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Abstract—We introduce a novel approach for the mask-
constrained power synthesis of 1-D fields enabling near-field 
shaping according to arbitrary masks. This method presents an 
innovative framework based on the spectral factorization 
technique and a warping strategy, allowing for an accurate 
representation of the near field as a minimally redundant 
bandlimited function. This provides valuable theoretical tools to 
effectively solve the problem. In fact, the synthesis is formulated 
as a linear programming problem followed by a polynomial 
factorization. Additionally, the approach allows for the a-priori 
identification of the minimum size of the source required to fulfill 
a given near-field intensity mask. 
 

Index Terms—Antenna pattern synthesis, array antennas, near-
field synthesis, shaped beams, warping sampling.1 

I. INTRODUCTION 

The synthesis of shaped beams represents a canonical 
problem in antenna theory, with significant applications across 
several fields such as biomedical engineering [1]-[3], radar 
systems [4], cellular telecommunications [5], and many more 
[6]-[32]. 

Among the different methods addressing this issue, the 
‘mask-constrained field intensity’ synthesis approach stands 
out as the most effective for achieving the optimal radiation 
performance [7].  

In fact, this formulation acts on the field intensity rather than 
the complex radiated field, thereby avoiding any a-priori 
restriction on the field’s phase. Furthermore, by constraining 
the power distribution within a prescribed mask (defined by 
lower bound and upper bound functions), this approach 
maximizes the exploitation of the degrees of freedom, 
providing greater flexibility as compared to pursuing a 
‘nominal’ distribution [7]. Additionally, it allows for complete 
control over the sidelobe level (SLL).  

 
 

Despite its potential for superior radiation performance, the 
‘mask-constrained field intensity’ framework is more complex 
than other formulations. In fact, unlike the ‘field synthesis’ 
formulation, it leads to a non-linear relationship between the 
source and the desired radiation distribution. Moreover, the 
inclusion of a lower-bound mask requires addressing non-
convex constraints [8]. 

For the far-field case, the Spectral Factorization (SF) 
method has emerged as a solution to these challenges, offering 
a mask-constrained field-intensity synthesis approach that 
guarantees the best possible performance in several relevant 
cases [33]-[34].  

Initially applied to antenna synthesis in 1994 [33] and later 
to design of finite impulse response filters in 1996 [34], SF has 
been fully developed for the far-field synthesis of 1-D 
equispaced arrays, as detailed in the 1998 paper [7] and the 
1999 book chapter [35]. This straightforward and deterministic 
procedure allows for the a-priori determination of whether a 
prescribed field-intensity mask can be fulfilled by a 1-D source 
of given size and, if so, identifies all possible source 
distributions corresponding to the desired field intensity. These 
capabilities stem from the method’s optimal exploitation of the 
bandlimited nature of the far-field intensity, which allows for 
the expansion of the field as a trigonometric polynomial. 
Accordingly, the problem is phrased as the determination of the 
coefficients of this polynomial, that is cast as a Linear 
Programming optimization problem followed by a polynomial 
factorization and a ‘zero pairing and flipping’ procedure.  

SF brings decisive advantages in terms of computational 
burden and optimality of solution over the state-of-the-art 
techniques [10]. Furthermore, it is more effective than all the 
methods that, as the Elliott’s one [24], directly act on the roots 
of the field representation rather than on the coefficients of the 
field-intensity polynomial. 

 

Giada M. Battaglia, Tommaso Isernia, Roberta Palmeri, Maria A. Maisto, Raffaele Solimene, and Andrea F. 
Morabito 

Near-Field Synthesis of 1-D Shaped Patterns through  
Spectral Factorization and Minimally-Redundant  

Array-Like Representations 



 

 

 

This is the accepted version of the following article: Giada M. Battaglia, Tommaso Isernia, Roberta Palmeri, Maria A. Maisto, Raffaele Solimene, and Andrea F. 
Morabito, “Near-Field Synthesis of 1-D Shaped Patterns through Spectral Factorization and Minimally-Redundant Array-Like Representations,” IEEE Transactions 
on Antennas and Propagation, DOI 10.1109/TAP.2024.3525137. 

0018-926X © [2018] IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, 
or reuse of any copyrighted component of this work in other works.” 

 

2

However, SF’s application is restricted to cases where the 
field and its representation comply with the two following 
specifications:  

(1) the field must be (or be possibly conceived as) a 1-D 
function; 

(2) the field has to be represented as a minimally-redundant still 
accurate trigonometric polynomial. In fact, the requirement 
for a low-order polynomial is necessary for a robust and 
effective solution to the subsequent ill-posed inverse source 
problem (see below).  

Requirement (1) is necessary because the Fundamental 
Theorem of Algebra [36] does not hold true in the 2-D case. For 
this reason, SF was originally developed only for 1-D 
equispaced arrays whose far field can be expressed as the array 
factor. However, the approach has then been extended to 
several far-field cases, including 1-D arrays subject to mutual-
coupling and mounting-platform effects [10], 1-D continuous 
aperture sources plus sparse isophoric arrays [11], 2-D 
circularly-symmetric continuous sources [13] (also leading to 
circular-ring sparse isophoric arrays [37]), and rhombic 
equispaced 2-D arrays generating circularly-symmetric field 
intensities [14]. 

