
MEDITERRANEA UNIVERSITY OF REGGIO CALABRIA

Department of Law, Economics and Human Sciences

PhD in Law and Economics

XXXVI cycle

Curriculum: Economics and Quantitative Methods

SECS-S/06; INF/01

Phd Thesis

 IMPROVING THE PERFORMANCE OF BIDIRECTIONAL LSTM

NEURAL NETWORKS THROUGH DATA PREPROCESSING, LOSS

FUNCTION AND EVALUATION BEYOND THE TEST SET:

Applications In Causal

Impact Analysis

PhD Student:

 Dott. Pasquale Fotia

Supervisor:

 Prof. Massimiliano Ferrara

Co-Supervisor:

Prof. Ali Ahmadian

PhD Course in Law and Economics Coordinator

Prof. Attilio Gorassini

ACADEMIC YEAR 2022/2023

Improving the Performance of Bidirectional LSTM Neural

Networks through Data Preprocessing, Loss Function and

Evaluation Beyond the Test Set: Applications in Causal

Impact Analysis

November 8, 2023

Index

1 Introduction 3
1.1 Problem Description . 3
1.2 Overview of the Thesis Structure . 4

2 Theoretical Foundations and Literature Review 5
2.1 Recurrent Neural Networks (RNNs) . 5
2.2 Long Short-Term Memory (LSTM) . 6
2.3 Bidirectional LSTM (BLSTM) . 6
2.4 GRU models . 7
2.5 Data Preprocessing in Neural Networks . 8
2.6 Evaluation metrics . 8
2.7 Training and evaluation . 9

3 Methodology and Tools 10
3.1 Libraries and Tools . 11

3.1.1 yfinance . 11
3.1.2 Matplotlib . 11
3.1.3 NumPy and Pandas . 11
3.1.4 TensorFlow . 11
3.1.5 Random, Math, and OS Libraries . 12
3.1.6 Scikit-Learn . 12

3.2 Dataset . 12
3.3 Data Preprocessing . 17

3.3.1 Baseline Bi-LSTM Model: Raw Data Input 17
3.3.2 Data Normalization . 21
3.3.3 Angle-Based Transformation . 21
3.3.4 Interpolation of Intermediate Values . 23

3.4 Loss Function . 24
3.5 Additional Testing Method . 26

4 Experimental Results and Evidences 36
4.1 Results with Data Preprocessing . 36
4.2 Results with Different Loss Function . 39
4.3 Results with Additional Testing Method . 40

1

5 Causal Impact Analysis of Events on Google Trends and Italian Financial
Market Prices. 48
5.1 Introduction . 48
5.2 Methodology . 48

5.2.1 Data Collection . 48
5.2.2 Event Identification on Google Trends . 49
5.2.3 Causal Impact Analysis . 50

5.3 Causal Impact Analysis results . 56

6 Conclusions 57

2

Chapter 1

Introduction

In the current era marked by a reliance on data-driven decision-making, the practice of forecast-
ing holds significant importance across all areas. The capacity to anticipate future events and
trends, such as stock prices, consumer demand, or weather patterns, holds significant significance
for individuals and organizations alike. The persistent endeavor to enhance the accuracy and de-
pendability of forecasting has driven an unwavering search for novel techniques and sophisticated
instruments. In the context of the ever-changing field of forecasting, this thesis aims to contribute
to the advancement of both the theoretical and practical aspects of prediction. The field of fore-
casting encompasses a wide range of topics and complexities. This study specifically focuses on
financial time series data, which offers a complex and enlightening context for the evaluation and
enhancement of innovative forecasting techniques. Financial markets, characterized by their com-
plex interactions including economic indicators, investor mood, and geopolitical events, function as
a testing ground where the effectiveness of novel approaches is thoroughly evaluated. Nevertheless,
the knowledge acquired from this particular financial context has broader implications, as it may
be applied to several forecasting areas.

1.1 Problem Description

The core focus of this study revolves around the primary objective of enhancing the accuracy of
predicting. Irrespective of the field of study, the primary objective is to create forecasting models
that generate forecasts that closely correspond to real-world results. This endeavor entails the
examination and resolution of certain fundamental concerns:

1. The primary goal is to improve the accuracy of forecasting models, so ensuring that the
predictions provide decision-makers with actionable information.

2. The study investigates and assesses innovative forecasting methodologies and tools in order
to enhance accuracy. These methodologies are carefully crafted to address the complex and
distinct attributes of time series data.

3

3. The objective of this research is to evaluate the applicability of these innovative forecasting
methods in many fields, extending beyond the realm of financial markets. This analysis
highlights the adaptability and resilience of the methodologies being investigated.

1.2 Overview of the Thesis Structure

In order to methodically tackle these obstacles and achieve the stated objectives, the thesis is
structured into the following chapters:

• Chapter 2, Theoretical Framework and Review of Relevant Literature: This section
entails a comprehensive examination of the current body of forecasting literature and the
most advanced methodologies currently available. This chapter establishes a robust basis and
outlines conducive conditions for fostering creativity.

• Chapter 3, Methodology and Tools: This study provides an in-depth analysis of the
methodology, libraries, and tools utilized in the research. The process involves the develop-
ment and evaluation of different forecasting methodologies, providing insight into the reason-
ing behind their choice.

• Chapter 4, Experimental Findings and Evidence: This chapter serves as the focal
point of the research, providing a comprehensive and thorough exposition of the outcomes
obtained through experimental procedures. The aforementioned entity functions as a crucible
in which the evaluation of various forecasting methodologies’ impact on accuracy takes place,
alongside the assessment of their efficacy over a wide range of disciplines.

• Chapter 5, Applications in Causal Impact Analysis: This chapter introduces the
practical application of research methodologies inspired by the work of Fotia and Ferrara,
2023 on causal impact analysis of media events on financial markets. It employs a systematic
approach integrating Bayesian Structural Time-Series and Bidirectional LSTM models to
understand causal relationships between events and financial markets. The primary aim is to
unveil how media events impact stock prices, trading patterns, and market volatility, providing
valuable insights for financial decision-makers.

• Chapter 6, Conclusions: The thesis culminates in a thorough synthesis of primary discov-
eries and their significant ramifications. The present study engages in a reflective analysis of
the research path, duly recognizing the significant contributions that have been made to the
domain of forecasting.

By employing a systematic methodology, this thesis aims to make a substantial contribution to the
progress of forecasting approaches. The practical significance of the research is highlighted by the
empirical analysis of financial data, indicating that the generated models have broader applicability
beyond the financial sector.

4

Chapter 2

Theoretical Foundations and
Literature Review

2.1 Recurrent Neural Networks (RNNs)

Feedforward neural networks have been extensively utilized and have demonstrated significant
achievements across various domains. In networks of this nature, the transmission of data flow
transformations occurs through concealed layers in a unidirectional manner, wherein the output
is solely influenced by the present circumstances. However, it should be noted that these neural
networks exhibit limited memory capacity and are not well-suited for effectively modeling data
sequencing and temporal dependencies within historical data. In order to overcome this constraint,
researchers have developed recurrent neural networks (RNNs) to address learning tasks that involve
time dependencies (Hochreiter and Schmidhuber, 1997). The fundamental principle underlying re-
current neural networks (RNNs) is to incorporate the impact of previous information in order to
generate the output. In order to achieve this objective, the output is generated by incorporating
cells that are influenced by gates based on historical observations. Undoubtedly, a segment of a
neural network, examines a given input xt and generates an output value ht. Recurrent Neural
Networks (RNNs) have been found to be effective in acquiring temporal information (Oksuz et al.,
2019).There exist two robust recurrent neural network (RNN) models, namely Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU), which have demonstrated effectiveness in
handling time-dependent patterns within time-series data. Deep learning models have exhibited
significant efficacy in the realm of modeling and forecasting, surpassing the performance of classical
time series models. Furthermore, traditional networks have proven their ability to achieve favorable
outcomes across various application domains involving time series data (Ashour et al., 2020; Harrou
et al., 2020).

5

2.2 Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) is an advanced gated memory unit that has been specif-
ically developed to address the issue of vanishing gradients, which can significantly hinder the
effectiveness of a basic Recurrent Neural Network (RNN) (Hochreiter and Schmidhuber, 1997). In
the context of the significant time step, it is observed that the gradient either becomes excessively
small or large, leading to the occurrence of the vanishing gradient problem. This issue arises during
the training process, wherein the optimizer performs backpropagation and executes the procedure,
while the weights exhibit minimal changes.In essence, the Long Short-Term Memory (LSTM) model
is equipped with three gates that regulate the flow of information. These gates are referred to as the
input gate, forget gate, and output gate. In essence, the formation of these gates is achieved through
the utilization of logistic functions that are based on weighted sums. The weights necessary for this
process can be acquired through training via the backpropagation technique. The management of
the cell state is accomplished through the utilization of the input gate and the forget gate. The
output is derived from either the output gate or the hidden state, which serves as the memory allo-
cated for utilization. This mechanism enables the network to retain information over an extended
period, a capability that is absent in traditional single recurrent neural networks (RNNs). Indeed,
the desirable attributes of Long Short-Term Memory (LSTM) models encompass their enhanced
capability to capture long-term dependencies and their adeptness in handling time-series data.

• Input Gate: It = σ(XtWxi +Ht−1Whi + bi)

• Forget Gate: Ft = σ(XtWxf +Ht−1Whf + bf)

• Output Gate: Ot = σ(XtWxo +Ht−1Who + bo)

• Intermediate Cell State: C̃t = tanh(XtWxc +Ht−1Whc + bc)

• Cell State (next memory input): Ct = Ft ⊙ Ct−1 ⊙ C̃t

• New State: Ht = Ot ⊙ tanh(Ct)

Where Wxi, Wxf , Wxo and Whc, Whf , Who refer respectively to the weight parameters and bi, bf ,
bo denote bias parameters. Wxc and Whc denote weight parameters, bc is the bias parameter, ⊙
denotes element-wise multiplication. The estimation of Ct depends on the output information from
memory cells (Ct−1) and the current time step C̃t.

2.3 Bidirectional LSTM (BLSTM)

The bidirectional Long Short-Term Memory (BiLSTM) model represents an improved iteration of
the LSTM algorithm. As previously mentioned, within the Long Short-Term Memory (LSTM)
framework, the reconstruction of the current state is solely dependent on the backward context.
Nevertheless, the LSTM model fails to take into account the relationship between the forward
context and the current state. In order to address this limitation and enhance the precision of state

6

reconstruction, researchers have proposed the bidirectional Long Short-Term Memory (BiLSTM)
algorithm. This algorithm combines the advantageous characteristics of the bidirectional Recurrent
Neural Network (RNN) (Schuster and Paliwal, 1997) with those of the Long Short-Term Memory
(LSTM) model (Graves and Schmidhuber, 2005). This has been achieved through the integration
of two concealed states, enabling the retrieval of information from both the backward and forward
layers. The BiLSTM neural network architecture is particularly advantageous in scenarios that
necessitate the incorporation of contextual information as input. The utilization of this technique
has been extensively employed in various domains, particularly in the field of classification, such as
text classification (Liu et al., 2020), sentiment classification (Sharfuddin et al., 2018), and speech
classification and recognition (Graves et al., 2013). Furthermore, Bi-directional Long Short-Term
Memory (Bi-LSTM) models have been employed in the field of PM2.5 concentration prediction
(Zhang et al., 2020) as well as load forecasting (Wang et al., 2019).

