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Enabling Robust Radar-based Localization and
Vital Signs Monitoring in Multipath Propagation

Environments
Marco Mercuri, Yiting Lu, Salvatore Polito, Fokko Wieringa, Yao-Hong Liu, Senior Member, IEEE , Alle-Jan

van der Veen, Fellow, IEEE , Chris Van Hoof, Member, IEEE , and Tom Torfs

Abstract— Objective: Over the last two decades, radar-
based contactless monitoring of vital signs (heartbeat and
respiration rate) has raised increasing interest as an emerg-
ing and added value to health care. However, until now,
the flaws caused by indoor multipath propagation formed
a fundamental hurdle for the adoption of such technology
in practical healthcare applications where reliability and ro-
bustness are crucial. Multipath reflections, originated from
one person, combine with the direct signals and multipaths
of other people and stationary objects, thus jeopardizing
individual vital signs extraction and localization. This work
focuses on tackling indoor multipath propagation. Meth-
ods: We describe a methodology, based on accurate mod-
els of the indoor multipaths and of the radar signals, that
enables separating the undesired multipaths from desired
signals of multiple individuals, removing a key obstacle
to real-world contactless vital signs monitoring and local-
ization. Results: We also demonstrated it by accurately
measure individual heart rates, respiration rates, and ab-
solute distances (range information) of paired volunteers in
a challenging real-world office setting. Conclusion: The ap-
proach, validated using a frequency-modulated continuous
wave (FMCW) radar, was shown to function in an indoor
environment where radar signals are severely affected by
multipath reflections. Significance: Practical applications
arise for health care, assisted living, geriatric and quaran-
tine medicine, rescue and security purposes.

Index Terms— Array signal model, biomedical applica-
tions, contactless, Doppler, frequency-modulated contin-
uous wave, localization, multipath, remote radar sensing,
single-input and single-output radar, vital signs monitoring.
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I. INTRODUCTION

RADAR technologies represent an emerging, increasingly
investigated modality in health care, with likely benefits

for the elderly population, healthcare professionals, and econ-
omy [1]–[4]. The primary application is remote monitoring
of vital signs, in particular heartbeat and respiration rate. The
largest attractiveness of radar-based vital sign monitoring is
that it can be done remotely. This has aroused an increasing
interest especially where wearable medical devices cannot be
used (e.g., patients with severe and extensive burn wounds) or
create discomfort and are unpleasant for long-term use (e.g.,
while sleeping). To maximally utilize its capability, the goal
is to enable people maximal freedom to move around without
restrictions, while tracking their positions and measuring their
vital signs. Performing concurrently the two operations allows
to correctly assign the cardiopulmonary values to the subjects,
who are identified by their positions (this does not rise privacy
concerns). This enables the use of this technology in many
medical applications of strong interest. Some examples are:
sleep monitoring; offering night nurses in low-care wards an
overview whether all patients are in bed and doing well;
contactless monitoring of patients in multi-bed rooms, recov-
ering their ability for ambulant walking (even just visiting the
toilet unaided is a major step forward) as well as elderly or
handicapped people living with assistance-on-call; monitoring
elderly people in nursing home. Radars can even detect subtle
changes over time in vital signs that are not obvious in a one-
off visit by a doctor. This technology is also ideal in situations
with risk of infection or pandemics (e.g., COVID-19 crisis)
to remotely monitor household members in quarantine or in
hospitals (e.g., departments of infectious diseases) to reduce
contamination risks. Moreover, for prolonged monitoring in
the home setting, daily patterns in locations and vital signs
also offer objective insights in general fitness level over time,
without the obtrusive privacy aspects. Radars can be used in
other fields even beyond medical, such as ambient light and
temperature smart control, driver monitoring, surveillance, and
for search and rescue situations to detect people in smoke-
filled areas or underneath collapsed buildings [5]–[8].

However, the biggest challenge in indoor environments
is to detect the sub-millimetre motion on the chest surface
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caused by the cardiopulmonary activity in order to properly
locate multiple subjects and to accurately monitor their vital
signs. In fact, an inherent problem is the severe multipath
effect [9]–[11], which jeopardizes the monitoring of multiple
subjects. Multipath occurs when a signal takes two or more
paths from the transmitting antenna to the receiving antenna
and depends on the room structure and on the presence of
objects (including those behind radar-transparent walls). As a
consequence, even moving a small object in the environment
changes the multipath reflections. To be clinically meaningful,
radar technologies should be flexible to work in all practical
circumstances that can reasonably be expected. In indoor envi-
ronments, it will commonly occur that a multipath component
from one person has an identical delay (i.e., time of flight) as
the direct path signal for another person. For a straight-forward
radar system, these signals then would seem to originate
from the same range bin (i.e., location), resulting in non-
linear combinations of the Doppler signals (i.e., phase shifts)
generated by the subjects, hence causing false localizations
and incorrect vital signs extraction. The situation gets even
more problematic in presence of static reflectors (i.e., clutter,
objects). In fact, the multipath reflections of a subject can have
an identical delay (i.e., time of flight) as the direct path signal
of a stationary object. Intuitively, this can be interpreted as
a Doppler signature (radar ghost) originating in the range bin
where the stationary object is present. Therefore, static objects
cannot be simply treated as stationary in real-world situations
where multipath is present.

