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Abstract 

Although wildfires play a crucial role in ecological processes in the Mediterranean Basin, they often represent one 

of the primary disturbances for forests and other ecosystems, entailing landscape and habitat degradation and 

economic damages. They also determine the consumption of natural carbon reserves and the emission of 

greenhouse gasses (GHG) correlated with climate change. Accurate information relating to the impact of fire on 

the forest environment and how its effects are distributed over time and space, both from a qualitative and 

quantitative point of view, are a key factor for the subsequent implementation of medium and long-term territorial 

planning, in order to predict and manage irreversible processes of degradation of forests and landscape. In this 

context, remote sensing provides reliable tools and techniques for monitoring and quantifying the impact of burned 

areas with reference to satellite platforms. In post-fire monitoring, most studies have been based on optical satellite 

data acquired using passive multispectral sensors, that are closely correlated with the physiological and 

biochemical state of the vegetation. For these reasons, vegetation has its unique spectral signature (depending on 

the species and environmental conditions), and its observation enables its characterization and subsequent 

monitoring. Anomalies at the spectral level, indeed, conceal anomalies at the plant level. Although their 

effectiveness for this purpose has been widely proven, optical systems present some limitations, mainly due to 

their sensitivity to some environmental conditions, such as sunlight and cloud cover, which reduces the frequency 

of observation at the visible/infrared wavelength bands or the spectral confusion of burned areas with unburned 

low albedo surfaces (i.e., dark soils, water surfaces, shadow areas), or the premature signal saturation due to the 

high sensibility to increasing values of leaf area index (LAI). Furthermore, this type of sensors cannot capture 

many quantitative aspects since these wavelengths do not interact directly with the structure of the objects. 

Therefore, methods based on data acquired by cloud-independent and structure-dependent sensors at high spatial 

and temporal resolutions are needed. Among them, Synthetic Aperture Radar (SAR) are active sensors that 

generates their microwave impulses (2.4-100 cm) and transmits them from its antenna to a target. Calculating the 

amount of the signal fraction reflected back to the sensor (backscatter) characterizes the target’s spectral radar 

signature. The penetration capacity of the impulse in the matter is directly proportional to the wavelength. For this 

reason, the SAR waves can pass through atmospheric particulate or interact with the vegetation cover structure. 

Therefore, to characterize and quantify the effects of a disturbance on vegetation, radar technology exploits the 

variations in backscatter caused by the modification of the vegetation cover and soil’s structure and moisture 

content. However, its processing and interpretation complexity causes this sensor not to be widely used compared 

to optical ones. 

Against that background, in this Ph.D. thesis, a complete and open-access workflow aimed at the investigation and 

mapping of the fire effects on Mediterranean ecosystems in the short term (pre-fire condition assessment; burned 

area detection; post-fire severity estimation and mapping) and the monitoring of the response of the environment 

during the first years after the event (post-fire recovery monitoring), was developed. To achieve this, free-available 

optical (Sentinel-2) and SAR (Sentinel-1) high spatial and temporal data were integrated, assessing the strengths 

and limitations of each of them and the advantages that are provided by the combination of both information. The 

first step concerned the construction of an accurate land use/land cover (LULC) map in a heterogeneous 

Mediterranean forest (located in Portugal) area to have an overview of the qualitative and quantitative state of 

vegetation present before the fire event. To this end, we applied an exhaustive grid search analysis to set the 

optimal hyperparameters of a machine learning model (random forest, RF) and the inclusion of different variables 
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(i.e., vegetation indices time-series, optical biophysical variables, and interferometric SAR - InSAR - coherence). 

This integration allowed reaching an overall accuracy (F-score) of 0.903, observing an improvement of 2.53% 

when SAR data were integrated into optical information. 

The second step dealt with the accurate detection of burned areas and delimitation of their perimeters. Two 

approaches were proposed to fulfil the objective: the first concerned only the use of SAR data (backscatter, dual- 

and single polarized SAR indices, textures) for an unsupervised detection (using the k-mean algorithm, set using 

a silhouette score analysis) of burned areas in two different study sites (located in Portugal and Italy respectively), 

with a reached F-score of 0.803 (Portuguese site) and 0.853 (Italian site); the second approach proposed a 

multitemporal composite process, by combining both Sentinel-2 and Sentinel-1 images, and a subsequent object-

based geographic analysis (GEOBIA) to map burned areas on regional/national scales occurred during the entire 

fire season (2017) in Portugal, achieving F-score values of 0.914 (when only optical data is used) and 0.956 

(combining optical and SAR information).  

In the third step of the main workflow, the short-term fire effects, in the form of fire severity, and their spatial 

distribution are estimated. Three approaches were presented, two of which are similar and united by the use of the 

composite burnt index (CBI) protocol to determine the severity classes in the field and to define the training data 

of the model, which, in one case (study site located in Portugual), was constituted by the RF algorithm, while in 

the other case (study site located in Italy) an artificial neural network was built. The RF model reached an F-score 

of 0.838 when both the datasets were combined (S1 + S2), compared with the values achieved by using SAR 

(0.513) and optical (0.805). The results obtained using the artificial neural network (F-score > 0.95) gave proof of 

the great potential in the use of these advanced deep learning models. A third approach involved a spectral mixture 

analysis (SMA) of optical Sentinel-2 imagery to spectrally characterize and quantify the proportion of the three 

fraction components indicative of the main physical effects immediately after a forest fire (char, scorched 

vegetation and green vegetation).  

For the first years after a fire event, the investigation of temporal and spatial dynamics of the post-fire recovery of 

different Mediterranean vegetation types characterized the fourth step. Both SAR Sentinel-1 and optical Sentinel-

2 time series were analyzed separately according to the fire severity classes (obtained in the previous step), 

highlighting the complementary and essentiality of both information. Moreover, a burn recovery ratio (BRR), 

optimized through machine learning regressors for predicting pre-fire conditions, was proposed to estimate and 

map the spatial distribution of the degree of vegetation recovery. 