2.4 GRU models

The GRU model (Cho et al., 2014), serves as an alternative version of LSTM. Its purpose is to
enhance the performance of LSTM while simultaneously reducing the number of parameters and
simplifying its design. In the GRU model, the LSTM’s input gate and forget gate have been com-
bined into a single gate known as the update gate. In GRU, there are two gates, namely the update
gate and the reset gate, as opposed to the three gates present in LSTM. The introduction of the
reset and update gates concepts represents a significant advancement in GRU models, offering novel
advantages. This approach introduces a novel evaluation technique that enables the computation
of latent variables in recurrent neural network (RNN) architectures. The Long Short-Term Memory
(LSTM) structure was improved by the Gated Recurrent Unit (GRU) by incorporating the update
gate to couple the input and forget gates of the LSTM, and utilizing the output gate as a reset
gate. The update gate is responsible for determining the amount of previously retained memory,
while the reset gate ensures the manner in which the current inputs are combined with the existing
memory.

The mathematical relationships between the various GRU components are given by:

• Update gate: Zt = σ(XtWxz +Ht−1Whz + bz)

• Reset gate: Rt = σ(XtWxr +Ht−1Whr + br)

• Cell state: Ht = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh)

• New state: Ht = Zt ⊙Ht−1 + (1− Zt)⊙Ht

where: Wxr, Wxz, and Whr are weight parameters, and br, bz are bias parameters. Wxh, Whh are
weight parameters, and bh is a bias parameter. For a given time step t, the current update gate Zt

is used to combine the previous hidden state Ht−1 and the current candidate hidden state H̃t.

7

2.5 Data Preprocessing in Neural Networks

In order to facilitate the learning process of the network, it is advisable for the data to be scaled
to small values, preferably within the range of 0 to 1. Additionally, it is crucial for the data to
exhibit homogeneity, indicating that all the features should possess values within a similar range.
Consequently, the data was transformed to a normalized scale ranging from 0 to 1. The procedure of
standardizing values to a common range is referred to as MinMax normalization. To accomplish this
task, the MinMaxScaler module from the Scikit-learn library is imported. The equation representing
the Min-Max normalization method can be expressed as follows:

z =
x−min(x)

max(x)−min(x)
(1)

Where z represents the normalized value and x represents the observed values in the set. Min and
max are the minima and maxima values in x (Yamak et al., 2019).

2.6 Evaluation metrics

Within the domain of forecasting models, it is customary to utilize distinct assessment criteria
in order to evaluate their efficacy. Tsai et al., 2018, conducted a significant study whereby they
assessed the precision of their forecasting model by utilizing data obtained from 77 air quality
monitoring stations located in Taiwan. The data spanned a time frame from 2012 to 2017. The
dataset encompassed several gaseous components and PM2.5 levels, in addition to localized climatic
information. The researchers employed a training methodology that involved the utilization of an
LSTM neural network model. The model was trained using a dataset spanning the years 2012 to
2016, while the data from 2017 was reserved only for the purpose of testing. In order to evaluate
the precision of their forecasting model,Tsai et al., 2018, utilized two widely employed assessment
metrics, namely Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The root
mean square error (RMSE) is a metric used to measure the level of variability and accuracy in
the dataset. Models with lower root mean square error (RMSE) values are associated with better
levels of accuracy, suggesting that the model well represents the experimental data. The field of
Model-based Analysis of mistakes (MAE) offers valuable insights into the accurate assessment and
understanding of prediction mistakes.

RMSE =

√

√

√

√

1

n

n
∑

t=1

(yt − ŷt)2 (2)

8

MAE =
1

n

n
∑

t=1

|yt − ŷt| (3)

2.7 Training and evaluation

Once a neural network model has been trained using the designated training set, the subsequent
pivotal task involves evaluating its performance on data that has not been previously encountered.
This evaluation serves to gauge the model’s capacity for generalization, which refers to its ability
to make accurate predictions on new, unseen data beyond the training set. The assessment is
conducted during the testing phase using a distinct dataset referred to as the test set. The test set
comprises instances that have not been previously encountered by the model, and it functions as a
standard against which the model’s capacity to generate precise predictions on novel and unfamiliar
sequences can be evaluated. During the evaluation phase, the neural network model is exposed to
the sequences from the test set, and it produces forecasts for the subsequent data points in the
sequence. These predictions are then compared with the actual values, also known as the ground
truth, for each sequence. Subsequently, performance metrics such as mean squared error or mean
absolute error (Tsai et al., 2018) are computed to evaluate the degree of concordance between the
model’s predictions and the observed values. To achieve success, a neural network model must
demonstrate strong generalization capabilities when applied to the test set. This entails producing
accurate predictions and minimizing the discrepancy between its predictions and the actual values.
The prevention of overfitting is of utmost importance during the training phase to ensure that the
model’s performance is not limited to the training data alone but extends to novel data as well. The
testing phase plays a critical role in assessing the model’s performance on data that it has not been
previously exposed to. This evaluation is essential for making well-informed decisions regarding
the deployment of the model in practical, real-world scenarios. The test results provide valuable
insights into the strengths and weaknesses of the model, thereby offering guidance for potential
enhancements and refinements to improve its performance. In the context of model development,
the testing phase assumes a pivotal role as it holds substantial importance in assessing the practical
applicability and efficacy of the model in real-life situations. These phases are described by Halpern-
Wight et al., 2020.

9

Chapter 3

Methodology and Tools

Within the framework of this study, the chapter on methodology plays a pivotal role as an essential
foundation for doing a comprehensive and methodical research endeavor. This chapter serves as a
complete guide for the design and execution of all stages of the study, including a thorough review
of the procedures and tools employed to accomplish the research objectives. The methodology and
instruments chosen for this study have been carefully selected based on a thorough evaluation of
its specific requirements, as well as an examination of established practices within the relevant field
of research. Every decision made regarding the methodology has been made with the intention of
guaranteeing the dependability and accuracy of the acquired outcomes. A significant portion of
this chapter is devoted to elucidating the libraries and instruments employed in the research en-
deavor. Various libraries such as yfinance, Matplotlib, NumPy, Pandas, TensorFlow, and others
were utilized to facilitate data collecting, processing, the creation of machine learning models, and
subsequent result analysis. The part pertaining to the dataset offers a thorough examination of
the many sources of data, including their distinctive attributes, as well as the rationale employed
for their selection. The inclusion of this stage is crucial in comprehending the source and char-
acteristics of the data employed in the investigation. Considerable emphasis has been placed on
the data preprocessing stage, encompassing the establishment of a foundational Bi-LSTM model,
normalization of data, angle-based transformation, and interpolation of intermediary values. These
procedures are essential in ensuring that the data is sufficiently prepared for analysis and modeling.
The precise characterization of a bespoke loss function played a vital role in evaluating the efficacy
of machine learning models. The ”Custom Loss Function” was specifically formulated to evaluate
the degree of resemblance between the predictions generated by a model and the observed data
within the domain of time series analysis. The financial arena has recently witnessed the introduc-
tion of an innovative approach known as ”Iterative Forecasting.” This approach entails the iterative
training of LSTM models. The proposed approach, in conjunction with a genetic algorithm, seeks
to optimize the parameters of the model in order to enhance the accuracy of predictions. In general,
the chapter on methodology establishes a strong foundation for undertaking rigorous and analytical
research, presenting a comprehensive review of the approaches and tools employed in this study.

10

3.1 Libraries and Tools

Numerous libraries and software tools were important in the research and execution of the bi-
LSTM models outlined in this PhD thesis. This section presents a comprehensive review of the
main libraries employed and their distinct contributions to the analytical and financial forecasting
procedures.

3.1.1 yfinance

The yfinance library played a crucial role in obtaining the financial data that was required for
the analysis. The platform provides a user-friendly and easily navigable interface that facilitates
the retrieval of historical and real-time data from various sources, including Yahoo Finance. The
utilization of the yfinance library enabled the acquisition of dependable and current data for the
purpose of conducting the analysis.

3.1.2 Matplotlib

The Matplotlib package is extensively utilized for the generation of charts and visualizations. The
tool was utilized to create visual depictions of historical financial data, develop bi-LSTM forecasts,
and generate other relevant visualizations for the research. The flexibility and diversity of the tool
enabled the adaptation of visualizations to align with the unique demands of the research.

3.1.3 NumPy and Pandas

The libraries NumPy and Pandas are essential tools for the manipulation and analysis of data.
NumPy gives fundamental support for numerical computations and data structures, whereas Pandas
provides robust capabilities for data manipulation, cleansing, and transformation. The utilization
of these libraries played a pivotal role in the preparation and preprocessing of the financial data,
ensuring its suitability for input into the bi-LSTM models.

3.1.4 TensorFlow

The TensorFlow library, more especially its Keras application programming interface (API), was
employed in the construction and training of the bi-directional Long Short-Term Memory (bi-
LSTM) models. TensorFlow offers a comprehensive framework for the development and training
of deep learning models, whereas Keras streamlines the process of constructing these models. The
implementation of the bi-LSTM architecture was carried out utilizing the high-level abstractions
provided by the Keras framework, which facilitated the efficient development and experimentation
of the model.

11

3.1.5 Random, Math, and OS Libraries

The Python libraries random, math, and os were employed for several purposes throughout the study.
The random module enabled the incorporation of randomness in the processes of data sampling and
model training. The math library was utilized for performing mathematical computations and
transformations, whilst the os library facilitated the management of file operations and directory
structures.

3.1.6 Scikit-Learn

The scikit-learn library, especially its preprocessing module including the MinMaxScaler, was
instrumental in implementing various machine learning algorithms and preprocessing techniques.
It provided a wide range of tools for data preprocessing, feature scaling, and model evaluation.
The integration of scikit-learn’s MinMaxScaler complemented the deep learning approaches and
enriched the analytical capabilities, allowing for a more comprehensive assessment of financial data.

3.2 Dataset

The Python code in Figure 1 provided functions as a thorough data pretreatment pipeline for fi-
nancial data, specifically designed to facilitate the assessment and improvement of the Bi-LSTM
(Bidirectional Long Short-Term Memory) model. The provided code implements a loop that it-
erates across the years from 2000 to 2022, systematically collecting historical market data for a
predetermined set of stock tickers (Figure 2) for each year.

During each loop, the code does a series of essential steps:

1. Data Retrieval: The process of data retrieval involves utilizing the Yahoo Finance API to
get historical stock data for the designated tickers. This retrieval is restricted to the temporal
scope of the present year, encompassing the period from January 1st to December 31st.

2. Data Organization: The data retrieved is processed and grouped into a DataFrame, with
a primary emphasis on the closing prices of the chosen stocks. This process generates a
well-organized dataset that is appropriate for analytical purposes.

3. Data Quality Assurance: In order to maintain the reliability and accuracy of the dataset,
the code incorporates measures to handle missing values. Initially, the algorithm discovers
and eliminates columns in which the majority of entries are absent, surpassing a threshold of
5%. This practice guarantees that solely pertinent data columns are preserved for analysis.

4. Missing Value Imputation: Missing value imputation is performed in a data analysis
process to address the issue of missing data. In this particular scenario, the algorithm is
designed to intelligently impute missing values for columns that have a proportion of missing
values below 5%. The algorithm substitutes missing values (NaN entries) with the mean value

12

of the corresponding column. The utilization of this imputation approach serves to sustain
the integrity and precision of the data.

The processed data for each year is thereafter stored in separate Excel files. The dataset is sys-
tematically arranged and labeled, with each file being named in accordance with its corresponding
year.