Given the growing interest in near-field communications 
and sensing [38]-[42], as well as in near-field wireless power 
transfer [43]-[46], near-field synthesis, i.e., achieving specific 
electromagnetic field distributions in the near-field region, has 
triggerered increasing interest in antenna engineering [47]-[49] 
with many different possible applications (see [47] for a partial 
list). While many efforts have been devoted to the case of 
focused fields (with applications in local hyperthermia, wireless 
power transfer, and many more), applications such as short-
range wireless networks and radars, multi-point wireless power 
transfer, reconfigurable intelligent surfaces [38]-[39], and many 
more require indeed the consideration of shaped beams.  

However, the few existing approaches to the near-field 
synthesis of shaped patterns either rely on computationally 
intensive global optimization algorithms (see for instance [9]) 
or cannot always guarantee the solution’s optimality. 
Consequently, there is a significant lack of methods for the 
mask-constrained power synthesis that can bring all the SF’s 
advantages to the near-field case. Therefore, the aim here is to 
introduce a novel approach for the near-field synthesis of 
shaped patterns having all the SF’s advantages. This effort 
addresses a key limitation, as requirement (2) has historically 
restricted the application of SF methodologies to far-field 
scenarios. 

In this regard, since the field is a square-integrable function 
(it is indeed even more regular), it can be approximated by a 
bandlimited function. In fact, bandlimited functions are dense 
in the set of finite-energy functions [50]. Accordingly, the 
representation error can be controlled by carefully choosing a 

sufficiently large bandwidth. Then, Dirichlet sampling series 
(and hence a Fourier-like expansions, as the array factor in the 
far-field zone) can be developed, which would allow to exploit 
the same procedures as in [7]. This would result in the usual 
𝜆 2⁄  sampling, where 𝜆 denotes the wavelength.  

On the other hand, such a choice would eventually lead to 
high-order polynomials, and hence to variations that are not 
consistent with the actual Number of Degrees of Freedom 
(NDF) [51] of the field on the measurement line at hand. 
Consequently, the residual step from field representation to the 
actual source would be either inaccurate or unstable, rendering 
the solution non-effective. 

In order to restore consistency amongst the actual NDF and 
the order of a polynomial representation, in the following we 
leverage convenient near-field representation strategies [52]-
[54]. These latter are based on the so-called ‘reduced radiated 
field’ concept and on a proper recasting of the radiation operator 
by certain warping transformations. In fact, with proper 
parametrization, the degrees of freedom of the field on a 
truncated observation domain correspond to the number of 
samples of the ‘reduced field’ on that domain, provided samples 
are properly collected [52],[55],[56]. 

Notably, in such a way, the corresponding trigonometric 
polynomial approximation is of finite order even for unbounded 
domains. This agrees with the finiteness of the NDF of the near-
field (when evanescent waves are negligible), regardless of the 
size of the observation domain [57]. 

The proposed approach addresses the 1-D near-field power 
synthesis by generating shaped beams lying within an arbitrary 
mask defined in the warped domain. Accordingly, for the first 
time in the literature, the near-field mask-constrained power 
synthesis problem is definitively solved by using the SF 
technique, retaining all its advantages. 

The main features of the developed procedure have been 
briefly described in the conference contribution [58]. This latter 
has been aimed only to provide a brief overview of the proposed 
approach and, hence, it does not include either the full technical 
development of the method or the numerical experiments 
presented in this paper. 

In the following, the details of the devised synthesis 
approach are reported by Section II, while numerical examples 
are shown in Section III. Conclusions follow. 

II. THE PROPOSED APPROACH 

To convey the idea, we consider a linear radiating structure 
supported over the ‘source domain’ 𝑆𝐷 = [−𝑎, 𝑎] along the 𝑥-
axis. The current can be continuously distributed, representing 
an antenna aperture supported over 𝑆𝐷, or discrete as for array 
antennas.  
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The goal is to synthesize a field with a desired field intensity 
over the ‘observation domain’ 𝑂𝐷 = [−𝑋௢, 𝑋௢], spanned by the 
variable 𝑥௢, parallel to 𝑆𝐷 and located in the near-field region 
of the source at a distance 𝑧 = 𝑧௢. Here, we specifically focus 
on 𝑂𝐷 located in the radiative near-field, where radiation 
effects dominate over reactive components, making this region 
particularly relevant for practical antenna synthesis. By 
concentrating on this region, we avoid the complexities and 
potential instability introduced by reactive fields. Furthermore, 
we limit our analysis to non-superdirective sources whose 
minimum extension exceeds some wavelengths. This allows us 
to apply established results on the degrees of freedom of the 
radiated field and non-redundant field representations [53], 
[54]. 

 

 
 

Fig. 1. Geometry of the problem (from [53]). 
 
We assume that the current is linearly polarized and directed 

along the y-axis. Consequently, the synthesis problem concerns 
the shaping of the 𝑦-component of the field. See Fig. 1 for a 
pictorial description of the geometry of the problem. 

To proceed, as mentioned in the previous Section, it proves 
convenient to find a proper polynomial representation for the 
near field. As argued there, a bandlimited function can always 
be identified for this purpose, and the key lies in an optimal 
choice of its representation.  