Until now, indoor multipath effects were insufficiently ad-
dressed. In the current state-of-the-art, pure continuous wave
(CW) radars have been extensively used to monitor the vital
signs of a single individual [7], [12]–[22]. Due to their
narrowband nature, pure CW-architectures are neither able to
determine absolute distances nor to separate reflections tem-
porally. This means that they cannot monitor multiple subjects
and their detection sensitivity is strongly influenced by static
reflectors and multipaths. Some of these limitations can be
solved by Ultra-wideband (UWB) technology, that employs
a wide bandwidth (typically defined as greater than 20% of
the center frequency or 500 MHz). In this category falls the
FMCW, stepped-frequency continuous wave (SFCW), phase-
modulated continuous wave (PMCW) and UWB impulse-radio
(UWB-IR) radars. For trade-offs between UWB radars, we
refer the reader to [23]. These architectures have been demon-
strated to locate multiple persons and monitor their vital signs
but only under the strong restriction that the signals coming
from different individuals do not interfere with each other, so
that the subjects can be treated independently and therefore
ignoring multipath effects [24]–[45]. This assumption can be
achieved during controlled lab experiments through one or
more of the following conditions: (1) using highly directive
antennas (e.g., beamforming, horn antennas); (2) sufficiently
separating the targets in the angular dimension (i.e., the signals
coming from different individuals hardly interfere with each
other); (3) with no objects in the line of sight between the radar
and the person, or placed strategically to avoid generation of
significant interferences (i.e., the reflection from the human
body is always the strongest one); (4) removing any metal

and highly reflective objects from the scene. Clearly, those
conditions form limitations that preclude universal application
in real life situations. Techniques like classic Doppler phase
extraction [37], blind source separation (BSS) [22], complex
signal demodulation [12], arctangent demodulation [13] and
linear demodulation [31] have been investigated to retrieve
the vital signs parameters, however they are all based on the
single target or on the independent multi-targets restrictions.
Using these techniques, in most of the current state-of-the-
art works, vital signs extraction is performed after a prior
knowledge of the position(s) of the subject(s), namely the
Doppler information is extracted from the known range bin(s)
where the person(s) is (are) present (i.e., manual localization).
Some solutions have been also proposed for automatic target
localization based on vital signs [35], [37]. Those approaches
rely on the variation of the range spectrum to differentiate hu-
mans from stationary targets. The idea is that the physiological
movements, over an interval of time of a few seconds, involve
a larger standard deviation (std) than static objects. Therefore,
the range bins with large variations indicate the location of
human targets (i.e., std-based localization). In any case, current
state-of-the-art algorithms require a priori knowledge of the
number of subjects to be monitored. In practical situations,
this information is often not available. The aforementioned
techniques and approaches fail in presence of multipaths,
which are always present in real-world environments and
practical situations, resulting in ghost signals, appearing both
in copies of the same target at different distances and in
new (therefore false) targets originated by the combinations
of direct paths and multipaths. A distinction needs to be
made between single target and multi-target scenarios. In the
first case, with pure CW architectures, the signals from the
subject and his/her copies combine together generating an
overall distorted Doppler signal. In the second case, with
UWB architectures, influenced by the presence of clutter, it is
common that the quality of the vital signs signal from a copy
is scaled as higher than the true signal of the pertaining person,
causing location of a subject in a wrong position. In case of
multiple targets, and relevant only for UWB architectures, the
multipaths caused by one person combine with the reflected
signals from other persons and from static objects, generating
new Doppler signals (i.e., radar ghosts) thereby jeopardizing
both vital signs extraction as well as localization.

We propose and demonstrate a methodology, based on a
compact single-input and single-output (SISO) FMCW radar
and on an indoor radar signal model, which is able to separate
the undesired contributions of multipaths and static reflectors
from the desired signals of each single individual, thereby en-
abling accurate simultaneous one-dimensional (1-D) location
(i.e., absolute distance) and vital signs monitoring of multiple
persons, even in case of (partial) occlusion by static objects
such as desks or chairs and through radio-transparent physical
barriers such as windows. Moreover, the proposed algorithm
determines autonomously the number of people present in the
monitored environment.

The remainder of this article is organized as follows. In
Section II, the array signal model is derived. In Section III,
the radar proposed methodology is presented and detailed. In
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Section IV, the radar sensor is described. Experimental results
conducted on human volunteers are shown in Section V.

II. ARRAY SIGNAL MODEL

A. SISO FMCW Data Matrix
A linear FMCW radar transmits a series of signals, called

chirps, whose instantaneous frequency linearly increases over
time (Fig. 1a). Each chirp is T seconds long and it is
transmitted with a certain repetition interval Ts. Between two
consecutive chirps, no signal is transmitted during TOFF =
Ts - T. The interval τ is the round-trip delay that the FMCW
signal takes to reach the target and to be reflected back to the
receiver. The baseband signals (called beat signals), resulting
from mixing the copies of the transmitted chirps with the
received chirps, are digitized and arranged in a N × M data
matrix, where N is the number of samples acquired per beat
signal and depends both on T and on the sampling time Tf of
the analog-to-digital converter (ADC) while M is the number
of beat signals that are used in the data processing, collected
each Ts. In radar terminology, Tf determines the fast time
while Ts determines the slow time (Fig. 1a). This matrix is
preprocessed by applying the Fast Fourier Transform (FFT)
per column. This creates a K × M complex data matrix, whose
elements are denoted by X(k,m), with k = 0, ..., K-1 being the
range bin index, K = N, and m = 0, ..., M-1 is the index in slow
time. The M columns contain the range profiles, determined
each Ts, while the K rows contain the Doppler signals (i.e.,
phase shifts containing vital signs information) from the range
bins. The mathematical formulation of X(k,m) is derived in
Subsection II-C including also the effect of the multipath.