13

Create a list of years from 2000 to 2023

years = range (2000 , 2023)

for year in years:

Define the start and end date for the current year

start_date = f"{year }-01-01"

end_date = f"{year␣+␣1}-01-01"

Download data for the current year

data = yf.download(tickers , start=start_date , end=end_date)

Select only the ’Close’ column for each ticker

close_prices = data[’Close’]

Create a DataFrame using pandas

df = pd.DataFrame(close_prices)

Drop columns containing only NaN values

df = df.dropna(axis=1, how=’all’)

Calculate 5% of the total number of rows

threshold = 0.05 * len(df)

Replace NaN values with the mean for columns with less than 5% NaN

for column in df.columns:

if df[column].isna().sum() < threshold:

mean = df[column].mean()

df[column]. fillna(mean , inplace=True)

elif df[column].isna().sum() >= threshold:

df = df drop(column , axis =1)

print(f"Column␣{column}␣for␣year␣{year}␣has␣been␣dropped␣

because␣it␣exceeds␣the␣NaN␣threshold.")

Save the DataFrame to an Excel file with the name based on the year

file_name = f"data_{year}.xlsx"

df.to_excel(file_name , index=False)

print(f"The␣DataFrame␣for␣year␣{year}␣has␣been␣saved␣in␣the␣file␣{

file_name }.")

Figure 1: Python code for extracting and processing financial data.

The following stock tickers (Figure 2) have been used in the data collection and financial analysis
process. These tickers were chosen to represent a variety of sectors and companies, aiming to
create a diversified dataset for the analysis and improvement of the Bi-LSTM (Bidirectional Long

14

Short-Term Memory) model:

tickers = [’A’, ’AA’, ’AAME’, ’AAON’, ’AAPL’, ’AB’, ’ABB’, ’ABC’, ’ABCB’, ’

ABEO’, ’ABEV’, ’ABIO’, ’ABM’, ’ABMD’, ’ABT’, ’ACGL’, ’ACHC’, ’ACHV’, ’

ACIW’, ’ACLS’, ’ACNB’, ’ACU’, ’ADBE’, ’ADC’, ’ADI’, ’ADM’, ’ADMP’, ’ADP’

, ’ADSK’, ’ADTN’, ’ADX’, ’AE’, ’AEE’, ’AEG’, ’AEHR’, ’AEIS’, ’AEM’, ’

AEMD’, ’AEO’, ’AEP’, ’AES’, ’AET’, ’AEY’, ’AEZS’, ’AFG’, ’AFL’, ’AGCO’,

’AGEN’, ’AGM’, ’AGX’, ’AGYS’, ’AHPI’, ’AIG’, ’AIM’, ’AIN’, ’AIR’, ’AIRI’

, ’AIRT’, ’AIT’, ’AIV’, ’AJG’, ’AJRD’, ’AKAM’, ’AKR’, ’ALB’, ’ALCO’, ’

ALE’, ’ALG’, ’ALJJ’, ’ALK’, ’ALKS’, ’ALL’, ’ALOT’, ’ALV’, ’ALX’, ’ALYA’,

’AMAT’, ’AMD’, ’AME’, ’AMED’, ’AMG’, ’AMGN’, ’AMKR’, ’AMNB’, ’AMOT’, ’

AMRN’, ’AMS’, ’AMSC’, ’AMSWA ’, ’AMT’, ’AMWD’, ’AMZN’, ’AN’, ’ANDE’, ’ANF

’, ’ANIK’, ’ANIP’, ’ANIX’, ’ANSS’, ’AON’, ’AOS’, ’AP’, ’APA’, ’APD’, ’

APH’, ’APOG’, ’APT’, ’APTO’, ’ARCB’, ’ATVI’, ’AXP’, ’BA’, ’BAC’, ’BHP’,

’BMY’, ’BP’, ’BTI’, ’CAT’, ’CCL’, ’CDNS’, ’CMCSA ’, ’COF’, ’COP’, ’COST’,

’CSCO’, ’CVS’, ’CVX’, ’DIS’, ’EBAY’, ’F’, ’FDX’, ’FITB’, ’GE’, ’GILD’,

’GS’, ’HAL’, ’HD’, ’HON’, ’IBM’, ’INTC’, ’INTU’, ’JNJ’, ’JPM’, ’KO’, ’

LMT’, ’MAR’, ’MCD’, ’MGM’, ’MMM’, ’MO’, ’MRK’, ’MSFT’, ’MSTR’, ’MTB’, ’

NEE’, ’NEM’, ’NKE’, ’NOK’, ’NTRS’, ’NVDA’, ’ON’, ’ORCL’, ’OXY’, ’PENN’,

’PEP’, ’PFE’, ’PG’, ’PNC’, ’QCOM’, ’RCL’, ’SBUX’, ’SCHW’, ’SLB’, ’T’, ’

TGT’, ’TRMB’, ’TSM’, ’TXN’, ’UNH’, ’UPS’, ’VOD’, ’VZ’, ’WBA’, ’WFC’, ’

WMB’, ’WMT’, ’X’, ’XOM’, ’ZION’]

Figure 2: List of 189 stock ticker symbols.

The Python code provided in Figure 3 played a crucial role in facilitating the data gathering and
prepping process. Its primary purpose was to reload Excel files that had been previously prepared
using a separate script in Figure 1. The code adhered to a methodical approach:

1. Systematic Iteration: The algorithm implemented a systematic looping method to iterate
through the years of interest, starting from 2000 and ending at 2023. This approach ensured
the thorough incorporation of data encompassing the entire course of the investigation.

2. Dynamic Filename Generation: During the iteration process, the algorithm dynamically
generated filenames for Excel files, with each filename matching to a specific year. Subse-
quently, the data was loaded from such files into Pandas DataFrames via the pd.read excel()

function. This particular phase played a crucial role in transforming the unprocessed data that
was saved in Excel files into a well-organized and amenable format that could be subjected
to analysis.

3. DataFrame Collection: The resulting DataFrame after processing each year’s data was
carefully appended to a master list, marked as listadf. The deliberate collection and or-
ganization of DataFrames facilitated the smooth integration of data from all the years being
studied.

15

4. Dimension Reporting: After the process of importing the data, the code was able to deliver
significant insights by presenting the dimensions of each DataFrame. The information pro-
vided specifically displayed the count of rows and columns in each DataFrame. The provided
information played a crucial role in understanding the magnitude and structural attributes of
the data.

5. Data Quality Check: The code performed a data quality check in addition to showing
the dimensions. The DataFrame was subjected to a systematic examination to determine
the presence of any missing values (NaN) for each year. In the event that NaN values were
identified, the researcher was instantly notified of their existence. Given the absence of any
NaN values, the code successfully verified the integrity and comprehensiveness of the data for
the respective year.

This systematic approach to data gathering and preprocessing ensured that the data was effec-
tively prepared for further analysis and investigation. After implementing the aforementioned data
production methodology, a grand total of 4,330 historical time series were acquired.

Create a list of years from 2000 to 2023

years = range (2000 , 2024)

listadf = []

for year in years:

Load the DataFrame from an Excel file

file_name = f"data_{year}.xlsx"

df = pd.read_excel(file_name)

listadf.append(df)

Display the DataFrame dimensions

print(f"DataFrame␣dimensions␣for␣year␣{year}:␣{df.shape}")

Check if there are any NaN values in the DataFrame

if df.isnull ().values.any():

print("The␣DataFrame␣contains␣NaN␣values.")

else:

print(f"The␣DataFrame␣for␣year␣{year}␣does␣not␣contain␣any␣NaN␣

values.")

Figure 3: Python code for loading financial data into DataFrames.

16

3.3 Data Preprocessing

Data preprocessing is a crucial phase that significantly impacts the performance of the bidirectional
LSTM (Bi-LSTM) neural network. In this research, innovative data preprocessing methods were
adopted to enhance the effectiveness of the network.Initially, a standard normalization process was
applied to the time series data. This step ensured that the data was appropriately scaled and
centered for optimal performance during the neural network’s training.

Following the normalization step, two primary preprocessing techniques were introduced:

1. Angle-Based Transformation: This novel approach involved transforming the data points
within the time series by replacing them with the angles formed by the vectors originating
from the origin (0, 0) to each respective data point. Specifically, for every data point in
the time series, the angle of the vector created between the origin and that particular point
was meticulously calculated. This angle served as a replacement value for the original data
point. The primary objective of this preprocessing step was to capture the directional and
trend-based information inherent in the data. Instead of relying on the raw numerical values,
these angles were leveraged to provide a more concise yet informative representation of the
input data for the neural network.

2. Interpolation of Intermediate Values: Another innovative data preprocessing method
was introduced, which involved the insertion of intermediate values between data points in
the time series. These intermediary values were computed as the arithmetic mean of the
coordinates between adjacent data points. This process effectively increased the data density
within the time series by introducing additional data points between the original ones. This
procedure was systematically applied to all intervals between the data points in the original
time series. The primary objective of this method was to capture finer details and variations
within the time series, thereby endowing the neural network with a more comprehensive
representation of the input data. This enhanced representation aimed to facilitate a better
approximation of temporal relationships and the discovery of hidden patterns within the time
series.

To evaluate the efficacy of these preprocessing methods, a comprehensive experiment was conducted.
A Bi-LSTM model was run on the entire set of 4,330 historical time series obtained in the previous
stages of this research. This experiment was carried out multiple times, each time employing
different preprocessing techniques and configurations, including no preprocessing. By systematically
comparing the results across these various scenarios, the effectiveness of the proposed preprocessing
methods could be rigorously assessed.

3.3.1 Baseline Bi-LSTM Model: Raw Data Input

The code in Figure 4 is designed to train and evaluate a Bidirectional Long Short-Term Memory
(Bi-LSTM) neural network model for time series prediction. It consists of two main functions:

1. prepare data for lstm(x, y, sequence length)

Input:

17

• x: A list or array representing the time series data.

• y: A list or array of corresponding target values.

• sequence length: An integer specifying the length of input sequences for the LSTM
model.

Output:

• dataX: A numpy array containing input sequences for training the LSTM.

• dataY: A numpy array containing corresponding target values.

This code prepares the data for training the LSTM model by creating input-output pairs.
It slides a window of size sequence length through the time series data and extracts input
sequences of that length along with their corresponding target values. The resulting data is
returned as numpy arrays for further processing.

2. train lstm model(x, y, sequence length=3, split ratio=0.7, epochs=20, batch size=50)

Input:

• x: A list or array representing the time series data.

• y: A list or array of corresponding target values.

• sequence length: An integer specifying the length of input sequences for the LSTM
model (default is 3).

• split ratio: A float indicating the proportion of data to be used for training (default
is 0.7).

• epochs: An integer specifying the number of training epochs for the LSTM model (de-
fault is 20).

• batch size: An integer specifying the batch size for training (default is 50).

Output:

• train mae: The Mean Absolute Error (MAE) loss on the training data.

• test mae: The MAE loss on the validation (test) data.

• y val: The validation (test) data used for evaluation.