The desired near-field representation can be conveniently 
obtained by exploiting the analytical properties of the radiated 
field. According to [53], which aligns with the theory in [52] 
for 1-D sources, the range of the radiation operator for non-
superdirective sources of bounded support can be approximated 
as the set of spatially varying bandlimited functions, with the 
band depending only on the source size and the distance from 
𝑂𝐷. Specifically, when the field is regarded as a function of the 
so-called ‘warping variable’ 𝜁(𝑥௢), i.e.: 

 

𝜁(𝑥௢) =
ఉ

ଶ
ቂඥ(𝑥௢ + 𝑎)ଶ + 𝑧଴

ଶ − ඥ(𝑥௢ − 𝑎)ଶ + 𝑧଴
ଶቃ      (1)  

(where 𝛽 is the wavenumber and 𝑥௢ the original observation 
variable), it can be approximated as the product of an 
exponential phase term times a bandlimited function having 
bandwidth Ω఍ = [−1,1], i.e.: 

                 𝐸[𝜁(𝑥௢)] = 𝑒ି௝ఊ(௫೚) න 𝐸෠(𝑤)𝑒ି௝௪఍(௫೚)𝑑𝑤

ଵ

ିଵ

            (2) 

where 𝐸෠(𝑤) denotes the spectrum, and 

       𝛾(𝑥௢) =
𝛽

2
ቈට(𝑥௢ + 𝑎)ଶ + 𝑧଴

ଶ + ට(𝑥௢ − 𝑎)ଶ + 𝑧଴
ଶ቉       (3) 

 

Basically, the transformation (1) stretches 𝑂𝐷 = [−𝑋௢, 𝑋௢] into 
𝑂𝐷఍ = [𝜁(−𝑋௢), 𝜁(𝑋௢)], which remains finite even when 𝑂𝐷 
is unbounded, resulting in the aforementioned bandlimited 
approximation. Note that the bandwidth value is immaterial and 
results from the particular choice of the scaling factor in (1). A 
different choice would lead to a scaled Ω఍, with 𝜁 ranging over 
an interval of different size. However, the product 
𝑚ൣ𝑂𝐷఍൧𝑚ൣΩ఍൧, with 𝑚[⋅] representing the measure, always 
remains constant (refer to [54] for more details).  

By exploiting the warping representation (2) and invoking 
the concentration properties of prolate spheroidal 
wavefunctions, which effectively approximate the singular 
functions of the radiation operator relating the source to the 
field on the domain at hand [59], it can be concluded that the 
field belongs to a finite-dimensional space. The dimension of 

this space is 𝑀 =
ଶ఍(௑೚)

గ
 and corresponds to the NDF for the 

considered near-field configuration [54]. This entitles us to look 
for a more convenient finite-dimensional representation of the 
field in terms of bandlimited trigonometric polynomials, 
approximating the Fourier integral as a finite Riemann sum [56] 
(see also [53],[54]). Consequently, the following finite-
dimensional representation of the field can be achieved: 

                𝐸(𝑥෤) = 𝑒ି௝ (௫೚) ෍ 𝑐௡𝑒௝௡௫෤    

ெ
ଶ

௡ୀି
ெ
ଶ

                  (4) 

with 

                              −𝜋 ≤ 𝑥෤ =
𝜋𝜁(𝑥௢)

𝜁(𝑋௢)
≤ 𝜋                              (5) 

 
It is important to note that since relation (1) is injective, the 
interval [−𝑋௢, 𝑋௢] is univocally mapped into the interval 
[−𝑥෤(𝑋௢), 𝑥෤(𝑋௢)]. Therefore, any mask required to shape the 
field amplitude in the ‘real’ domain [−𝑋௢, 𝑋௢] can be 
equivalently applied in the ‘warped’ domain [𝑥෤(−𝑋௢), 𝑥෤(𝑋௢)] 
and vice versa.  

It is remarked that the warping variable plays a crucial role 
in our approach. Firstly, it allows to regain Fourier-based 
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arguments and hence to come to the field 
representation/approximation (4) in terms of a trigonometric 
polynomial. Secondly, and more importantly, the warping 
formalism provides a highly efficient and non-redundant 
representation of the range of the radiation operator [53], which 
in turn ensures a minimal-order representation. This offers two 
decisive advantages:  
 while any trigonometric-like representation (even in the 

original variable) can permit SF of the square amplitude 
field, it can result in excessively high order polynomials, 
thus complicating the factorization process;  

 the resulting field is already projected on the so-called 
‘essential’ range of the radiation operator, i.e., the one 
spanned by the singular functions corresponding to the 
most relevant singular values of the radiation operator 
[54]. Accordingly, the warping implicitly helps in 
regularizing the inverse source problem and thus in 
avoiding rapidly oscillating sources as well as sources 
characterized by a large dynamic range, which would be 
difficult or even impossible to be realized in practice.  

Consequently, apart from superdirective sources, the field 
radiated by any source within the interval [-𝑎,𝑎] can be 
effectively represented by using the warping formalism 
[53],[60] and equation (4). What is more, since the warping 
reflects the mathematical properties of the radiation operator 
(and not of the particular source), it works regardless the source 
is continuous or discrete. 

Turning to (4), apart from the exponential term in front of 
the summation, it resembles an array factor. In fact, one can 
write: 
                                    𝐸(𝑥෤) = 𝑒ି௝ఊ(௫೚)𝐹(𝑥෤)                                (6) 
where 

                                   𝐹(𝑥෤) = ෍ 𝑐௡𝑒௝௡௫෤    

ெ
ଶ

௡ୀି
ெ
ଶ

                          (7) 

 

As a result, this approach enables the development and 
exploitation of the SF method [7] for the near-field case through 
the following three-step procedure. 

