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1. Introduction
Aim of the paper is to study a nonlinear variational problem with gradient constraints and
homogeneous Dirichlet boundary condition.

Variational problems with gradient constraints have been intensively studied a few decades
ago and have seen many progresses also recently.

Several related questions have been investigated, as regularity of the solution, existence of
Lagrange multipliers, connection with other variational problems, numerical aspects and so on.

Variational problems with gradient constraints arise in elastoplasticity of materials, optimal
control problems, mathematical finance, sandpiles, superconductors (see [19,38] and reference
therein). An interesting property of variational problems with gradient constraints is the
connection with double obstacle problems, even if this equivalence is not true in the general
case (see [18], and counterexamples in [26,37] in the case of nonconstant gradient constraint
|Du| ≤ g(x)).

Indeed, an important example among them is the well-kwon elastic-plastic torsion problem,
which is the problem of finding a function u belonging to the convex set

K =
{
v ∈H1,2

0 (Ω) : |Dv| ≤ 1 a.e. inΩ
}

such that ∫
Ω
∇u∇(v − u) dx≥

∫
Ω
f(v − u) dx, ∀v ∈K. (1.1)

Existence and uniqueness of the solution to (1.1) easily follows (see [39]). In 1972 Brezis proved
in [2] that there exists a unique Lagrange multiplier λ∈L∞(Ω), when f is a positive constant.
Moroever, in [3] the authors prove the equivalence between the elastic-plastic torsion problem
(1.1) and an obstacle problem, where the obstacle is the distance function.

In the paper we study a nonlinear monotone variational problem, subject to a strictly convex
gradient constraint. In particular, we give the following contributions: first, we provide an
equivalence result (Theorem 3.1) between the problem with gradient constraints and a suitable
double obstacle problem, using a viscosity solution idea for Hamilton-Jacobi equation as in
[9,30]. This connection allows us to apply a new duality principle, holding under a constraint
qualification condition (Assumption S), that is verified at the solution of the double obstacle
problem. As a second result, we obtain the existence of L2−Lagrange multipliers.

Let us introduce the problem in more detail.
Let a(p) : Rn→Rn be an operator of class C1, strongly monotone and let G : Rn→R be a C2

nonnegative uniformly strictly convex function. Setting

K =
{
v ∈H1,2

0 (Ω) :G(Dv)≤M a.e. onΩ
}
,

from the monotonicity of the operator easily follows the existence and the uniqueness of the
solution u to the problem:

Find u∈K :

∫
Ω

n∑
i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
dx≥

∫
Ω
f(v − u)dx, ∀v ∈K. (1.2)

In the paper, in a first step, we prove, under strong monotonicity assumption (3.1), strict
convexity (3.2) and assuming f to be a positive constant, the equivalence between problem (1.2)
and a suitable double obstacle problem:

Find u∈Kw−,w+ :

∫
Ω

n∑
i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
dx≥

∫
Ω
f(v − u)dx, ∀v ∈Kw−,w+ , (1.3)
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where

Kw−,w+ =
{
v ∈H1,2

0 (Ω) :w− ≤ v(x)≤w+(x) a.e. onΩ
}
,

and

w+ = sup
v∈K

v(x), w− = inf
v∈K

v(x). (1.4)

(see Theorem 3.1).
It should be pointed out that the functions w+, w− are well defined. As observed in [30] (pp.

409, 413), in general w+ and w− only are uniformly Lipschitz continuous, but the strict convexity
assumption on G (3.2) guarantees that w+ and w− are bounded.

The properties of the obstacles follow from the theory of viscosity solutions to Hamilton-Jacobi
equations (see [32], p. 133, [31]).

Then, in a second step, an existence theorem of Lagrange multipliers is proved together with
the following relationship between the coincidence set I and the plastic region P

I = {x∈Ω : u(x) =w+(x) or u(x) =w−(x)}= P = {x∈Ω :G(Du) =M}. (1.5)

Let us remark that we denote by P the plastic region in virtue of physical properties of the
elastic-plastic torsion problem.