This code trains a Bi-LSTM neural network model for time series prediction. It first prepares
the data using the prepare data for lstm function. Then, it splits the data into training
and validation sets according to the specified split ratio. The Bi-LSTM model architecture
is defined, compiled with Mean Absolute Error (MAE) loss, and trained on the training data.
The training progress is monitored, and the training and validation losses are plotted. The
function also makes predictions on the validation data and plots the real data vs. predicted
data for both training and validation sets. Finally, it returns the training MAE, validation
MAE, and the validation data for further analysis. The code also employs seeds to ensure the
reproducibility of results across different runs. This seed-setting process encompasses multiple
steps to control randomness, enhancing the reliability of the model. Following the insights
from Willmott and Matsuura, 2005, the selection of MAE as the primary performance metric

18

is well-founded. Their research underscores that MAE provides a clear and unambiguous
measure of average error magnitude, while RMSE and related measures exhibit limitations in
conveying average error alone. Therefore, the use of MAE aligns with their recommendation
for transparent and meaningful model performance assessment

def prepare_data_for_lstm(x, y, sequence_length):

dataX , dataY = [], []

for i in range(len(y) - sequence_length):

dataX.append(y[i:i+sequence_length])

dataY.append(y[i+sequence_length])

return np.array(dataX), np.array(dataY)

def train_lstm_model(x, y, sequence_length =3, split_ratio =0.7, epochs =20,

batch_size =50):

seed_value = 42

1. Set the seed for the Python hash generator (PYTHONHASHSEED)

os.environ[’PYTHONHASHSEED ’] = str(seed_value)

2. Set the seed for the Python random generator

random.seed(seed_value)

3. Set the seed for NumPy

np.random.seed(seed_value)

4. Set the seed for TensorFlow

tf.random.set_seed(seed_value)

Prepare data for the LSTM model

X, y = prepare_data_for_lstm(x, y, sequence_length)

Splitting into training and validation sets

split_index = int(len(X) * split_ratio)

X_train , X_val = X[: split_index], X[split_index :]

y_train , y_val = y[: split_index], y[split_index :]

Create the model

model = Sequential ()

model.add(Bidirectional(LSTM(64, activation=’relu’), input_shape =(

sequence_length , 1)))

model.add(Dense (1))

19

Compile the model with MAE loss function

model.compile(optimizer=’adam’, loss=’mae’)

Training the model with validation

history = model.fit(X_train , y_train , epochs=epochs , batch_size=

batch_size , validation_data =(X_val , y_val), verbose=False)

Plot the loss during training and validation

plt.plot(history.history[’loss’], label=’Training␣Loss’)

plt.plot(history.history[’val_loss ’], label=’Validation␣Loss’)

plt.xlabel(’Epochs ’)

plt.ylabel(’Loss␣(MAE)’)

plt.legend ()

plt.show()

Example prediction on the time series

test_input = np.array([y[-sequence_length :]]) # Use the last known

values as input for prediction

prediction = model.predict(test_input)

Calculate MAE for final training and test

train_mae = np.abs(history.history[’loss’][-1])

test_mae = np.abs(history.history[’val_loss ’][-1])

Plot results on the training set

train_prediction = model.predict(X_train , verbose=False)

plt.plot(x[sequence_length:split_index+sequence_length], y_train , label

=’Real␣Data’)

plt.plot(x[sequence_length:split_index+sequence_length],

train_prediction , label=’Training␣Prediction ’)

plt.xlabel(’Sample ’)

plt.ylabel(’Value’)

plt.legend ()

plt.show()

Plot results on validation

val_prediction = model.predict(X_val , verbose=False)

plt.plot(x[split_index+sequence_length :], y_val , label=’Real␣Data’)

plt.plot(x[split_index+sequence_length :], val_prediction , label=’

Validation␣Prediction ’)

plt.xlabel(’Sample ’)

plt.ylabel(’Value’)

plt.legend ()

plt.show()

return train_mae , test_mae , y_val

Figure 4: Training and Evaluating a Bidirectional LSTM (Bi-LSTM) Model for Time Series Pre-
diction Without Preprocessing, with Data Preparation and Visualization.

20

This code (Figure 4) serves as the foundational starting point where historical time series data is
trained and evaluated without preprocessing. Subsequent sections will illustrate variations of this
code, showcasing different preprocessing techniques tailored to the specific data characteristics

3.3.2 Data Normalization

During the data preprocessing stage, a critical step involves normalizing the data to guarantee
that all features are standardized on a comparable scale. This normalization process is essential
in order to prevent any specific feature from exerting excessive influence over the model’s training
procedure. The code snippet utilizes the MinMaxScaler to perform normalization on the target
variable y, hence rescaling its values within the range of 0 to 1. The process of normalization is im-
plemented to guarantee that the data is constrained within a consistent range, hence promoting the
convergence of machine learning algorithms and augmenting their capacity to identify significant
patterns. Moreover, within the training phase, these lines of code assume a crucial significance. The
successful preprocessing of data is achieved by normalizing the target variable during the training
of the model. In the subsequent stages of prediction and evaluation, the model’s predictions are
likewise expressed in a normalized scale. In order to enhance the comprehension and juxtaposi-
tion of model predictions with the original data, a reverse transformation is employed on both the
val prediction (representing the model’s predictions on the validation data) and y val (repre-
senting the actual values in the validation data). This procedure facilitates the restoration of the
predictions and true values to their initial scales, so enabling a more comprehensible assessment of
the model’s performance.

Normalization of the original data between 0 and 1 for y

y_scaler = MinMaxScaler(feature_range =(0, 1))

y_normalized = y_scaler.fit_transform(np.array(y).reshape(-1, 1))

Inverse transform validation predictions and original validation data

val_prediction = y_scaler.inverse_transform(val_prediction)

y_val = y_scaler.inverse_transform(y_val)

Figure 5: Normalization and Inverse Transformation of Data.

3.3.3 Angle-Based Transformation

Within the framework of our time series data preprocessing phase, we have included two essential
functions aimed at preparing the data prior to the training of our machine learning model. The
preprocessing stage plays a crucial role in improving the accuracy of our machine learning model.
The initial function, referred known as titoli, assumes a pivotal role in the process of converting the
incoming data. The time series data is transformed into angles using a sequence of trigonometric

21

computations. The utilization of angle transformation is crucial as it allows the model to more
effectively capture directional information included in the data, hence enhancing its prediction
capabilities. The outcomes of this conversion are kept in a novel collection, prepared to be employed
within the model. The second function, known as goback, fulfills a supplementary function. The
titoli function is utilized during the model training process to reverse the data transformation and
restore it to its initial state. This phase is of utmost importance as it enables us to juxtapose the
prognostications of the model with the unaltered time series data and compute the Mean Absolute
Error (MAE), a pivotal parameter for evaluating the precision of the model. The titoli in Figure
6 function processes a given input sequence, titolo, representing a time series or data points. It
calculates the angles between data points and a reference vector. For each data point, it computes
the angle in degrees and stores the angles in a new list called y. The function returns three values:
x (representing the range of input values), y (containing the calculated angles in degrees), and y1

(the original input data).

def titoli(titolo):

Extract the input data (titolo) and initialize necessary variables

y1 = titolo

x = list(range(len(y1)))

y = []

Calculate angles between vectors and the reference vector

for i in range(len(x)):

vector = (x[i], y1[i] - y1[0])

angle_rad = math.atan2(vector [1], vector [0])

angle_deg = math.degrees(angle_rad)

y.append(angle_deg)

Return the calculated x, y, and y1 values

return x, y, y1

Figure 6: Calculating Angles for Time Series Data.

The goback in Figure 7 function takes two inputs: cox (horizontal component) and angl (angle in
degrees). It performs trigonometric calculations by converting the angle from degrees to radians and
then using the tangent function to calculate the vertical component coy. The calculated vertical
component coy is returned as the result of the function.

22

def goback(cox , angl):

Convert the angle from degrees to radians

angle_rad = math.radians(angl)

Calculate the vertical component (coy) using trigonometry

coy = cox * math.tan(angle_rad)

Return the calculated vertical component

return coy

Figure 7: Calculating Vertical Component Using Trigonometry.

3.3.4 Interpolation of Intermediate Values

Augmenting the dataset through the iterative application of the repeat augmentation (Figure
9) function can be a valuable strategy. This approach gradually increases the data density by
inserting average values between the original data points. It contributes to a more comprehensive
representation of underlying patterns and trends, potentially leading to improved model training,
reduced overfitting, and enhanced model evaluation. To compare the Mean Absolute Error (MAE),
a straightforward approach involves comparing the values associated with the original data points.
In essence, the predicted values generated by the model that correspond to the original data points
are selected. The MAE is then calculated by measuring the mean absolute difference between
these predicted values and the original data points. This comparison provides an assessment of the
model’s accuracy relative to the original data, eliminating the need for additional data manipulation
or processing. In Figure 8 and 9, the two functions for performing this data preprocessing are shown.
The augment with average (Figura 8) function accepts a vector as its argument and expands it by
computing the average value between each pair of adjacent components. The algorithm sequentially
traverses the input vector, calculating the arithmetic mean of each element with its neighboring
element. Subsequently, both the original element and the computed average are appended to the
augmented vector. The aforementioned procedure successfully increases the length of the vector by
a factor of two, incorporating the average values between the existing members. You can include
this LaTeX content in your document to describe the

23

def augment_with_average(vector):

augmented_vector = []

for i in range(len(vector) - 1):

element = (vector[i] + vector[i + 1]) / 2

augmented_vector.append(vector[i])

augmented_vector.append(element)

augmented_vector.append(vector [-1])

return np.array(augmented_vector)

Figure 8: augment with average.

The function repeat augmentation (Figura 9) accepts a vector and an integer n as arguments,
and iteratively applies the augment with average function n times. This implies that the vector is
supplemented through the iterative computation of element averages. The outcome is a vector that
has undergone a gradual expansion by the insertion of average values between the initial elements,
resulting in heightened data density.

def repeat_augmentation(vector , n):

for _ in range(n):

vector = augment_with_average(vector)

return vector

Figure 9: repeat augmentation.

3.4 Loss Function

In the domain of medical image segmentation,Cai et al., 2017, present a novel approach in their
recent scholarly publication. The authors suggest employing a Jaccard Loss as a direct training
method for deep neural networks, namely convolutional neural networks (CNN) and recurrent
neural networks (RNN), to perform pancreatic segmentation in computed tomography (CT) and
magnetic resonance imaging (MRI) scans. The Jaccard Loss, which has been proposed, is designed
to optimize the Jaccard Index (JI), which serves as a metric for quantifying the degree of overlap
between the predictions made by the model and the actual ground truth. This methodology allows
the model to acquire knowledge about the Jaccard Index as the main objective during the training
process, resulting in more accurate segmentations without the requirement of establishing a decision
threshold. Expanding upon the aforementioned study, an effort was undertaken to formulate a
specialized loss function specifically designed for the purpose of time series forecasting jobs. The
Custom Jaccard Loss was developed with the purpose of quantifying the resemblance between the

24

predictions made by the model and the actual data, specifically in the domain of time series analysis.
The Jaccard Index, originally designed to assess the overlap between sets, has been modified for
the evaluation of time series data. This modification aims to measure the alignment between the
predictions generated by a model and the actual data, employing a formula specifically designed
for this purpose.

The custom loss function (Figure 10) serves as a specialized metric designed to evaluate the
performance of a machine learning model. Specifically, its purpose is to calculate the Jaccard
coefficient, also known as the Jaccard index. This coefficient quantifies the degree of similarity
between two sets of values.

The function takes two input variables:

• y true: This variable represents the reference values, often referred to as true or accurate
values.

• y pred: This variable corresponds to the values predicted by the model.

At the beginning of the function, both sets of values are cast to the float32 data type to ensure
consistent data handling during subsequent mathematical operations.

The function proceeds by computing the maximum and minimum values between the true values
(y true) and the predicted values (y pred), followed by the summation of these computed values.
Subsequently, the Jaccard coefficient is calculated using the maximum and minimum values obtained
earlier.

The output of the custom loss function is the Jaccard coefficient, serving as a quantitative measure
of the similarity between two sets of values. This coefficient provides valuable insights into the
model’s ability to align its predictions with the reference data.

def custom_loss(y_true , y_pred):

y_true = tf.cast(y_true , tf.float32)

y_pred = tf.cast(y_pred , tf.float32)

max1 = tf.math.maximum(y_true , y_pred)

max2 = tf.reduce_sum(max1)

min1 = tf.math.minimum(y_true , y_pred)

min2 = tf.reduce_sum(min1)

jaccard = (1 - (min2 / max2)) * 100

return jaccard

Figure 10: Custom Loss Function Implementation.