The development of these approaches and managing this amount of data required advanced techniques and 

solutions of geo-informatics, geo-statistics, geomatic, image processing, and advanced artificial intelligence 

models. Nevertheless, the whole process was developed and performed, fulfilling the principle of employing freely 

available data and open-source software and libraries (e.g., ESA SNAP, Scikit-Learn, OTB, Google Earth Engine) 

mostly executed in Python-script language. 

 

Keywords: fire severity, Sentinel-1, Sentinel-2, burn detection, post-fire recovery, geo-informatic, machine 

learning 
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Riassunto 

Nel bacino del Mediterraneo, sebbene gli incendi svolgano un ruolo cruciale nei processi ecologici, spesso 

rappresentano uno dei principali disturbi per le foreste e gli altri ecosistemi, comportando degradazione del 

paesaggio e degli habitat, e danni economici. Gli incendi, inoltre, determinano il consumo di riserve naturali di 

carbonio e l'emissione di gas serra (GHG) correlati al cambiamento climatico. Informazioni accurate relative 

all'impatto dell'incendio sull'ambiente forestale, e alla sua distribuzione nel tempo e nello spazio, rappresentano 

fattori chiave per la successiva attuazione della pianificazione territoriale a medio e lungo termine, finalizzata alla 

prevenzione e gestione di quei processi irreversibili di degrado degli habitat e del paesaggio. In questo contesto, il 

telerilevamento satellitare fornisce strumenti e tecniche affidabili per monitorare e quantificare l'impatto delle aree 

bruciate. Nel monitoraggio post-incendio, la maggior parte degli studi si è basata su dati satellitari ottici acquisiti 

utilizzando sensori multispettrali passivi, strettamente correlati allo stato fisiologico e biochimico della 

vegetazione. La vegetazione presenta infatti una firma spettrale univoca (con piccole variazioni a seconda della 

specie e delle condizioni ambientali), e la sua analisi ne consente la caratterizzazione e il successivo monitoraggio: 

le anomalie spettrali, infatti, si traducono in anomalie a livello della pianta. Sebbene l’efficacia dei sensori ottici 

per lo scopo appena descritto sia stata ampiamente dimostrata, essi presentano alcune limitazioni. Queste sono 

principalmente causate dalla sensibilità ad alcune condizioni ambientali: come luce solare e nuvolosità, che ne 

riducono la frequenza di osservazione; o dalla confusione di aree bruciate con superfici a bassa albedo (es. suoli 

scuri, superfici idriche, zone d'ombra); o la sensibilità ai valori crescenti dell'indice di area fogliare (LAI) che 

comporta una prematura saturazione del segnale. Inoltre, questi tipi di sensori non interagiscono direttamente con 

la struttura degli oggetti non permettendogli la cattura di molti aspetti qualitativi della copertura vegetale. Pertanto, 

sono necessari dati acquisiti da sensori che presentino sia indipendenza dalla copertura nuvolosa, sia la capacità di 

interagire con la struttura. Tra questi, i radar ad apertura sintetica (SAR) sono sensori attivi che generano i loro 

impulsi a microonde (2,4-100 cm) e li trasmettono dalla loro antenna ad un bersaglio posto sulla superfice terrestre. 

Il calcolo della quantità della frazione di segnale riflessa verso sensore (backscatter) caratterizza la firma del radar 

spettrale del bersaglio. La capacità di penetrazione dell'impulso nella materia è direttamente proporzionale alla 

lunghezza d'onda. Per questo motivo, le onde SAR possono attraversare il particolato atmosferico o interagire con 

la struttura della copertura vegetale. Pertanto, per caratterizzare e quantificare gli effetti di un disturbo sulla 

vegetazione, la tecnologia radar sfrutta le variazioni di backscatter causate dalla modifica della copertura vegetale, 

della struttura del suolo, e del contenuto di umidità degli oggetti osservati. Tuttavia, la sua complessità di 

elaborazione e interpretazione fa sì che questi sensori non siano ampiamente utilizzati quanto quelli ottici. 

In tale contesto, la presente tesi di Dottorato propone un workflow completo ed open-source finalizzato all'indagine 

e mappatura degli effetti del fuoco a breve termine sugli ecosistemi mediterranei (valutazione delle condizioni pre-

incendio; rilevamento delle aree bruciate; stima e mappatura della severità post-incendio) e al monitoraggio 

temporale della risposta della vegetazione durante i primi anni dopo l'evento di incendio (monitoraggio del 

recupero post-incendio). Per assecondare questi obiettivi, sono stati integrati dati ottici (Sentinel-2) e SAR 

(Sentinel-1) gratuiti e ad alta risoluzione spaziale e temporale, valutando i punti di forza e i limiti di ciascuno di 

essi, e i vantaggi forniti dalla combinazione di entrambe le informazioni. Il primo step ha riguardato la 

realizzazione di un'accurata mappa della copertura e uso del suolo (LULC) in un'area Mediterranea eterogenea 

(situata in Portogallo) al fine di avere una panoramica dello stato qualitativo e quantitativo della vegetazione 

presente prima dell'evento di incendio. A tal fine, diverse variabili sono state calcolate ed utilizzate come dati di 
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input (ad esempio, serie temporali degli indici di vegetazione, variabili biofisiche ottiche e SAR interferometrico 

- InSAR - coerenza). Inoltre, è stata applicata un'analisi exhaustive grid search per impostare gli iperparametri 

ottimali di un modello di machine learning (foresta casuale, RF). Questa integrazione ha permesso di raggiungere 

un'accuratezza complessiva (F-score) di 0.903, osservando un miglioramento del 2,53% quando i dati SAR sono 

stati accoppiate alle informazioni ottiche. 