The paper is organized as follows. In Section 2 we discuss some related works. In Section
3 we illustrate the problems in details and state the main results of the paper. In Section 4 we
remind some notations and some results of duality theory, that we need in the sequel. In Section 5
we introduce a suitable double obstacle problem and we investigate the connection between this
problem and the problem with gradient constraints. Moreover, in Section 6 we prove the existence
of Lagrange multipliers. Finally, in Section 7 we draw some conclusions and discuss our ongoing
research.

2. Related work
The gradient constrained problem is a classical problem intensively studied a few decades ago.

As already recalled in Section 1, the problem with constant gradient constraint |Du| ≤ 1,
the well-known elastic-plastic torsion problem, has been deeply studied, together with its
equivalence with the obstacle problem and with a Lagrange multiplier problem (see [2,3,5,6,20–
25]).

The regularity of the solution, the equivalence with other variational problems and with
a Lagrange multiplier problem have been investigated in the case of nonconstant gradient
constraints too.

In [18] the author studied general linear elliptic equations with a non-constant gradient
constraint, |Du| ≤ g(x), with g(x)∈C2(Ω), and proved an existence and uniqueness result in
the space W 2,p(Ω) ∩W 1,∞(Ω), with 1< p<∞. He also obtained W 2,∞ regularity under some
additional restrictions. Those restrictions were removed by M. Wiegner in [41]. Some extended
results were obtained by H. Ishii and S. Koike in [28], who considered the existence and
uniqueness of the solution of the variational inequalities of the forms, which are considered by
Evans. They proved that, if f and g are allowed to vanish simultaneously, uniqueness of solutions
may fail. Other regularity results are contained in [12,30].

In [37] L. Santos obtained, under an extra condition on the constraint g, the equivalence of
an evolutive variational inequality with non-constant gradient constraints associated with the
Laplacian with a double obstacle variational problem (see also [38] for existence of Lagrange
multipliers for a non-constant gradient constraint problem associated with the Laplacian).

Choe and Shim in [10] proved C1,α regularity for the solution to a quasilinear variational
inequality subject to a C2 strictly convex gradient constraint (see [9] for the gradient constraint
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G(Du)≤M ). In [11] the authors generalized the regularity results in [10], by allowing more
general constraints.

Moreover, in [40] the relationship between a gradient constrained problem associated with an
operator of type F (Du) +G(x, u) and a suitable obstacle problem is investigated. Under some
suitable regularity assumptions on G and the convexity condition on F , the authors prove the
equivalence of the problems.

Finally, in the recent paper [36] the author proves the optimal W 2,∞- regularity for variational
problems with non-striclty convex gradient constraints.

3. Main results
In this section we describe the assumptions and the main results of the paper.

Let Ω ⊂Rn be an open bounded convex set with lipschitz boundary ∂Ω and a be an operator
of class C1. In addition, the operator is assumed to be strongly monotone, namely there exists
λ> 0, such that

(a(P )− a(Q), P −Q)≥ λ‖P −Q‖2 ∀P,Q∈Rn, P 6=Q, (3.1)

Let G : Rn→R be a nonnegative C2 strictly convex function such that

n∑
i,j=1

∂G

∂Ai∂Aj
ξiξj ≥ c‖ξ‖2 (3.2)

∀A, ξ ∈Rn and for some positive constant c.
Moreover, we assume G(0) = a(0) = 0.
The first result we are able to prove is the equivalence between the gradient constrained

problem and a suitable double obstacle problem.

Theorem 3.1. Under the above assumptions on Ω, a and G, if f ≡ const. > 0, the solution u of (1.2)
coincides with the solution of (1.3).

In particular, the following relationship between the coincidence set I and the plastic region
P .

Theorem 3.2. Under the same assumptions as in Theorem 3.1, let u∈K ∩W 2,p(Ω) be the solution to
problem (1.2). Setting

I = {x∈Ω : u(x) =w+(x) or u(x) =w−(x)}

Λ= {x∈Ω :w−(x)<u(x)<w+(x)}

it results

P = {x∈Ω :G(Du) =M}= I,

E = {x∈Ω :G(Du)<M}=Λ.

