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A B S T R A C T   

Background: Computer Aided Diagnosis (CAD) systems have been developing in the last years with the aim of 
helping the diagnosis and monitoring of several diseases. We present a novel CAD system based on a hybrid 
Watershed-Clustering algorithm for the detection of lesions in Multiple Sclerosis. 
Methods: Magnetic Resonance Imaging scans (FLAIR sequences without gadolinium) of 20 patients affected by 
Multiple Sclerosis with hyperintense lesions were studied. The CAD system consisted of the following automated 
processing steps: images recording, automated segmentation based on the Watershed algorithm, detection of 
lesions, extraction of both dynamic and morphological features, and classification of lesions by Cluster Analysis. 
Results: The investigation was performed on 316 suspect regions including 255 lesion and 61 non-lesion cases. 
The Receiver Operating Characteristic analysis revealed a highly significant difference between lesions and non- 
lesions; the diagnostic accuracy was 87% (95% CI: 0.83–0.90), with an appropriate cut-off of 192.8; the sensi-
tivity was 77% and the specificity was 87%. 
Conclusions: In conclusion, we developed a CAD system by using a modified algorithm for automated image 
segmentation which may discriminate MS lesions from non-lesions. The proposed method generates a detection 
out-put that may be support the clinical evaluation.   

1. Introduction 

Multiple Sclerosis (MS) is a chronic autoimmune disease character-
ized by multiple demyelination lesions in the spinal cord and in the 
white matter of the brain [1]. Magnetic Resonance Imaging (MRI) plays 
an important role as a non-invasive diagnostic tool to establish the 
diagnosis of demyelinating MS lesions [2]. Indeed, the characteristic MS 
abnormalities detected by MRI consist in multiple white matter lesions 
with high signal intensity on Fluid Attenuation Inversion Recovery 
(FLAIR), Proton Density weighted (PD), and T2-weighted sequences and 
low signal intensity on T1-weighted sequence [3]. However, in some 
cases, as reported in literature, the poor optimization, due to magnetic 
field intensity of Magnetic Resonance tool could not allow to detect MS 
lesions with facility and rapidity (referring to signal inhomogeneity 
induced by B1 inhomogeneity and coil sensitivity variations across the 
field of view), especially in conditions of pre-existing lesion burden [4]. 
For this reason, Computer Aided Diagnosis (CAD) methods have been 
developed to support the radiologist in detection of potential MRI 

abnormalities in reliable manner and efficient time [5]. We have 
developed a CAD software tool by using a hybrid algorithm based on the 
joint use of Watershed and Cluster Analysis in order to discriminate the 
MS lesions from non-lesions and to pinpoint their location. The water-
shed segmentation generates spatially homogeneous regions which are 
oversegmented. But we applied cluster analysis to solve the problem of 
undesirable oversegmentation results produced by the watershed tech-
nique. In our previous study [6], we proposed a CAD system able to 
discriminate carotid atherosclerotic plaques from non-plaques and to 
identify their location in the Ultrasound (US) images. In the present 
research, a CAD system has been developed for MR images with the 
purpose to support the clinician in MS lesion detection. The method 
previously introduced [6,7] has been hereby optimized for MR image 
analysis. Our approach to the development of a CAD system for MR 
images differs from the CAD system in US because it requires pre- 
processing for artifact reduction and utilizes Complete Linkage rather 
than Ward’s method for cluster analysis. The first difference between the 
two methods is that US images can be easily enhanced by a single 
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filtering step, whereas MR images require a multistep pre-processing in 
order to properly reduce the artifacts. Indeed, a particular combination 
of blurring, sharpening and gradient filters was applied. Another dif-
ference is that the proposed hybrid algorithm is based on a different 
cluster analysis methodology. Indeed, in ultrasound images we applied 
the Ward’s method [6,7]. In the present study, we adopted the Complete 
Linkage because it allows overcoming the problem of over segmentation 
of MRI. The objective of this work is to apply cluster analysis to provide a 
repeatable and objective tool to support the clinicians in the quantifi-
cation and identification of MS lesions. 