25

3.5 Additional Testing Method

In the domain of finance, the capacity to precisely forecast market fluctuations is of utmost signifi-
cance for investors, financial institutions, and enterprises alike. The utilization of predictive models,
specifically those that rely on recurrent neural networks like Long Short-Term Memory (LSTM),
has garnered growing acknowledgement due to its capacity to augment the precision of forecasts in
the realm of financial markets. Nevertheless, the training process of LSTM models is intrinsically
linked to the optimization of model parameters, encompassing sequence length, batch size, and
the number of epochs. The prediction performance of the model can be considerably influenced
by these hyperparameters. This study centers on the utilization of an inventive technique referred
to as ”Iterative Forecasting” within the domain of finance. This approach is characterized by its
capacity to enhance the accuracy of predictions, enabling the LSTM model to promptly adjust to
fluctuations in financial data. The iterative forecasting strategy involves the recurrent training of
the LSTM model, where the model’s most recent forecasts are utilized as input data for subsequent
training iterations. During this procedure, the model initially acquires knowledge from existing
historical data and subsequently produces forecasts for a restricted duration in the future. Subse-
quently, these predictions are incorporated into the input data for a subsequent training iteration.
This repetition is performed for a predetermined number of time steps. The main aim of this study
is to construct a theoretical and practical structure that successfully combines iterative forecasting
with the optimization of LSTM model parameters through the utilization of a genetic algorithm.
The genetic algorithm is a computational technique that draws inspiration from natural selection
processes. Its objective is to systematically navigate the hyperparameter space in order to deter-
mine the most optimal configuration that minimizes evaluation metrics, such as the Mean Absolute
Error (MAE), when applied to the test set. The provided dataset in Figure 11 and 12 consists of a
historical time series including a duration of three years, specifically focusing on the daily closing
prices of the AAPL stock. Both figures depict the model training phase, where the non-red area
shows the utilization of the Bidirectional Long Short-Term Memory (BiLSTM) model while the red
area is use for a comparative analysis of the traditional training method and the unique approach
provided in this research.

Figure 11: Training and Testing with Conventional Method.

26

Figure 12: Iterative Forecasting Approach.

The green areas in both figures represent the data used for model training, while the blue areas
represent the testing data. In Figure 12, the yellow area represents the iterative forecasting ap-
proach, where the construction of input vectors into the model is achieved through the predict

function provided by TensorFlow and Keras. The red area, on the other hand, represents 10% of
the entire historical series that is excluded from the Bi-LSTM models. This data segment is left out
of the model training to facilitate a comparison between the conventional approach and iterative
forecasting. Removing this red area for Figure 11 there is a data ratio of 70% (green area) and
30%(red area). Meanwhile, for Figure 12, there is a split of 70% (green area), 20%(red area), and
10%(yellow area). This latest division is achieved through code modifications in Figure 4, introduc-
ing val ratio as a new parameter, and altering the code section related to data splitting. These
changes are illustrated in Figure 13.In Figure 13, it is demonstrated how the Iterative Forecasting
approach works. Here’s how it works:

• num days to predict is initialized with the length of the y test array, representing the num-
ber of future days for which predictions are needed.

• last sequence is initialized with the last available sequence of historical data from the valida-
tion dataset (X val[-1]). This sequence serves as the starting point for making predictions.

• A loop iterates for num days to predict times, where each iteration corresponds to making
a prediction for the next day:

– next value is obtained by using the model’s predict method on last sequence. The
input to the model is reshaped to match the expected shape (1, sequence length, 1).

– next value is appended to the predicted values array.

– last sequence is updated to simulate shifting the sequence for the next prediction. The
first element is removed, and next value is added to the end.

• After making predictions, the code prepares the real values for comparison:

– real values is initialized with the y test array.

– Both real values and predicted values are reshaped into NumPy arrays with shape
(-1, 1) to ensure compatibility for further calculations.

27

• The code then reverses the scaling transformation applied to the real values and predicted val-
ues using y scaler.inverse transform(). This step brings the values back to their original
scale.

• Finally, the code plots the real data and the model’s predictions on the same graph using
Matplotlib. It also calculates the Mean Absolute Error (MAE) as a measure of the model’s
accuracy in predicting the future values.

def train_lstm_model_2(param , x, y, sequence_length =3, train_ratio =0.7,

val_ratio =0.2, batch_size =50, epochs =50):

seed_value = 42

1. Set the seed for Python ’s hash generator (PYTHONHASHSEED)

os.environ[’PYTHONHASHSEED ’] = str(seed_value)

2. Set the seed for Python ’s random generator

random.seed(seed_value)

3. Set the seed for NumPy

np.random.seed(seed_value)

tf.random.set_seed(seed_value)

y_scaler = MinMaxScaler(feature_range =(0, 1))

y_normalized = y_scaler.fit_transform(np.array(y).reshape(-1, 1))

Prepare data for LSTM model

X, y = prepare_data_for_lstm(x, y_normalized , sequence_length)

Split data into training , validation , and test sets

split_index_train = int(len(X) * train_ratio)

split_index_val = int(len(X) * (train_ratio + val_ratio))

X_train , X_val , X_test = X[: split_index_train], X[split_index_train:

split_index_val], X[split_index_val :]

y_train , y_val , y_test = y[: split_index_train], y[split_index_train:

split_index_val], y[split_index_val :]

28

Predict the next selected days

num_days_to_predict = len(y_test)

last_sequence = X_val[-1]

predicted_values = []

for _ in range(num_days_to_predict):

next_value = model.predict(last_sequence.reshape(1, sequence_length

, 1))

predicted_values.append(next_value [0][0])

last_sequence = np.append(last_sequence [1:], next_value [0])

real_values = y_test

real_values = np.array(real_values).reshape(-1, 1)

predicted_values = np.array(predicted_values).reshape(-1, 1)

real_values = y_scaler.inverse_transform(real_values)

predicted_values = y_scaler.inverse_transform(predicted_values)

Plot data and predictions

plt.plot(np.arange(len(x) - num_days_to_predict , len(x)), real_values ,

label=’Real␣Data’)

plt.plot(np.arange(len(x) - num_days_to_predict , len(x)),

predicted_values , label=’Predictions ’)

plt.xlabel(’Day’)

plt.ylabel(’Value’)

plt.legend ()

plt.show()

mae_final = np.mean(np.abs(real_values - predicted_values))

num_days_to_predict2 = param

last_sequence2 = X_test [-1]

predicted_values2 = []

for _ in range(num_days_to_predict2):

next_value2 = model.predict(last_sequence.reshape(1,

sequence_length , 1))

predicted_values2.append(next_value2 [0][0])

last_sequence2 = np.append(last_sequence2 [1:], next_value2 [0])

predicted_values2 = np.array(predicted_values2).reshape(-1, 1)

predicted_values2 = y_scaler.inverse_transform(predicted_values2)

return mae_final , predicted_values2

Figure 13: Iterative Forecasting: Description of the Innovative Approach in the Code.

29

Now, the functions of this predictive model with the addition of the iterative forecasting approach
and the conventional approach are incorporated into two genetic algorithm, which is presented in
Figure 14 and 15.In this study, the genetic algorithm approach has been adapted and implemented,
drawing inspiration from previous research (Fotia and Ferrara, 2022). This is because the search
for the best parameters for the Bi-LSTM models is an empirically driven problem, similar in nature
to the problem addressed in the work ”Optimized Layout: A Genetic Algorithm for Industrial and
Business Application”.

30

Fitness function: returns test_mae given sequence_length and batch_size

def fitness(sequence_length , batch_size):

test_mae = train_lstm_model(elements_to_exclude , x, y, sequence_length ,

split_ratio =0.7, epochs =195, batch_size=batch_size)

return test_mae

Function to create an initial population

def create_population(population_size):

population = []

for _ in range(population_size):

np.random.seed (42)

sequence_length = random.randint (10, 50) # Set a reasonable range

for sequence_length

batch_size = random.randint (10, 100) # Set a reasonable range

for batch_size

population.append ((sequence_length , batch_size))

return population

Initialize an empty set to keep track of mutations already applied

mutated_set = set()

Mutation function for sequence_length , batch_size , and epoch

def mutate(individual):

mutated_individuals = []

sequence_length , batch_size , epoch = individual

sequence_length_values = list(range(max(1, sequence_length - 2),

sequence_length + 3))

batch_size_values = list(range(max(1, batch_size - 2), batch_size + 3))

epoch_values = list(range(max(1, epoch - 2), epoch + 3)) # Set a

reasonable range for epoch

for new_sequence_length in sequence_length_values:

for new_batch_size in batch_size_values:

for new_epoch in epoch_values:

mutated = (new_sequence_length , new_batch_size , new_epoch)

Check if this mutation has already been applied

if mutated not in mutated_set:

mutated_set.add(mutated) # Add this mutation to the

set of applied mutations

mutated_individuals.append(mutated)

If there are no new mutations to apply , return the original

individual

if not mutated_individuals:

mutated_individuals.append(individual)

return mutated_individuals

31

Number of generations to run

num_generations = 4 # Set the desired number of generations

Parameters

population_size = 200 # Number of parameter pairs

Create the initial population

population = create_population(population_size)

best_params_list = []

best_fit_list =[]

for generation in range(num_generations):

Calculate fitness value for each parameter pair

fitness_scores = [fitness(seq_len , batch_size) for seq_len , batch_size

in population]

Find the parameter pair with the lowest fitness value

best_index = fitness_scores.index(min(fitness_scores))

best_params = population[best_index]

best_fitness = fitness_scores[best_index]

print(f"Generation␣{generation␣+␣1}:␣Best␣Fitness␣=␣{best_fitness},␣

Sequence␣Length␣=␣{best_params [0]},␣Batch␣Size␣=␣{best_params [1]}")

best_params_list.append(best_params)

best_fit_list.append(best_fitness)

Apply mutation to the best parameter pair

mutated_params = mutate(best_params)

Add the new pairs to the population

population = mutated_params

print("Best␣parameters␣found:", best_params_list ,best_fit_list)

Figure 14: Genetic Algorithm for Hyperparameter Optimization in Forecasting.

32

Fitness function: returns test_mae given sequence_length , batch_size , and

epoch

def fitness(sequence_length , batch_size , epoch):

test_mae , _ = train_lstm_model_2(elements_to_exclude , x, y,

sequence_length , train_ratio =0.7, val_ratio =0.2, batch_size=

batch_size , epochs=epoch)

return test_mae

Function to create an initial population

def create_population(population_size):

population = []

for _ in range(population_size):

sequence_length = random.randint (10, 50)

batch_size = random.randint (10, 100)

epoch = random.randint (10, 200) # Set a reasonable range for epoch

population.append ((sequence_length , batch_size , epoch))

return population

Initialize an empty set to keep track of mutations already applied

mutated_set = set()

Mutation function for sequence_length and batch_size

def mutate(individual):

mutated_individuals = []

Extract the current values of sequence_length and batch_size

sequence_length , batch_size = individual

Create new pairs of values within the ranges defined by the current

values

sequence_length_values = list(range(max(1, sequence_length - 2),

sequence_length + 3))

batch_size_values = list(range(max(1, batch_size - 2), batch_size + 3))

Generate all possible combinations of the new values

for new_sequence_length in sequence_length_values:

for new_batch_size in batch_size_values:

mutated = (new_sequence_length , new_batch_size)

Check if this mutation has already been applied

if mutated not in mutated_set:

mutated_set.add(mutated) # Add this mutation to the set of

applied mutations

mutated_individuals.append(mutated)

33

If there are no new mutations to apply , return the original

individual

if not mutated_individuals:

mutated_individuals.append(individual)

return mutated_individuals

Number of generations to run

num_generations = 3

population_size = 50

Create the initial population

population = create_population(population_size)

best_params_list = []

best_fit_list =[]

for generation in range(num_generations):

fitness_scores = [fitness(seq_len , batch_size , epoch) for seq_len ,

batch_size , epoch in population]

best_index = fitness_scores.index(min(fitness_scores))

best_params = population[best_index]

best_fitness = fitness_scores[best_index]

print(f"Generation␣{generation␣+␣1}:␣Best␣Fitness␣=␣{best_fitness},␣

Sequence␣Length␣=␣{best_params [0]},␣Batch␣Size␣=␣{best_params [1]},␣

Epoch␣=␣{best_params [2]}")

best_params_list.append(best_params)

best_fit_list.append(best_fitness)

mutated_params = mutate(best_params)

population = mutated_params

print("Migliori␣parametri␣trovati:",best_params_list ,best_fit_list)

Figure 15: Iterative Forecasting: Genetic Algorithm for Hyperparameter Optimization in Forecast-
ing.