Finally, the following result on the existence of Lagrange multipliers holds.

Theorem 3.3. Under the same assumptions as in Theorem 3.1, let u∈K ∩W 2,p(Ω) be the solution to
problem (1.2). Then, there exists ν̄ ∈L2(Ω) such that
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
ν̄ ≥ 0 a.e. in Ω

ν̄(G(Du)−M) = 0 a.e. in Ω
n∑
i=1

∂ai(Du)

∂xi
+ f + ν̄ = 0 a.e. in Ω.

(3.3)

4. Preliminary results
In the sequel we use the strong duality theory, in order to prove our results.

We note that, in our settings, we cannot apply the strong duality property in the classical sense
(see [29]), since the ordering cone, which defines the sign constraints, has an empty interior.

So, we now recall a recent strong duality principle, obtained using new separation theorems
based on the notion of quasi-relative interior. To this aim, we start presenting the problem
formulation and we remind some preliminary concepts.

Let S be a nonempty subset of a real linear space X ; (Y, ‖ · ‖) be a partially ordered real
normed space with ordering cone C, with C∗ = {λ∈ Y ∗ : 〈λ, y〉 ≥ 0 ∀y ∈C} the dual cone of
C, Y ∗ topological dual of Y .

Consider the primal problem

min
v∈K

ψ(v), (4.1)

where K = {v ∈ S : g(v)∈−C } and the dual problem

max
µ∈C∗

inf
v∈S

[ψ(v) + µ(g(v))], (4.2)

where ψ : S→R is a given objective functional, g : S→ Y is a given constraint mapping and µ
is the Lagrange multiplier associated with the sign constraints.

As it is well known (see [29]), the weak duality always holds:

max
µ∈C∗

inf
v∈S

[ψ(v) + µ(g(v))]≤min
v∈K

ψ(v). (4.3)

Moreover, if problem (4.1) is solvable and in (4.3) the equality holds, we say that the strong
duality between primal problem (4.1) and dual problem (4.2) holds.

So, strong duality is not always fulfilled and it is necessary to assume some conditions, called
“constraints qualification conditions”, to guarantee it.

The classical theory requires that the interior of the ordering cone is empty.
However, the ordering cone of almost all the known problems, stated in infinite dimensional

spaces, has the interior (and generalized interior concepts) empty.
In [13] the authors introduced a condition called Assumption S (from Separation), which

ensures strong duality and has revealed itself very effective in applications.
In the infinite dimensional settings Assumption S results to be a necessary and sufficient

condition for the strong duality (see [1,14–16,27]).
We recall that, given a point x∈X and a subset M of X , the set

TM (x) :=
{
h∈X : h= lim

n
λn(xn − x), λn > 0, xn ∈M ∀n ∈N, lim

n
xn = x

}
is called the tangent cone to M at x.

Definition 4.1 (Assumption S). Assumption S is fulfilled at a point x0 ∈K if it results
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T
M̃

(0, θY ) ∩
(

]−∞, 0[×{θY }
)

= ∅, (4.4)

where

M̃ = {(ψ(x)− ψ(x0) + α, g(x) + y : x∈ S \K, α≥ 0, y ∈C}.

Now, we may present the following strong duality principle (see Theorem 1.1 in [15]):

Theorem 4.1. Assume that the functions ψ : S→R, g : S→ Y are convex. If problem (4.1) is solvable
and Assumption S is fulfilled at the extremal solution u∈K, then also problem (4.2) is solvable.