2. Materials and methods 

This is a retrospective study in which was analyzed MR images of 20 
patients with relapsing remitting MS. We considered the MRI exami-
nations of the cases that fulfilled the following criteria: i) Barkhof 
criteria (new MS diagnostic criteria adopted to demonstrate the 
dissemination of lesions in space on conventional MRI [8]); ii) not re-
lapses and not corticosteroid treatments in the three months preceding 
the scanning. No ethical committee approval was necessary according to 
national regulations because this was a retrospective analysis of 
routinely collected anonymized clinical data. The radiologist interpre-
tation highlighted on the MRI, in particular in T2 FLAIR sequence, the 
hyperintense lesions in the periventricular white matter region (in 
particular in the superior and posterior regions of the corona radiata). 
Given the set of parameters extracted from each ROI, we taken into 
account particularly the average signal intensity of each region, because 
it could be an indicator able to discriminate lesions from non-lesions. 

2.1. Magnetic Resonance Imaging 

MRI examinations were performed with a scanner operating at 1.5 T 
(Siemens Sonata). The following sequences were requirements for in-
clusion in this study: i) sagittal T1-weighted images, acquired to define 
the anterior-posterior commissural plane; ii) T2 FLAIR images (TR =
9000 msec; TE = 150 msec; 50 contiguous 3 mm slices) which improves 
the detection of lesions within the subarachnoid space and brain pa-
renchyma, particularly the lesions near the brain-cerebral spinal fluid 
interface [9]. Twenty T2 FLAIR images of MS patients were fed into the 
algorithm which processed them automatically and sequentially. 

2.2. Lesion segmentation algorithm 

The series were then anonymized and transferred to the CAD system 
as Digital Imaging and Communications in Medicine (DICOM) files. The 
CAD system implemented the following sequence of processing steps: 
segmentation and detection of lesions, extraction of morphological 
features, and finally lesion classification (Fig. 1). The proposed method 
was applied to the dataset of 20 MR images of each patients and 
compared with the opinion of an expert neurologist (golden standard). 
The analysis of images was carried out automatically, without no need of 
any user-interaction. The hybrid Watershed-Clustering algorithm was 
implemented using MATLAB 7.6. The accuracy analysis was performed 
using the software R. Through the Shapiro-Wilk test (1965) the 
assumption of normality of the estimated variables of both lesion and 
non-lesion groups was assessed. We have calculated the DICE coefficient 
to observe the deviation between manual segmentation (expert 
neurologist) and automatic segmentation (algorithm) and we obtained 
0.95 ± 0.03 which indicates almost complete overlap. 

2.3. Pre-processing 

Brain MR image segmentation is challenging because of variable 
imaging parameters, noise, overlapping intensities, motion, gradients, 
blurring, susceptibility artifacts and normal anatomical variability [10]. 
Thus, two pre-processing steps should normally precede any approach to 

Fig. 1. Flow diagram of CAD system. Step of hybrid algorithm.  
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MS lesion segmentation: first, removal of image artifact; second, sub-
traction of non-brain tissues from the image, such as scalp and skull. The 
Fig. 2 shows an example of Watershed algorithm application to one of 20 
patients. As the aim was to maximize the performance of image seg-
mentation, removing image inhomogeneities generated by field bias and 
suppressing the random noise generated by digital acquisition was 
necessary. Specific filters for the removal of artifacts from the early 
image were applied (Fig. 2(a)). First of all, a blurring filtering was 
applied in order to reduce noise; the resulting blurred image needed a 
contrast enhancement that was carried out by the sharpening filter; in 
the end, a gradient filter provided information about the direction of the 
most rapid change in gray scale intensity. 