The genetic algorithms employed in this study systematically investigate the hyperparameter space,
aiming to minimize the Mean Absolute Error (MAE) associated with each model. They consist
of key components: creating an initial population, defining precise fitness functions, meticulously
conducting mutation operations, and employing a rigorous selection process. In Figure 15, the
critical hyperparameters are sequence length, batch size, and epoch. The fitness function eval-
uates MAE, considering the impact of these hyperparameters. It seeks the combination that
minimizes MAE through careful mutation operations, systematically exploring the hyperparam-

34

eter space. Contrastingly, the evolutionary algorithm in Figure 14 focuses solely on optimizing
sequence length and batch size, excluding epoch. Its objective is customized optimization by
fine-tuning a specific subset of hyperparameters. In fact, the epochs are automatically selected
by implementing early stopping in the code, as shown in Figure 4. This is achieved by utilizing
the EarlyStopping callback within the Keras library. Based on the chosen size of the initial
population and the number of generations, it is possible to achieve a more accurate result, albeit
at a higher computational cost. The trade-off between computational resources and optimization
accuracy should be carefully considered when configuring the genetic algorithm.

35

Chapter 4

Experimental Results and
Evidences

In the present study, a comprehensive examination has been carried out on a substantial data-set
consisting of 4,330 time series for the methodological part related to Data Prepocessing and Loss
Function, and with the last three year Apple close prices time series for the Iterative Forecasting
part. The analytical endeavor was conducted by employing a set of predictive models that rely
on Bidirectional Long Short-Term Memory (Bi-LSTM) neural networks. Each of these models has
produced a distinct vector of Mean Absolute Error (MAE) values for the analyzed time series.
It is imperative to acknowledge that the influence and determination of each MAE vector were
contingent upon the application of a specific analytical model, hence signifying distinct reference
points within the scope of our investigation. The focal point of this part is a comprehensive
analysis and comparison of the MAE vectors produced by the Bi-LSTM prediction models. The
main objective is to evaluate if the implementation of these novel models has led to a measurable
enhancement in outcomes in comparison to the conventional model employed as the reference point
for comparison. The analysis presented in this study is of great importance to our research, as it
offers a comprehensive assessment of the influence of the implemented improvements on the precision
of time series forecasts. The following paragraphs will provide a detailed presentation of the results
obtained from this comparison, facilitating a comprehensive comprehension of the efficacy of the
utilized Bi-LSTM predictive models and the potential benefits arising from the implementation of
these advanced methodologies in the domain of time series forecasting.

4.1 Results with Data Preprocessing

In this section, the results obtained by modifying the Baseline model (Figure 4) using raw data
through the application of preprocessing methods described in the Methodology chapter, in the
section dedicated to data Preprocessing operations will be presented and analyzed. The code of
the Baseline model (Figure 4) was executed on a dataset of 4330 time series, using both raw

36

data and normalized data(Figure 5), along with other data transformation methods developed,
such as Angle-Based Transformation (Figure 6 and 7) and Interpolation of Intermediate Values
(Figure 8 and 9). Through this operation, one obtains the Mean Absolute Error (MAE) of the
test set for various models, considering the different data transformations. Subsequently, the three
methods were compared using raw data as a reference. To evaluate the effectiveness of the different
transformations, Figure 16 highlights the number of cases in which the three methods were superior
or inferior to using raw data. Furthermore, Table 1 allows to understand how much better each
model is on average.

Figure 16: Frequency of Model Outperformance Comparison.

The results indicate that the application of data normalization did not yield superior performance
compared to the baseline model when using raw data. The improved model outperformed the
baseline model in only 2,074 out of a total of 4,330 cases. This result suggests that, within the
confines of this particular scenario, the process of data normalization may not yield substantial
enhancements or could perhaps be less efficacious compared to utilizing unprocessed data. When
employing data normalization or other data transformation techniques, it is imperative to thor-
oughly evaluate the context and features of the data. The Angle-Based Transformation technique
exhibited favorable outcomes, surpassing the performance of the baseline model in a total of 2,313
instances. This methodology utilizes mathematical principles to effectively capture directional pat-
terns present in time series data. Despite the significant improvement in performance, additional
research may be necessary to thoroughly investigate the potential and applicability of the method
in certain scenarios that exhibit directional tendencies in time series data. The approach of Inter-
polation of Intermediate Values was found to be the most effective method of data transformation

37

in the study, outperforming the baseline model in a significant majority of cases, specifically 4,211
out of 4,330 instances. The proposed methodology entails the generation of intermediate values
inside the existing data points, hence offering a more comprehensive depiction of time series data.
The findings highlight the capacity of the tool to uncover intricate information inside the dataset,
so becoming it a valuable asset for augmenting time series analysis, particularly in situations where
precise details hold significant importance. The aforementioned findings underscore the significance
of appropriate data pretreatment and transformation in the realm of time series analysis. Every
technique plays a key role in enhancing the interpretation and forecasting capacities of time series
models. The selection of a particular technique may be influenced by the unique qualities of the data
and the objectives of the analysis, hence indicating the need for more research and domain-specific
investigations to enhance the effectiveness of its implementation.

Table 1: Average Improvement

Category
Average Improvement

with Preprocessing

Average Improvement

with Raw Data

Data Normalization 319.4450 125.0255
Angle-Based Transformation 72.9632 1758.5835
Interpolation of Intermediate Values 187.0173 9.6633

The Table 1 illustrates the mean enhancement attained via the utilization of data preparation
methodologies in contrast to the utilization of unprocessed data for the purpose of conducting
time series analysis. The data preprocessing phase encompasses several categories, namely Data
Normalization, Angle-Based Transformation, and Interpolation of Intermediate Values. The ap-
plication of Data Normalization to time series data yielded an average improvement of roughly
319.45 units. In comparison, the utilization of raw data without any preprocessing resulted in a
comparatively smaller average improvement of roughly 125.03 units. This finding suggests that
the process of Data Normalization had a notable impact on the study, illustrating its efficacy in
mitigating discrepancies arising from disparate scales present in time series data. The Angle-Based
Transformation technique resulted in a mean improvement of roughly 72.96 units in the context of
time series analysis. In contrast, the mean enhancement observed with unprocessed data exhibited
a significantly greater magnitude, estimated to be roughly 1758.58 units. While the Angle-Based
Transformation technique showed promising results, it is important to acknowledge that raw data
consistently outperformed it on average. This indicates that additional investigation may be neces-
sary to fully exploit the potential of this technique. The application of Interpolation of Intermediate
Values in time series analysis yielded an average improvement of roughly 187.02 units. On the other
hand, the utilization of unprocessed raw data resulted in a comparatively lower mean enhancement
of around 9.66 units. This underscores the significant benefit of employing Interpolation of Inter-
mediate Values as a method of data preparation, particularly in situations where detailed insights
are crucial. The findings of this study offer significant insights into the effects of various data
preparation methods on the mean enhancement in time series analysis. When selecting a prepro-
cessing approach, it is important to take into account the distinct properties of the data and the

38

intended objectives of the analysis. This is because each technique provides distinct benefits and
enhancements in performance.

4.2 Results with Different Loss Function

This investigation investigates the contrast between two distinct loss functions, namely Mean Ab-
solute Error (MAE) Loss and Jaccard Loss, in the setting of a baseline model utilizing raw data.
The aim of this study is to evaluate the circumstances in which one loss function demonstrates
superior performance compared to the other, by examining the frequency of occurrences in which
each function produces better outcomes.

Figure 17: Comparing MAE and Jaccard Loss.

39

The MAE Loss demonstrates superior performance compared to the Jaccard Loss in 2,119 out
of 4,330 instances. The Mean Absolute Error (MAE) is a metric used to measure the absolute
discrepancy between projected and actual values, with a focus on achieving high levels of accuracy.
This underscores its efficacy in situations when the reduction of prediction errors is of paramount
importance. In 2,211 out of 4,330 occurrences, Jaccard Loss demonstrates superiority over MAE
Loss. The Jaccard Loss is commonly employed as a metric for quantifying the dissimilarity between
sets, providing valuable insights into the performance of a model. This implies that the Jaccard
Loss metric may perform exceptionally well in situations where assessment criteria based on sets are
better suitable or where the objective is to accurately capture the intersections and unions of sets.
The aforementioned results highlight the significance of carefully choosing the suitable loss function
in accordance with the particular objectives of the analysis and the characteristics of the data.
The determination of whether to prioritize accuracy or set-based evaluations is contingent upon the
specific context of the machine learning job being undertaken. The results reported in Tabel 2 offer

Table 2: Average Improvement

Loss Function Average Improvement

MAE Loss 339.4556
Jaccard Loss 143.6467

valuable insights into the average improvements observed while utilizing two distinct loss functions,
specifically Jaccard Loss and MAE Loss, in a specific data analysis scenario.The utilization of
Jaccard Loss in this particular scenario yields an average enhancement of roughly 143.6467 units.
This statistic demonstrates the improvement made when the Jaccard Loss is used as the evaluation
criterion. On the other hand, while employing the MAE Loss, there is a significantly greater
average improvement of around 339.4556 units. This metric quantifies the degree of improvement
in performance achieved with the use of MAE Loss for evaluation. The findings presented in this
study provide significant insights into the relative efficacy of the two loss functions employed within
the specified analytical framework. The selection between Jaccard Loss and MAE Loss should be
determined according to the specific objectives of the analysis and the intended focus on accuracy
or set-based judgments.

4.3 Results with Additional Testing Method

In the domain of financial forecasting, the accurate selection of hyperparameters for predictive mod-
els holds significant importance. The accuracy of predictive models, namely Long Short-Term Mem-
ory (LSTM) networks, is significantly influenced by hyperparameters, including sequence length and
batch size. The genetic algorithm, which draws inspiration from the principles of natural selection,
provides a systematic approach for the exploration of optimal hyperparameter configurations.

40

The results of the genetic algorithm for optimizing hyperparameters in the case without iterative
forecasting are presented here.

Generation 1: Best Fitness = 0.02882482297718525, Sequence Length = 34,

Batch Size = 10

Generation 2: Best Fitness = 0.028618091717362404, Sequence Length = 34,

Batch Size = 8

Generation 3: Best Fitness = 0.028658665716648102, Sequence Length = 34,

Batch Size = 6

Generation 4: Best Fitness = 0.02843809314072132, Sequence Length = 34,

Batch Size = 5

Each generation represents a cycle of parameter optimization, and the algorithm aims to minimize
the Mean Absolute Error (MAE) associated with the LSTM model.The findings presented in this
study provide evidence of the genetic algorithm’s capacity to methodically optimize hyperparam-
eters in order to reduce the mean absolute error (MAE). With the progression of each successive
generation, the algorithm undergoes a process of iteratively refining its hyperparameters. This it-
erative refinement brings the algorithm closer to achieving a configuration that exhibits enhanced
prediction accuracy specifically within the area of financial forecasting.