Moreover, if µ̄∈C∗ verifies (4.2), we have

〈µ̄, g(u)〉= 0 (4.5)

and the optimal values of the two problems coincide; namely

ψ(u) = min
v∈K

ψ(v) = max
µ∈C∗

inf
v∈S

[ψ(v) + µ(g(v))] =ψ(u) + 〈µ̄, g(u)〉

Let us recall that the following one is the so-called Lagrange functional

L(v, µ) =ψ(v) + 〈µ, g(v)〉 ∀v ∈ S, ∀µ∈C∗. (4.6)

By means of Theorem 4.1, it is possible to show the usual relationship between a saddle point
of the Lagrange functional and the solution of the constraint optimization problem (4.1) (see
Theorem 5 in [13]).

Theorem 4.2. Let us assume that the assumptions of Theorem 4.1 are satisfied. Then u∈K is a minimal
solution to problem (4.1) if and only if there exist µ̄∈C∗ such that (u, µ̄) is a saddle point of the Lagrange
functional (4.6), namely

L(u, µ)≤L(u, µ̄)≤L(v, µ̄), ∀v ∈ S, µ∈C∗.

and

〈µ̄, g(u)〉= 0.

Let us remark that, recently, other constraint qualification assumptions, which ensure strong
duality, have been also introduced in [33,34].

5. Equivalence of two variational problems
The first contribution of the paper is an equivalence result between the variational problems (1.2)
and (1.3).

To this aim, first we prove the following estimate for the solution u to the double obstacle
problem (1.3).

Theorem 5.1. Under the same assumptions as in Theorem 3.1, let u be the solution to the double obstacle
(1.3), then
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|u|1 = sup

{
|u(x)− u(y)|
|x− y| : x, y,∈Ω, x 6= y

}
≤L= max{|w+|1, |w−|1}. (5.1)

Proof. We generalize the result, proved in [35] in the case a(Du) =∆u and with gradient
constraint G(Du) = |Du|2.

Let ũ be the extension by zero of u∈H1,2
0 (Ω) to the whole space Rn.

If u is the solution to (1.3), we set

uh(x) = ũ(x+ h)− ũ(x)− L|h| ∀x, h∈Rn (5.2)

and

u+h (x) = max{ũ(x+ h)− ũ(x)− L|h|, 0}. (5.3)

We define

v1(x) = max{ũ(x), ũ(x+ h)− L |h|}= ũ(x) + u+h (x)

and

v2(x) = min{ũ(x), ũ(x− h) + L |h|}= ũ(x)− u+h (x− h).

It is easily proved that

v1(x)≤max{w̃+(x), w̃+(x+ h)− L|h|}= w̃+(x),

v2(x)≥min{w̃−(x), w̃−(x− h) + L |h|}= w̃−(x),

v1(x)≤ v2(x),

namely v1/Ω and v2/Ω belong to Kw−,w+ .
Then, we may use v1/Ω and v2/Ω as admissible functions in (1.3), and taking into account that

u+h (x) = u+h (x− h) = 0 for x∈Rn \Ω, we get

∫
Rn

n∑
i=1

ai(Dũ(x))
∂u+h (x)

∂xi
dx≥

∫
Rn
fu+h (x)dx, (5.4)

−
∫
Rn

n∑
i=1

ai(Dũ(x))
∂u+h (x− h)

∂xi
dx≥−

∫
Rn
fu+h (x− h)dx. (5.5)

Making the change of variables x→ x+ h in (5.5), and, keeping in mind that f is constant, we
have

∫
Rn

n∑
i=1

ai(Dũ(x+ h))
∂u+h (x)

∂xi
dx≤

∫
Rn
fu+h (x)dx. (5.6)

Adding (5.4) and (5.6), we get

∫
Rn

n∑
i=1

(ai(Dũ(x+ h))− ai(Dũ(x)))
∂u+h (x)

∂xi
dx≤ 0. (5.7)

If we set E+
h = {x∈Rn : u+h (x) = ũ(x+ h)− ũ(x)− L|h| ≥ 0}, it follows
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∫
E+

h

n∑
i=1

(ai(Dũ(x+ h))− ai(Dũ(x)))
∂u+h (x)

∂xi
dx

+

∫
Rn\E+

h

n∑
i=1

(ai(Dũ(x+ h))− ai(Dũ(x)))
∂u+h (x)

∂xi
dx≤ 0.