In particular, a blurring filter allowed attenuating the changes of 
luminosity in the neighborhood of a pixel. A blurring measure allowed 
an objective blur estimation by computing the width average of all 
horizontal and vertical edges in the image. The found width was accu-
mulated in a total edge width counter and then divided between the 
number of borders found. In our algorithm we used a blurring filter with 
4px radius; it defines the value of the standard deviation to the Gaussian 
function, i.e., how many pixels on the screen blend into each other; thus, 
a larger value creates more blur (Fig. 2(b)); a sharpening filter increased 
the local contrast of the sharpness (Fig. 2(c)); radius was the standard 
deviation of the Gaussian lowpass filter set at 1 for sharpening narrower 
regions around edges. This value controls the size of the region around 
the edge pixels to increase sharpening. Typical values for this parameter 
are within the range [0 2]; very large values for this parameter may 
create undesirable effects in the output image. 

Finally, we applied a Sobel filter to detect edges in the image. The 
Sobel operator calculates the gradient of image intensity at each point, 
giving the directional gradient along x-axis (horizontal), specified as a 
numeric matrix equal in size to image I, and directional gradient along y- 
axis (vertical), specified as a numeric matrix equal in size to image I. 
This procedure allowed for extracting the contours and the image (Fig. 2 
(d)). 

Images can be automatically segmented into visually sensible regions 
by finding the watershed regions in a gradient magnitude image. 

2.4. Processing 

As previously described [7], the floodings algorithm [11] was 
exploited in order to determine lesions foreground in the image by 
means of Watershed algorithm. If the early grayscale image is denoted as 
I of the discrete plane ℤ2 into a discrete set {1, …, N}, where N is the 
number of pixels, the gradient image ∆I is then estimated. The concept of 
Watershed is based on visualizing an image in three dimensions: two 
spatial coordinates versus gray levels. For a particular regional mini-
mum, the set of points at which a drop of water, if placed at the location 
of any of those points, would fall with certainty to a single minimum, is 
called the catchment basin or Watershed of that minimum. Crest lines on 
the topographic surface and are termed divide lines or Watershed lines. 
Direct application of watershed algorithm to the gradient images pro-
duce unreliable image segmentation, because of the presence of several 
local minima due to the noise present in real (gradient) images. One way 
to reduce the presence of false regions is the so-called “marker image” 
technique, which consists in delineating automatically those regions 
that require segmentation, even though it is generally challenging to 
obtain relevant markers with no interaction with the user [12]. In this 
paper, the markers were determined by using the morphology operation 
technique, which is totally automatic, called “opening by reconstruction 
and closing by reconstruction” to remove the small blemishes without 
affecting the overall shape of the segmented lesions. Erosion-based gray- 
scale reconstruction was used (Eq. (1)): 

ϕ(rec)
I (J) =

⋂

n≥1
ε(n)(J) (1)  

ε(n)(J) is calculated by iterating n elementary geodesic erosion, where 
the geodesic erosion is defined as (Eq. (2)): 

ε(I)(J) = (J ⊖ b) ∪ I (2)  

b is a flat structuring element with the same size as the matrix I 
(256*256), ⊖ erosion and ∪ represents the pointwise maximum. 

The next step is dilation-based gray-scale reconstruction (Eq. (3)): 

Fig. 2. Output of algorithm. (a) Original Image; (b) edge detection using blurring filter; (c) edge detection using sharpening filter; (d) edge detection using gradient 
filter; (e) application of the watershed transformation method; (f) output of the colored segmented image; (g) regions that satisfy the condition imposed on the ratio 
of average signal intensity; (h) application of results on original image. 
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γ(rec)
I (J) =

⋃

n≥1
δ(n)(J) (3)  

where δ(n)(J) is calculated by iterating n elementary geodesic dilations, 
where the geodesic dilation is defined as (Eq. (4)): 

δ(I)(J) = (J ⊕ b) ∩ I (4) 

b is the flat structuring element of size I, ⊕ direct sum and ∩ repre-
sents the pointwise minimum. 

The aforementioned techniques are more effective in removing small 
blemishes while preserving the shape of the lesions. In order to get 
foreground lesions with smooth edges, the regional maxima of these 
reconstructed images were estimated. Then, background markers were 
determined and watershed transform of segmentation function was 
applied (Fig. 2(e)). Finally, the pseudo-color label matrix was over-
lapped to the original intensity image (Fig. 2(f)). Successively, cluster 
analysis was applied to solve the problem of undesirable over-
segmentation results produced by the watershed technique. 