B. Direct Path and Multipath Combination
Let’s consider a scenario with two stationary and normally

breathing subjects in two different range bins (i.e. two different
distances) in a room: Subject 1 is in range bin 1 while Subject
2 is in range bin 2. We neglect, in this explanation, the effects
of static reflectors and we consider only range bin 1 and 2.
The slow-time signals s(t) resulting from the direct paths of
the two subjects can be expressed as:

s1(t) = A1(t)ejφ1(t), (1)

s2(t) = A2(t)ejφ2(t), (2)

where the subscripts 1 and 2 indicate respectively Subject 1
(the closest to the radar) and Subject 2 (the farther to the
radar), A(t) is the amplitude non-linearly modulated by the
chest motion, and φ(t) is the Doppler shift, namely the vital
signs information we are interested to retrieve. Let’s assume
a typical indoor situation where a multipath of the Subject 1
combines with the direct path of the farther Subject 2. This can
be intuitively interpreted as the multipath caused by Subject 1
comes from range bin 2. Mathematically this can be expressed
with a total slow-time signals sbin2(t):

sbin2(t) = αA1(t)ej[φ1(t)+θ] +A2(t)ejφ2(t), (3)

where α and θ are used to model respectively the attenuation
and the fixed phase shift on the multipath compared to the

corresponding direct path. Knowing range bin 1, using current
UWB state-of-the-art approaches [24]–[40], it is highly likely
to retrieve the vital signs information φ1(t) of Subject 1.
This because UWB technologies can separate temporally the
reflections and we are assuming in this explanation that range
bin 1 is not influenced by the presence of Subject 2 who
is behind Subject 1 (in reality there is always the spreading
effect of the FFT). This does not hold for CW radars [7],
[12]–[22] which can monitor only one single person and the
detection sensitivity is strongly influenced by the multipaths
of the same target. However, the big challenge is to retrieve
the vital signs information of Subject 2 φ2(t). In fact, since we
are interested in the phase information (i.e., Doppler signal),
(3) shows a non-linear combination of the Doppler signals
(i.e., phase information). For example, let’s consider a typical
indoor situation where the multipath is stronger in magnitude
than the direct path, i.e., αA1(t)� A2(t). Under this condition,
(3) can be approximated as [21]:

sbin2(t) ≈ AT (t)e
j

[φ1(t)+θ]+
A2(t)

αA1(t)
sin[φ2(t)−φ1(t)−θ]


,
(4)

where AT (t) is the overall magnitude. As it is possible to note,
φ2(t) is non-linearly combined in the exponential argument
and it is also multiplied by A(t)/αA1(t) � 1. Current state-
of-the-art approaches fail to extract φ2(t) as they rely on the
assumption that the subjects’ reflections do not interfere each
other hence they can be treated independently. However, (3)
and (4) mathematically demonstrate that this assumption is not
valid in severe multipath conditions. In addition, the situation
is even more complicated when there is no information on
the subjects’ location and when we consider the effects of the
static reflectors and all the range bins (in this discussion we
considered only two range bins). Non-linear signal combina-
tions are in fact affecting all the range bins.

With the proposed methodology, detailed in Section III, we
are able to isolate the single independent sources s1(t) and
s2(t) from which we can extract accurately φ1(t) and φ2(t).

C. Multipath Propagation Model
We adopted the multipath channel model proposed by

Jakes [46] which includes the essential propagation param-
eters, namely magnitude, frequency and phase. Based on the
limited room size, we consider only the first L range bins of the
K total available ones. Within a range bin, differences in delays
are small and translate into phase shifts. Correspondingly, we
assume that the number of possible path delays is also L.
As a result, the (slowly time-varying) multipath propagation
channel impulse response h(t,m) is modelled as:

h(t,m) =
L−1∑
l=0

βl · δ (t− τl(m)) , (5)

where δ(·) is the Dirac delta function, l is the path index, τ
is the propagation of the l-th path, and βl is the complex path
gain which indicates the overall attenuation and phase shift.
We assume that there are P people and Q static clutter in
the room, which are regarded as point scatters and, therefore,
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Fig. 1: Data model. (a) Graphical illustration of the generation of the data model matrix from consecutive FMCW signals. (b)
Block diagram of the data model.

the summation of all reflections from each infinitesimal point
of a target’s surface which falls into the same range bin can
be regarded as one overall reflection through one propagation
path (the validity of this assumption was already demonstrated
through simulations and experiments in literature [12]). The
only difference between the two types of targets is that the
subjects have physiological activities (i.e., variable phase in
slow time or Doppler signal), leading to a time varying τl(m),
while the static clutter involves a constant τl (i.e., constant
phase in slow time or Doppler signal).

The received signal sR(t,m) over a multipath channel can
be modelled as the convolution between the channel impulse
response h(t,m) and the transmitted signal sT (t,m). It can be
expressed as:

sR(t,m) =
∑
i=0

sT (t,m) ∗ h(t,m) =

=
∑
i=0

∑
l=0

βi,l · sT (t− τi,l(m)) ,
(6)

with

sT (t,m) = aT e
j2π

∫ t
0
(f0+ρt)dt = aT e

j2π

(
f0+

ρ

2
t

)
t
, (7)

τi,l(m) =


2
di,l + yi(m)

c0
for human target

2
di,l
c0

for clutter/object
, (8)

where ∗ is the convolution operator, aT is the complex
amplitude indicating the amplitude of the chirp and its initial

phase, ρ = B/T is the sweeping rate, m is the slow time
index, i is the index corresponding to the i-th target/object,
l is the path index, d is the path distance, y(m) is the chest
surface displacement and it is the parameter of interest, and
c0 is the speed of light. The baseband signal sB(t,m), obtained
by matched filtering the received signal with the transmitted
signal, can be modelled as:

sB(t,m) = sT (t,m) · s∗R(t,m) =

=
∑
i=0

∑
l=0

β∗
i,la

2
T e

j2π

(
f0τi,l(m)−

ρ

2
τ2
i,l(m)+ρτi,l(m)t

)
≈

≈
∑
i=0

∑
l=0

β∗
i,la

2
T e

j2πf0τi,l(m) · ej2πρτi,l(m)t, (9)

where the superscript ∗ indicates the complex conjugate op-
eration. We neglected the quadratic term because τi,l(m) is
close to zero. The digitized baseband signal can be expressed
as:

sB(n,m) ≈
∑
i=0

∑
l=0

β∗
i,la

2
T e

j2πf0τi,l(m) · ej2πρτi,l(m)nTf ,

(10)
where n is the fast time index and Tf is the fast time sampling
time (i.e., ADC sampling rate). After performing the FFT in
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fast time, the frequency domain signal X(k,m) becomes:

