
Citation: Lazzaro, S.; Buccafurri, F.

Achieving Accountability and Data

Integrity in Message Queuing

Telemetry Transport Using Blockchain

and Interplanetary File System. Future

Internet 2024, 16, 246. https://

doi.org/10.3390/fi16070246

Academic Editor: Gianluigi Ferrari

Received: 16 June 2024

Revised: 9 July 2024

Accepted: 11 July 2024

Published: 13 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Achieving Accountability and Data Integrity in Message
Queuing Telemetry Transport Using Blockchain and
Interplanetary File System
Sara Lazzaro and Francesco Buccafurri *

Department DIIES, University Mediterranea of Reggio Calabria, Via Università 25, 89122 Reggio Calabria, Italy;
sara.lazzaro@unirc.it
* Correspondence: bucca@unirc.it

Abstract: Ensuring accountability and integrity in MQTT communications is important for enabling
several IoT applications. This paper presents a novel approach that combines blockchain technology
and the interplanetary file system (IPFS) to achieve non-repudiation and data integrity in the MQTT
protocol. Our solution operates in discrete temporal rounds, during which the broker constructs
a Merkle hash tree (MHT) from the messages received. Then the broker publishes the root on
the blockchain and the MHT itself on IPFS. This mechanism guarantees that both publishers and
subscribers can verify the integrity of the message exchanged. Furthermore, the interactions with the
blockchain made by the publishers and the broker ensure they cannot deny having sent the exchanged
messages. We provide a detailed security analysis, showing that under standard assumptions, the
proposed solution achieves both data integrity and accountability. Additionally, we provided an
experimental campaign to study the scalability and the throughput of the system. Our results show
that our solution scales well with the number of clients. Furthermore, from our results, it emerges that
the throughput reduction depends on the integrity check operations. However, since the frequency of
these checks can be freely chosen, we can set it so that the throughput reduction is negligible. Finally,
we provided a detailed analysis of the costs of our solution showing that, overall, the execution
costs are relatively low, especially given the critical security and accountability benefits it guarantees.
Furthermore, our analysis shows that the higher the number of subscribers in the system, the lower
the costs per client in our solution. Again, this confirms that our solution does not present any
scalability issues.

Keywords: MQTT; accountability; end-to-end; data integrity

1. Introduction

The Internet of Things (IoT) has enhanced several fields, from smart homes [1,2] to
industrial automation [3–5], by enabling communication between low-end devices. Mes-
sage queuing telemetry transport (MQTT) [6] is one of the main communication protocols
adopted by such devices. MQTT is a lightweight, publish–subscribe messaging protocol
suited for constrained environments characterized by low network and computational per-
formance [7]. In MQTT, the communication between clients (publishers and subscribers) is
mediated by a broker. This architecture is efficient since it leaves all the complexities to the
broker [8]. However, relying on a third party may introduce significant security challenges.

Indeed, in many MQTT applications, the broker could potentially be compromised
or untrusted. This can lead to the risk of unauthorized tampering with messages [9]. For
example, if patient data are maliciously altered in healthcare applications, the consequences
could be severe. Similarly, in smart city infrastructures, it is important to ensure the integrity
of the transmitted data in order to guarantee reliable service delivery.

In addition to integrity, ensuring accountability for both publishers and brokers in
MQTT is important so that they both cannot deny having sent a flow of messages. For

Future Internet 2024, 16, 246. https://doi.org/10.3390/fi16070246 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16070246
https://doi.org/10.3390/fi16070246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-0846-4980
https://orcid.org/0000-0003-0448-8464
https://doi.org/10.3390/fi16070246
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16070246?type=check_update&version=2

Future Internet 2024, 16, 246 2 of 23

example, if a publisher sends wrong information, it must be held liable for any damage
caused by the sent data. Similarly, on the broker’s side, accountability is also important.
Brokers often should enforce access control and ensure that only verified publishers are
allowed to publish on specific topics. For example, subscribers relying on critical infor-
mation, such as in financial or health-related applications, must be assured that their data
come from verified publishers. By providing accountability on the broker side, our solution
guarantees that brokers perform these verification checks.

Addressing these security concerns requires robust mechanisms to guarantee that
messages are not tampered with and that the involved parties, i.e., publishers and brokers,
cannot deny having sent their messages. This paper proposes a novel approach to achieving
both accountability and data integrity in MQTT.

Our proposal integrates blockchain technology [10–12] and the interplanetary file
system (IPFS) [13,14] into the MQTT protocol. In particular, the immutability property of
the blockchain ledger is fundamental to achieving accountability. However, storing large
amounts of data in the blockchain has a non-negligible economic cost, as well as leading to
scalability problems in the blockchain [15]. IPFS, on the other hand, provides an efficient
and decentralized way to store message data off the blockchain. By storing only the hash
on the blockchain and the actual file on IPFS, the blockchain scalability issues are mitigated,
as only the critical data are stored on-chain [16].

Our solution is as follows. The broker builds a Merkle hash tree (MHT) of the messages
received from the publisher during discrete temporal rounds. It then publishes the root of
the MHT on the blockchain and stores the tree itself on IPFS. This allows both publishers
and subscribers to verify the integrity of the exchanged messages. It also ensures that both
publishers and the broker cannot repudiate the messages they have sent.

In our study, we performed a security analysis to demonstrate that our approach
achieves accountability and data integrity in MQTT communications under standard
assumptions. Additionally, we conducted an experimental campaign to examine the
scalability and throughput of the system. Our findings indicate that our solution scales well
with the number of clients. Moreover, the results reveal that the reduction in throughput is
influenced by the integrity check operations. However, since the frequency of these checks
can be adjusted as needed, we can configure it to ensure that the throughput reduction
remains negligible. Finally, we conducted a detailed analysis of the costs of executing smart
contracts on the Ethereum blockchain. Our analysis shows that the overall costs of this
solution are affordable. Furthermore, our analysis demonstrates that as the number of
subscribers in the system increases, the cost per client decreases. This further confirms that
our solution does not encounter any scalability issues. Overall, our results show that it
is feasible to implement our solution in the real world to ensure accountability and data
integrity in MQTT communications.

The rest of the document is structured as follows. Section 2 provides background
information on MQTT, blockchain, and IPFS technologies. Section 4 describes the motiva-
tions and potential use cases for our approach. Section 5 presents our approach. This is
followed by an analysis of the costs of smart contract execution in Section 6 and an analysis
of the performance of our solution in Section 7. In Section 8 we analyze the security of the
proposed approach. Finally, Section 9 concludes the paper.

2. Background

In this section, we provide a brief overview of the main technologies adopted in our
approach: MQTT, blockchain, and IPFS.

2.1. MQTT

MQTT [6] is a lightweight messaging protocol based on the publish–subscribe model.
It is designed for constrained devices and low-bandwidth or unreliable networks.

The MQTT architecture consists of three main components:

Future Internet 2024, 16, 246 3 of 23

• Broker: The broker is the central hub that mediates the communication between
publishers and subscribers on given topics.

• Publisher: A publisher is a client that sends messages to the broker labeled with given topics.
• Subscriber: A subscriber is a client that receives messages from the broker. Subscribers

express interest in one or more topics and receive messages related to those topics.

The message flow in MQTT is as follows: (1) a publisher sends a message to the broker
on a given topic, (2) the broker receives the message and forwards it to all the subscribers
interested in that topic, and (3) the subscribers receive the message from the broker.

Additionally, MQTT allows publishers and subscribers to specify the quality of service
(QoS) level they want. There are three QoS levels [17], each guaranteeing message delivery,
as follows:

• QoS 0: At most one delivery.
• QoS 1: At least one delivery.
• QoS 2: Exactly one delivery.

2.2. Blockchain and IPFS

In the following, we describe two technologies we exploit in our approach: blockchain
and IPFS.

2.2.1. Blockchain

Blockchain [10,11] consists of a distributed ledger that records transactions in a secure,
transparent, and tamper-proof manner. Through blockchain, an entity can generate a
transaction towards another entity to exchange a value. This transaction is validated by
other peers in a distributed manner. Thus, no third-trusted parties are required to validate
the transaction. Once the data are recorded in a block and added to the blockchain, they
cannot be altered or deleted. Therefore, users cannot repudiate a transaction that they have
generated [18].

2.2.2. IPFS

IPFS is a peer-to-peer distributed file system that allows files to be stored and accessed
across a network of nodes. By using content addressing, IPFS uniquely identifies each
file in a global namespace [13], Specifically, files are broken down into smaller chunks,
hashed, and stored across multiple nodes. Each file is assigned a unique cryptographic
hash, making it content-addressable [19]. This ensures that files can be retrieved even if a
server goes offline, providing resilience and permanence. Furthermore, IPFS supports file
versioning, allowing the storage of historical versions and tracking changes over time [20].
Any user in the network can serve a file by its content address, and other peers in the
network can find and request that content from any node via a distributed hash table
(DHT) [21,22].

2.2.3. Integration with Blockchain

The integration of blockchain and IPFS provides a robust mechanism for secure data
storage and verification. Blockchain guarantees the immutability and timestamping of
the data, while IPFS provides efficient and decentralized storage. Specifically, blockchains
can store IPFS content addresses within smart contracts or transaction data, allowing for
off-chain decentralized storage of large files. By storing only the hash on the blockchain and
the actual file on IPFS, blockchain scalability issues [15] are mitigated, as only the critical
data are stored on-chain [16].