Il secondo step ha riguardato il rilevamento accurato delle aree bruciate e la delimitazione dei loro perimetri. Sono 

stati proposti due approcci per raggiungere questo obiettivo: il primo riguardava solo l'uso di dati SAR 

(backscatter, indici SAR a doppia e singola polarizzazione, texture) per un rilevamento non supervisionato 

(utilizzando l'algoritmo k-mean, impostato utilizzando un'analisi silhouette) delle aree bruciate in due diversi siti 

di studio (situati rispettivamente in Portogallo e in Italia), raggiungendo valori di F-score pari a 0.803 (sito 

portoghese) e 0.853 (sito italiano); il secondo approccio proponeva un processo di image composite 

multitemporale, combinando sia le immagini Sentinel-2 che quelle Sentinel-1, e una successiva classificazione ad 

oggetti (GEOBIA) per mappare le aree bruciate su scala regionale/nazionale da incendi avvenuti durante un’intera 

stagione degli incendi (2017) in Portogallo, ottenendo valori F-score di 0,914 (quando vengono utilizzati solo dati 

ottici) e 0,956 (combinando informazioni ottiche e SAR). 

Nel terzo step, vengono stimati gli effetti dell'incendio a breve termine, sotto forma di severità dell'incendio, e la 

loro distribuzione spaziale. Sono stati presentati tre approcci di cui due simili e accomunati dall'uso del protocollo 

Composite Burnt Index (CBI) per determinare le classi di severità sul campo e per definire i dati di addestramento 

del modello. In un approccio (sito di studio situato in Portogallo), si è utilizzato l’algoritmo RF come modello; 

mentre in un secondo approccio (sito di studio situato in Italia) è stata implementata una rete neurale artificiale. Il 

modello RF ha raggiunto un valore di F-score di 0,838 quando entrambi i set di dati sono stati combinati (S1 + 

S2), rispetto ai valori ottenuti utilizzando solo SAR (0,513) e solo ottico (0,805). I risultati ottenuti utilizzando la 

rete neurale artificiale (F-score > 0,95) hanno dato prova del grande potenziale nell'uso di questi modelli avanzati 

di deep learning. Un terzo approccio prevedeva l’applicazione di una spectral mixture analysis (SMA) delle 

immagini ottiche Sentinel-2 per caratterizzare spettralmente e quantificare la proporzione delle tre componenti 

frazionali indicativi dei principali effetti fisici riscontrabili immediatamente dopo un incendio boschivo (carbone, 

vegetazione bruciata e vegetazione verde). 

Per i primi anni dopo un evento di incendio, l'indagine sulle dinamiche temporali e spaziali del recupero post-

incendio di diverse tipologie di vegetazione mediterranea ha caratterizzato il quarto step. Sia le serie temporali 

SAR Sentinel-1 che quelle ottiche Sentinel-2 sono state analizzate separatamente in base alle classi di gravità 

dell'incendio (ottenute nello step precedente), evidenziando la complementarietà e l'essenzialità di entrambe le 

informazioni. Inoltre, è stato proposto un indice burn recovery ratio (BRR) per la stima e la mappatura della 

distribuzione spaziale del grado di recupero della vegetazione. L’indice è stato ottimizzato nella fase di predizione 

delle condizioni pre-incendio tramite algoritmo di regressione di machine learning. 

Lo sviluppo di questi approcci e la gestione di questa quantità di dati hanno richiesto tecniche e soluzioni avanzate 

di geo-informatica, geostatistica, geomatica, image processing e modelli avanzati di intelligenza artificiale. 

Tuttavia, l'intero processo è stato sviluppato ed eseguito rispettando il principio dell'utilizzo di dati gratuitamente 

disponibili e software e librerie open-source (ad es. ESA SNAP, Scikit-Learn, OTB, Google Earth Engine) eseguiti 

principalmente tramite linguaggio Python.  



8 
 

1. General Introduction 

1.1. Wildland fire overview 

 Wildland fires are a primary natural component that influences the ecological dynamics of many ecosystems at 

different spatial and temporal scales. On the one hand, fire stimulates bio-physical activities and natural 

regeneration, and promotes seed germination and production, positively and indirectly affecting the biodiversity 

of the affected environments (Emilio Chuvieco, 2009; Emilio Chuvieco et al., 2014; Moreira et al., 2020; Valkó 

& Deák, 2021). Moreover, it can improve soil properties when the frequency is low and/or the temperatures 

reached are not high enough to cause the volatilization of organic matter and nutrients (Alcañiz et al., 2018; Pereira 

et al., 2018; Romeo et al., 2020). On the other hand, fire can represent a long-term threat, contributing to 

environmental degradation,  namely, soil erosion, habitat simplification, biomass consumption, and greenhouse 

gas (GHGs) emissions affecting air quality and global climate (Cascio, 2018; Hardy, 2005; Häusler et al., 2018; 

Reid et al., 2016; Rosa et al., 2011). Moreover, the direct influence of human activity on its frequency or, indirectly, 

the negative consequence that such activities have raised on global climate and the modification of landscape and 

habitat patterns has led to a worsening fire susceptibility of some environments during the last decades (Mitchell 

et al., 2009; Moreira et al., 2020). Such events negatively impact ecosystem services, such as food production, 

fresh water stocks, wood products, microclimate, recreation, and tourism (Emilio Chuvieco et al., 2014). 

Moreover, these events have direct socio-economic damages given by the loss of human life and infrastructure. 

According to European fire statistics (Figure 1.1) (EFFIS annual fire reports, 2022; European Environment 

Agency, 2022), although the long-term trend of burned area extension has decreased in Europe, some countries 

have experienced more extreme events (in terms of the burned surface) during the last decades (e.g., Portugal). 

 

Figure 1.1. Annual burned surface in European countries between 1980 and 2020, with more focus on the Mediterranean  European 

countries (EUMED5: Portugal, Spain, France (southern), Italy and Greece). European member countries not included in EUMED5 are 

designed as “Other countries”. The reference is https://www.eea.europa.eu/data-and-maps/daviz/burnt-forest-area-in-five-4#tab-

chart_5. The Data are, in turn, supplied by “San-Miguel-Ayanz, J., et al., Forest Fires in Europe, Middle East and North Africa 2020, 

EUR 30862 EN, Publications Office of the European Union, Luxembourg, 2021, doi:10.2760/216466, JRC1267665”. 