Step 1. Identification of the optimal near-field intensity 

By recognizing that the first factor in front of (6) disappears 
when calculating the square amplitude, and following the 
arguments in [7], the square amplitude of (6) can be written as: 

                                𝑃(𝑥෤) = ෍ 𝐷௣𝑒௝௣௫෤    

ெ

௣ୀିெ

                           (8) 

where 𝑃(𝑥෤) must be a real function, implying that the 
coefficients 𝐷௣ (with 𝑝 = −𝑀, … , 𝑀) form a Hermitian 
sequence.  

Then, a feasibility criterion is applied to conceive 𝑃(𝑥෤) as a 
function that satisfies a desired power mask, defined by an 
upper bound (𝑈𝐵) function and a lower bound (𝐿𝐵) function. 
Thanks to (1), constraints in the original spatial variable are 
translated into constraints in terms of 𝑥෤. The field intensity is 
then identified by solving the following Linear Programming 
(LP) optimization problem: 

Find 𝐷ିெ , … , 𝐷ିଵ, 𝐷଴, 𝐷ଵ, … , 𝐷ெ  in such a way that: 

                         𝐿𝐵(𝑥෤) ≤  ෍ 𝐷௣𝑒௝௣ ෤

ெ

௣ୀିெ

≤ 𝑈𝐵(𝑥෤)                 (9. 𝑎) 

𝐷௣ = 𝐷ି௣
∗     𝑓𝑜𝑟 𝑝 = 1, … , 𝑀                     (9. 𝑏) 

where * denotes complex conjugation.  
Notably, as in the far-field case discussed in [7] and [33], 

finding a solution to (9) is not only a necessary condition for 
the existence of the desired field intensity but, by virtue of the 
Fejer-Riesz theorem [61], it is also a sufficient condition for the 
existence of a function of the kind (6) to represent the near field. 
Hence, (9) represents an existence criterion as well.  

Notably, this step of the procedure also enables the 
identification of the minimal source size for a given 
performance or, in a dual fashion, allows for maximizing 
performance for a given source size. In fact, the computational 
efficiency of the LP step allows for the a-priori (i.e., before 
performing the actual synthesis) identification of the minimum 
source size required for the feasibility of the given mask, thus 
transforming the ‘synthesis’ into an ‘optimal synthesis’ [13]. 
This is achieved by iteratively solving (9) with progressively 
smaller values of a until the constraints become too stringent to 
allow for any solution.  

It is worth noting that formulation (9) also allows adding the 
minimization of an objective function aimed at maximizing 
some field-intensity related performance, e.g., beam efficiency 
or directivity. 

Step 2. Application of the SF technique 

Once 𝑃(𝑥෤) has been determined, the SF technique is applied 
to identify the corresponding complex field factor 𝐹(𝑥෤) such 
that |𝐹(𝑥෤)|ଶ = 𝑃(𝑥෤).  

This process involves determining the roots of 𝑃(𝑥෤) and 
then applying the Fejér-Riesz theorem [61] to factorize the 
underlying polynomial as:  

                                      𝑃(𝑥෤) = 𝐹(𝑥෤)𝐹∗(𝑥෤)                                (10) 

Since 𝑃(𝑥෤) is a real and non-negative trigonometric 

polynomial, if 𝑧̃ is one of its zeroes, then 
ଵ

 ௭෤∗ is a zero as well, 
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and the roots on the unit circle always appear in pairs. This 
entails that the factorization (10) is not unique, as a zero-
flipping procedure can be used to find different 𝐹(𝑥෤) 
distributions all corresponding to the same field intensity. By 
virtue of such a circumstance, the proposed approach will return 
not one but all the different sources that can radiate the desired 
field intensity. This flexibility is particularly useful, as it allows 
also the selection of the most easily realizable source. In fact, 
the availability of multiple solutions enables the user to choose 
the most suitable one based on specific practical criteria, such 
as the source with the lowest dynamic range ratio, the one that 
can be most easily discretized into a sparse array, or the one that 
facilitates reconfiguration of the field to different radiation 
modalities [11].  

Step 3. Determination of the source 

Once an 𝐹(𝑥෤) distribution fulfilling (10) has been 
determined, the next step is to identify the source that radiates 
this field.  

To this end, the phase term in front of the summation in 
equation (4), which is lost when transitioning from (4) to the 
field intensity in (8), must first be restored. This yields the 
actual radiated field as 𝐸(𝑥௢) = 𝐹[𝑥෤(𝑥௢)]𝑒ି௝ఊ(௫೚). Then, the 
source is identified by solving an inverse source problem as 
described below. In particular, in the following we separately 
address the cases of continuous and discrete currents.  

 
Step 3/case I: Synthesis of continuous sources  

 

We start by considering the case of continuous current 
distributions (subject to non-super-directivity constraints) since 
they allow for an early assessment of the performance limits of 
any aperture antenna of a given size, even before choosing the 
specific radiating elements or technology. Indeed, repeated 
application of the initial feasibility step allows for identifying 
the minimal dimensions of the radiating system that are 
required to achieve a given performance or, conversely, for 
maximizing performance within given dimensions. In fact, their 
(source and pattern) distributions can act as a reference, target, 
and benchmark for practical implementations [11],[37]. 