By combining these technologies, we can achieve a reliable and tamper-proof system
for message accountability and integrity in MQTT. In our approach, the broker publishes
the root of the Merkle hash tree (MHT) on the blockchain and the MHT itself on IPFS.
This ensures that both publishers and subscribers can verify the integrity of the exchanged
messages, and both the publisher and the broker cannot repudiate the messages they
have sent.

Future Internet 2024, 16, 246 4 of 23

3. Related Works

In this section, we review the existing literature on security problems in MQTT.

3.1. MQTT Security

Due to its lightweight nature, the MQTT standard does not include any default security
and privacy features. In the literature, several works highlighted that this is currently an
open problem [23–25]. In this section, we briefly survey some of the security issues.

The first issue regards confidentiality. The basic approach consists of using TLS to
establish secure channels [26]. However, it negatively impacts performance and energy
consumption [27]. Therefore, more advanced solutions have been proposed in the literature
to achieve confidentiality [28–35]. Another aspect to consider is authorization [36,37]. A lot
of works aimed at achieving both authorization and confidentiality are based on variants
CP-ABE or KP-ABE tailored to constrained devices [38–41]. Authorization is also integrated
with authentication in MQTT [42–44].

Privacy aspects should also be considered in MQTT. Actually, there are a few proposals
aimed at achieving privacy. Among these, the study in [45] has the goal of obfuscating the
topics with respect to public brokers. Another way to achieve privacy is by guaranteeing
the network anonymity of publishers and subscribers by employing known anonymity
protocols proposed in the field of anonymous communication networks (ACN) [46–49].
Among these proposals, we mention [8,50]. Ref. [8] proposes a crowds-based protocol in
which brokers form a P2P network to relay clients’ messages. In [50], the authors propose a
solution based on the Tor protocol, in which messages, encrypted in an onion fashion, are
routed by brokers.

3.2. Lack of End-to-End Security in MQTT

Concerning security in MQTT, the studies in the literature mostly focus on the client-
to-broker segment, while the client-to-client (end-to-end) security in MQTT is typically
neglected. Some of the few proposals in this area primarily focus on ensuring end-to-end
confidentiality, whose goal is to protect the messages so that an untrusted broker, mediating
the communication, cannot access their content.

Among these, some works leverage symmetric key cryptography for securing MQTT
communications [32,51]. These solutions often involve protocols that enable authorized
MQTT clients to exchange symmetric keys securely. For instance, [32] introduces a
lightweight protocol (designed for constrained devices) that achieves both message con-
fidentiality and client authentication. However, [51] focuses on establishing secure end-
to-end key exchange mechanisms. This protocol allows MQTT clients to securely ex-
change keys to ensure that messages can be encrypted and decrypted without relying on a
trusted broker.

Several studies have proposed comprehensive frameworks to address both end-to-end
authorization and message confidentiality. Refs. [52–55] provide solutions that ensure
only authorized clients can access the messages they are authorized to receive. These
frameworks often involve complex mechanisms to manage and verify client authorizations,
along with a secure key exchange process to guarantee the end-to-end confidentiality of
the exchanged messages.

Despite this, these solutions commonly rely on third-party trusted entities to manage
keys and enforce authorization policies. Such dependencies can often hinder the adoption
of these solutions in real-world scenarios. Furthermore, third-party entities can represent
single points of failure [56]. Indeed, if these entities are compromised or unavailable,
the client communications may be potentially exposed to unauthorized access [57]. Finally,
these solutions may suffer from scalability issues, especially in large-scale IoT deployments
where thousands of devices may be interacting simultaneously [58].

On the other hand, the solution we propose in this paper offers end-to-end security
guarantees without relying on third-party parties. The only proposal in the literature
not relying on such parties is [9]. Similar to [9], our proposal is also aimed at achieving

Future Internet 2024, 16, 246 5 of 23

end-to-end integrity of the flow of messages exchanged via an MHT-based approach.
However, differently from [9], our solution also achieves accountability guarantees both on
the publisher and the broker sides.

4. Motivations and Use Cases

In this section, we outline the motivations behind our work and describe the use cases
where our solution can be adopted. Specifically, our aim is twofold.

• We aim to achieve the integrity of the flow of messages exchanged between publishers
and subscribers. This property should be preserved even in the case of an attacker
being able to intercept the communication and tamper with it. This attacker can also
be placed at the broker.

• We aim to achieve accountability guarantees. Specifically, in our solution, once the
integrity of the exchanged flow is proven, the sender of a flow of messages (either
a publisher or the broker) cannot deny having sent it. This property, known as non-
repudiation, is essential for maintaining accountability.

In MQTT systems, it is important to guarantee the end-to-end integrity of the data flow.
This is due to the fact that the presence of the broker in the middle of the communication
between publishers and subscribers represents an inherent vulnerability of the system.
Therefore, if the broker is compromised or untrusted, it exposes the system to relevant risks.

In many deployment scenarios, brokers may not be controlled by the communicating
parties. Instead, they might be located in third-party, potentially untrusted environments
(such as cloud providers).

Therefore, an untrusted or malicious broker can intercept, modify, or inject messages
between publishers and subscribers. If these attacks go undetected, they could potentially
cause severe consequences. Indeed, if the integrity of the message flow is not preserved,
subscribers might make decisions based on manipulated data.

For example, MQTT can find applications in the healthcare domain to send patient
data from medical devices to monitoring systems. Clearly, the integrity of these data is
important, as any modification by a malicious broker could result in incorrect treatment de-
cisions. Another critical application of MQTT is represented by smart cities. In this context,
MQTT can be used to enable several services, such as traffic management, environmental
monitoring, and so on. Data integrity guarantees that decisions based on this information
are accurate and reliable.

We now discuss accountability. In our approach, subscribers who receive data from
the broker may want to obtain proof that the received messages are indeed sent by the
publisher/broker. With this proof, the subscribers can maintain a verifiable storage for
the data.

Without accountability mechanisms, a broker or a publisher could deny having sent
certain messages to subscribers to avoid liability or responsibility for the consequences
of those messages. For instance, in a stock trading application, a publisher could send
fraudulent market data and later deny its actions, causing significant financial losses to
subscribers relying on that data. Without accountability, the publisher could deny having
sent the data to avoid backlash or financial penalties.

Similarly, on the broker’s side, accountability is also important. Brokers often should
enforce access control and ensure that only verified publishers are allowed to publish
on specific topics. For example, subscribers relying on critical information, such as in
financial or health-related applications, need assurances that their data come from verified
publishers. By providing accountability on the broker side, our solution guarantees that
brokers perform these verification checks. Therefore, they cannot deny having sent a flow
of messages produced by unauthorized publishers.

5. The Proposed Approach

In this section, we present a novel approach to achieve accountability and integrity
in the MQTT protocol. Specifically, the main goal of this approach is twofold: (1) a

Future Internet 2024, 16, 246 6 of 23

broker/publisher cannot deny having sent messages to subscribers on certain topics;
(2) publishers/subscribers can verify the integrity of the data they have sent/received.

Our solution leverages a combination of blockchain technology and the interplanetary
file system (IPFS) to provide a verifiable and tamper-proof mechanism for the verification
of message integrity.

5.1. Notation

We designate P a publisher and S a subscriber. The broker B manages the topics
T1, T2, . . . , Tn to which P publishes messages. The solution operates in temporal rounds R,
i.e., time intervals. During a temporal round Ri, P publishes over time messages m on a
given topic, say Tj.

5.2. Setup Phase

In this section, we describe the setup phase, along with the smart contract functionali-
ties we employ in our approach.

This smart contract ensures that both publishers and subscribers can verify that the
sent/received messages have not been tampered with and that the broker/publisher cannot
repudiate having sent those messages. We report the code of the smart contract in Listing 1.

In the following, we refer to the notation described in the previous section. To initialize
the whole system, B deploys the smart contract. Thus, B represents the owner of the smart
contract. Upon authenticating P, B adds its address to the smart contract via the addClient
function. This way, the list of all the publishers in the system is stored on the clients array.
Similarly, the list of all the subscribers interested in the topics of the publisher is stored on
this array. When a subscriber wants to join a topic, it sends its Ethereum address to the
broker, who then adds it to the clients array using the addClient function.

The addRootIPFSAddress function allows B to map an MHT root to its corresponding
IPFS address. This function can be invoked only by the contract owner (i.e., B) who locally
computes the MHT root of the data received/sent.

The getIPFSAddress function allows for retrieving the IPFS address associated with a
given MHT root. If the MHT root, provided as input, is not found in the mapping, then
this function returns 0 as the default value.

As we explain in the following sections, this function can be invoked by both pub-
lishers and subscribers to check the integrity of the data published/received. Specifically,
a publisher can input an MHT root to this function that is locally computed on all the data
sent during a temporal round. Subscribers input this function to an MHT root that is pro-
vided by the broker. If this function returns the default value, this is a clear indication that
the integrity of the data was violated in a temporal round, either in the publisher–broker
segment or in the subscriber–broker segment.

Then, our contract provides a function, called pullTheAlarm, through which both
authorized publishers and/or subscribers can pull the alarm to let others know about the
data flow integrity violation.

Both publishers and subscribers can implement mechanisms to capture and react to
these events emitted by the smart contract. This can be achieved using libraries such as
web3j (for Java) or web3js (for JavaScript), which provide tools for interacting with smart
contracts on the Ethereum blockchain [59].

As explained above, when the pullTheAlarm emits an event, both publishers and
subscribers are alerted in real-time.