Notably, in the Mediterranean basin, although wildland fires are an integral element of natural ecosystems and 

historically used as a tool for land-use management, their impacts have increased in the last decades, causing 

https://www.eea.europa.eu/data-and-maps/daviz/burnt-forest-area-in-five-4#tab-chart_5
https://www.eea.europa.eu/data-and-maps/daviz/burnt-forest-area-in-five-4#tab-chart_5
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significant economic damages and landscape disasters (Chuvieco, 2009; San- Miguel-Ayanza et al. 2018; San-

Miguel-Ayanza et al. 2019; Silva et al. 2019; Otón et al., 2019). 

Mediterranean ecosystems constitute a critical biome at the European level due to their high biodiversity and 

intense interaction with human activities  (Aragones et al., 2019; Emilio Chuvieco, 2009; Moreira et al., 2020). 

The typical Mediterranean climatic regime, characterized by long periods of summer drought, exacerbated by the 

current global warming, entails an increasing wildfire risk in terms of frequency, extension, and severity (Moreira 

et al., 2020). Fire severity is defined as the degree of direct environmental chemical-physical alterations, 

decomposition, and loss of above/below-ground organic and inorganic matter caused by the combustion process 

(De Santis & Chuvieco, 2007; Key & Benson, 2006; Lentile et al., 2006; Roth et al., 2012). It plays a critical role 

in the sustainability of Mediterranean habitats, influencing the competitive interactions between species and their 

post-fire recovery capability (Christopoulou et al., 2019; José Vidal-Macua et al., 2017; Lacouture et al., 2020; 

Morresi et al., 2019; Tanase et al., 2011; Viana-Soto et al., 2017). Moreover, the widespread accumulation of 

woody fuel, a consequence of the abandonment of the semi-natural and agricultural areas that has been occurring 

in Mediterranean landscapes, has been causing suitable conditions for the ignition and the progression of such high 

intensity fires (Xofis et al., 2022). Fire intensity, defined as the energy released by a fire per length of fire front 

per unit time (Keeley, 2009; Key & Benson, 2006). 

The immediate impact of the fire appears in the form of alteration of the vegetation cover, both structurally (e.g. 

canopy and biomass consumption) and chemical-physically, with the death or consumption of the organic matter 

and photosynthesizing tissues, caused by the direct heat transfer generated by the fire or the biomass combustion 

(Key & Benson, 2006; Lentile et al., 2006). Subsequently, in response to a fire event, Mediterranean habitats 

activate natural mechanisms for recovery of pre-fire ecological conditions. The effectiveness of these mechanisms 

depends on the characteristics of the fire itself, in turn, influenced by several environmental factors (combined 

action of vegetation type, wind, moisture, and topography), on its direct physical impact on the land surface, and 

on the degree of ecosystems resilience (Filipe X Catry et al., 2012; Fernández-García et al., 2018; Fernandez-

Manso et al., 2016; Frazier et al., 2015; Gouveia et al., 2010; Morresi et al., 2019).  

Therefore, regarding the short-term effects, it can be argued that they depend on the susceptibility of the 

ecosystems. First, the energy produced by fire (intensity) is determined by the nature of the fuels available for 

combustion, and the type of vegetation. In particular, the density and moisture  content of fuels. Meteorological 

conditions play a decisive role (e.g., the rainfall drastically reduce the fire intensity and duration while the winds 

feed it with comburent), and land topography (e.g., the presence of natural barriers for the advancement of the 

flames or slopes that, instead, facilitate the contact between them and the surrounding vegetation) (José Vidal-

Macua et al., 2017; Key & Benson, 2006; Moreira et al., 2020). 

The complexity of fire’s effects on the Mediterranean ecosystem reflects the complexity of the ecosystem itself. 

Each of the thousands of individual components that constitute the ecosystem uniquely responds to the fire event 

but, if it could be more or less relevant to be individually accounted, depends on the objectives (Key, 2006). In 

fact, the evaluation of the fire effect remains a judgment that changes according to the study’s context and 

objectives. Although intensity and severity are two highly correlated factors, the same intensity value can produce 

different degrees of severity burn, depending on the combination of the various environmental and vegetational 

factors seen above. Moreover, mome species are known to have adaptations that make them more resistant to fire 

than others (Mitchell et al., 2009; Romeo et al., 2020). The fire severity represents the most suitable metric for 
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describing the post-fire effects on vegetation. It is a coherent numerical scale that measures the magnitude of 

change on a single factor and as a composite of multiple ecological factors (Key & Benson, 2006). 

In this context, the definition of protocols for the qualitative and quantitative description of short and longer effects 

on Mediterranean ecosystems is crucial for better understanding their dynamics and planning appropriate post-fire 

management strategies (Chu & Guo, 2013; Emilio Chuvieco et al., 2019; Carmen Quintano et al., 2020). A holistic 

approach is generally used at large scales and in landscape ecology in order to represent the severity of the burn 

as an aggregate of effects on a given area.  

From a landscape perspective,  the widest used and accepted protocol for short-term fire severity effects estimation 

is the Composite Bun Index (CBI) proposed by Key & Benson (2006) (Key & Benson, 2006) and developed in 

the framework of the FIREMON Project (2006). This method is used to derive index values that summarize overall 

burn ecological impacts within an area, that is, the average fire effects on a plot and the main macro-components 

that compose it: soil, litter and vegetation. To derive the averaged severity value for a sample plot, the metric 

combines average conditions of many visual-assessed ecological factors (e.g., percent of unaltered green 

vegetation, torched trees and coal thickness, altered brown foliage) across multiple strata composing an ecosystem 

(litter, herbs, shrubs, short trees, medium height/sub-dominant trees and high/dominant trees). The short-term fire 

effects are independently examined by strata so that they can be as relatively associable as possible (Key & Benson, 

2006). The CBI is, therefore, a holistic approach that integrates the different fire effects that can be easily observed 

on the ground converts them to numerical values, and returns an average value, to simplify the severity 

categorization procedure. It is not surprising, in light of this, that this approach was designed to make the high 

variability observable in a post-fire context as comparable as possible with the perspective of a multispectral sensor 

mounted on a satellite platform, whose spatial unit (pixel) is expressed by simple single numbers (Key & Benson, 

2006; Sander Veraverbeke & Hook, 2013). Several modifications and optimizations of the CBI protocol have been 

proposed in the literature (e.g., De Santis & Chuvieco, 2007, 2009; Saulino et al., 2020). However, the relevance 

of CBI is given by having standardized and made replicable to different ecosystems the approach for fire effects 

assessing, as well as clarifying their definitions. 