In this case, the relationship between the radiated field and 
the source is given by the following radiation operator: 

 

                          𝐸(𝑥௢) = න 𝐺(𝑥௢, 𝑥; 𝛽)𝐽(𝑥)𝑑𝑥
௔

ି௔

                     (11) 
   

where J represents the continuous electric or magnetic current 

and 𝐺(𝑥௢ , 𝑥; 𝛽) =
௘షೕഁห𝒓ష𝒓𝟎ห

|𝒓ି𝒓𝟎|
 is the 3-D Green function, up to 

some unessential scalar factors, with |𝒓 − 𝒓𝟎| =

ඥ(𝑥௢ − 𝑥)ଶ + 𝑧௢
ଶ. This compact operator can be discretized by 

exploiting a sufficiently dense grid of points on both the source 

and observation domains. The source 𝐽 is then determined by 
using a Truncated Singular Value Decomposition (TSVD) 
regularizing inversion scheme, i.e.: 
 

                                    𝐽 = ෍
< 𝐸, 𝑣௡ >

𝜎௡

ெ

௡ୀ଴

𝑢௡                              (12) 

 

where 𝑢௡ , 𝜎௡ , 𝑣௡ are the singular system of the discretized 
radiation operator, and the TSVD expansion is truncated at the 
nominal NDF, i.e., 𝑀. 

As already stated, the adopted near-field representation does 
not include fields corresponding to superdirective sources, thus 
ensuring that one (or more) ‘smooth’ source distributions can 
be safely obtained with a negligible field misfit.  

Before leaving this Section, it is worth pausing a little bit on 
the inversion formula (12). Since a synthesis problem is being 
addressed (and not a retrieval problem where data are always 
corrupted by noise), one might question the need for 
regularization and the specific truncation at the NDF.  

Indeed, solving (12) involves the inversion of a compact 
operator with a step-like singular values distribution [54] and 
wherein (see [62],[63]) the singular functions 𝑣௡ exhibit similar 
concentration properties as the prolate spheroidal 
wavefunctions [64]. As a consequence, choosing 𝑀 larger than 
the NDF would result in sources which would affect the field 
values outside the linear interval of interest. In fact, the first 𝑀 
singular functions are primarily concentrated (in energy) within 
[−𝑋௢ , 𝑋௢], while the remaining functions are more relevant 
outside 𝑂𝐷. Thus, retaining more than 𝑀 singular functions in 
(12) would cause the radiated field to increase outside 
[−𝑋௢ , 𝑋௢], as shown in one of the numerical examples reported 
in the next numerical Section. 

Step 3/case II: Synthesis of actual discrete sources  

As a last (but not least) point, one has to consider the 
possibility of achieving a power pattern that satisfies the desired 
power mask through an actual antenna, and we focus herein on 
the case of an array. Hence, after obtaining an 𝐹(𝑥෤) distribution 
that meets the criteria in (10), the next step is to identify a 
discrete source J that can radiate this field.  

In this regard, it is well-known that the far-field radiated by 
any non-superdirective continuous source can be realized by an 
equispaced array antenna with an inter-element spacing equal 

to or slightly lower than 
ఒ

ଶ
 without altering the radiated field 

[11],[65]-[67].  
In the radiative near-field zone considered herein, the 

following theoretical arguments, and the example provided in 
the next Section, indicate that accurate realization of the given 
field through discrete sources is still viable.  

Indeed, as the adopted near-field representation does not 
allow for superdirective components, the equivalence amongst 



 

 

 

This is the accepted version of the following article: Giada M. Battaglia, Tommaso Isernia, Roberta Palmeri, Maria A. Maisto, Raffaele Solimene, and Andrea F. 
Morabito, “Near-Field Synthesis of 1-D Shaped Patterns through Spectral Factorization and Minimally-Redundant Array-Like Representations,” IEEE Transactions 
on Antennas and Propagation, DOI 10.1109/TAP.2024.3525137. 

0018-926X © [2018] IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, 
or reuse of any copyrighted component of this work in other works.” 

 

6

discrete and continuous sources observed in the far-field also 
applies to the radiative near-field. In fact, for non-
superdirective sources, far-field equivalence implies spectral 
equivalence, and thus radiative field equivalence, as long as the 
observation line is outside the reactive zone. Consequently, 
only very small deviations in the realized fields are expected (as 
also shown by the numerical experiments presented in Section 
III). 

Moving on, once a technology has been selected, the 
problem consists in determining the array excitations. To this 
end, different strategies can be employed, some of which can 
directly exploit the continuous sources obtainable as discussed 
in the previous subsection.  

The first and simplest way to identify the array excitations 
is that of sampling the continuous current distributions, which 
is known to be effective in the corresponding far-field case [65]-
[67] and, according to previous arguments, still works for the 
considered near-field configuration.  

A second possible strategy, which can be pursued by means 
of ‘density taper’ [11],[37],[67] techniques, is to exploit the 
continuous (real or even complex) source distributions in order 
to identify the array elements’ locations (rather than excitation 
amplitudes) and hence to design the so-called ‘isophoric’ 
(constant-excitation-amplitude) arrays.  

A third and last possibility, once the array geometry has 
been fixed, consists in directly finding the array elements’ 
excitations 𝐼ିே, … , 𝐼ே  by solving the inverse source problem in 
a discrete setting.  