Additionally, in this case, if this function is called by a legitimate publisher or sub-
scriber, the function emits a ClientAlert event. To be considered legitimate, the blockchain
address of a publisher/subscriber should be present in the clients array. To perform this
check, the pullTheAlarm function invokes the isClientAddress internal function.

Future Internet 2024, 16, 246 7 of 23

Listing 1. Solidity Smart Contract for handling the mapping between the root of the MHT
and the IPFS address.

1 pragma solidity >=0.6.12 <0.9.0;
2
3 contract Root_IPFSAddress_Mapping {
4 // Address of the contract owner , i.e.,~the broker
5 address public owner;
6
7 // Array to store the addresses of publishers/subscribers
8 address [] public clients;
9

10 // Mapping to store the roots and the corresponding IPFS address
11 mapping(bytes32 => bytes32) private rootToIPFSAddress;
12
13 // Event emitted when a lookup made by a publisher/subscribers fails
14 event ClientAlert(address indexed requester , bytes32 root);
15
16 // Modifier to restrict access to the contract owner
17 modifier onlyOwner () {
18 require(msg.sender == owner , "Not authorized");
19 _;
20 }
21
22 // Constructor to set the owner of the contract
23 constructor () {
24 owner = msg.sender;
25 }
26
27 // Function to add a new root -IPFSAddress mapping (only callable by the owner)
28 function addRootIPFSAddress(bytes32 root , bytes32 IPFSAddress) public onlyOwner {
29 rootToIPFSAddress[root] = IPFSAddress;
30 }
31
32 // Function to add a new publisher/subscriber address (only callable by the owner)
33 function addClient(address client) public onlyOwner {
34 clients.push(client);
35 }
36
37 // View function to retrieve the IPFSAddress associated with a given root
38 function getIPFSAddress(bytes32 root) public view returns (bytes32) {
39 bytes32 IPFSAddress = rootToIPFSAddress[root];
40 return IPFSAddress;
41 }
42
43 // Function to emit an event signaling the integrity violation
44 function pullTheAlarm(bytes32 root) public {
45 if (isClientAddress(msg.sender)) {
46 emit ClientAlert(msg.sender , root);
47 }
48 }
49
50 // Internal function to check if an address is in the clients array
51 function isClientAddress(address addr) internal view returns (bool) {
52 for (uint i = 0; i < clients.length; i++) {
53 if (clients[i] == addr) {
54 return true;
55 }
56 }
57 return false;
58 }
59 }

5.3. Communication Phase

For each topic Tj on which P publishes, both P and B construct a hashchain as follows.

We denote by H
Tj
t−1 the hashchain built so far. When P publishes a message mt on topic Tj,

the broker concatenates mt with the current hashchain H
Tj
t−1 (the hash value of the previous

chain) and computes the hash:

H
Tj
t = Hash(mt∥H

Tj
t−1)

Here, ∥ denotes the concatenation operation, and H
Tj
t represents the current hash

value after including mt.

Future Internet 2024, 16, 246 8 of 23

At the end of each temporal round Ri, both P and B proceed with the construction of
a Merkle hash tree (MHT) Mi using the hashchains of all topics on which P has published
during Ri. We explain this process in the following.

For each topic Tj, the final hash value of the hashchain at the end of the round, say

H
Tj
end, is used as a leaf node in the MHT.

Therefore, given the set of the topics {T1, T2, . . . , Tn} on which P publishes, the hash
values HT1

end, HT2
end, . . . , HTn

end are the leaves of the MHT.
To build the MHT, consecutive pairs of hash values are hashed together to form parent

nodes. For example, two consecutive leaves HTi
end and HTi+1

end are concatenated and hashed
to form their parent node, say PNi:

PNi = Hash(HTi
end∥HTi+1

end)

This process continues iteratively, building up the tree until a single root hash RootMi
is obtained at the top of the tree.

In the meantime, all the subscribers proceed as follows. Consider a subscriber S inter-
ested in a subset of topics published by P, denoted as {Tj, Tj+1, . . . , Tj+k} ⊆ {T1, T2, . . . , Tn}.
During the round Ri, S receives messages on these topics from the broker B and constructs
the corresponding hashchain. At the end of the round, S receives the root of the MHT
from B.

In the next section, we describe how the publisher and the subscribers can detect any
integrity violation in the published flow of messages.

5.4. Verification Phase

Once the communication phase is completed, the verification of message integrity for
the current temporal round Ri begins. This phase involves several steps performed by the
broker B and the clients (the publisher P and all the subscribers S).

B proceeds as follows. At the end of the round Ri, it first publishes the Merkle hash tree
Mi on IPFS. As described in Section 2, in IPFS, each stored object is identified by a unique
hash. We call this address IPFS_AddrMi . Then, B invokes the addRootIPFSAddress func-
tion on the smart contract with the following inputs: RootMi and IPFS_AddrMi . The smart
contract stores this pair, thus creating a permanent link between the MHT root and its
storage location on IPFS.

P proceeds as follows. At the end of the round Ri, P independently constructs a Merkle
hash tree M∗

i of the messages exchanged during Ri with B. Thus, P locally computes its
root hash Root∗Mi

and verifies it against the roots recorded in the smart contract. Specifically,
P invokes the getIPFSAddress function on the smart contract with the locally computed
root Root∗Mi

. The function returns the related IPFS address if a matching root is found. If the
returned IPFS address is 0, it indicates that the root Root∗Mi

computed by P does not match
any root stored by the broker. In this case, the smart contract emits a PublisherAlert
event to signal there is an integrity violation, i.e., the messages published by the broker are
different from those received by the subscribers. This way, all the subscribers who monitor
these events in real-time are immediately notified of the integrity violation in the message
stream for the round Ri.

Then, also, each subscriber S proceeds with the verification phase. S verifies that the root
hash Root∗∗Mi

received from B is stored in the blockchain by invoking the getIPFSAddress
function on the smart contract. If no match is found on the blockchain, the smart contract
emits the SubscriberAlert event notifying all participants of this. If the root hash matches
(i.e., Root∗∗Mi

= RootMi), S proceeds to verify the integrity of the computed hashchains. S
requests from B the missing hash values necessary to construct the path from the final hash
value of the local hashchain to the root RootMi . In the case that S cannot reconstruct at least
one of these paths, it invokes the getIPFSAddress function with a deliberately incorrect root
hash (e.g., 0) to trigger an alert for all participants, ensuring they are aware of the issue. This

Future Internet 2024, 16, 246 9 of 23

way, all monitoring participants (publishers and subscribers) are immediately notified of the
integrity violation.

This verification phase ensures robust end-to-end integrity guarantees within the
MQTT framework. Indeed, during each round time, both publishers and subscribers can
check whether the messages sent by the publisher have not been tampered with while
in transit.

5.5. Final Remarks

As final remarks, we highlight the main advantages of our solution by motivating the
design choices we adopted.

We start making some considerations regarding the storage required by our solution.
The main information that our solution needs to store is the hashchains built at each

round. We recall that, during each round, publishers (subscribers, respectively) compute a
hashchain for each topic they publish to (are interested in). Similarly, the broker computes a
hashchain for each topics to which publishers are publishing. Once an entity in the system
sends or receives a message, it computes the current value of the hashchain by computing
the hash of this message with the last stored hashchain. At this point, the message is
no longer needed and thus can be discarded, as well as the older value of the hashchain.
Therefore, at the end of the round, an entity in the system needs to locally store just a digest
per topic. Additionally, after performing the integrity checks, the digests can be discarded.
Just as an example, if the entities manage 1000 topics, only 32 KB of storage are necessary.

We highlight, as analyzed in Section 7, that computing the hashchain on the fly does
not affect the throughput of the system. Indeed, the time typically required to compute the
hash (which is needed to update the hashchain value) is much lower than the time between
the generation of two consecutive packets. Therefore, the computation of the hashchain
does not affect the sending rate and thus the throughput of the system.

To conclude this section, we discuss the benefits of combining hashchains with MHT
in our solution rather than building an MHT directly on the messages.

We observe that in our solution, the leaves of the MHT are represented by the
hashchains, which are in the same number as the topics of a publisher. On the other
hand, if the MHT is built directly on the messages, the leaves would be in the same number
as all the messages published in a round time (by such a publisher). This would result in a
higher number of hashes necessary to build the MHT. Additionally, this would result in a
higher number of hashes when verifying the path from the leaves to the MHT’s root.

More formally, we denote by |T| the number of topics of a publisher and |M| the num-
ber of messages that it publishes during a time round. Clearly, it holds that
|T| < |M|. Therefore, if the leaves are the number of topics, the MHT computation
requires the computation of 2 × |T| − 1 hashes. However, when the leaves are the number
of messages, the MHT computation requires the computation of a higher number of hashes,
i.e., 2 × |M| − 1 hashes.

Additionally, if the leaves are in the number of topics, the height of the MHT is log|T|.
While, when the leaves are in the number of messages, the height of the MHT is log|M|.
This impacts the verification process (performed by subscribers) since, in the second case,
the number of hashes that need to be computed to verify whether a leaf is part of an MHT
is higher. Therefore, combining hashchains with MHT is computationally more efficient.
Additionally, for each topic, the subscribers are interested in verifying that the flow of
messages published on that topic is intact. As such, verifying the path from the hashchain
on that topic to the MHT’s root is the fastest way to verify the entire flow on that topic,
since it requires just one verification. On the other hand, if the MHT is built on messages,
the verification process requires verifying the path from each message on that topic to the
MHT’s root. Hence, while in the previous case, the number of paths to verify is the number
of the topics to which the subscriber is interested, in the second case, the number of paths
to verify is the number of messages on those topics, thus making the verification process
much more inefficient.