Although the effects of burn severity vary within a continuum, for convenience and to be comparable to remote 

sensing data, burn severity is often summarized into three discrete classes (low, moderate and high), from which 

it is possible to retrieve intermediate classes (De Luca, Silva, Oom, et al., 2021; De Santis & Chuvieco, 2007, 

2009; Lentile et al., 2006). Employing the nomenclature used in several studies that evaluated the pure components 

observable in an immediate post-fire forest environment (Lentile et al., 2006; Quintano et al., 2013, 2020; A M S 

Smith et al., 2007; S Veraverbeke et al., 2012; Sander Veraverbeke & Hook, 2013) , indicative of the physical fire 

effects, the definition as mentioned above of severity classes could be replaced to make the assessment as objective 

as possible (Figure 1.2):   

❖ Green component (from unburned to low severity): the substrate, the understory vegetation (herbs, shrubs and 

trees less than 1 meter) and trees canopies could result unaltered by fire or only slightly disturbed by heat. In 

these conditions, most of the green photosynthetic plant tissues stay alive. Fallen trees should also be 

considered (due to wind or soil instability) but in which the conditions of the canopy are as described above. 

From a satellite perspective, and/or according to the variable target under study, this severity class may only 

refer to the crowns of the dominant trees. Therefore, it could also include sub-areas where the undergrowth 

has been affected by the fire while the foliage has not. 
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❖ Scorch component (from moderate to moderate-high severity): alteration of pre-fire green healthy vegetation 

foliage to brown dead plant tissues (scorched), mostly leaves/noodles killed by proximal heat radiated and 

convected from the surface fire or by fire-induced girdling, with the structural elements (trunk and branches) 

affected but unconsumed (except for the fine outer branching). The understory is generally heavily altered or 

consume. As mentioned above, fallen trees must be counted to describe this effects category. It is expected 

that delayed mortality will arise in the most affected tree canopies. Fallen trees should also be considered (due 

to wind or soil instability), but in which the conditions of the canopy are as described above. 

❖ Charcoal component (from high to very-high severity): Severe alteration or consumption of crown foliage and 

woody material, implicating conversion to inorganic carbon (charcoal), till, at extreme severities, the complete 

loss of woody fuel. Since CBI is a visual-based severity assessment approach, blackened woody tree parts 

from soot or high flames (without effectively affecting the internal tissues) have been generally included in 

this category of short-term effects. A mantle of coal and ash replaced the total absence of short vegetation. 

 

Figure 1.2. The figure illustrates four cases of post-fire effects on tree’s canopies, three of which represent the main post-fire 

components (green, top-left box; scorch, top-right box; charcoal, bottom-right box) and one mixed class (green-scorch, bottom-left 

box). The photos were taken in Serra de Monchique - Portugal (top-left box; photo on the right of the bottom-left box; photo on the 

right of the bottom-right box) and in the Aspromonte National Park - Italy (top -right box; photo on the left of the bottom-left box; 

photo on the left of the bottom-right box). 

As mentioned above, the direct impact of fire influences the effectiveness of post-fire recovery strategies that are 

activated by Mediterranean ecosystems immediately after the event (Filipe X Catry et al., 2012; Fernández-García 

et al., 2018; Fernandez-Manso et al., 2016; Frazier et al., 2015; Gouveia et al., 2010; Morresi et al., 2019), as well 

as they can differ based on the combination of same variables that govern the behavior of the fire itself: 

environment (soil moisture-holding capacity, microclimate), topographic (geomorphology, aspect), vegetation 

(type  and  quantity  of  vegetation present before and after the fire as  seed bank able to mature under fire-altered 

microclimate and soil), human activity (Christopoulou et al., 2019; De Luis et al., 2006; José Vidal-Macua et al., 

2017; Key, 2006; Mitchell et al., 2009; Montès et al., 2004) 

Once the fire damages have been quantified and categorized, the monitoring of the long-term impacts and the 

response of environment should be set as a subsequent goal. The post-fire recovery of vegetation cover structure 

is a natural mechanism that promotes the restoration of numerous ecosystem services, such as the carbon 

sequestration induced by the regenerating process of forest vegetation, which mitigates the carbon emissions to 
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the atmosphere due to fire (Frolking et al., 2009; Huang et al., 2020; Morresi et al., 2019; Ryu et al., 2018; 

Semeraro et al., 2019). In Mediterranean ecosystems, the recovery process is very complex. The first stage of post-

fire dynamic auto-succession is usually characterized by prompt and massive colonization of pioneer 

Mediterranean annual grasses and perennial woody shrubs (Fabaceae, Cistaceae, Lamiaceae, Pteridofite) or 

pioneer trees (Capitanio & Carcaillet, 2008; De Luis et al., 2006; Mitchell et al., 2009; Montès et al., 2004). The 

gaps caused by parts of dead and/or destroyed foliage expose the underlying layers, which are rapidly colonized 

by flourishing herbaceous pioneer vegetation. Most of the taxa recognizable in a post-fire environment play a 

fundamental ecological role in the general recovery of degraded or abandoned areas (e.g., former agriculture areas) 

in Mediterranean territories (Xofis et al., 2022). The second stage (medium and long term) involves the gap filling 

by the forest seedlings in the areas previously occupied or currently surrounded by forest (Frazier et al., 2015; 

Montès et al., 2004). This step can be anticipated when the woody species are characterized by a high capacity for 

asexual (es. Eucalyptus, Quercus, etc.) or sexual (Mediterranean pines) regeneration (Capitanio & Carcaillet, 2008; 

Filipe X Catry, Moreira, et al., 2013; Montès et al., 2004; Romeo et al., 2020) as adaptations to fire. The following  

competition phases determine the closure of the foliage of the new individuals. Meanwhile, below the canopies,  

the seedlings of shade-tolerant trees continue to develop (Capitanio & Carcaillet, 2008; Frazier et al., 2015). 