X(k,m) = F {sB(n,m) · w(n)} =

=
∑
i=0

∑
l=0

ej2πf0τi,l(m) ·W
(

2πk

K
− 2πρτi,l(m)

)
≈

≈
∑
i=0

∑
l=0

ej2πf0τi,l(m) ·W (k), (11)

with

W (k) = W

(
2πk

K
− 2πρτi,l(m)

)
, (12)

where F is the fast Fourier transform operator, w(n) is a
rectangular window function in fast time, w(n) and W(k) are
a Fourier pair. Since the rectangular window in frequency
domain is a sinc function with gradients close to zero around
2πρτi,l, the frequency domain window function Wi,j(k) can
be considered as a fixed one in slow time. A sketch of this
data model is shown in Fig. 1b. Assuming P subjects and Q
static clutter in a room, (11) can be rewritten as:

X(k,m) =
P∑
i=1

ai(k)ejφi(m) + c(k), (13)

with

ai(k) =
∑
l

e
j
4πf0di,l
c0 · β∗

i,la
2
TWi,l(k), (14)

c(k) =

P+Q∑
i=P+1

∑
l

e
j
4πf0di,l
c0 · β∗

i,la
2
TWi,l(k), (15)

φi(m) =
4πf0
c0

yi(m), (16)

where φi(m) is the Doppler shift caused by the vital signs on
the FMCW signal. The observation signal X(k,m) is a dual
variable function of k and m and forms a two-dimensional
observation matrix X with factorization

X = HS + C, (17)

where

H =

 a1(0) · · · ap(0)
...

. . .
...

a1(L− 1) · · · ap(L− 1)

 (18)

is an L × P complex mixing matrix derived from (5),

S =

e
jφ1(0) ejφ1(1) · · · ejφ1(M−1)

...
...

. . .
...

ejφP (0) ejφP (1) · · · ejφP (M−1)

 (19)

is a P × M complex matrix containing the Doppler shifts (i.e.,
vital signs information) caused by the P subjects at each Ts,
and

C =
[
c(0) · · · c(L− 1)

]T · 1T (20)

is an L × M matrix with identical columns containing the
direct current (DC) information in slow-time resulting from

static reflections where the superscript T indicates the trans-
pose. Here 1 is a length M all-ones column vector. In presence
of additive noise, the data model becomes as

X = HS + C + N, (21)

where N is an L × M matrix containing zero mean additive
noise. The next step is to perform alternate current (AC)
coupling to (21) in order to remove the DC components (i.e.,
the mean values) while still preserving the physiological (i.e.,
variable) motions. This is achieved removing C in X using
a projection (or centering matrix) P such that CP = 0. This
requires 1TP = 0, where 1 is a vector with all entries equal
to 1, so that

P = I− 1(1T1)−11T, (22)

where I is an identity matrix. The result is:

XP = HSP + CP + NP = HSP + NP. (23)

Considering
X = XP, (24)

S = SP, (25)

N = NP, (26)

(23) becomes
X = HS + N. (27)

The statistic properties of this data model are:
1) S has full rank P;
2) each row of S is regarded as an independent and zero

mean source. All the signals are assumed to be random,
independent, and identically distributed;

3) the noise is assumed to be additive, white, zero mean,
complex Gaussian distributed, and independent from the
sources.

The model of (27) serves as starting point for the combined
vital-sign monitoring and automatic localization algorithm
described in the next Section. Although it was derived for an
FMCW radar, (17)-(27) are generic for any UWB architecture.

III. METHODS

The block diagram of the algorithm is shown in Fig. 2. With
the support of Fig. 3, we explain the proposed methodology.
Fig. 3a shows the In-phase and Quadrature (IQ) signals,
namely the real and imaginary components, of the Doppler
signal in each range bin for a measurement with two subjects,
seated on chairs and behind desks, whose chest surfaces were
respectively at 1.07 m and 2.26 m distance from the radar.
The experiment was conducted in the environment (Fig. 3b),
mimicking an educational class setting, where we validated
the proposed approach and system (details in Section V). In
an ideal situation and with a range resolution of 20 cm, we
would expect only Doppler information in range bins 6 and 11
(for respectively Subject 1 and Subject 2). However, as it can
be seen in Fig. 3a, each range bin contains signals which can
be direct paths, multipaths, or combinations of them. Their
amplitudes provide information of the impact of multipath in
the considered scenarios. We observe: (1) the IQ components
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Fig. 2: Block diagram of the vital-sign monitoring and localization algorithms.