Future Internet 2024, 16, 246 10 of 23

6. Cost Analysis of Smart Contract Execution

In this section, we analyze the costs associated with the functions of our smart contract
on the Ethereum blockchain. Additionally, we discuss the economic feasibility and potential
business model of our proposed solution.

6.1. Gas Costs Overview

Through this section, we examine the costs of smart contract deployment and the
execution of the smart contract functions. We proceeded as follows. We first computed the
gas necessary to execute them. We recall that Ethereum transactions and smart contract
executions require a fee known as “gas”, which measures the computational effort required.
Then we computed the cost in US dollars with the following formula:

Cost in USD = Gas × Gas price (Gwei) × 10−9 × Ether/USD exchange rate

We report in Table 1 the gas price required for executing the deployment and the
functions of the smart contract, along with the related price in US dollars (USD). The
gas usage is the estimation provided by Remix Compiler (https://remix.ethereum.org/
(accessed on 10 July 2024)). To estimate the cost in USD, we used the above formula
considering the variation in the year 2023 gas price and the Ether/USD exchange rate. We
then calculated the median values and reported them in Table 1. For a complete view of the
fluctuation of the costs (in USD) over the year 2023, the reader can refer to Figures 1 and 2,
which report how the costs related to the execution of the smart contract deployment and
the smart contract functionalities, respectively, change over the year 2023. We observe that
the costs present some fluctuations throughout the year, with a peak in the months of May
and June. Overall, excluding this temporary spike, the median cost of executing the smart
contract deployment is around USD 23. In contrast, the cost of executing the smart contract
functions is around USD 2.

In the following sections, we discuss in detail all the costs related to the execution of
our solution.

Table 1. Costs for executing the smart contract functions on the Ethereum blockchain.

Function Gas Usage Cost in USD (2023 Median)

Deploy Contract 461,322 gas USD 23
addClient 68,401 gas USD 3.41
addRootIPFSAddress 47,016 gas USD 2.34
pullTheAlarm 26,763 gas USD 1.33
getIPFSAddress (view) - USD 0

1/1/2023
2/1/2023

3/1/2023
4/1/2023

5/1/2023
6/1/2023

7/1/2023
8/1/2023

9/1/2023

10/1/2023

11/1/2023

12/1/2023

Date

0

20

40

60

80

100

120

140

Co
st

[U
SD

]

Deploy

Figure 1. Cost of deploying the smart contract in US dollars over the year 2023.

https://remix.ethereum.org/

Future Internet 2024, 16, 246 11 of 23

1/1/2023
2/1/2023

3/1/2023
4/1/2023

5/1/2023
6/1/2023

7/1/2023
8/1/2023

9/1/2023

10/1/2023

11/1/2023

12/1/2023

Date

0

5

10

15

20

Co
st

[U
SD

]

pullTheAlarm
addRootIPFSAddress
addClient

Figure 2. Cost of invoking the smart contract functions in US dollars over the year 2023.

6.2. Cost Breakdown and Business Model Implications

In the following, we discuss the cost of each smart contract function along with its
deployment. These costs are reported in Table 1.

Deployment Cost: The cost for deploying the smart contract is 461,322 gas, which
translates to approximately USD 23. This deployment is a one-time cost incurred by the
broker. Given its single occurrence, it is a manageable and reasonable investment to set up
the system.

Adding Clients (addClient function): We recall that this function can only be invoked
by the broker to include a new publisher or subscriber in the system. Each time this
function is invoked, the broker incurs a cost of about 68,401 gas, equivalent to USD 3.41.
In our business model, we propose that this cost be covered by customers (publishers or
subscribers) as a one-time fee upon joining the system. This cost is not prohibitive, so it is a
feasible expense for new users.

Storing Root Hash and IPFS Address (addRootIPFSAddress function): We recall that
the addRootIPFSAddress function can only be invoked by the broker. Specifically, the bro-
ker invokes it at the end of each temporal round to store the root hash of the Merkle Hash
Tree (MHT) along with its corresponding IPFS address. This function consumes approxi-
mately 47,016 gas, resulting in a cost of around USD 2.34 per execution. The broker bears
this recurring expense since this function is called at the end of each round. The frequency
of these calls depends on the length of the time round: shorter rounds mean more fre-
quent costs, while longer rounds reduce the frequency but delay the validation of message
integrity for subscribers.

Integrity Violation Alerts (pullTheAlarm Function): We recall that the pullTheAlarm
function signals a violation of the integrity of the data exchanged. This function costs about
26,763 gas per call, about USD 1.33. This cost can be borne by the publisher or the subscriber
reporting the violation. Since this function is called only when an integrity violation is
detected, it is not a regular expense, but rather an occasional one. Therefore, the cost
appears sustainable

Fetching IPFS Address (getIPFSAddress Function): The getIPFSAddress function is
a view function, which means that it does not alter the state of the blockchain and therefore
does not incur any gas costs. This function is regularly used by publishers and subscribers
to retrieve the IPFS address of the MHT for verification purposes. Thus, the integrity
verification operation has no cost for publishers/subscribers.

Future Internet 2024, 16, 246 12 of 23

6.3. Cost Analysis of System Maintenance per Client

In the previous section, we examined the costs of individual operations on the
blockchain in terms of dollars. These operations, carried out by the broker and clients
(only the pullTheAlarm function), incur certain costs at specific frequencies. In a realistic
business model, it is reasonable to assume that the broker passes these costs onto the clients
who subscribe to the service, thereby sharing the expenses to amortize the costs. This
section evaluates the average annual cost that each client must bear to maintain the system
for a year. This is calculated by dividing the total cost by the number of clients.

6.3.1. Cost Calculation Model

The total cost of our solution depends on four parameters:

1. Number of publishers
2. Number of subscribers
3. Frequency of round time (a higher frequency implies invoking the addRootIPFSAddress

function more often)
4. Frequency of alarms (a higher frequency implies invoking the pullTheAlarm function

more often)

Since these parameters cannot be fixed in advance and may vary significantly depending on
the considered scenario, we present analyses showing the variation of these four parameters
over wide ranges to assess the cost.

Figures 3–5 show the annual cost per client as the number of publishers and subscribers
varies. Each figure represents three different alarm frequencies: one alarm per day per
client, one alarm per week per client, and one alarm per month per client. Within each
figure, there are three plots for three different round frequencies:

• One round per day per publisher (blue)
• One round per week per publisher (orange)
• One round per month per publisher (green)

0

200

400

600

800

1000

Number of publisher

0
200

400
600

800
1000

Number of subscriber

500
600
700
800
900
1000
1100
1200
1300

Co
st

 p
er

 c
lie

nt
 p

er
 y

ea
r [

US
D]

1 root per publisher per Day
1 root per publisher per Week
1 root per publisher per Month

Figure 3. Annual Cost per Client with 1 Alarm per Day.

Future Internet 2024, 16, 246 13 of 23

0

200

400

600

800

1000

Number of publisher

0
200

400
600

800
1000

Number of subscriber

100
200
300
400
500
600
700
800
900

Co
st

 p
er

 c
lie

nt
 p

er
 y

ea
r [

US
D]

1 root per publisher per Day
1 root per publisher per Week
1 root per publisher per Month

Figure 4. Annual Cost per Client with 1 Alarm per Week.

0
200

400

600

800

1000

Number of publisher

0
200

400
600

800
1000

Number of subscriber

100
200
300
400
500
600
700
800

Co
st

 p
er

 c
lie

nt
 p

er
 y

ea
r [

US
D]

1 root per publisher per Day
1 root per publisher per Week
1 root per publisher per Month

Figure 5. Annual Cost per Client with 1 Alarm per Month.

6.3.2. Discussion

Across all plots, it is evident that the solution scales very well with an increasing
number of publishers and subscribers.

Subscribers: Each new subscriber introduces a new cost for the addClient and
pullTheAlarm functions. However, these costs are originated by the subscribers them-
selves (and then can be sustained by them). The other costs (e.g., deploying and storing
the root of the Merkle hash tree (MHT) for each round for each publisher) are distributed
among all subscribers. Consequently, as the number of subscribers increases, the cost per
individual client decreases.

Publishers: For publishers, the introduction of a new cost (due to the storage of
the root) is partially offset by the subscribers. The deployment cost is always amortized
by the new publishers. As the number of publishers increases, the cost remains nearly
constant (with a slight increase) because the cost they introduce is almost fully offset by the
publishers themselves. Conversely, as the number of subscribers increases, the per-client
cost decreases significantly.

We can conclude that the solution scales very well with the number of clients.

Future Internet 2024, 16, 246 14 of 23

Regarding other factors, as expected, higher round frequencies or higher root publi-
cation frequencies result in higher costs. However, even in extreme cases (high-security
requirements and a high number of alarms), the cost peaks at around $1200 annually, which
can be afforded by a moderately sized organization. Under average conditions, the costs
are around $300 annually, akin to a standard subscription fee that a user would pay.

7. Experiments

In this section, we describe our experimental campaign and the results we obtained.

7.1. Experimental Setup

Our campaign involves the deployment of a single MQTT broker and a variable
number of MQTT clients.