1.2. The role of spaceborne remote sensing for wildland fire monitoring 

1.2.1. The optical domain 

Remote sensing techniques and data have been extensively employed to detect and estimate the effects of fire on 

ecosystems, promoted by the increasing availability of numerous satellite sensors at rising spatial, spectral, and 

temporal resolutions, and even more robust analysis algorithms and processing software (Chu & Guo, 2013; Emilio 

Chuvieco et al., 2019; Corona et al., 2008; I. Gitas et al., 2012a). Most of the methodologies presented in those 

studies relied on the use of multispectral optical imagery to detect burned areas (Emilio Chuvieco et al., 2016; 

Filipponi, 2019; Mpakairi et al., 2020; Otón et al., 2019; Pulvirenti et al., 2020; Santos et al., 2020; Silva et al., 

2004; Silva et al., 2019; Sousa et al., 2003), estimate the degree and the spatial distribution of burn severity (De 

Luca, Silva, Oom, et al., 2021; Fernández-García et al., 2018; Morresi et al., 2022; Saulino et al., 2020), and assess 

other consequences of the fire on environmental biological and structural features, such as biomass consumption 

(Garcia et al., 2017) and greenhouse gas emissions (Ostroukhov et al., 2022; Rosa et al., 2011).  

Multi-spectral optical sensors are passive systems capable of capturing the reflected electromagnetic waves 

(emanated by the Sun) in the regions of the electromagnetic spectrum including between the visible and the infrared 

(wavelength around 400 nm to 2300 nm, if thermal-infrared is excluded). The efficiency of these passive sensors 

is due to the high sensitivity of the visible (VIS), near-infrared (NIR), and short-infrared (SWIR) spectral regions 

to the surface changes caused by fire (Chuvieco 2009; Chuvieco et al. 2019; Pereira et al. 1999). Using the 

definitions schematized by Chuvieco et al. (2020): the VIS region (0.4–0.7 µm) covers the spectral wavelengths 

our eyes can sense. The VIS is generally decomposed into three primary colors: blue (0.4–0.5 µm), green (0.5–

0.6 µm), and red (0.6–0.7 µm). The spectrum’s NIR region (0.7–1.2 µm) lies just beyond the human eye’s 

perception capability and is highly sensitive to plant health (photosynthetic) status and vegetation net primary 

productivity. Within this region, the Red-Edge (0.7-0.75 nm) part is distinguished to be particularly sensitive to 

leaf pigments content. The SWIR region (1.2–2.5 µm), in which the influence of the Sun’s energy is still very 
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relevant, provides the best estimations of the moisture content of soil and vegetation in the optical domain. A 

substantial part of these wavelengths strikes objects on Earth’s surface and can be partially or wholly absorbed or 

reflected by them. The magnitude of reflection and/or absorption energy is defined by the physic-chemical 

characteristics of the material or by physiological processes that can occur within the tissues of the objects. In the 

case of vegetation, the photosynthesis and the amount of chlorophyll determine a unique interaction with 

electromagnetic waves if compared to other materials (Figure 1.3, left). For each specific portion of the 

electromagnetic spectrum, therefore for each wavelength or band, the absorbed/reflected energy balance should 

be at stable range levels when the vegetation is healthy, obviously with intra-variations as a function of different 

factors such as vegetation type and environmental conditions (see Figure 1.3). This is because the chlorophyll 

content is, in turn, related to the degree of stress of the plant and to seasonal-physiological phases. Thus, the 

quantitative-qualitative analysis of the differences between the spectral signature of healthy vegetation and its 

signature in a changed condition (for example, due to a fire) is the theoretical basis of remote sensing monitoring 

(Xie et al., 2008). 

In the period immediately after a fire, burned surfaces tend to be relatively dark in the VIS, due the dominant 

presence of black charcoal and the decrease in other reflective components (such as photosynthetically active 

pigments of vegetation). Local exceptions may concern the presence of exposed bright soil and/or light ash. At the 

same time, these conditions cause a significant decrease in NIR reflectance. Wavelengths falling in the SWIR 

region tend to present higher reflectance due to the decrease in moisture content (Pereira et al., 1999). The specific 

spectral signature of a portion of the burned vegetation surface, therefore, depends on the grade of occurred 

severity, namely, on the proportion of the main three post-fire fractional components (green vegetation, scorched 

brown vegetation, black charcoal) (Figure 1.3) and to the combined effect of diverse factors (changes in the 

moisture content and temperature, different reflectance from bared soil, etc.) (Pereira et al. 1999; Smith et al. 2005; 

Inoue et al. 2008). 

 

Figure 1.3.  Specific spectral signatures of the three main post-fire fractional components, representing the main physical effects 

induced by the fire on vegetation: unburned/lowly affected green vegetation (left), scoarched vegetation (middle), heavily 

burned/torched vegetation (right). The photos were taken in Coruche - Portugal (left), in the Aspromonte National Park - Italy (middle), 

in Serra de Monchique (right). At the bottom, there are the respective spectral signatures retrieved from three different sources: spectral 
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library retrieved by the Centro de Estudos Florestais (CEF) of the Instituto Superior de Agronomia (Lisbon), ASTER spectral library 

(Baldridge et al., 2009), and Sentinel-2 image (visual-chosen). 

The assessment of fire effects and their severity can be based on a mixture composed of these three typical post-

fire fractional cover components, given their strong correlativity with the actual physical effects that occurred on 

the ground, thus directly comparability to the burn severity parameters traditionally assessed on field monitoring 

standard protocols (Lentile et al., 2006; 2009; Smith et al., 2007; Sunderman & Weisberg, 2011; Sander 

Veraverbeke & Hook, 2013), for example, that proposed by Key & Benson (2006), aimed to standardize the 

measurements of fire effects across space and time, in a context that is otherwise characterized by high variability 

(Key & Benson, 2006; Sander Veraverbeke & Hook, 2013). 