2.5. Feature extraction 

To describe the morphological features of the image, 13 shape based 
and texture parameters were calculated, as described previously [7]. 
The parameters which are normally taken into account by clinicians to 
describe the morphology of lesions were extracted from each Region Of 
Interest (ROI): Area; Perimeter; Distance; Average Signal Intensity; 
Centroid; Eccentricity; Euler Number; Filled Area; Extent; Solidity; 
Orientation; Equivalent Diameter. 

Let define the Average Signal Intensity Feature (ASIF) as (Eq. (5)): 

ASIF =
Mean Intensitysingle region

Mean Intensityimage
(5) 

When ASIF ≥ 1, the region is labeled as “suspicious region” and only 
a minimal set of three parameters were used as input to the classifier: 
average distance of image center, average signal intensity and co-
ordinates of contour pixel (Fig. 2(g–h)). Successively, cluster analysis 

was applied to solve the problem of undesirable oversegmentation re-
sults produced by the watershed technique. 

2.6. Classification 

The algorithm then evaluates the ASIF for each ROI. It normalizes 
and classifies a ROI according to ASIF into a number of different groups 
so that similar lesions are clustered together in the same group. The city 
blocks norms were applied to perform the clustering (Eq. (6)): 

d(i, h) =
∑

j

⃒
⃒xij − xhj

⃒
⃒ (6) 

The Complete Linkage was selected as distance measure to aggregate 
clusters (Eq. (7)): 

d(A,B) = max(d(i, h) ) (7) 

The output diagram, the so-called “dendrogram”, represents how 
clusters were joined at each stage of the analysis as a function of the 
distance between clusters at the time of joining (Fig. 3). 

2.7. Diagnostic accuracy 

In order to calculate the diagnostic accuracy (Area Under the ROC 
curve, AUC) of the CAD (under the null hypothesis: AUC = 0.5), with an 
appropriate cut-off, Receiver Operating Characteristic (ROC) analysis 
was performed. The results achieved on the dataset of 20 MR images 
containing MS lesions were compared with the opinion of an expert 
neruoradiologist (golden standard). The expert neuroradiologist blindly 
reviewed the images and manually marked the centers of the lesions that 
he could visually detect. The output of the algorithm was evaluated in 
the following way: 

• The center of a given lesion falls within a region labeled by the al-
gorithm as “lesion” (true positive); 

• No center of lesion falls within a given region labeled by the algo-
rithm as “lesion” (false positive); 

Fig. 3. Dendrogram representation. The dendrogram shows that the region 15 is isolated from other regions. This means that the region has not similar charac-
teristics to be grouped with other regions. 
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• The center of a given lesion falls within no region labeled by the 
algorithm as “lesion” (false negative);  

• No center of lesion falls within a region labeled by the algorithm as 
“non lesion” (true negative); 

Sensitivity and specificity were assessed with a 95% confidence in-
terval (CI). A p-value smaller than 0.05 (two-sided) were considered 
statistically significant. 

3. Results 

We analyzed the T2 FLIR of 20 patients with relapsing remitting MS 
(9 females and 11 males; mean age: 32 years [range 19–47 years]; me-
dian EDSS: 2 [range 0–5.5]). 

The method segmented 316 regions; 255 out of 316 were classified as 
non-lesions and had an average signal intensity of 174.3 (SD = 17.9), 
whereas 61 out of 316 were classified as lesions and had an average 
signal intensity of 242.4 (SD = 26.97). Both groups (W = 0.98, p = 0.005 
non-lesion group; W = 0.96, p = 0.03 lesion group) resulted not nor-
mally distributed. A hypothesis test of interest was whether the level of 
average signal intensity was able to distinguish between the two groups. 
This problem was formulated statistically in terms of AUC (Area Under 
the Curve). The level of ASIF was measured on a continuous scale with 
observations on the two independent groups. The area under the curve 
was equal to 0.87; this means that the marker should be considered 
moderately accurate, according to the classification of Swets [13]. The 
next aim was to determine the threshold value that allowed for 
discrimination between the two groups. The threshold is determined by 
the optimal cut-point of the ROC curve, according to the method 
described in [14]. In this case, the statistical tests showed that in ac-
cording to the Youden index, the optimal cut-off value was k = 192.8 