Figure 18: Training and Test Loss Plot for the Baseline Model.

41

Figure 19: Training Prediction vs. Real Data for the Baseline Model.

Figure 20: Test Prediction vs. Real Data for the Baseline Model.

42

In the domain of financial forecasting, the accurate selection of hyperparameters for predictive mod-
els holds significant importance. The accuracy of predictive models, namely Long Short-Term Mem-
ory (LSTM) networks, is significantly influenced by hyperparameters, including sequence length and
batch size. The genetic algorithm, which draws inspiration from the principles of natural selection,
provides a systematic approach for the exploration of optimal hyperparameter configurations. The
results of the genetic algorithm for optimizing hyperparameters in the case without iterative fore-
casting are presented here. Every successive cohort embodies a recurring process of fine-tuning
parameters, with the objective of minimizing the Mean Absolute Error (MAE) linked to the Long
Short-Term Memory (LSTM) model. The findings presented in this study provide evidence of the
genetic algorithm’s capacity to methodically optimize hyperparameters in order to reduce the mean
absolute error (MAE). With the progression of each successive generation, the algorithm undergoes
a process of iteratively refining its hyperparameters. This iterative refinement brings the algorithm
closer to achieving a configuration that exhibits enhanced prediction accuracy specifically within
the area of financial forecasting. Significant insights on the predictive potential of our Bi-LSTM
model are revealed during the study of the results acquired from the genetic algorithm performed
using the iterative forecasting approach. The following are the outcomes acquired during the initial
three iterations of the algorithm:

Generation 1: Best Fitness = 2.5230085849761963, Sequence Length = 45,

Batch Size = 11, Epoch = 184

Generation 2: Best Fitness = 2.5230085849761963, Sequence Length = 45,

Batch Size = 11, Epoch = 184

Generation 3: Best Fitness = 2.5230085849761963, Sequence Length = 45,

Batch Size = 11, Epoch = 184

The findings of this study demonstrate that the utilization of a genetic algorithm in the optimization
of parameters for the Bi-LSTM model, within the context of iterative forecasting, has successfully
identified a parameter combination that is both stable and highly effective. The observed stability
of the fitness value across the initial three generations suggests that the optimized parameters
identified in the first generation have been verified as the optimal selection. This finding provides
confirmation of their efficacy in producing precise and consistent forecasts.

43

Figure 21: Training and Test Loss Plot for the Iterative Forecasting Method.

Figure 22: Training Prediction vs. Real Data for Iterative Forecasting Method.

44

Figure 23: Test Prediction vs. Real Data for Iterative Forecasting Method.

Figure 24: Iterative Forecasting Phase

45

The Bi-LSTM model, when configured with the specified parameters and employing the iterative
forecasting approach, has enhanced capability in creating forecasts that are both more accurate
and consistent in comparison to the inherent oscillations noticed in financial data. However, it is
important to note (Figure 24) that these predictions may not coincide completely with the actual
observed values. However, it is imperative to acknowledge that they adeptly adhere to the trajectory
of the data. The observed findings illustrate that the model has effectively absorbed the pertinent
correlations present in the data and is capable of successfully extrapolating to unfamiliar data.

Figure 25: Data for Comparing the Two Models: Real Data vs. Baseline Model Predictions.

46

Figure 26: Data for Comparing the Two Models: Real Data vs. Iterative Forecasting Predictions.

In Figure 25 and 26, we can now thoroughly examine the comparison between the two approaches by
scrutinizing the prediction results for the 10 percent of the data that has been consistently reserved
from the outset, represented by the red area in Figures 12 and 13. This comparative analysis
provides valuable insights into the model’s performance. When comparing the two approaches, the
MAE values reveal significant differences. In the case of the iterative forecasting approach, the
MAE stands at 9.64, indicating a relatively lower prediction error. Conversely, for the standard
model without iterative forecasting, the MAE is notably higher at 13.89, suggesting a less accurate
prediction performance. These MAE values underscore the advantages of incorporating the iterative
forecasting approach in enhancing the Bi-LSTM model’s predictive capability, particularly when
dealing with the reserved dataset. It demonstrates the effectiveness of iterative forecasting in
improving prediction accuracy and aligning the model’s output more closely with the observed
values, ultimately enhancing its performance in financial forecasting tasks.

47

Chapter 5

Causal Impact Analysis of Events
on Google Trends and Italian
Financial Market Prices.

5.1 Introduction

In the field of finance, comprehending the causal influence of events on financial markets holds
significant significance for investors, policymakers, and market participants. This chapter explores a
novel methodology that utilizes Google Trends as a metric for gauging public interest and use causal
impact analysis to investigate the effects of particular events on the Italian financial market. The
primary objective is to evaluate the causal influence of two pivotal occurrences: the termination of
constraints associated with the pandemic and the culmination of the Italian elections. The analysis
encompasses the time frame spanning from January 3, 2021, to October 8, 2023.

5.2 Methodology

5.2.1 Data Collection

Data pertaining to the weekly prices of the Italian financial market was collected between the time
frame of January 3, 2021, to October 8, 2023. The provided data serves as the foundational in-
formation for conducting a causal effect analysis of occurrences. Furthermore, we gathered data
pertaining to Google search patterns for significant subjects linked to the chosen occurrences, em-
ploying the methodology defined in their publication. The aforementioned data played a crucial
role in ascertaining the precise moment at which online public interest reached its zenith.

48

Figure 27: Weekly FTSE MIB Price Movement from 03/01/2021 to 08/10/2023.

5.2.2 Event Identification on Google Trends

In order to facilitate our research, we have selected two notable occurrences for examination: the
relaxation of constraints imposed due to the epidemic (Figure 27) and the conclusion of the Italian
electoral process(FIgure 28). The choice of these two events was made due to their perceived
ability to have a significant impact on the Italian financial market. The stage of event identification
holds significant importance as it establishes the reference points for further analysis. A Google
Trends analysis was performed in order to ascertain the specific instances in which there was a
notable surge in public interest for each of the chosen events. This phase played a pivotal role
in ascertaining the period during which the topic garnered the highest level of internet discourse.
Accurate determination of the chronological placement of these peaks is crucial for conducting
subsequent investigation.

Figure 28: Google Trends: Percentage of Google Searches in Italy for ’fine restrizioni’ (End of
Restrictions).

49

Figure 29: Google Trends: Percentage of Google Searches in Italy for ’fine elezioni’ (End of Elec-
tions).

Figure 30: Weekly FTSE MIB Price Movement from 03/01/2021 to 08/10/2023 with Dashed Red
Lines, indicating significant events related to the Google Trends terms ’end of elections’ and ’end
of restrictions

5.2.3 Causal Impact Analysis

A causal impact study was conducted, integrating components of the technique put forward by
Fotia and Ferrara, 2023. A mixture of models, namely the Google CausalImpact model and the
Bi-Directional LSTM model, was utilized in accordance with the recommendations provided in
their publication. The utilization of the CausalImpact model, which operates inside a Bayesian
framework, was employed to assess the causal influence of an event on time series data. This model
adopts the methodology proposed by the authors, which integrates past knowledge and provides a
quantitative assessment of uncertainty in impact estimations.

50

The Bi-LSTMmodel, however, utilizes certain phases outlined in this thesis to improve its prediction
powers. In Figure 31, the data depicted by the orange curve represents the time series transformed
using the Savitzky-Golay filter, implemented with the savgol filter function from the SciPy
library. This procedure is performed to facilitate the training of the predictive model by emphasizing
the underlying data trends and reducing noise, resulting in a smoother curve that reveals data
patterns more effectively.

Figure 31: Smoothing of Time Series Data Using the Savitzky-Golay Filter. The orange curve
demonstrates the time series data transformed with the Savitzky-Golay filter, enhancing the visu-
alization of data trends and simplifying model training.

Figure 32 presents the Bi-LSTM model, which plays a crucial role in this investigation. The
Loss function (Figure 10) has been employed to design this model, which is a crucial metric for
evaluating the similarity index between two sets of data. The utilization of this particular loss
function is of utmost importance in ensuring the precision of predictions within the framework of
causal impact analysis. Moreover, the process of data processing has been significantly improved by
means of normalization. Data normalization is a widely employed technique in the field of machine
learning. Its purpose is to standardize input variables to a consistent scale. This standardization
enables the model to train more effectively and generate more precise predictions. An other pivotal
factor in enhancing the model’s predictive capacity has been the augmentation of data volume
via interpolation (Figure 8 and 9). Interpolation is a computational method utilized to generate
additional data points inside a given dataset, hence augmenting the size of the training dataset.
This stage holds significant importance in situations where there is a scarcity of available data.
The purpose of interpolation is to improve the model’s ability to make accurate predictions on
unseen data and mitigate the potential problem of overfitting. The entire method to addressing
causal effect analysis within a temporal forecasting context involves the integration of several parts,
namely the Bi-LSTM model, the employment of the Jaccard loss function, data standardization,
and interpolation. Figure 31 concisely depicts the fundamental configuration that holds significant
importance in the process of analysis and prediction.

51

def train_lstm_model(x, y, sequence_length =3, train_ratio =0.7, val_ratio

=0.2, batch_size =50, epoch =50):

seed_value = 42

Set the seed for the Python hash generator (PYTHONHASHSEED)

os.environ[’PYTHONHASHSEED ’] = str(seed_value)

Set the seed for the Python random generator

random.seed(seed_value)

Set the seed for NumPy

np.random.seed(seed_value)

tf.random.set_seed(seed_value)

x1 = repeat_augmentation(x, 1)

y = repeat_augmentation(y, 1)

y_scaler = MinMaxScaler(feature_range =(0, 1))

y_normalized = y_scaler.fit_transform(np.array(y).reshape(-1, 1))

Prepare data for the LSTM model

X, y = prepare_data_for_lstm(x1, y_normalized , sequence_length)

Split into training set , validation set , and test set

split_index_train = int(len(X) * train_ratio)

split_index_val = int(len(X) * (train_ratio + val_ratio))

X_train , X_val , X_test = X[: split_index_train], X[split_index_train:

split_index_val], X[split_index_val :]

y_train , y_val , y_test = y[: split_index_train], y[split_index_train:

split_index_val], y[split_index_val :]

Create the model

model = Sequential ()

Add the first Bidirectional LSTM layer with 64 neurons and ’relu’

activation function

model.add(Bidirectional(LSTM(64, activation=’relu’), input_shape =(

sequence_length , 1)))

Add the output Dense layer with 1 neuron (for prediction)

model.add(Dense (1)

52

Compile the model with the MAE loss function

model.compile(optimizer=’adam’, loss=custom_loss)

Train the model with validation

history = model.fit(X_train , y_train , epochs=epoch , batch_size=

batch_size , validation_data =(X_val , y_val), verbose=False)

Predict the next chosen days

num_days_to_predict = len(y_test)

Use the last known values as input for prediction

last_sequence = X_val[-1]

predicted_values = []

for _ in range(num_days_to_predict):

next_value = model.predict(last_sequence.reshape(1, sequence_length

, 1), verbose=False)

predicted_values.append(next_value [0][0])

last_sequence = np.append(last_sequence [1:], next_value [0])

Prepare real data for the chosen test days

real_values = y_test

real_values = np.array(real_values).reshape(-1, 1)

predicted_values = np.array(predicted_values).reshape(-1, 1)

associazione = zip(x1[-num_days_to_predict :], (np.concatenate(

real_values)).tolist ())

associazione = list(associazione)

filtered_tuples = [tup for tup in associazione if int(tup [0]) == tup[0]

second_values = [tup[1] for tup in filtered_tuples]

associazione1 = zip(x1[-num_days_to_predict :], (predicted_values))

associazione1 = list(associazione1)

filtered_tuples1 = [tup for tup in associazione1 if int(tup [0]) == tup

[0]]

second_values1 = [tup [1] for tup in filtered_tuples1]

maef = np.mean(np.abs(np.array(second_values) - np.array(second_values1

))

Return the trained model and validation data

return maef

Figure 32: Bi-LSTM Model with Jaccard Loss, Data Normalization, and Interpolation.