The same principles are applied for the long-term monitoring of post-fire recovery. In the long term, these post-

fire components tend to be attenuated with an inverse proportionality to the fire severity that occurred (Pereira et 

al. 1999; Smith et al. 2005; Inoue et al. 2008). The simultaneous initial re-growth of both herbaceous and woody 

vegetation, thus the phenological and physiological vegetation trend and the increasing moisture content, causes 

an increase  in  reflectance  in specific wavelengths (VIS and NIR)  and,  in  any  case, a  general rise in  optical  

brightness, while the SWIR reflectance tends to return to lower values immediately after the fire (De Luca, Silva, 

& Modica, 2022; Frazier et al., 2015; Morresi et al., 2019). 

However, optical systems present some limitations, mainly for their sensitivity to some environmental conditions, 

such as sunlight and cloud cover, which reduces the frequency of observation at the visible/infrared wavelength 

bands, and for the spectral confusion of burned areas with unburned low albedo surfaces (i.e., dark soils, water 

surfaces, shadow areas) (Lehmann et al., 2015; Minchella et al., 2009; Stroppiana et al., 2015). Furthermore, this 

type of sensor cannot capture some quantitative aspects, since these wavelengths do not interact directly with the 

structure of the objects (Santi et al., 2017). 

1.2.2. SAR sensors 

Concurrently with optical-based data and approaches for burned area detection and fire effects monitoring, the 

synthetic aperture radar (SAR) sensors are active systems working in the microwave region of the electromagnetic 

spectrum (2,4-100 cm). The high sensitivity of SAR signal to the structural properties of the vegetation, with a 

generally linear correlation between backscatter and vegetation biomass (Chen et al., 2019; Quegan et al., 2000; 

Saatchi et al., 2012; Saatchi, 2019; Yu & Saatchi, 2016), and its capabilities for all-weather and solar radiation 

independency, make the SAR backscatter complementary information with optical data (Minchella et al., 2009; 

Polychronaki et al., 2014; Tanase et al., 2011; Tanase, Santoro, Wegmüller, et al., 2010; Zhou et al., 2019). 

The response of the radar signal is affected by the ensemble of environmental variables (e.g. land cover, vegetation 

cover structure, moisture content, dielectric property of objects, size/shape, and orientation of the scatterers in the 

canopy) and variables related directly to the sensor (e.g., polarization, which describes the orientation of the plane 

of oscillation of a propagating signal;  wavelength, and orbit) or to the local surface properties (e.g., topography, 

orientation, surface roughness, and local incident angle) (Meritxell Gimeno & San-Miguel-Ayanz, 2004; Hachani 

et al., 2019; Imperatore et al., 2017; Lapini et al., 2020; Santi et al., 2017; Tanase et al., 2011; Tanase et al., 2020; 

Mihai A. Tanase, Santoro, Wegmüller, et al., 2010). The behavior of the SAR signal is determined by the 

wavelength used, as it defines the penetration capacity of microwaves across materials and objects on the Earth’s 

surface: the greater the wavelength, the greater the ability to penetrate the material. For vegetated areas, this implies 
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that longer SAR bands, such as L-band (15 – 30 cm) and P-band (30 – 100 cm), interact with deeper strata and/or 

larger elements of vegetation cover than shorter bands, such as the X-band (3.75-7.5 cm) which, on the other hand, 

are more suitable for examining the superficial layers and small elements of vegetation cover (such as small 

branches and leaves) (Imperatore et al., 2017; Tanase, Santoro, De La Riva, et al., 2010).  

The Earth’s microwave backscatter is affected by variations in the structural parts and dielectric permittivity of 

the surface, triggered by vegetation cover, shape, size, and orientation of the canopy scatterers, soil structure, and 

moisture content modifications, making it a suitable system for discriminating alterations on the Earth’s surface. 

In detecting burned areas, SAR technology uses these variations in the backscatter caused by the fire-inducted 

modification of vegetation cover and soil structure and moisture content (Donezar et al., 2019; Imperatore et al., 

2017; Kurum, 2015; Pepe et al., 2018b; Santi et al., 2017; Tanase et al., 2011; Tanase, Santoro, Wegmüller, et al., 

2010). Immediately after a disturbing event and for the first year after, the scattering effect of the damaged 

vegetation structure is lacking/decreasing. At the same time, the contribution to the back diffusion by the humidity 

and the roughness of the exposed soil is higher. In Mediterranean ecosystems, this generally results in a lowering 

of the cross-polarized signal (vertical-horizontal, VH, and horizontal-vertical, HV) due to the consequent reduced 

volumetric dispersion contribution of forest canopies (volume scattering), and an increase in the co-polarized 

signal (vertical-vertical, VV or horizontal-horizontal, HH), interacting with small branches, stems and, principally, 

the soil surface (direct and specular backscatter) which is highly exposed after a fire (Imperatore et al., 2017; 

Saatchi, 2019a). The backscatter, typically increasing with forest biomass, has been found to be more directly 

correlated to above-ground biomass at cross-polarization than co-polarizations (Saatchi, 2019a; Saatchi et al., 

2012; Yu & Saatchi, 2016). Due to this different interaction with the various aspects of the effects of fire on the 

environment, both types of polarization can be decisive in detecting burnt forest areas ( Chen et al., 2018; Tanase 

et al., 2014). 

1.2.3. ESA Copernicus Sentinel satellites 

Several space missions provide satellite constellations operating SAR and multispectral optical imaging dedicated 

to environment observation, which is helpful for fire monitoring purposes (Emilio Chuvieco et al., 2019). 