The third strategy is indeed the one we adopt as it provides 
a decisive advantage with respect to the other two methods, i.e., 
it allows to take into account, in a straightforward fashion, the 
actual radiation pattern of realistic elements including mutual 
coupling and mounting platform effects. Coming to details, by 
using an array of 2𝑁 + 1 elements directed along the 𝑦-axis and 
located with spacing equal to or slightly lower than 𝜆/2, eq. 
(11) becomes:  

                                        𝐸(𝑥௢) = ෍ 𝐺௡𝐼௡

ே

௡ୀିே

                             (13) 

 

where 𝐺௡ =
௘షೕഁห𝒓𝒏ష𝒓𝟎ห

|𝒓𝒏ି𝒓𝟎|
𝑓௡(𝜃௡, 𝜑௡), 𝜃௡ and 𝜑௡ respectively 

denote the elevation and azimuth angles between 𝒓𝟎 = (𝑥௢, 𝑧௢) 
(i.e., the field observation point) and 𝒓𝒏 = (𝑥௡, 0) (i.e., the n-th 
element location), and 𝑓௡ represents the n-th active element 
pattern [10] accounting for all the realistic effects affecting the 
actual radiation behavior of the different array elements 
(including mutual coupling). 

III. NUMERICAL EXAMPLES 

This Section presents numerical examples to evaluate the 
effectiveness of the proposed approach for both continuous and 
discrete sources.  

In each test case, once the mask has been set in order to 
shape the field intensity as desired, the parameter a has been 
identified by repeatedly solving (9) with progressively smaller 
source sizes until no solution is found, thereby determining the 
minimum size of the source required to fulfill the given 
requirements. Therefore, the maximum theoretical performance 
achievable by any source of fixed size has been identified for 
each considered power mask. Additionally, 𝑋଴ and 𝑧଴ are such 
to always ensure that the 𝑂𝐷 is located within the radiative 
near-field region of the source. 

 
Fig. 2. Synthesis of a flat-top near field: enforced 𝑈𝐵 (blue curve) and 𝐿𝐵 (red 
curve) constraints; near-field intensities achieved after step 1 (black curve) and 
step 2 (green dashed curve) of the synthesis procedure. 
 
 

 
                                (a)                                                            (b) 
 

 
                                (c)                                                            (d) 
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                                (e)                                                            (f) 
Fig. 3. Amplitude (on the left) and phase (on the right) of three different sources 
all radiating the same near-field power pattern plotted in green in Fig. 2.  

III.A. Numerical experiments for the synthesis of continuous 
sources 

In the first test case, we set 𝑎 = 5𝜆, 𝑋଴ = 10𝜆, and 𝑧଴ =
10𝜆. Furthermore, UB and LB have been set to generate a near-
field flat-top pattern with a ripple equal to ±1 𝑑𝐵 and non-
uniform sidelobe levels. In particular, as shown in Fig. 2, UB 
has been set as -20 dB for |𝑥෤| ≥ 2.06, -25 dB for 0.89 ≤ |𝑥෤| <
2.06, and 1 dB elsewhere, while LB has been set as -1 dB for 
|𝑥෤| ≤ 0.45.  

 
(a) 

                 

 
(b) 

Fig. 4. Comparison between the field generated by the source shown in Fig. 
3(a)-(b) and the field coming out from step 2 of the procedure: (a) square 
amplitude; (b) phase. The vertical red dashed lines denote OD borders. 
 

The field intensity coming out from step 1 of the synthesis 
procedure (corresponding to the maximum theoretical 
performance achievable for the adopted mask and size of the 
source) is shown in Fig. 2, along with the UB and LB functions. 
Then, step 2 allowed to quickly identify the complex fields 
fulfilling (10), whose square amplitude is superimposed on Fig. 
2, matching the field intensity coming out from the solution of 
(9). As can be seen, the enforced mask is perfectly fulfilled. 
Finally, step 3 provided a multiplicity of sources radiating the 
sought power pattern, three of which are shown in Fig. 3.  

To verify the reliability of the overall procedure, we 
compared in Fig. 4 the complex field obtained from step 2 (plus 
phase restoration) with the field resulting from applying (11) to 
the synthesized 𝐽 distribution for one of the sources shown in 
Fig. 3. As can be seen, both the amplitude and phase align 
within the masked domain [−𝑋௢, 𝑋௢], confirming the 
effectiveness and accuracy of the approach in pursuing the 
maximum possible radiation performance. It is also worth 
noting that, while Fig. 2 shows the field intensity in the warped 
domain, Fig. 4 depicts the field as a function of the actual spatial 
variable 𝑥௢ as extended beyond the borders of the 𝑂𝐷 (indicated 
by the vertical red dashed lines). As expected, due to the 
optimal truncation (at the nominal NDF) of the TSVD 
expansion, the actual intensity of the radiated field does not rise 
outside the masked domain [−𝑋௢, 𝑋௢]. 

In the second test case, we address the synthesis of a 
multifocus near-field pattern, relevant for applications such as 
multi target wireless power transfer or multi-user near-field 
communication channels [22]. To this end, we set 𝑎 = 7𝜆, 𝑋଴ =
14𝜆, and 𝑧଴ = 14𝜆. Moreover, UB and LB are set to ensure a 
ripple of ±1 𝑑𝐵 in the shaped-beam zone and a sidelobe level 
lower than -20 dB elsewhere. Specifically, UB is set as -20 dB 
for |𝑥෤| ≥ 2 and |𝑥෤| ≤ 1.10, and 1 dB elsewhere. LB is set as -1 
dB for 1.36 ≤ |𝑥෤| ≤ 1.66.  