Bearing in mind (5.2), (5.3), it means

∫
E+

h

n∑
i=1

(ai(Dũ(x+ h))− ai(Dũ(x)))

(
∂ũ(x+ h)

∂xi
− ∂ũ(x)

∂xi

)
dx≤ 0. (5.8)

In virtue of strong monotonicity assumption (3.1), inequality (5.8) implies u+h = 0 in E+
h and

then

ũ(x+ h)− ũ(x)≤L|h| ∀x, h∈Rn,

namely, our thesis.

Now, we are in position to prove Theorem 3.1. First, we prove that, if u is the solution to
problem (1.3), then u∈K. The result is obtained by means of the strong duality theory and a
maximum principle.

Let us stress that, during the proof, we obtain a regularity result for the solution u to the
problem (1.3), namely u∈W 2,p(Ω), p > 1.

Indeed, consider the following elastic-plastic torsion problem

Find w ∈ K̃ :

∫
Ω

n∑
i=1

ai(Dw)

(
∂v

∂xi
− ∂w

∂xi

)
dx≥

∫
Ω
f(v − w)dx, ∀v ∈ K̃, (5.9)

where

K̃ =Kw−,w+ ∩ {v ∈H1
0 : |Dv| ≤L a.e. in Ω}.

K̃ is a convex, bounded, closed set and, in virtue of Theorem 5.1, u∈ K̃.
From the classical theory (see [4]), the unique solution to the variational inequality (5.9)

belongs to W 2,p(Ω).
Since u verifies (5.9), by uniqueness, then u∈W 2,p(Ω) (for a different approach in the case of

homogeneous variational inequality see [9]).
Now, we can rewrite problem (1.3) as a minization problem. Indeed, u is a solution to

min
v∈Kw−,w+

ψ(v), (5.10)

where

ψ(v) =

∫
Ω

{
n∑
i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
− f(v − u)

}
dx.

Problem (5.10) verifies the Assumption S at the minimal point u∈Kw−,w+ . Indeed, setting

X = S =L2(Ω), Y =L2(Ω)× L2(Ω), C =C∗ =
{

(α, β)∈L2(Ω)× L2(Ω) : α(x), β(x)≥ 0 a.e. in Ω
}
,

g(v) = (g1(v), g2(v)) = (w− − v, v − w+),

it results
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M̃ = {(ψ(v) + α,w− − v + y1, v − w+ + y2), v ∈L2 \Kw−,w+ , α≥ 0, y= (y1, y2)∈C}.

In order to achieve the Assumption S, we must show that, if we have
(
l, θL2(Ω), θL2(Ω)

)
∈

TM̃ (0, θL2(Ω), θL2(Ω)), namely,

(
l, θL2(Ω), θL2(Ω)

)
= lim

n
[λn(ψ(vn) + αn, w

− − vn + y1n, vn − w
+ + y2n)],

with λn > 0, limn(ψ(vn) + αn) = 0, αn ≥ 0, vn ∈L2(Ω) \Kw−,w+ ,, limn λn(w− − vn + y1n) =

θL2(Ω), limn λn(vn − w+ + y2n) = θL2(Ω), yn = (y1n, y2n)∈C, then l must be nonnegative.
If we argue as in Lemma 1 and Lemma 2 in [17], we get l≥ 0, that is the double obstacle

problem fulfills the Assumption S and then, by Theorem 4.1, the strong duality holds.
Then, if we define, ∀v ∈L2(Ω), ∀(λ, µ)∈C, the Lagrange functional

L(v, λ, µ) = (5.11)

=

∫
Ω

(−
n∑
i=1

∂ai(Du)