present very similar amplitudes and trends in many of the
range bins, raising the question: “how many targets are truly
present?”; (2) radar ghosts are generated, i.e., the radar detects
non existing people or represents a lifeless object as alive.
More precisely, a simple visual check clearly reveals that the
signals in bin 6 (which can be approximated as 6 periods of a
sinewave in 20 seconds) are also fairly replicated with different
amplitudes and initial phases in bins 1-5,8-10,14,15,17-19.
Range bins 1 to 5 show very small IQ components. Since
the multipath cannot influence the range bins before the target
itself, the IQ signals in those range bins are entirely due to FFT
spreading. Range bins 8,14,15,17-19 show IQ signals whose
amplitudes are stronger than the ones of range bins 1-5. These
contributions are mainly due to multipath effects. In fact,
the FFT spreading effect cannot result in amplitudes higher
than the ones reported in range bins 1-5 and should decrease
with the distance from the range bin where the target is (we
use a window function before performing the FFT). Similar
considerations apply for the signals of bin 11 (which can be
considered as 3 periods of a sinewave in 20 seconds), which
are replicated in bins 12-14,16-19. In addition, the two subjects
interfere with each other in bins 14,17-19 where the I signal
corresponds to one subject while the Q signal corresponds
to the other subject. The range profile of this experiment is
depicted in Fig. 3c. It is possible to see strong responses
within 2.6 m and 3.4 m where there were no targets. This
is indeed a consequence of the multipath. We can see the
response of Subject 1 at 1.2 m. Obviously, the first target
cannot be affected by multipath but its response is strongly
affected by the wide desk placed in front of it which causes
considerable spreading of the transmitted and reflected signals.
On the other hands, there is no response of Subject 2 at 2.2 m.
The std-based localization approach [35], [37] fails in presence
of multipaths. This is demonstrated by the std profile depicted
in Fig. 3d, where the two highest peaks are respectively at 2.6
m (bin 13) and 3.4 m (bin 17), resulting in wrong localizations.
Actually, in this case, it looks more probable to conclude that
there are 3 persons. As expected, this is in line with the range
profile of Fig. 3c. Looking at bin 13 in Fig. 3a, it appears
that it contains the signals originated from Subject 2 (i.e.,
3 periods of a sinewave in 20 seconds). In this bin, the std
response is higher than the one retrieved from the direct signal
originated from the chest surface of Subject 2 at bin 11. This
is a normal result in real measurement condition: the chest
surface, containing both respiratory and heartbeat information,
involves a smaller vibration than the one due to the abdomen

which, depending on the radar positioning, can fall in adjacent
bins and it does not contain heartbeat information. Bin 17,
instead, results from the combination of two targets (I signal
is mainly generated by Subject 2 while Q signal by Subject 1).
In this bin, we report the highest std response. This is expected
when multipaths (especially if generated by abdomen area)
combine coherently.

With the proposed algorithm, we aim at isolating the single
independent sources S from which we can extract accurately
the relative Doppler signals in order to first determine the
number of targets and then to estimate their vital signs and
absolute distances (i.e., range information). The first step is to
reduce the noise by applying the singular value decomposition
(SVD) to X. The result is used to determine the number
of persons P (target existence probability) in the monitored
environment. We specify that in real environments P cannot be
determined by simply calculating the rank of X. Once knowing
the number of targets, the SVD result is further processed
by an independent component analysis (ICA) algorithm in
order to estimate the sources Ŝ. The vital signs information
is preserved in the phase information of S. The AC coupling
step used to obtain (27) removes all the DC information of
the target, resulting in a distortion in the phase (angle) extrac-
tion [12], [31]. Therefore, we used the linear demodulation
algorithm on Ŝ to perform phase demodulation in order to
extract the vital signs information ŷ(m). At this point, we face
an ordering ambiguity issue: we are still not able to indicate
which source (i.e., vital signs signal) corresponds to which
subject. From (27), H determines the linear combinations of
the sources in S, so the magnitudes of the elements in H
indicate the energy of the sources in every range bin. From
the observation matrix X and the estimated source matrix Ŝ,
we can estimate Ĥ. Knowing the propagation channels H of
the sources, we can 1-D localize the targets and remove the
ordering ambiguity.

Fig. 3e shows the estimated target existence probability
in terms of signal-to-noise ratio (SNR) of the uncorrelated
sources obtained after the SVD. Fixing a threshold thr (dashed
line in Fig. 3e), from the stem plots it clearly appears that
there are two subjects in the monitored environment. Fig. 3f
shows the extracted vital signs, the resulting spectra, and the
corresponding channel responses from which the targets can
be correctly 1-D located. In the channel responses, the outliers
originating from additive noise are small and can easily be
excluded by applying a threshold (dashed line in Fig. 3f),
while the outliers resulting from multipaths can be removed by
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Fig. 3: Vital-sign monitoring and localization algorithm example. (a) IQ signals extracted from the first 20 range bins. From
these signals, obtained after applying the FFT to the K × M matrix, it is possible to determine the Doppler information. (b)
Experiment with two subjects respectively at about 1 m and about 2 m distance from the radar. The experimental environment
mimics an educational class setting. (c) Range profile. (d) Standard deviation profile obtained from the K × M matrix processed
with the FFT. (e) Target existence probability. (f) Vital signs signals (left), relative spectra (middle) and channel responses
(right) of Subject 1 (top plots) and Subject 2 (bottom plots) determined using the proposed methodology.

detecting the shortest direct path (× in Fig. 3f). The spectral
plots indicate the vital signs rates. They are in fair agreement
with the reference values: the respiration and heart rates of
Subject 1 were 0.32 Hz and 1.19 Hz, while for Subject 2

they were respectively 0.15 Hz and 1.06 Hz. In this example,
for Subject 1, the estimated heart rate and the corresponding
reference rate differ 0.02 Hz (corresponding to 1.2 beats/min)
which is a clinically acceptable difference [47]. The respiration

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBME.2021.3066876

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

and heartbeat signals can be obtained by filtering properly the
vital signs signals. In doing so, in the experimental validation
of this work (details in Section V), we used the Wavelet
decomposition (we chose the Discrete Meyer mother wavelet)
and the corresponding rates were estimated through FFT.

A. Singular Value Decomposition
We reduce the noise by applying SVD to (27) as:

X = HS + N = U ·Σ · VH =

=
[
Us Un

] Σs 0
0 Σn

0 0

[VH
s

VH
n

]
, (28)

where U is an L × L unitary matrix containing left singular
vectors, V is an M × M unitary matrix containing right
singular vectors and its superscript indicates the Hermitian
transpose, and Σ is a diagonal matrix containing all the
singular values. The first P columns in U and V are denoted
respectively as Us and Vs, while the remaining columns are
denoted as Un and Vn, respectively.