 

 
Fig. 5. Synthesis of a multifocused near field: enforced 𝑈𝐵 (blue curve) and 𝐿𝐵 
(red curve) constraints; near-field intensities coming out from step 1 (black 
curve) and step 2 (green dashed curve) of the synthesis procedure. 
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                                (a)                                                            (b) 
Fig. 6. Synthesized source radiating the near-field pattern plotted in green in 
Fig. 5: (a) normalized amplitude; (b) phase. 

 
The adopted mask and the field intensity 𝑃(𝑥෤) determined 

by solving the optimization problem (9) (corresponding to the 
maximum theoretical performance) are depicted in Fig. 5, while 
one of the sources identified at the end of the procedure is shown 
in Fig. 6. It is important to note that, given the electrical source 
dimensions and that the presentation of phase distributions in a 
wrapped (rather than unwrapped) form, the source distributions 
shown in Figures (3) and (6) can be considered to be ‘smooth’, 
which agrees with the theoretical characteristics of the warping 
strategy and allows emulating the corresponding radiative near 
field by means of a discrete source.  

As in the previous test case, to further verify the approach, 
the field intensity radiated by the synthesized source is 
superimposed to 𝑃(𝑥෤) in Fig. 7, showing that the solution 
perfectly complies with all specifications, thus confirming the 
effectiveness of the approach in providing a radiation 
performance equivalent to the maximum possible one. Notably, 
Fig. 7 also shows that, although constraints are enforced within 
[−𝑋௢, 𝑋௢], the synthesized field intensity does not rise outside 
this interval. 

In order to show the impact of using an 𝑀 value larger than 
the NDF in (12), the numerical example has been repeated by 
retaining 24 singular functions (while 𝑁𝐷𝐹 = 20 in this case). 
The results, shown in Fig. 8, demonstrate that the radiated field 
outside [−𝑋௢, 𝑋௢] rises and surpasses the sidelobe mask. This 
occurs because the exponential base functions employed in the 
field representation (4) are not exactly equal (in terms of the 
subspace they span) to the actual singular functions of the 
radiation operator. As a result, the obtained field projects 
closely but not exactly onto the subset of the range of the 
radiation operators spanned by the first 𝑀 singular functions. 
This effect is similar to what happens with superdirective 
currents, where the visible domain in the far-field region is 
analogous to the near-field 𝑂𝐷 where constrains are enforced. 

 

 
(a) 

                                               

 
(b) 

Fig. 7. Comparison between the field radiated by the source shown in Fig. 6 and 
the field coming out from step 2 of the procedure: (a) square amplitude; (b) 
phase. The vertical red dashed lines denote OD borders. 
 

 
Fig. 8. Synthesis of a multifocused near field: field intensity coming out from 
step 1 of the synthesis procedure (black curve); field intensity generated by the 
synthesized source (green curve) when the TSVD truncation index exceeds the 
NDF. The vertical red dashed lines denote OD borders. 

III.B. Numerical experiments for the synthesis of realistic array 
antennas 

This subsection demonstrates the effectiveness of the 
proposed approach when applied to discrete sources. In 
particular, the results of the design of the same realistic array as 
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in [21] are compared to both theoretical expectations as well as 
to the outcomes of [21].  

To this end, the considered array configuration and 𝑂𝐷 are 
identical to those in [21], i.e., a 1-D linear array with a uniform 
element distribution consisting of 31 𝑦-oriented dipoles, as 
shown in Fig. 9, with an element spacing of 0.5𝜆 and an 
observation area defined as a 15𝜆-length linear segment along 
the 𝑥-axis.  

 

 
 
Fig. 9. Structure of the full-wave simulated array. 

 
 

 
Fig. 10. Synthesis of a flat-top near field (comparison with [21]): enforced UB 
(blue curve) and LB (red curve); near fields coming out from the feasibility 
criterion (black curve) and step 2 (green dashed curve) of the synthesis 
procedure. 

 
In the initial step, following [21] we set the key parameters 

as 𝑎 = 7.5𝜆, 𝑋଴ = 7.5𝜆, and 𝑧଴ = 5𝜆, locating the observation 
plane within the radiative near-field region of the source. UB 
and LB values were defined to ensure a ripple of ±0.2𝑑𝐵 in the 
shaped zone and a sidelobe level lower than −44𝑑𝐵 elsewhere, 

with UB set to -44 dB for ቚ
௫೚

ఒ
ቚ ≥ 4. 

The mask and power pattern 𝑃 were determined by solving 
the LP problem 𝐿𝐵(𝑥෤) ≤ 𝑃(𝑥෤) ≤ 𝑈𝐵(𝑥෤). The resulting power 
pattern is shown in Fig. 10, while Fig. 11 provides three of the 
multiple synthesized excitations that radiate the desired power 
pattern. Note that the latter are determined by using in (13) the 
active element patterns computed through full-wave 

electromagnetic simulations performed by the CST microwave 
studio, so that mutual coupling effects are also taken into 
account.  