∂xi
− f)(v − u) dx+

∫
Ω
λ(w−(x)− v(x)) dx+

∫
Ω
µ(v(x)− w+(x)) dx,

Theorem 4.2 ensures that there exists (λ̄, µ̄)∈C such that

∫
Ω
λ̄(w−(x)− u(x)) dx= 0,

∫
Ω
µ̄(u(x)− w+(x)) dx= 0,

namely

λ̄(w−(x)− u(x)) = 0, µ̄(u(x)− w+(x)) = 0, a.e. in Ω. (5.12)

Moreover, (u, λ̄, µ̄) is a saddle point of the Lagrange functional (5.11), that is

L(u, λ, µ)≤L(u, λ̄, µ̄)≤L(v, λ̄, µ̄) ∀v ∈L2(Ω), ∀(λ, µ)∈C. (5.13)

Considering the right-hand side of (5.13), we get

∫
Ω

(−
n∑
i=1

∂ai(Du)

∂xi
− f)(v − u) dx+

∫
Ω
λ̄(w− − v) dx+

∫
Ω
µ(v − w+) dx≥ 0 ∀v ∈L2(Ω).(5.14)

Thanks to (5.12), it follows from (5.14)

∫
Ω

(−
n∑
i=1

∂ai(Du)

∂xi
− f − λ̄+ µ̄)(v − u) dx≥ 0 ∀v ∈L2(Ω),

and then

−
n∑
i=1

∂ai(Du)

∂xi
− f − λ̄+ µ̄= 0 a.e. in Ω. (5.15)

Consider now the coincidence set, I = I+ ∪ I−, with I+ = {x∈Ω : u(x) =w+(x)} and I− =

{x∈Ω : u(x) =w−(x)}. Moreover, we set Λ= {x∈Ω : w−(x)<u(x)<w+(x)}. We have to
prove that G(Du)≤M a.e. in Ω.



10

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

First, we recall that w+, w− are differentiable at x if u(x) =w+(x) or u(x) =w−(x) and
G(Dw+) =G(Dw−) =M , a.a. x∈Ω, (see [8], [32] page 133), then we may conclude that

G(Du) =M a.a. x∈ I (5.16)

On the other hand, for a.a. x∈Λ from (5.12) and (5.15) it follows that λ̄= µ̄= 0 and, then,

−
n∑
i=1

∂ai(Du)

∂xi
= f a.e. in Λ. (5.17)

We follow the method used in [4], Lemma III.10, since f = const. and taking into account the
regularity of u, that we have proved during the proof.

Differentiate (5.17) with respect to xk, multiply by ∂G(Du)
∂pk

and sum over k, then

n∑
i,j,k=1

∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

∂G(Du)

∂pk
+

n∑
i,j,k=1

∂ai(Du)

∂pj

∂3u

∂xj∂xi∂xk

∂G(Du)

∂pk
= 0,

namely,

n∑
i,j,k=1

∂ai(Du)

∂pj

∂3u

∂xj∂xi∂xk

∂u

∂xk
=−

n∑
i,j,k=1

∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

∂G(Du)

∂pk
. (5.18)

It results

∂

∂xi

 n∑
j=1

∂ai(Du)

∂pj

∂G(Du)

∂xj

=

n∑
i,j,k=1

∂

∂xi

(
∂ai(Du)

∂pj

)
∂G(Du)

∂pk

∂2u

∂xk∂xj

+

n∑
i,j,k=1

∂ai(Du)

∂pj

∂2u

∂xk∂xj

∂

∂xi

(
∂G(Du)

∂pk

)
+

n∑
i,j,k=1

∂ai(Du)

∂pj

∂G(Du)

∂pk

∂3u

∂xj∂xi∂xk
.

Then, bearing in mind (5.18), we get

∂

∂xi

 n∑
j=1

∂ai(Du)

∂pj

∂G(Du)

∂xj

=

n∑
i,j,k=1

∂ai(Du)

∂pj

∂2u

∂xk∂xj

∂

∂xi

(
∂G(Du)

∂pk

)
(5.19)

+

n∑
i,j,k=1

[
∂

∂xi

(
∂ai(Du)

∂pj

)
∂2u

∂xk∂xj
− ∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

]
∂G(Du)

∂pk
.