B. Target Existence Probability
In order to estimate P, and therefore to determine Vs,

we calculate the SNR of the uncorrelated sources in V.
A spectrum of a canonical radar-based vital signs signal
consists essentially of the respiration fundamental, which is the
dominant component of the signal, of one or two decreasing
in magnitude respiration harmonics, and of the very small
heartbeat fundamental. We consider as signal power the power
within the fundamental and its first harmonic while the rest
of the spectrum is considered as noise. The first P sources of
V (i.e., first P columns) produce a high SNR and indicate Vs
while the remaining sources have very low SNR and indicate
Vn. We perform also other checks on the spectrum’s local
maxima: (1) if the peak, which should indicate the respiration
rate, is outside the typical medical ranges, we conclude that
this source is noise; (2) we determine the ratio of the strongest
peak and its first harmonic. We consider as noise any source
producing a ratio less than 2. In those two situations, we fix
the SNR to 0 dB. The last operation is to scan the obtained
SNR profile starting from the first estimation and stopping
when the first descending order uncorrelated source produces
an SNR below a threshold which, in this work, was set to 10
dB (this value was determined empirically). The latter source
indicates the starting of Vn while the previous ones are the Vs
sources corresponding to the P subjects.

C. Independent Component Analysis
As noise is assumed to be uncorrelated to the sources in S,

the columns of Vs span the same subspace as the rows in S
and the columns of Vn span the noise space. Therefore, Vs
can be expressed as the following linear transform [48]:

VH
s = AS, (29)

where A is a P × P square mixing matrix. Therefore, by
taking the signal space, we not only remove the noise falling

into the null space, but also pre-whiten the data based on the
second order statistic. In (29), the rows of S are the underlying
independent sources, A is a mixing matrix, and the rows of
VH

s are the mixtures of the sources in S. This data model is
consistent with the classical cocktail-party problem that can
be addressed by the ICA algorithm [49]. Since the first step
of ICA, i.e., the pre-whitening, has been done by SVD, the
estimation of S only needs one more step, searching for the
unmixing matrix W such that the de-mixed sources have the
largest statistical independence [50]:

Ŝ = WHVH
s . (30)

Based on the central limit theorem, the sum of independent
random variables tends to a Gaussian distribution. This gives
the inspiration that the estimated independent sources should
tend to be as non-Gaussian distributed as possible. There
are various ways to measure non-Gaussianity. One popular
criterion is negentropy which is relatively robust and, most
importantly, does not require prior knowledge about the prob-
ability density functions of the sources [51].

D. Linear Demodulation
Based on the small angle approximation [31], valid for sub-

10 GHz radar, a source can be approximated as:

s(t) = ejφ(t) ≈ 1 + jφ(t)− φ2(t)

2
, (31)

where φ(t) is the phase (Doppler) shift caused by the vital
signs. After DC removal, we observe that the imaginary part
is more powerful than the real part:

s̄(t) ≈ jφ(t). (32)

The vital signs information ŷ(t) can be extracted applying the
linear demodulation [31] to the estimated source ŝ(t) and it
can be expressed as:

ŷ(t) = ŝLIN (t)
λ0
4π
, (33)

where ŝLIN (t) is the estimated source after the linear de-
modulation and λ0 is the wavelength corresponding with the
start frequency of the chirp. If the demodulation is performed
correctly, (33) is equivalent to the motion of the chest surface
y(t) caused by the vital signs. This movement is normally mod-
elled in literature [7], [12]–[40] as the sum of two sinusoidal
functions as:

y(t) = yr(t)+yh(t) = ar cos (2πfrt)+ah cos (2πfht) , (34)

where yr(t) and yh(t) indicate respectively the mechanical
chest surface displacements caused by respiration (expansion
of thorax and lungs) and heart contractions, ar and ah are the
maximum mechanical displacements caused by the lungs and
heart on the chest surface (with typical amplitudes around 4-
12 mm and 0.1-0.5 mm [8], respectively), and fr and fr are the
vital signs frequencies which represent the information to be
extracted. Another approach to perform phase demodulation
is to use the arctangent demodulation algorithm [13]. We
prefer the linear demodulation since is faster and more robust
in presence of outliers (e.g., baselines in the Doppler shift,
random body movements).
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(a) (b)

Fig. 4: Radar sensor. (a) Fully assembled radar sensor with antenna pair and (b) block diagram.

E. Automatic Localization Algorithm

In order to 1-D locate the targets and to remove the
order ambiguity, knowing the observation matrix H and the
estimated source matrix Ŝ, we determine Ĥ by minimizing
the residual error ‖X−HŜ‖22. However, due to the path loss,
the observation vectors (rows) in X have unequal power. To
better balance the residual errors, we perform a row-wise
normalization on H. Assuming H is the normalized version
of X and A is the diagonal scaling matrix, we obtain:

X = AX = AHŜ = HŜ. (35)

We can take the sparsity of the multipath propagation channel
into account by adding a suitable constraint to the cost
function, i.e., we solve

min
H
‖X−HŜ‖22 + ζ‖H‖1, (36)

where ζ is the penalty coefficient which represents a trade-
off between the residual error and the sparsity. Its value was
determined empirically. As the scaling matrix A is known, we
obtain

Ĥ = AĤ. (37)

IV. RADAR SENSOR

In this work, we used the imec Mercurius V1.1 radar
sensor (Fig. 4a) consisting of a custom-designed radar unit
and of the PicoZed 7015 system-on-module (SOM) with
an integrated field programmable gate array (FPGA). Two
commercial sinuous style antennas, with gain of 6 dBi and
opening angles of 65 (vertical) × 85 (horizontal) degrees, are
connected to the radar. The latter was developed on a single
printed circuit board with a size of approximately 15 (l) x 9
(w) x 0.2 (t) cm3.