(Table 1). 
The ROC analysis unveiled a highly significant AUC difference in the 

discrimination between lesions and non-lesions: the diagnostic accuracy 
was 87% (95% CI: 0.83 0.90), an appropriate cut-off value was 192.8, 
the sensitivity was 77% and the specificity reached 87% (Fig. 4). The 
present results show that the proposed computerized method may help 
to discriminate the lesions from non-lesions in T2 FLAIR MR sequences. 

4. Discussion 

The present study introduced a CAD system able to discriminate MS 
lesions from non-lesions and to identify their location in the MRI scans 
by using T2 FLAIR sequences. The set of MRI images was first pre- 
processed to remove artifacts. The proposed method exploited adap-
tive filters to enhance structures within the MS lesion and then it iden-
tified the structures by applying a Watershed algorithm. ROIs based on 
the detected MS lesions were extracted from each MR image, and a set of 
meaningful features were estimated for each extracted ROI. Cluster 
Analysis was applied to deal with the issue of undesirable over- 
segmentation produced by the watershed algorithm. Cluster analysis 
also allowed reducing the number of false detections. The results of ROC 
curve analysis suggest that the proposed algorithm may be particularly 
helpful for identifying lesions. The preliminary experimental results on 
316 segmented regions prove that the proposed method is able to detect 
and classify correctly the lesions with a diagnostic accuracy of 87%. 
Signal intensity of lesions and non-lesions resulted significantly 
different. Moreover, we calculated the DICE coefficient to highlight the 
difference between manual and automated segmentation in according to 
Carass et al. study [15]. 

Automated methods of detection, identification and quantification of 
MS lesions were presented by many researchers [16–18]. Golberg et al. 
[16] used the automatic method and they obtained a specificity of 87% 
and a specificity of 96%. However, they used T2-weighted with gado-
linium images. Some investigators showed that semiautomatic CAD 
methods outperformed manual ROI techniques [19,20]. In general, 
marketable CAD systems rely on an enhanced threshold, where lesions 
exhibiting an initial enhancement below this threshold are not coded 
[21,22]. The results of our method favorably compare to those one ob-
tained by Baltzer et al. [21], who reported that the performance of a 
semiautomatic CAD system achieved an AUC of 83%, with an enhanced 

Table 1 
ROC analysis data.  

Threshold Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

PPV 
(95% CI) 

NPV 
(95% CI) 

192.8 77 
(64.5–86.8) 

87 
(82.3–90.9) 

58.7 
(47.1–69.7) 

94.1 
(90.2–96.7) 

Legend: CI = Confidence Interval. 

Fig. 4. The ROC curve for average signal intensity. The value of classification results produced the best performance with an AUC value of 0.87.  
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threshold of 33%. Nevertheless, the method proposed by Baltzer et al. 
[21] was user-dependent and was applied on gadolinium images. The 
method proposed in the present study achieved an AUC of 87%, giving 
better results and in a fully automatic manner. Moreover, it is the only 
one currently using an automatic hybrid algorithm to segment MS le-
sions with a good accuracy, based on T2 FLAIR images without gado-
linium. The innovation lies in uniting the watershed algorithm and 
cluster analysis to overcome the problem of over segmentation. 

5. Conclusions 

In conclusion, the developed CAD system for RM image analysis can 
discriminate MS lesions from non-lesions with high accuracy (87%) by 
using an algorithm for automated segmentation. The computer extrac-
ted average signal intensity features and the final classification 
discriminated between lesions and non-lesions significantly. Observer 
independent CAD may therefore be a promising tool for interpreting MS 
lesions in MR images. The next step of our research will apply this 
method on images coming from MR with a high field which provides a 
better resolution of the image. 
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