (the data obtained from the decametric satellite sensor contribute to an
inaccurate understanding of the actual vigour of the vines), we could also provide verifying
(extracting objects directly from satellite imagery is one of the strengths of OBIA, which is
used in a wide range of applications [22,24]).

Data fusion techniques make it possible to obtain complete information on an area
and on the needs connected to cultivation from the fusion of different data [40,41] such as
satellite data and UAV images, but also from different sensors such as soil moisture sensors
(as Big Data [53]).

The automatic vehicle is useful as it is capable of working in any terrain including
difficult terrain conditions, reducing human intervention.

Figure 5 depicts the optimized tractor path derived from data analysis, with the
attention points for fertilization/irrigation derived from data fusion in green.

Finally, the GIS displays the results of the processing (Figure 6) and the optimal
routing of the routes (Figure 5), and also highlights with appropriate alerts, depending
on the data fusion with other data, the needs and requirements of the area, such as the
need for irrigation timing, fertilisation timing and anything else that may be useful for
Agriculture 4.0.

Furthermore, the use of historical data implemented in the GIS makes it possible to
highlight areas where the analysis of historical and socio-economic data makes a different
kind of cultivation appropriate (Figure 7).
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Even though the method is still experimental, exploiting applications that have already
been individually tested in other areas, these analyses nevertheless make it possible to
clearly highlight what the contribution to Agriculture 4.0 can be from the integration of
the various technologies of Geomatics. In particular, with the experiments carried out, it
is possible to identify on a study area the optimal routes for tractors, the points where
irrigation and top dressing are required, the areas that need intervention and the areas of
vineyard vigour estimated through the use of the NDVI index with the pros and cons of
the methodology.
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5. Conclusions

Our article presents an introduction to a more in-depth analysis by comparing mul-
tispectral vineyard imagery obtained from satellite platforms such as Sentinel-2, at a
resolution of ten meters, and ultra-high-resolution imagery acquired from WorldView
satellite and low-altitude UAV platforms. Using NDVI as a measure of vineyard vitality,
we compared the usefulness of the images obtained from the specified satellites and those
obtained from UAVs. The chosen experimental site for the realization of four imaging
campaigns that were scheduled according to the main phenological stages of the grapevine
was a farm located in Bova Superiore, which is in the region of Calabria in Southern Italy.

As the aim of this work is to test methodologies for Agriculture 4.0, the activities
conducted concerning data fusion methodologies on satellite images, UAV images, and
additional sensors data as well as the use of a self-driving vehicle allow for experimentation
in the area of Agriculture 4.0, leaving open broad research topics that can be worked on in
the future.

In relation to the specific situation of the rows of vines, it is noted that new re-
sults can be obtained by changing sensors and with new, higher-resolution multispectral
satellite images.

Past results have already shown that data acquired from decametre-resolution satellite
systems (Sentinel-2) are insufficient to accurately assess vineyard conditions and crop vari-
ability. In fact, vineyard vigour may not agree with that of the inter-row zones, determining
three distinct NDVI indices from the high-resolution UAV images, considering: (i) the
entire cultivated area; (ii) only the vine canopy; and (iii) only the soil pixels between the
rows. Indeed, the NDVI calculated from UAV images of only the pixels representing the
vine canopy more accurately described the vigour of the vineyard. The proposed strategy
can be applied to other types of crops that are cultivated with significant spaces between
the rows.

The GIS that was developed for the purpose of monitoring and managing agricultural
land with remote sensing using UAV images and VHR satellite imagery classified with
OBIA is very helpful for agricultural management and produces alerts in the event that
crop stress occurs.

This research is still open. Further experimentation will have to be carried out to
optimise the system by making it usable and extracting more data to obtain final information
to be further tested in the field or other areas to estimate the benefits of the method.
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