The block diagram of the radar system is shown in
Fig. 4b. The radar’s core is formed by the FMCW signal
generator, implemented by the HMC703LP4E Fractional-N
phase-locked loop (PLL) and by the HMC508LP5 voltage-
controlled oscillator (VCO). The FMCW signal is split in two
branches by a power divider designed as a branch line coupler.
The first output feeds the transmitter antenna through the
ADRF5020RF radio-frequency (RF) switch that is controlled
by the FPGA to transmit the FMCW signal each Ts. The

second output is connected to the MCA1-12G+ mixer’s local
oscillator (LO) port. The signal reflected from the target (or,
more general, from multiple targets) is received, amplified
by the HMC902LP3E low-noise amplifier (LNA) and the
HMC3587LP3BE gain block, and then mixed with a copy of
the transmitting signal (from the second output of the power
divider). The resulting baseband signal is bandpass filtered,
amplified, and then acquired and digitized by an ADC. The
total power consumption is about 8 W.

The radar transmits a series of chirps of initial frequency f0
= 7.3 GHz, total bandwidth B = 750 MHz, total duration T =
102.4 µs and Ts = 3.072 ms. This results in range bins of 20
cm and in a Doppler (vital signs) signal sampling rate of 1/Ts
= 325.52 Hz. The effective radiated peak power is 0 dBm. The
waveform configuration together with the transmitting power
allows satisfying the limits of all the worldwide UWB indoor
radio regulations in terms of both power spectral density
(−41.3 dBm/MHz) and peak power (0 dBm/50 MHz) [52].

In case of vital signs with typical speed motion of few
millimeters per second, during the T interval there is only
a variation of few hundreds of nanoseconds on 20 cm of
range resolution. This variation of about 6 orders of mag-
nitude below the range resolution is negligible and cannot
result in range/Doppler ambiguity issues. There is also no
issue with “long delay return”: the designed radar waveform
permits a maximum unambiguous range of several kilometers,
while radar-based vital signs monitoring is limited to “room
distances”. This is because the electromagnetic signals are
strongly attenuated after few meters.

V. EXPERIMENTAL RESULTS

The experimental protocol was approved by the internal
imec – Netherlands Ethical Board. In order to generate mul-
tipaths that can be experienced in real circumstances, the
measurements were performed in a room environment set up
as a typical academic class, containing chairs and desks, which
are placed near, in front, and behind the volunteers (Figs.
3b,5). This represents a severe multipath situation (as shown in
Fig. 3a) that can be experienced in real circumstances: wide
and big, partly metal static objects are right in front of the
subjects, causing a considerable spreading of the transmitted
and reflected signals in the whole room, which has a steel-
reinforced concrete floor, metal wall parts and a metal tile
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Radar Sensor

Medical

Reference Device

Fig. 5: Experimental environment mimicking an educational
class setting. In the figure, the two volunteers are respectively
at about 2 m and about 5 m distance from the radar. A medical
reference device was used to measure the heartbeat (through
PPG sensors with finger transducers) and respiration (through
belt sensors) of the volunteers.

ceiling. The validation was conducted with 11 subjects, 9
males and 2 females, differing in height (155-195 cm), in
weight, and in age (20 - 34 years). The volunteers were
grouped in random pairs and they randomly chose a seat.
We performed a total of 21 measurements, subdivided in 4
subsets: (1) 12 experiments with 6 pairs (i.e., 2 measurements
per pair) with the subjects at about 1 m and about 2 m distance
from the radar; (2) 3 experiments with 3 different pairs (i.e.,
1 measurement per pair) with the subjects at about 2 m and
about 3.5 m distance from the radar; (3) 3 experiments with 3
different pairs (i.e., 1 measurement per pair) with the subjects
at about 2 m and about 5 m distance from the radar; (4) 3
experiments with 3 different pairs (i.e., 1 measurement per
pair) with the subjects at about 3.5 m and about 5 m distance
from the radar. The aforementioned nominal absolute distances
(i.e., 1 m, 2 m, 3.5 m, and 5 m) were measured along the
radar’s line of sight (LoS), from the antennas to the edges
of the tables in front of the subjects. A sketch of the in-
vivo experiments is shown in Fig. 6. During the experiments,
each subject was breathing normally wearing a photoplethys-
mogram (PPG) finger sensor and a thorax expansion belt to
provide reference measurements for heartbeat and respiration,
respectively. At this purpose, we used the g.USBamp device
(CE certified and FDA cleared medical device, safety class:
II, conformity class: IIa, type of applied part: CF) as gold
standard reference. A measuring tape was used to determine
the absolute distances between the radar (i.e., from the middle
of the two antennas) and the chest surface of the subjects.
We have compared the proposed algorithm with the automatic
target localization approach based on std [35], [37] where
the two highest peaks in the std profile indicated the range
bins (i.e., the absolute distances) where the subjects are 1-D
located (as explained for Fig. 3d) and the Doppler signals,
extracted from those range bins, were processed using both
the linear and arctangent demodulation algorithms. We also
processed the data with those two demodulation techniques
after extracting the Doppler information from the range bins
corresponding to the tape-measured absolute distances, i.e.,
performing a manual 1-D localization. Although, in real sit-

uations, manual localization obviously cannot be used, we
included it in this work as comparison to our algorithm.
Obviously, in the benchmarking cases with std and manual
localization, we assumed to know a priori the number of
subjects. For sake of completeness, we have also validated the
proposed algorithm where we replaced the linear demodulation
with the arctangent demodulation.