The MQTT broker was deployed on a standard laptop equipped with an Intel i7-8850
CPU at 1.8 GHz and 16 GB of RAM. We implemented the broker via a customized version
of the HiveMQ broker, including the specific functionalities required by our solution.

To implement an MQTT client we employed a Raspberry Pi Pico W device. The latter
is equipped with a dual-core ARM Cortex-M0+ processor running at 133 MHz, 256 KB of
RAM, and 2 MB of flash memory. The Raspberry Pi Pico is suited to emulate typical MQTT
clients due to its limited computational and networking capabilities. Then to observe the
scalability of the system, given the unavailability of a high number of physical Raspberry
Pi Pico units, we deployed simulated clients (publishers and subscribers) on a standard
laptop. The execution times of these simulated clients were calibrated to match those of the
actual Raspberry Pi Pico devices.

We considered publishers and subscribers connected to the broker through an internet
connection. To simulate realistic network conditions, we incorporated network delays
based on real-world data [8].

To simulate the transmission of actual data by publishers, we used a dataset re-
porting temperature sensor data collected from a building (Accessible at: https://www.
kaggle.com/code/koheimuramatsu/iot-temperature-forecasting/input (accessed on 10
July 2024)). In this dataset, each datum was associated with the timings in which it was
generated by the sensor. This allowed us to compute a realistic rate of data generation.

We used the Sepolia testnet as the blockchain network for our experiments. Specifically,
we used the testnet to deploy the smart contract required by our solution. Then, we used
this testnet to measure the timing required to invoke the smart contract functions. Similarly,
we used the client from IPFS Desktop App (https://docs.ipfs.tech/install/ipfs-desktop/
(accessed on 10 July 2024)) to measure the timing required to store the MHT on IPFS.

To conclude this section, we summarize the times we obtained in our setup both
client-side and broker-side in Table 2.

Table 2. Execution times client-side and broker-side.

Operation Client-Side Broker-Side

Hash (SHA-256) 148 ms 58 µs
addRootIPFSAddress – 18.088 s
getIPFSAddress 16.331 s –
IPFS Upload – 9 ms

7.2. Performance Analysis

In this section, we analyze the performance of the proposed solution by examining
the throughput of publishers, subscribers, and the broker. Throughput refers to the rate
at which publishers can dispatch locally generated messages to the broker and the rate at
which subscribers can consume messages received from the broker. Similarly, on the broker
side, the throughput is the rate at which it can send messages to the subscribers.

https://www.kaggle.com/code/koheimuramatsu/iot-temperature-forecasting/input
https://www.kaggle.com/code/koheimuramatsu/iot-temperature-forecasting/input
https://docs.ipfs.tech/install/ipfs-desktop/

Future Internet 2024, 16, 246 15 of 23

In our experiments, we measured the normalized throughput with respect to the
maximum throughput, which is determined based on the transmitted data’s generation
rate. The maximum throughput is computed by observing the frequency by which data are
generated in our dataset.

In Figures 6 and 7, we report how the normalized throughput varies as the frequency
of round times (per day) increases and as the number of topics increases for publishers and
subscribers, respectively. Concerning the number of topics, we considered the number of
topics on which a publisher publishes.

0 200 400 600 800100012001400

Round Time Frequency (per day)

20
40

60
80

100
120

Num
be

r o
f To

pic
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Th

ro
ug

hp
ut

Figure 6. Normalized throughput of publishers.

0 200 400 600 800100012001400

Round Time Frequency (per day)

20
40

60
80

100
120

Num
be

r o
f To

pic
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Th

ro
ug

hp
ut

Figure 7. Normalized throughput of subscribers.

The ideal normalized throughput is 1, which represents a scenario in which the system
handles all generated messages without any additional overhead. However, as expected,
in our experiments, the normalized throughput deviates from 1 as the frequency of rounds
increases throughout the day. This deviation occurs because additional operations are
required at the end of each round.

Specifically, concerning publishers, this decrease is due to the execution of the follow-
ing operations at the end of the round: (1) computation of an MHT, (2) verification of the
presence of the computed root in the blockchain, to ensure there is no integrity violation on
the broker side.

Future Internet 2024, 16, 246 16 of 23

Concerning subscribers, this decrease is due to the execution of the following op-
erations at the end of the round: (1) computation of a path of hashes for each topic,
(2) verification of the presence of the computed root in the blockchain (as on the publisher
side). Considering (1), we observe that, in general, subscribers may not be interested in the
whole set of topics of the publisher. In our experiments, we considered that the number of
topics in which the subscriber is interested is, on average, half of the topics of the publisher.

It can be seen from the plot that the increase in the number of topics and, thus, the
increase in the time for calculating the MHT, generates differences in the normalized
throughput that are not appreciable. In fact, even when the number of topics is in the
hundreds, the calculation of the MHT takes less than 1 s. On the other hand, the operation
that most affects the reduction in throughput is the invocation of the getIPFSAddress
function, the execution of which takes more than 15 s on average.

Due to this end-round operation, the normalized throughput deviates from the maxi-
mum one. However, for both publishers and subscribers, we observe that the reduction in
throughput is at most 20% in the worst-case scenario, where the round time frequency is
as high as one round every 60 s (1440 rounds per day). We highlight that this represents
an extreme case. Typically, the frequency of round times should be chosen based on the
data publication frequency to ensure there are enough messages published within a round.
Overall, the higher the round time, the lower the throughput reduction. In our dataset, the
data are generally published every 30 s. Therefore, with a round time of 60 s, in each round,
only two messages are published. Thus, the introduced overhead reduces the throughput
of the clients. On the other hand, if the time round duration is higher than 5 min, we can
observe that the reduction of the throughput is lower than 10%.

Figures 8 and 9 report how the normalized throughput of the broker varies as the
number of publishers increases and as the frequency of round time (per day) increases,
considering 16 topics (in Figure 8) and 128 topics (in Figure 9). To conduct these experiments,
we considered a single broker, one subscriber, and an increasing number of publishers (up
to 10,000 publishers).

0 200 400 600 800100012001400

Round Time Frequency (per day)
0

2000
4000

6000
8000

Num
be

r o
f P

ub
lish

ers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Th

ro
ug

hp
ut

Figure 8. Normalized throughput of the broker, considering 16 topics per publisher.

In Figure 8, where 16 topics are considered, we observe that the increasing number
of publishers does not significantly affect the normalized throughput. On the contrary,
in Figure 9, where 128 topics are considered, we can see that when the number of publishers
increases, the normalized throughput decreases. However, the reduction in normalized
throughput, as the number of publishers increases, is minimal, since it always remains
below 2%.

Future Internet 2024, 16, 246 17 of 23

0 200 400 600 800100012001400

Round Time Frequency (per day)
0

2000
4000

6000
8000

Num
be

r o
f P

ub
lish

ers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Th

ro
ug

hp
ut

Figure 9. Normalized throughput of the broker, considering 128 topics per publisher.

As the number of publishers increases, the number of MHTs that the broker needs
to calculate also increases linearly. Additionally, the time to compute an MHT increases
linearly with the number of topics. However, as mentioned earlier, the time to construct an
MHT for each client is significantly low due to the nanosecond order of hash calculation
time. For instance, if there were 100 million publishers connected to a single broker, the time
to calculate all the hashes would be approximately 50 s. However, with such a large number
of publishers, the bottleneck would be managing concurrent connections (It is estimated
that a HiveMQ broker can support up to 10 million concurrent connections), rather than
managing the computations of MHTs.

We observe that as the number of publishers increases, the number of network opera-
tions performed on the blockchain and IPFS also increases linearly. We recall that for each
publisher, the MHT root must be saved on the blockchain (via the addRootIPFSAddress
function), and the MHT must be stored on IPFS. However, unlike the CPU-intensive MHT
computation operations, network operations are I/O operations and can be managed in
parallel. This explains why the linear increase in these operations does not result in a linear
decrease in the broker’s normalized throughput.

Despite this, the execution of the addRootIPFSAddress function requires more than
15 s to complete. Thus, this is the operation that causes the most throughput reduction.

Indeed, as explained before, the operations involving the blockchain generate the
highest overhead. This overhead produces a reduction in the throughput that increases
linearly with the increase in the time round frequency (per day). However, by choosing
appropriate round frequencies, the reduction in throughput can be limited. For example,
if the time round duration is higher than 5 min, we can observe that the reduction of the
throughput is less than 3%.

We also experimented with how the broker-side throughput is affected by an increasing
number of subscribers. Specifically, we considered a setting with a single publisher, one
broker, and a growing number of subscribers. This scenario did not produce significant
differences in throughput. For each subscriber, at the end of the round, the broker must
send the root and the hashes that allow reconstruction of the path from the hash chain
(calculated locally by the individual subscriber) to the MHT root (for each topic to which
the subscriber is subscribed). However, these hashes and the root can be sent piggybacking
on the last message of the round. Moreover, these are network (I/O) operations, making
them easily parallelizable. As a result, no substantial variations in throughput are observed
with an increasing number of subscribers.

Future Internet 2024, 16, 246 18 of 23

7.3. Discussions

Our experiments show that the proposed solution scales well with the number of
clients. Additionally, the experimental results indicate that the proposed solution incurs
minimal overhead on the system’s throughput. This overhead is primarily due to the
additional integrity verification operations required at the end of each round. By choosing
an appropriate round time frequency based on the data publication rate, the reduction
in throughput can be negligible, ensuring the system’s efficiency. We observe that a
low round time frequency may limit the applicability of our solution for hard real-time
applications [60,61], in which data integrity should be verified in a very short range (in
the order of milliseconds). However, typical MQTT applications [62–64] do not have such
strong requirements, and thus, our solution is effective in providing data integrity for
these applications.