Since a(Du) is a monotone operator and by virtue the strict convexity of G(Du) (see also [9]
Lemma 4 and [10] Lemma 6), we can conclude that

∂

∂xi

 n∑
j=1

∂ai(Du)

∂pj

∂G(Du)

∂xj


≥

n∑
i,j,k=1

[
∂

∂xi

(
∂ai(Du)

∂pj

)
∂2u

∂xk∂xj
− ∂

∂xk

(
∂ai(Du)

∂pj

)
∂2u

∂xj∂xi

]
∂G(Du)

∂pk

=

n∑
i,j,k=1

[
n∑
l=1

∂2ai(Du)

∂pj∂pl

∂2u

∂xl∂xi

∂2u

∂xk∂xj
−

n∑
l=1

∂2ai(Du)

∂pj∂pl

∂2u

∂xk∂xl

∂2u

∂xj∂xi

]
∂G(Du)

∂pk
= 0.

Now, we may apply the maximum principle to operator



11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

−B(ϕ) =

n∑
i,j=1

∂

∂xi

(
∂ai(Du)

∂pj

∂ϕ

∂xj

)
,

acting on G(Du) on Λ, since the coefficients of the operator B are bounded. Then, taking into
account that Λ is an open set, by the maximum principle, the value M cannot be attained at
interior points and one concludes that

G(Du)<M a.a x∈Λ, (5.20)

namely,

Λ⊂E = {x∈Ω : G(Du)<M}. (5.21)

So, from (5.16), (5.20) we get that, if u is the solution to (1.3), then

u∈K.

Since, K ⊂Kw−,w+ , by uniqueness we may conclude that u is the solution to problem (1.2),
that is, the thesis of Theorem 3.1.

We can now obtain Theorem 3.2.
Indeed, as we already noted, G(Dw+) =G(Dw−) =M , a.a. x∈Ω, then (5.16) holds and the

coincidence set I is a subset of the plastic region P = {x∈Ω :G(Du) =M}, namely

E =Ω \ P ⊂Ω \ I =Λ.

Taking into account (5.21), Theorem 3.2 is achieved.

6. Existence of Lagrange multipliers
This section is devoted to the existence of Lagrange multipliers associated to problem (1.2).

So, let u∈K be the solution to problem (1.2).
We have already proved in Theorem 3.1 that u is also a solution to the double obstacle problem

(1.3). Moreover, u∈W 2,p(Ω), p > 1.
We may argue as in Theorem 3.1. Indeed, we may rewrite problem ((1.3) as a minimization

problem and we may prove that Assumption S is fulfilled at the solution u.
Then, from Theorem 4.1 it follows that there exists (λ̄, µ̄)∈C, such that

λ̄(w−(x)− u(x)) = 0, µ̄(u(x)− w+(x)) = 0, a.e. in Ω

n∑
i=1

∂ai(Du)

∂xi
+ f − λ̄+ µ̄= 0 a.e. in Ω.

(6.1)

Bearing in mind Theorem 3.2, choosing ν̄ = µ̄− λ̄, we get
ν̄(G(Du)−M) = 0, a.e. in Ω

n∑
i=1

∂ai(Du)

∂xi
+ f + ν̄ = 0 a.e. in Ω

(6.2)

and Theorem 3.3 is achieved.

7. Conclusion
In this paper we have focused on a nonlinear monotone variational problem with strictly convex
gradient constraints and homogeneous boundary condition.
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We have introduced a suitable double-obstacle problem, obtained the regularity of the solution
and proved the equivalence between the two problems.

Moreover, we have achieved the equivalence between the gradient constrained problem and a
Lagrange multiplier problem.

Main tool in proving the results is a strong duality theory, that holds in infinite-dimensional
settings.

Further work is the investigation of existence of Lagrange multipliers (even as Radon measures
as in [7,24,26]) of the gradient constrained variational problem weakening the assumptions on the
operator a and on the constraints mapping G or considering a L2-free term f .
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