The results of this validation are shown in Figs. 7-10.
Each measurement is 140-second long and it was processed
considering sliding windows of 20 seconds with overlaps of 19
seconds. Data processing was performed offline using Matlab.
The radar data, containing the FFT results of consecutive beat
signals, is arranged into a X(k,m) matrix of L = 30 rows
(i.e., equals to the number of considered range bins) and M
= 45573 columns (i.e., 140 seconds of signal with 1/Ts as
sampling frequency in slow time). With 21 measurements,
each simultaneously capturing 2 subjects, while applying a
latency of 20 seconds, 5040 estimations were performed. For
each measurement, we first calculate the target existence prob-
ability over 120 sliding windows. The number of subjects is
determined looking for the most recurring estimation (i.e., the
mode). This value is then used for the vital signs monitoring
and automatic localization tasks. Figs. 7a,8a,9a,10a shows the
average target existence probability for the four subsets. For
the vital signs, we determined the detection success rate as
the percentage of time that the estimated respiration rate (RR)
and heart rate (HR) and their references match respectively
within 1.5 breaths-per-minute and 3 heartbeats-per-minute.
These thresholds are below the maximum errors to consider
the measurements clinically acceptable [47]. For the 1-D
localization, we calculated the mean absolute errors (MAEs)
and the RMS errors (RMSEs). With this dataset, we experi-
enced that the approaches exploiting the linear demodulation
technique outperform the alternative ones where the arctangent
demodulation was used. Anyhow, we reported higher vital
signs success rates when the arctangent demodulation was
employed in combination with the proposed algorithm rather
than with the std-based and manual localization alternatives.
The rest of the following discussion focuses only on the
approaches using the linear demodulation. For all the sub-
sets, we obtained similar respiration success rates for the
first targets (almost 100%), although the linear demodulation
algorithm with manual localization gives a higher success rate
in estimating the heart rates. This is expected, because: (1) the
nearest subjects (and thus the corresponding range bins) are
not influenced by the multipaths and, therefore, they can be
considered independent from further away subjects; (2) the std-
based localization algorithm and, in particular, the proposed
methodology consider during the processing all the range bins
at the same time (therefore also the ones affected by multipath)
while the manual localization considers only the range bin
where the first target is present. However, we obtain better
results over the std-based approach in the 1-D localization
of the first subjects. In fact, as opposed to the std-based
alternative, with the proposed algorithm the errors are within
the radar range resolution of 20 cm. The real benefit of the
proposed algorithm is experienced in monitoring the second
subjects which are affected by the multipaths. In fact, not only
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Fig. 6: Sketch of the in-vivo experiments. Scenario of (a) subset 1, (b) subset 2, (c) subset 3 and (d) subset 4. S1 and S2
indicate respectively Subject 1 and Subject 2.
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Fig. 7: Experimental results with the subjects seated at 1 m and 2 m distance from the radar sensor (subset 1) and comparison of
the proposed algorithm with some of the state-of-the-art approaches. (a) Target existence probability. (b) vital signs monitoring,
(c) automatic 1-D localization.
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Fig. 8: Experimental results with the subjects seated at 2 m and 3.5 m distance from the radar sensor (subset 2) and
comparison of the proposed algorithm with some of the state-of-the-art approaches. (a) Target existence probability. (b) vital
signs monitoring, (c) automatic 1-D localization.

does our algorithm produce higher overall success rates than
the other two approaches in estimating the vital signs rates
(both for RR and HR), but it also considerably outperforms
the std-based localization algorithm both in terms of MAEs
and of RMSEs. In fact, with the proposed methodology, the
errors are very close to the radar range resolution while,
with the other approaches, they are always significant (even

beyond 1.2 m). In a few measurements (Fig. 8b), the std-based
localization with linear demodulation produced comparable
results (although slightly minor success rates) to our algorithm
in the vital signs estimation of the second target, although
the benchmarking solution produces a significant error in
the 1-D localization (Fig. 8c). This happens when the std
profile produces a peak to a range bin where it is present
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Fig. 9: Experimental results with the subjects seated at 2 m and 5 m distance from the radar sensor (subset 3) and comparison of
the proposed algorithm with some of the state-of-the-art approaches. (a) Target existence probability. (b) vital signs monitoring,
(c) automatic 1-D localization.
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Fig. 10: Experimental results with the subjects seated at 3.5 m and 5 m distance from the radar sensor (subset 4) and
comparison of the proposed algorithm with some of the state-of-the-art approaches. (a) Target existence probability. (b) vital
signs monitoring, (c) automatic 1-D localization.
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Fig. 11: Experimental results with two subjects at about 1 m and about 2 m distance from the radar. The volunteers were
seated and facing the radar. (a) 1-D localization. (b) Vital signs rates over time of Subject 1. (c) Vital signs rates over time of
Subject 2.

a multipath of the second target (i.e., a copy) which luckily is
not affected by the multipath of the first person. This concept
was demonstrated with the help of Fig. 3d.

Finally, Fig. 11 shows the results of an experiment with
two seated down subjects respectively at about 1 m and about
2 m distance from the radar. More precisely, Fig. 11a shows
the result of the 1-D localization over time while Figs. 11b,c
show the vital signs rates over time of the two subjects. This

example demonstrates that the proposed algorithm does not
require distinct breathing rates for a proper monitoring.

VI. CONCLUSION

We report an algorithm based on an FMCW radar sensor
that can automatically determine the absolute distances (1-
D localization) of paired subjects and remotely monitor their
vital signs. The proposed methodology differentiates from
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current state-of-the-art approaches and it is demonstrated to
function in real indoor environments where radar signals are
severely affected by multipaths. Practical applications arise for
health care, assisted living, geriatric and quarantine medicine,
rescue and security purposes. Further research should now aim
to implement this method using real-time embedded signal
processing and to extend the algorithm towards a multiple-
input and multiple-output (MIMO) system in order to enable
2-D localization (range and azimuth information). This allows
monitoring subjects that are at the same absolute distance
(range bin) but at different angular locations. Moreover, as
opposite to SISO, a MIMO radar divides the whole environ-
ment in “azimuth-range cells”. Each cell has an area smaller
than the one of the entire range bin, thus is affected by a
minor amount of multipath reflections. Although this work
was based on an FMCW radar, the proposed methodology
can be applied to any other UWB architecture (e.g., FMCW,
SFCW, PMCW and UWB-IR). The direct path and multipath
reflections combine following the same physic principles in-
dependently from the radar type. The resulting demodulated
signals are mathematically expressed as complex exponential
functions, therefore they follow the same theory described in
this manuscript.
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