We can conclude that our experiments confirm that the proposed solution is viable for
maintaining data integrity without significantly compromising performance.

8. Security Analysis

In this section, we analyze the security of our approach. We start by describing
the security assumptions, the adversary model, and the security properties we aim to
achieve. Then, we show that under our assumptions, the adversary cannot violate our
security properties.

8.1. Security Assumptions

Our security analysis relies on the following assumptions:

• Account Ownership: The ownership of Ethereum accounts used by publishers, sub-
scribers, and the broker is guaranteed. We assume there are no impersonation activities,
i.e., an attacker cannot take over a participant’s account.

• Hash Function Properties: The hash functions used for the construction of hashchains
and Merkle hash trees (MHT) are collision and pre-image resistant. This means that it
is computationally unlikely to find two different inputs that produce the same hash
(collision resistance) or to find an input whose hash matches a given output (pre-image
resistance).

8.2. Adversary Model

In our model, the adversary can be a malicious broker or any malicious party that
can access and tamper with the traffic exchanged by the publishers with the interested
subscribers. The latter can do so by performing a man-in-the-middle attack. We observe
that the communication between a client (either a publisher or a subscriber) and the
broker is often protected via well-known security protocols, such as the TLS protocol [1].
However, when the certificate validation in TLS is not properly implemented the whole
communication is susceptible to man-in-the-middle attacks [4,5]. Additionally, we recall
that being the communication in MQTT mediated by the broker, the latter can intrinsically
perform a man-in-the-middle attack [8].

In our model, we consider that an attacker can tamper with the traffic in the following
ways [9]:

• the attacker can modify at least one of the exchanged messages;
• the attacker can inject at least one message in the exchanged flow;
• the attacker can delete at least one of the exchanged messages;
• the attacker can change the order of at least one message in the exchanged flow;

Additionally, in our threat model, we consider that a publisher or a broker can deny
having sent a certain flow of messages.

8.3. Security Properties

Through our approach, we aim to achieve the following two security properties:

Future Internet 2024, 16, 246 19 of 23

• End-to-end data flow integrity: This concept was first formalized in [9]. Our aim is to
achieve not only the integrity of each exchanged message but also the integrity of the
entire flow of exchanged messages.

• Accountability: This property ensures that publishers and brokers cannot deny having
sent a flow of messages after it has been sent.

Concerning the accountability property it implies the following:

• the flow of messages published by the publisher/broker can be traced back to it in a
verifiable manner.

• the publisher/broker cannot deny the publication of a flow once it has been sent.

Concerning the end-to-end data flow integrity property, it was originally defined in a
weak sense and in a strong sense [9]. In our analysis, we consider the weak one. Specifically,
it consists of the following properties:

• Completeness: all the messages sent by a publisher are also received by the sub-
scribers;

• Correctness: all the messages received by the subscribers are correct, in the sense that,
for instance, there are no new messages added by an attacker, i.e., messages that are
not present in the original message flow sent by the publisher;

• Weak Liveness: the order of the messages received by the subscribers is preserved.

8.4. Achieving Security Properties

In the following, given our security assumptions, we show that the adversary cannot
break the identified security properties.

8.4.1. Preserving End-to-End Data Flow Integrity

The objective of our approach is to preserve end-to-end data flow integrity in the sense
that when this property cannot be preserved (i.e., an attacker has violated the integrity of
the exchanged flow), publishers and subscribers can acknowledge this.

As formally demonstrated in [9], this property cannot be satisfied when at least one of
the attacks identified in Section 8.3 is performed. Thus the goal of an attacker is to perform
one of the identified attacks without being detected.

Suppose an attacker is able to tamper with the flow of messages exchanged during a
temporal round on a given topic by performing one of the attacks identified in Section 8.3.
Then, this modified flow is received by the subscribers. However, once a subscriber builds
the hashchain for that topic, this hashchain differs from the one computed publisher-side.
Then the subscriber has to reconstruct the path from the hashchain to the root of the MHT
sent by the broker to it. In order for the attack to be undetected, no event should be
emitted by the smart contract. Therefore, the attacker should be able to forge a path from
the modified hashchain to the root actually computed publisher-side and published on
the blockchain.

However, due to the hash function properties assumption, an attacker cannot be
able to do so. Indeed the hash function properties assumption ensures that the adversary
cannot alter the messages in the hashchain or MHT without detection. Moreover, it cannot
construct a valid path from an arbitrary hashchain to the actual MHT root.

This ensures that a violation of the end-to-end data flow integrity property cannot
go undetected.

8.4.2. Preserving Accountability

The use of blockchain ensures that the data are stored immutably and can be retrieved
for verification. Once the root of the MHT is on the blockchain, it cannot be changed.
Similarly, the address of the MHT stored on IPFS remains unchanged. This ensures that the
integrity of the MHT is maintained and can be independently verified.

Due to this, the broker cannot deny having sent a flow of messages once it has been
included in the MHT. The cryptographic proofs provided by the hashchain and MHT (see

Future Internet 2024, 16, 246 20 of 23

assumption hash function properties) ensure that the message was part of the published set,
thereby achieving accountability. Additionally, due to the assumption account ownership,
a broker cannot deny having published a certain root.

Similarly, also, the publisher cannot deny having computed a certain root from the
flows of messages sent. This is because once this root is computed independently from
the broker, it has to send a transaction invoking a function of the smart contract with its
computed root as input. This transaction is immutably stored on the blockchain and it can
be publicly verifiable.

Therefore, if a subscriber wants to provide proof of having received a certain flow of
messages (in a given temporal round) from the publisher, it simply has to provide the path
from the related hash chain to the root written in the transaction executed by the publisher.

9. Conclusions

In this paper, we introduced an approach to ensure accountability and end-to-end
data flow integrity in MQTT by leveraging blockchain and IPFS technologies. The core idea
consists of building an MHT of the data exchanged between publishers and subscribers
and then verifying the computed root of the MHT. The integration of blockchain with IPS
enhances the scalability of the proposed approach since only the essential data (i.e., the root
of the MHT) are stored on the blockchain, while the MHT itself is stored on IPFS.

The blockchain effectively prevents brokers and publishers from repudiating mes-
sages to create immutable and verifiable logs of all communications. Additionally, our
solution ensures that when an attacker is able to modify the flow of messages in transit,
publishers and subscribers can detect this integrity violation. Differently from the majority
of the solutions in the literature concerning end-to-end security in MQTT, our proposal
does not rely on trusted third parties. Additionally, it enhances the MQTT protocol with
accountability guarantees.

In our study, we provided a security analysis to show that under standard crypto-
graphic assumptions, our approach guarantees both accountability and end-to-end data
flow integrity. Additionally, we performed a thorough experimental campaign to study
the impact of our solution on MQTT. Our experimental results indicate that the proposed
solution incurs minimal overhead on the system’s throughput. The overhead is due to the
additional integrity verification operations required at the end of each round. However,
by choosing an appropriate round time frequency, the reduction in throughput can be
negligible. Our results also show that our solution scales well with an increase in the
number of clients and, thus, does not introduce any scalability issue.

Finally, we provided a detailed analysis of the costs of our solution by also showing
an estimation of the costs per year required by our solution. Overall, the execution costs
are relatively low, especially given the critical security and accountability benefits our
solution provides. Additionally, from our analysis, it emerges that the more subscribers in
the system, the lower the costs per client. This demonstrates that our solution scales very
well with an increasing number of clients in the system.

The future work will focus on optimizing the system by incorporating a methodology
to estimate the best round time frequency into the solution. This could be achieved by
dynamically adjusting the round time frequency (during communication between clients)
to better match the frequency of data exchange.

Author Contributions: Conceptualization, F.B. and S.L.; methodology, F.B. and S.L.; software, S.L.;
validation, S.L.; formal analysis, S.L.; investigation, F.B. and S.L.; resources, S.L.; data curation,
S.L.; writing—original draft preparation, S.L.; writing—review and editing, S.L.; visualization, S.L.;
supervision, F.B.; project administration, F.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Future Internet 2024, 16, 246 21 of 23

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MQTT Message queuing telemetry transport
IPFS Interplanetary file system
QoS Quality of service
MHT Merkle hash tree
DHT Distributed hash table
P2P Peer-to-peer
TLS Transport layer security
ACN Anonymous communication network
CP-ABE Cipertext-policy attribute-based encryption
KP-ABE Key-policy attribute-based encryption
USD United States dollars

References
1. Lazzaro, S.; De Angelis, V.; Mandalari, A.M.; Buccafurri, F. Is Your Kettle Smarter Than a Hacker? A Scalable Tool for Assessing

Replay Attack Vulnerabilities on Consumer IoT Devices. In Proceedings of the 2024 IEEE International Conference on Pervasive
Computing and Communications (PerCom), Biarritz, France, 11–15 March 2024; pp. 114–124. [CrossRef]

2. Maskeliūnas, R.; Damaševičius, R.; Segal, S. A Review of Internet of Things Technologies for Ambient Assisted Living
Environments. Future Internet 2019, 11, 259. [CrossRef]

3. Li, J.; Maiti, A.; Fei, J. Features and Scope of Regulatory Technologies: Challenges and Opportunities with Industrial Internet of
Things. Future Internet 2023, 15, 256. [CrossRef]

4. Lupia, F.; Lucchese, M.; Merro, M.; Zannone, N. ICS Honeypot Interactions: A Latitudinal Study. In Proceedings of the 2023 IEEE
International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 3025–3034.