In Figure 33, the Iterative forcasting is employed to search for the optimal parameters. To conduct
the Causal Impact Analysis as described in the article by Fotia and Ferrara, 2023, it is necessary

53

to iterate the predictive model across various data ranges in the time series. This analysis aims
to assess the impact spanning from pre-event to post-event periods, covering the termination of
restrictions and the conclusion of elections.

lsit_bestparams = []

lsit_best_fitness = []

for numero in range(40, 101):

y1 = y_smooth [0: numero]

x = np.linspace(1, len(y1), len(y1)

Function to calculate fitness: returns test_mae given sequence_length

, batch_size , and epoch

def fitness(sequence_length , batch_size , epoch):

test_mae = train_lstm_model(x, y1, sequence_length , 0.80, 0.10,

batch_size , epoch)

return test_mae

Function to create an initial population

def create_population(population_size):

np.random.seed (42)

population = []

for _ in range(population_size):

sequence_length = random.randint(2, int((len(y1) * 2) * 0.30))

batch_size = random.randint (10, 100)

epoch = random.randint (50, 300) # Set a reasonable range for

epoch

population.append ((sequence_length , batch_size , epoch))

return population

Initialize an empty set to keep track of applied mutations

mutated_set = set()

Function for mutation in sequence_length , batch_size , and epoch

def mutate(individual):

mutated_individuals = []

sequence_length , batch_size , epoch = individual

sequence_length_values = list(range(max(1, sequence_length - 2),

sequence_length + 3))

batch_size_values = list(range(max(1, batch_size - 2), batch_size +

3))

epoch_values = list(range(max(1, epoch - 2), epoch + 3)) # Set a

reasonable range for epoch

54

for new_sequence_length in sequence_length_values:

for new_batch_size in batch_size_values:

for new_epoch in epoch_values:

mutated = (new_sequence_length , new_batch_size ,

new_epoch)

Check if this mutation has already been applied

if mutated not in mutated_set:

mutated_set.add(mutated) # Add this mutation to

the set of applied mutations

mutated_individuals.append(mutated)

If there are no new mutations to apply , return the original

individual

if not mutated_individuals:

mutated_individuals.append(individual)

return mutated_individuals

num_generations = 1

population_size = 20

population = create_population(population_size)

for generation in range(num_generations):

fitness_scores = [fitness(seq_len , batch_size , epoch) for seq_len ,

batch_size , epoch in population]

best_index = fitness_scores.index(min(fitness_scores))

best_params = population[best_index]

best_fitness = fitness_scores[best_index]

print(f"Generation␣{generation␣+␣1}:␣Best␣Fitness␣=␣{best_fitness},

␣Sequence␣Length␣=␣{best_params [0]},␣Batch␣Size␣=␣{best_params

[1]},␣Epoch␣=␣{best_params [2]}")

lsit_bestparams.append(best_params)

lsit_best_fitness.append(best_fitness)

mutated_params = mutate(best_params)

population = mutated_params

Figure 33: Model Parameter Optimization for Causal Impact Analysis.

55

5.3 Causal Impact Analysis results

The study prioritized the examination of causal effect in order to get insight into the influence
of individual events or causes on the performance of the FTSEMIB market index. The data was
analyzed throughout the time frame spanning from October 10, 2021, to December 4, 2022. This
study aimed to ascertain the methods for identifying such affects by employing two distinct models:
Google’s causal impact model and the Bi-LSTM model. The results of this investigation can be
observed in Figure 34. The causal effect model developed by Google exhibited a notable capacity
to accurately assess the influence of the cessation of imposed restrictions on the FTSEMIB market
index over the analyzed timeframe. Indeed, commencing from that particular date, a discernible es-
calation in effects becomes evident in the ensuing days. This implies that Google’s model effectively
identifies the positive impact of the removal of limitations on the market index. In contrast, the
Bi-LSTM model successfully recognized the importance of the conclusion of electoral events as the
primary determinant of the FTSEMIB market index’s performance. This model places significant
emphasis on the impact of elections as a primary catalyst for changes in the performance of the
market index.

Figure 34: Comparison of predicted causal effects of CausalImpact and Bidirectional LSTM models.

56

Chapter 6

Conclusions

This research has embarked on a comprehensive exploration of financial time series, focusing on an
extensive and diverse dataset comprising 4,330 individual time series. The central objective of this
study was to develop innovative strategies and sophisticated methodologies to enhance the precision
of financial forecasting. The research was organized into several pivotal phases, each contributing
significantly to achieving the established goals. The data preprocessing phase served as a crucial
step in ensuring the readiness of the time series data for analysis. During this stage, a thorough
evaluation and implementation of various data transformation techniques were undertaken, includ-
ing data normalization, angle-based transformation, and interpolation of intermediate values. A
thorough investigation revealed that the incorporation of intermediate data through interpolation
proved to be particularly effective in improving the accuracy of predictions. However, it is im-
portant to note that the choice of a data transformation method should be tailored to the unique
characteristics of the time series data and the specific objectives of the research. These findings
underscore the critical importance of meticulous data preparation in the realm of financial fore-
casting. Another pivotal aspect of this study was the examination of different loss functions. The
evaluation of Mean Absolute Error (MAE) Loss and Jaccard Loss highlighted the significance of
selecting an appropriate loss function to achieve accurate predictions. MAE Loss demonstrated its
effectiveness in minimizing prediction errors, whereas Jaccard Loss showed its utility in scenarios
that require assessing the similarity of data sets. These findings emphasize the need to customize
the choice of loss function based on the research objectives. A significant advancement introduced
in this study was the adoption of an iterative forecasting methodology, which enabled the optimiza-
tion of Bi-LSTM model parameters using a genetic algorithm. This approach exhibited notable
effectiveness in enhancing the precision of financial forecasts. A detailed analysis of the results
revealed that, as successive generations of the genetic algorithm were iterated, model parameters
consistently improved, resulting in increasingly precise and reliable predictions. This innovation
represents a significant step forward in the field of financial forecasting, providing enhanced stabil-
ity and dependability in predictive capabilities. However, it is essential to acknowledge potential
limitations in this study. One limitation relates to the heterogeneity of the dataset, which can
introduce variability into the results and may not fully account for all real-world scenarios. Fur-
thermore, while the iterative forecasting approach displayed promise, further research is required to
explore its applicability to different financial markets and asset classes. Additionally, the effective-

57

ness of the proposed methodologies may be influenced by specific market conditions and economic
factors that were not comprehensively addressed in this study. Furthermore, this study builds upon
the aforementioned contributions by utilizing the previously created approaches to improve the
Bi-LSTM model, aiming to get a more thorough analysis. The scope of the study was expanded
to include a causal impact analysis of financial time series, with the objective of identifying and
comprehending the causal links that drive market dynamics. The causal impact analysis provided
significant insights into the impact of several events and circumstances on the financial time se-
ries under investigation. Through the utilization of advanced approaches created for the Bi-LSTM
model, this research has elucidated the manner in which particular events and market conditions
exerted an influence on the observed data. This enhanced our comprehension of the complex net-
work of cause-and-effect connections within the financial system. The findings of the causal impact
analysis have contributed an additional level of comprehension to the study, elucidating the manner
in which external occurrences and market dynamics might induce fluctuations and disruptions in
financial time series. The acquisition of this knowledge is a substantial contribution to the domain
of financial forecasting, as it provides a comprehensive viewpoint on the determinants influencing
market dynamics. In brief, this study improved the accuracy and reliability of financial projections
by employing meticulous data preparation, selecting suitable loss functions, and utilizing an inno-
vative iterative forecasting approach. Additionally, the research expanded the scope of financial
projections to include a comprehensive analysis of causal impact. The aforementioned findings
establish a robust basis for future advancements in the domain of financial forecasting, signifying a
noteworthy progress in the application of recurrent neural networks in this perpetually expanding
sector.

58

Bibliography

Ashour, A., El-Attar, A., Dey, N., El-Kader, H., & El-Naby, M. (2020). Long short term memory
based patient-dependent model for fog detection in parkinson’s disease. Pattern Recognit
Lett, 131, 23–29.

Cai, J., Lu, L., Xie, Y., Xing, F., & Yang, L. (2017). Improving deep pancreas segmentation in
ct and mri images via recurrent neural contextual learning and direct loss function. arXiv
preprint arXiv:1707.04912.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., et al.
(2014). Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Fotia, P., & Ferrara, M. (2022). Optimized layout: A genetic algorithm for industrial and business
application. International Conference on Applied Intelligence and Informatics, 117–126.

Fotia, P., & Ferrara, M. (2023). A different approach for causal impact analysis on python with
bayesian structural time-series and bidirectional lstm models. Atti della Accademia Pelori-
tana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 1 (2), 12.

Graves, A., Jaitly, N., & Mohamed, A.-r. (2013). Hybrid speech recognition with deep bidirectional
lstm. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 273–278.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Netw, 18 (5-6), 602–610.

Halpern-Wight, N., Konstantinou, M., Charalambides, A. G., & Reinders, A. (2020). Training and
testing of a single-layer lstm network for near-future solar forecasting. Applied Sciences, 10,
5873. https://doi.org/10.3390/app10175873

Harrou, F., Kadri, F., & Sun, Y. (2020). Forecasting of photovoltaic solar power production using
lstm approach.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Comput, 9 (8), 1735–
1780.

Liu, Z.-x., Zhang, D.-g., Luo, G.-z., Lian, M., & Liu, B. (2020). A new method of emotional analysis
based on cnn-bilstm hybrid neural network. Cluster Comput, 1–13.

Oksuz, I., Cruz, G., Clough, J., Bustin, A., Fuin, N., Botnar, R., et al. (2019). Magnetic resonance
fingerprinting using recurrent neural networks. 2019 IEEE 16th International Symposium
on Biomedical Imaging (ISBI 2019), 1537–1540.

Schuster, M., & Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE Trans Signal
Process, 45 (11), 2673–2681.

59

Sharfuddin, A., Tihami, M., & Islam, M. (2018). A deep recurrent neural network with bilstm model
for sentiment classification. 2018 International Conference on Bangla Speech and Language
Processing (ICBSLP), 1–4.

Tsai, Y. T., Zeng, Y. R., & Chang, Y. S. (2018). Air pollution forecasting using rnn with lstm. 2018
IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on
Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Comput-
ing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
1074–1079.

Wang, S., Wang, X., Wang, S., & Wang, D. (2019). Bi-directional long short-term memory method
based on attention mechanism and rolling update for short-term load forecasting. Int J
Electr Power Energy Syst, 109, 470–479.

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (mae) over the
root mean square error (rmse) in assessing average model performance. Climate research,
30 (1), 79–82.

Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A comparison between arima, lstm, and gru for
time series forecasting. Proceedings of the 2019 2nd international conference on algorithms,
computing and artificial intelligence, 49–55.

Zhang, B., Zhang, H., Zhao, G., & Lian, J. (2020). Constructing a pm2.5 concentration prediction
model by combining auto-encoder with bi-lstm neural networks. Environ Modell Softw, 124,
104600.

60