To validate the approach, Fig. 12 compares the complex 
field coming out from step 2 (including phase restoration) with 
the full-wave simulated field radiated by one of the synthesized 
array excitations shown in Fig. 11. The figure and the values 
summarized in Table I confirm that the final solution is very 
close to the theoretical limits determined in the second step, and 
that the method outperforms the one in [21]. These can both be 
attributed to the initially chosen ‘mask constrained’ formulation 
(which does not enforce any restriction on the phase of the field 
component at hand) as well as to the adopted solution strategy. 
Also, note that in [21] the CVX-based method uses isotropic 
elements, while the DRO-based technique employs ideal 
dipoles (dyadic Green’s function) as array elements. In contrast, 
our example leverages a full-wave electromagnetic simulation 
to identify the active element pattern associated to each dipole, 
allowing us to account for potential heterogeneity amongst the 
radiating elements as well as mutual coupling.  

 

 
                                (a)                                                            (b) 
 

 
                                (c)                                                            (d) 
 

 
                                (e)                                                            (f) 
Fig. 11. Amplitude (left) and phase (right) of three different synthesized 
excitations both radiating the same (sought after) near-field power pattern. 
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Isotropic elements Realistic elements 

CVX [21] This 
method  

DRO [21]  This 
method 

Ripple [dB] ±0.19 ±0.19 ±0.13 ±0.19 

Maximum SLL[dB] -43 -44 -31 -41 

 
Table I. Radiation performance achieved by the proposed method (comparison 
with the technique in [21]). 
 

Furthermore, in comparison to [21], a distinctive feature of 
our method is its generality with respect to the kind of pattern 
one is looking for. In contrast, the approach in [21] is tailored 
for flat-top patterns and would require specific reformulations 
for the many other cases of possible interest, such as cosecant 
and multifocused patterns as well as fields with non-uniform 
sidelobes. Finally, our approach has two further considerable 
advantages. First, it has the capability of identifying a 
multiplicity of solutions. Second, it includes a built-in 
feasibility criterion, enabling in advance the determination of 
whether a given pattern is achievable based solely on the source 
size, whereas no such criterion is mentioned in [21].  

 
(a) 

 
(b) 

Fig. 12. Superposition between the field radiated by the actual realistic array (as 
computed by a full-wave simulation with one of the excitation sets shown in 
Figure 11) (green curve) and the field coming out from spectral factorization 
(black curve): square amplitude [subplot (a)]; phase [subplot (b)]. 

 

IV. CONCLUSIONS 

Following the increasing interest in near-field 
communications and sensing [38]-[42], as well as in near-field 
wireless power transfer [43]-[46], the near-field synthesis of 
shaped patterns has been dealt with.  

In particular, a new and effective procedure has been 
devised for the optimal synthesis of shaped beams fulfilling an 
arbitrary power mask in the near-field region.  

The developed approach takes maximum advantage of two 
powerful tools, i.e., the well-established spectral factorization 
method and a recently-developed warping sampling technique. 
In fact, while the spectral factorization method has been proven 
effective for far-field synthesis, its application to near-field 
scenarios poses challenges due to the complicated nature of the 
near field. To overcome this limitation, we leveraged warping 
sampling schemes to represent the near field by means of an 
‘array-like’ representation, facilitating the use of the spectral 
factorization technique and its remarkable advantages in the 
near-field scenarios. 

Several key advantages distinguish our approach as detailed 
in the following.  

The proposed method is the first one capable of casting the 
synthesis of shaped beams fulfilling arbitrary masks in the near-
field region (using linear sources with limited support) as a 
linear programming optimization followed by polynomial 
factorization. Such a circumstance also allows to quickly find 
all the different sources corresponding to the sought field-
intensity distribution, allowing for the selection of the most 
convenient source for practical implementation.  

The method also avoids computationally intensive, ‘black 
box’ global optimization procedures, offering a deterministic, 
non-iterative solution. Furthermore, unlike traditional nominal-
field synthesis approaches, which unnecessarily over constrain 
the results and yield a single, often less effective solution, our 
technique addresses a mask-constrained power-pattern 
synthesis problem, allowing for greater flexibility. 

Another key advantage of the proposed method is its 
adaptability to both continuous and discrete sources, as 
demonstrated by representative examples (including full-wave 
simulated realistic antennas) that highlight its effectiveness in 
both cases.  

Finally, the thorough characterization of the mathematical 
properties of the near-field radiation operator offered by the 
warping sampling theory allows performing the field intensity 
synthesis over bounded observation domains without incurring 
in fields growing outside the synthesis domain. 

The proposed procedure can be directly used to perform the 
near-field synthesis of 2-D patterns that are 𝑥 − 𝑦 factorable or 
circularly symmetric. It can also be extended to 2-D fields 



 

 

 

This is the accepted version of the following article: Giada M. Battaglia, Tommaso Isernia, Roberta Palmeri, Maria A. Maisto, Raffaele Solimene, and Andrea F. 
Morabito, “Near-Field Synthesis of 1-D Shaped Patterns through Spectral Factorization and Minimally-Redundant Array-Like Representations,” IEEE Transactions 
on Antennas and Propagation, DOI 10.1109/TAP.2024.3525137. 

0018-926X © [2018] IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, 
or reuse of any copyrighted component of this work in other works.” 

 

11

having arbitrary footprints by using the same philosophy as the 
one introduced in [68],[69]. 
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