5. Lucchese, M.; Lupia, F.; Merro, M.; Paci, F.; Zannone, N.; Furfaro, A. HoneyICS: A High-interaction Physics-aware Honeynet for
Industrial Control Systems. In Proceedings of the 18th International Conference on Availability, Reliability and Security, ARES
’23, New York, NY, USA, 29 August–1 September 2023. [CrossRef]

6. OASIS. MQTT Version 5.0 2019. Available online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (accessed on
10 July 2024).

7. Gündoğan, C.; Kietzmann, P.; Lenders, M.; Petersen, H.; Schmidt, T.C.; Wählisch, M. NDN, CoAP, and MQTT: A comparative
measurement study in the IoT. In Proceedings of the 5th ACM Conference on Information-Centric Networking, ICN ’18, New York,
NY, USA, 21–23 September 2018; pp. 159–171. [CrossRef]

8. Buccafurri, F.; De Angelis, V.; Lazzaro, S. MQTT-A: A Broker-Bridging P2P Architecture to Achieve Anonymity in MQTT. IEEE
Internet Things J. 2023, 10, 15443–15463. [CrossRef]

9. Buccafurri, F.; De Angelis, V.; Lazzaro, S. MQTT-I: Achieving End-to-End Data Flow Integrity in MQTT. IEEE Trans. Dependable
Secur. Comput. 2024, 1–18. [CrossRef]

10. Panwar, A.; Bhatnagar, V. Distributed Ledger Technology (DLT): The Beginning of a Technological Revolution for Blockchain. In
Proceedings of the 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 28–29 February
2020; pp. 1–5. [CrossRef]

11. Hamilton, M. Blockchain distributed ledger technology: An introduction and focus on smart contracts. J. Corp. Account. Financ.
2020, 31, 7–12. [CrossRef]

12. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain
smart contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]

13. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
14. Daniel, E.; Tschorsch, F. IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Commun.

Surv. Tutor. 2022, 24, 31–52. [CrossRef]
15. Sanka, A.I.; Cheung, R.C. A systematic review of blockchain scalability: Issues, solutions, analysis and future research. J. Netw.

Comput. Appl. 2021, 195, 103232. [CrossRef]
16. Zheng, Q.; Li, Y.; Chen, P.; Dong, X. An Innovative IPFS-Based Storage Model for Blockchain. In Proceedings of the 2018

IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, Chile, 3–6 December 2018; pp. 704–708. [CrossRef]
17. Toldinas, J.; Lozinskis, B.; Baranauskas, E.; Dobrovolskis, A. MQTT Quality of Service versus Energy Consumption. In

Proceedings of the 2019 23rd International Conference Electronics, Palanga, Lithuania, 17–19 June 2019; pp. 1–4. [CrossRef]
18. Sun, J.; Yao, X.; Wang, S.; Wu, Y. Non-Repudiation Storage and Access Control Scheme of Insurance Data Based on Blockchain in

IPFS. IEEE Access 2020, 8, 155145–155155. [CrossRef]

http://doi.org/10.1109/PerCom59722.2024.10494466
http://dx.doi.org/10.3390/fi11120259
http://dx.doi.org/10.3390/fi15080256
http://dx.doi.org/10.1145/3600160.3604984
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://dx.doi.org/10.1145/3267955.3267967
http://dx.doi.org/10.1109/JIOT.2023.3264019
http://dx.doi.org/10.1109/TDSC.2024.3358630
http://dx.doi.org/10.1109/IDEA49133.2020.9170699
http://dx.doi.org/10.1002/jcaf.22421
http://dx.doi.org/10.1109/ACCESS.2021.3140091
http://dx.doi.org/10.1109/COMST.2022.3143147
http://dx.doi.org/10.1016/j.jnca.2021.103232
http://dx.doi.org/10.1109/WI.2018.000-8
http://dx.doi.org/10.1109/ELECTRONICS.2019.8765692
http://dx.doi.org/10.1109/ACCESS.2020.3018816

Future Internet 2024, 16, 246 22 of 23

19. Anthal, J.; Choudhary, S.; Shettiyar, R. Decentralizing File Sharing: The Potential of Blockchain and IPFS. In Proceedings of the
2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, 5–6 May
2023; pp. 773–777. [CrossRef]

20. Khatal, S.; Rane, J.; Patel, D.; Patel, P.; Busnel, Y. FileShare: A Blockchain and IPFS Framework for Secure File Sharing and Data
Provenance. In Proceedings of the Advances in Machine Learning and Computational Intelligence; Patnaik, S., Yang, X.S., Sethi, I.K.,
Eds.; Springer: Singapore, 2021; pp. 825–833.

21. Bawane, H.; Shinde, T.; Kadam, A.; Budukh, Y.; Mundhe, P. Ethegram-an ethereum and ipfs-based decentralized social network
system. Int. Res. J. Eng. Technol. 2020, 7, 1978–1982.

22. Buccafurri, F.; De Angelis, V.; Idone, M.F.; Labrini, C. A protocol for anonymous short communications in social networks and its
application to proximity-based services. Online Soc. Netw. Media 2022, 31, 100221. [CrossRef]

23. Patel, C.; Doshi, N. A novel MQTT security framework in generic IoT model. Procedia Comput. Sci. 2020, 171, 1399–1408. [CrossRef]
24. Perrone, G.; Vecchio, M.; Pecori, R.; Giaffreda, R. The Day After Mirai: A Survey on MQTT Security Solutions After the Largest

Cyber-attack Carried Out through an Army of IoT Devices. In Proceedings of the IoTBDS, Porto, Portugal, 24–26 April 2017;
pp. 246–253.

25. Mendez Mena, D.; Papapanagiotou, I.; Yang, B. Internet of things: Survey on security. Inf. Secur. J. Glob. Perspect. 2018, 27, 162–182.
[CrossRef]

26. Dierks, T.; Allen, C. The TLS Protocol Version 1.0. RFC 1999, 2246, 1–80.
27. Prantl, T.; Iffländer, L.; Herrnleben, S.; Engel, S.; Kounev, S.; Krupitzer, C. Performance impact analysis of securing MQTT using

TLS. In Proceedings of the ACM/SPEC International Conference on Performance Engineering, Virtual Event, France, 19–23 April
2021; pp. 241–248.

28. Mathews, S.P.; Gondkar, R.R. Protocol Recommendation for Message Encryption in MQTT. In Proceedings of the 2019
International Conference on Data Science and Communication (IconDSC), Bangalore, India, 1–2 March 2019; pp. 1–5. [CrossRef]

29. Su, W.T.; Chen, W.C.; Chen, C.C. An Extensible and Transparent Thing-to-Thing Security Enhancement for MQTT Protocol in
IoT Environment. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–4. [CrossRef]

30. Ahamed, J.; Zahid, M.; Omar, M.; Ahmad, K. AES and MQTT based security system in the internet of things. J. Discret. Math. Sci.
Cryptogr. 2019, 22, 1589–1598. [CrossRef]

31. Shin, S.; Kobara, K.; Chuang, C.C.; Huang, W. A security framework for MQTT. In Proceedings of the 2016 IEEE Conference on
Communications and Network Security (CNS), Philadelphia, PA, USA, 17–19 October 2016; pp. 432–436. [CrossRef]

32. Sadio, O.; Ngom, I.; Lishou, C. Lightweight Security Scheme for MQTT/MQTT-SN Protocol. In Proceedings of the 2019 Sixth
International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 22–25 October
2019; pp. 119–123. [CrossRef]

33. Dinculeană, D.; Cheng, X. Vulnerabilities and Limitations of MQTT Protocol Used between IoT Devices. Appl. Sci. 2019, 9, 848.
[CrossRef]

34. Oak, A.; Daruwala, R. Assessment of Message Queue Telemetry and Transport (MQTT) protocol with Symmetric Encryption.
In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar,
India, 15–17 December 2018; pp. 5–8. [CrossRef]

35. Iyer, S.; Bansod, G.V.; Naidu, P.; Garg, S. Implementation and Evaluation of Lightweight Ciphers in MQTT Environment. In
Proceedings of the 2018 International Conference on Electrical, Electronics, Communication, Computer, and Optimization
Techniques (ICEECCOT), Msyuru, India, 14–15 December 2018; pp. 276–281. [CrossRef]

36. Niruntasukrat, A.; Issariyapat, C.; Pongpaibool, P.; Meesublak, K.; Aiumsupucgul, P.; Panya, A. Authorization mechanism for
MQTT-based Internet of Things. In Proceedings of the 2016 IEEE International Conference on Communications Workshops
(ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 290–295.

37. Michaelides, M.; Sengul, C.; Patras, P. An Experimental Evaluation of MQTT Authentication and Authorization in IoT. In
Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, New
Orleans, LA, USA, 31 January–4 February 2022; pp. 69–76.

38. Gupta, V.; Khera, S.; Turk, N. MQTT protocol employing IOT based home safety system with ABE encryption. Multimed. Tools
Appl. 2021, 80, 2931–2949. [CrossRef]

39. Bisne, L.; Parmar, M. Composite secure MQTT for Internet of Things using ABE and dynamic S-box AES. In Proceedings of the
2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–5.

40. Mendoza-Cardenas, F.; Leon-Aguilar, R.S.; Quiroz-Arroyo, J.L. CP-ABE encryption over MQTT for an IoT system with Raspberry
Pi. In Proceedings of the 2022 56th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 9–11
March 2022; pp. 236–239. [CrossRef]

41. Liao, T.L.; Lin, H.R.; Wan, P.Y.; Yan, J.J. Improved Attribute-Based Encryption Using Chaos Synchronization and Its Application
to MQTT Security. Appl. Sci. 2019, 9, 4454. [CrossRef]

42. Calabretta, M.; Pecori, R.; Vecchio, M.; Veltri, L. MQTT-Auth: A token-based solution to endow MQTT with authentication and
authorization capabilities. J. Commun. Softw. Syst. 2018, 14, 320–331. [CrossRef]

43. Bhawiyuga, A.; Data, M.; Warda, A. Architectural design of token based authentication of MQTT protocol in constrained IoT
device. In Proceedings of the 2017 11th International Conference on Telecommunication Systems Services and Applications
(TSSA), Lombok, Indonesia, 26–27 October 2017; pp. 1–4.

http://dx.doi.org/10.1109/InCACCT57535.2023.10141817
http://dx.doi.org/10.1016/j.osnem.2022.100221
http://dx.doi.org/10.1016/j.procs.2020.04.150
http://dx.doi.org/10.1080/19393555.2018.1458258
http://dx.doi.org/10.1109/IconDSC.2019.8817043
http://dx.doi.org/10.1109/GIOTS.2019.8766412
http://dx.doi.org/10.1080/09720529.2019.1696553
http://dx.doi.org/10.1109/CNS.2016.7860532
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939177
http://dx.doi.org/10.3390/app9050848
http://dx.doi.org/10.1109/ICSCCC.2018.8703314
http://dx.doi.org/10.1109/ICEECCOT43722.2018.9001599
http://dx.doi.org/10.1007/s11042-020-09750-4
http://dx.doi.org/10.1109/CISS53076.2022.9751194
http://dx.doi.org/10.3390/app9204454
http://dx.doi.org/10.24138/jcomss.v14i4.604

Future Internet 2024, 16, 246 23 of 23

44. Bali, R.S.; Jaafar, F.; Zavarasky, P. Lightweight authentication for MQTT to improve the security of IoT communication. In
Proceedings of the 3rd International Conference on Cryptography Security, and Privacy, Kuala Lumpur, Malaysia, 19–21 January
2019; pp. 6–12.

45. Fischer, M.; Kümper, D.; Tönjes, R. Towards improving the Privacy in the MQTT Protocol. In Proceedings of the 2019 Global IoT
Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [CrossRef]

46. Dingledine, R.; Mathewson, N.; Syverson, P. Tor: The Second-Generation Onion Router; Technical Report; Naval Research Laboratory:
Washington, DC, USA, 2004.

47. Piotrowska, A.M.; Hayes, J.; Elahi, T.; Meiser, S.; Danezis, G. The loopix anonymity system. In Proceedings of the 26th Usenix
Security Symposium (Usenix Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1199–1216.

48. Buccafurri, F.; De Angelis, V.; Idone, M.F.; Labrini, C.; Lazzaro, S. Achieving Sender Anonymity in Tor against the Global Passive
Adversary. Appl. Sci. 2022, 12, 137. [CrossRef]

49. Reiter, M.K.; Rubin, A.D. Crowds: Anonymity for Web transactions. ACM Trans. Inf. Syst. Secur. 1998, 1, 66–92. [CrossRef]
50. Protskaya, Y.; Veltri, L. Broker Bridging Mechanism for Providing Anonymity in MQTT. In Proceedings of the 2019 10th

International Conference on Networks of the Future (NoF), Rome, Italy, 1–3 October 2019; pp. 110–113. [CrossRef]
51. Lee, H.; Lim, J.; Kwon, T.T. MQTLS: Toward Secure MQTT Communication with an Untrusted Broker. In Proceedings of the 2019

International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 16–18 October 2019;
pp. 53–58. [CrossRef]

52. Dahlmanns, M.; Pennekamp, J.; Fink, I.B.; Schoolmann, B.; Wehrle, K.; Henze, M. Transparent End-to-End Security for
Publish/Subscribe Communication in Cyber-Physical Systems. In Proceedings of the 2021 ACM Workshop on Secure and
Trustworthy Cyber-Physical Systems, SAT-CPS ’21, New York, NY, USA, 28 April 2021; pp. 78–87. [CrossRef]

53. Hamad, M.; Finkenzeller, A.; Liu, H.; Lauinger, J.; Prevelakis, V.; Steinhorst, S. SEEMQTT: Secure End-to-End MQTT-Based
Communication for Mobile IoT Systems Using Secret Sharing and Trust Delegation. IEEE Internet Things J. 2023, 10, 3384–3406.
[CrossRef]

54. Pallickara, S.; Pierce, M.; Gadgil, H.; Fox, G.; Yan, Y.; Huang, Y. A Framework for Secure End-to-End Delivery of Messages in
Publish/Subscribe Systems. In Proceedings of the 2006 7th IEEE/ACM International Conference on Grid Computing, Barcelona,
Spain, 28–29 September 2006; pp. 215–222. [CrossRef]

55. Borcea, C.; Gupta, A.B.D.; Polyakov, Y.; Rohloff, K.; Ryan, G. PICADOR: End-to-end encrypted Publish–Subscribe information
distribution with proxy re-encryption. Future Gener. Comput. Syst. 2017, 71, 177–191. [CrossRef]

56. Yang, H.; Guo, Y.; Guo, Y. Blockchain-based cloud-fog collaborative smart home authentication scheme. Comput. Netw. 2024,
242, 110240. [CrossRef]

57. Küpçü, A. Distributing trusted third parties. SIGACT News 2013, 44, 92–112. [CrossRef]
58. Luntovskyy, A.; Globa, L. Performance, Reliability and Scalability for IoT. In Proceedings of the 2019 International Conference on

Information and Digital Technologies (IDT), Zilina, Slovakia, 25–27 June 2019; pp. 316–321. [CrossRef]
59. Buccafurri, F.; De Angelis, V.; Lazzaro, S. A Blockchain-Based Framework to Enhance Anonymous Services with Accountability

Guarantees. Future Internet 2022, 14, 243. [CrossRef]
60. Profanter, S.; Tekat, A.; Dorofeev, K.; Rickert, M.; Knoll, A. OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of

Industry 4.0 Protocols. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne,
VIC, Australia, 13–15 February 2019; pp. 955–962. [CrossRef]

61. Lazzaro, A.; D’Addona, D.M.; Merenda, M. Comparison of Machine Learning Models for Predictive Maintenance Applications.
In Proceedings of the Advances in System-Integrated Intelligence; Valle, M., Lehmhus, D., Gianoglio, C., Ragusa, E., Seminara, L.,
Bosse, S., Ibrahim, A., Thoben, K.D., Eds.; Springer: Cham, Switzerland, 2023; pp. 657–666.

62. Lakshminarayana, S.; Praseed, A.; Thilagam, P.S. Securing the IoT Application Layer from an MQTT Protocol Perspective:
Challenges and Research Prospects. IEEE Commun. Surv. Tutor. 2024. [CrossRef]

63. Lachtar, A.; Val, T.; Kachouri, A. Elderly monitoring system in a smart city environment using LoRa and MQTT. IET Wirel. Sens.
Syst. 2020, 10, 70–77. [CrossRef]

64. Georgi, N.; Le Bouquin Jeannès, R. Proposal of a health monitoring system for continuous care. In Proceedings of the 2017 Fourth
International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 19–21 October 2017; pp. 1–4.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/GIOTS.2019.8766366
http://dx.doi.org/10.3390/app12010137
http://dx.doi.org/10.1145/290163.290168
http://dx.doi.org/10.1109/NoF47743.2019.9015087
http://dx.doi.org/10.1109/ICTC46691.2019.8940001
http://dx.doi.org/10.1145/3445969.3450423
http://dx.doi.org/10.1109/JIOT.2022.3221857
http://dx.doi.org/10.1109/ICGRID.2006.311018
http://dx.doi.org/10.1016/j.future.2016.10.013
http://dx.doi.org/10.1016/j.comnet.2024.110240
http://dx.doi.org/10.1145/2491533.2491553
http://dx.doi.org/10.1109/DT.2019.8813679
http://dx.doi.org/10.3390/fi14080243
http://dx.doi.org/10.1109/ICIT.2019.8755050
http://dx.doi.org/10.1109/COMST.2024.3372630
http://dx.doi.org/10.1049/iet-wss.2019.0121
http://dx.doi.org/10.1109/ICABME.2017.8167548

	Introduction
	Background
	MQTT
	Blockchain and IPFS
	Blockchain
	IPFS
	Integration with Blockchain

	Related Works
	MQTT Security
	Lack of End-to-End Security in MQTT

	Motivations and Use Cases
	The Proposed Approach
	Notation
	Setup Phase
	Communication Phase
	Verification Phase
	Final Remarks

	Cost Analysis of Smart Contract Execution
	Gas Costs Overview
	Cost Breakdown and Business Model Implications
	Cost Analysis of System Maintenance per Client
	Cost Calculation Model
	Discussion

	Experiments
	Experimental Setup
	Performance Analysis
	Discussions

	Security Analysis
	Security Assumptions
	Adversary Model
	Security Properties
	Achieving Security Properties
	Preserving End-to-End Data Flow Integrity
	Preserving Accountability

	Conclusions
	References