Copernicus missions, by the European Space Agency (ESA), provides free high spatial and temporal resolution 

C-band SAR (Sentinel-1) and multispectral (Sentinel-2) data. The Sentinel-1 constellation comprises two polar-

orbiting satellites performing C-band (from 3.75 cm to 7.5 cm wavelength) radar imaging. The two Sentinel-1 

platforms were launched on 03 April 2014 (A) and the 25 April 2016 (B). The Sentinel-2 constellation is 

constituted by two polar-orbiting satellites placed in the same sun-synchronous orbit, performing 13 spectral 

bands: four bands at 10 meters (Blue492nm, Green559nm, Red664nm, NIR832nm), six bands at 20 meters (Red-Edge704nm, 

Red-Edge740nm, Red-Edge782nm, NIR864nm, SWIR1613nm, SWIR2202nm) and three bands at 60 meters (Coastal 

aerosol442nm, Water vapour945nm, SWIR-Cirrus1373nm) spatial resolution. The first satellite of Sentinel-2 (A) has been 

in orbit since 23 June 2015, meanwhile the second one (B) was launched on 7 March 2017 (ESA Sentinel 

Homepage 2022). 
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Figure 1.4. The European Space Agency (ESA) Copernicus multispectral (optical) Sentinel-2 (on the left) and the SAR Sentinel-1 (on 

the right) platforms. Pictures were retrieved from https://sentinels.copernicus.eu/web/sentinel/home. 

The high spatial and temporal resolutions, together with the free distribution, make the Sentinel missions 

particularly suitable for risk monitoring and rapid mapping (Martinis et al., 2017). The spatial resolution has a 

considerable effect on the detection of burned areas and their subsequent monitoring, lowering the omission errors 

typical of the coarser resolution data in detecting the smallest areas and improving spectral discrimination 

(Belenguer-Plomer, Tanase, et al., 2019; Boschetti et al., 2019; Stroppiana et al., 2015; Verhegghen et al., 2016). 

The advantages become more evident when the acquisition revisit time of these products is a few days, allowing 

the monitoring of temporal trends at an appropriate temporal scale (Boschetti et al., 2019; I. Gitas et al., 2012a; 

Mihai A. Tanase et al., 2020; Verhegghen et al., 2016). 

Furthermore, ESA itself distributes the Sentinel application platform (SNAP) (ESA SNAP Homepage 2022), a 

free and open-source software platform containing the toolboxes necessary for pre-processing and processing 

Sentinel data. The SNAP toolboxes, initially Java-based, can also be accessed from the Python programming 

language (The Python Language Reference 2022), one of the most popular languages for remote sensing and 

scientific analysis, widely used in both operational and scientific domains through the ESA SNAP- Python 

(snappy) interface (ESA SNAP Cookbook 2022). 

1.2.4. Software, libraries, tools, and algorithms for image processing 

Following the acquisition of the raw data from the satellite system, represented by digital images, the remote 

sensing activity mainly consists of extracting, processing, and analyzing the data and interpreting the information 

through specific image processing procedures. Since data derived from these systems could be quite diverse, 

advanced techniques integrate geo-statistics, informatic (geo-informatics), data mining, pattern recognition and 

machine learning methods in order to organize, analyze, model and map the information extracted (Bot & Borges, 

2022; Emilio Chuvieco et al., 2019; Lapini et al., 2020). These include various methods of data analysis in which, 

through statistical models, advanced algorithms extract and learn information from data, and then they can 

associate and replicate, recognize and classify this information autonomously into new groups of data (Bot & 

Borges, 2022; Lary et al., 2016; Ramezan et al., 2019). Remote sensing data processing and analysis, and the 

implementation of advanced algorithms are operations that require specific information technology (IT) solutions 

and high computational resources. For this reason, several IT systems and advanced image processing software 

have been developed in recent years, of which a significant contribution comes from free and open-source 

distributions. Among these are the libraries and the modules built and implemented in a programming scripting 

https://sentinels.copernicus.eu/web/sentinel/home
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language (e.g., Python, Java). Decomposition and adaptability are the main features that allow the construction 

and combination of the most suitable processing solution (L. Wang et al., 2019; Zhong et al., 2018). Implementing 

the resources provided by different software within the same workflow, increasing its inter-compatibility 

capabilities, allows for creating increasingly optimized algorithms that optimize the results. 

With the remarkable advances in the latest-generation high-resolution Earth observation, the amount of remotely 

sensed data has been accumulated to an exabyte-scale and has been increasing in petabytes every year. In order to 

satisfy the huge calculations required, always better specific hardware is necessary, thus facilitating the 

development and diffusion of cloud computing. Many platforms have also been developed in this area, some of 

which are available with an open-source license (L. Wang et al., 2019). 

1.3. Objectives and organization of the thesis. 

In the framework of this Ph.D. thesis, partly carried out abroad in collaboration with the Remote Sensing research 

laboratory of the Forest Research Centre, School of Agriculture of the University of Lisbon (Portugal), the research 

activity aims at the development of a complete workflow for the analysis and monitoring of the short and medium 

terms effects of fires on Mediterranean forest ecosystems, with the primary purpose to supply the state of the art 

with original contributions. Multisensor procedures have been built by integrating both optical (Sentinel-2) and 

SAR (Sentinel-1) freely available data and, in some applications, comparing and evaluating the accuracy of the 

three different possible configurations (optical only, SAR only and optical+SAR) in order to find  the most suitable 

in terms of accuracy achieved. 

The workflow constituting this thesis’s main structure is composed of four main phases, distributed across six 

Chapters illustrating six distinct and original scientific contributions carried out by investigating different fire 

events that occurred in two countries of Mediterranean Europe. Each chapter aimed to optimize the methodologies 

employed for the respective objective. Summarizing the four phases below: 

A. The workflow starts with the classification of the quantitative and qualitative conditions of the vegetation 

before the event. The assessment of fire effects is based on the estimation of the fire-induced changes on the 

pre-fire vegetation status. Information about the pre-fire condition of the sites under study is therefore 

essential. In Chapter 2 a supervised classification was developed and optimized by integrating optical and 

SAR information to retrieve a high-accuracy land use and land cover (LULC) map. The single and integrated 

use of both sensor sources was evaluated, and the results were exploited to improve the accuracy of the final 

map. The LULC illustrates the scenario of the study site before the fire event.  

B. Timely and accurate detection and quantification of burned areas involve the second operational phase of the 

workflow and, simultaneously, the first step after the fire occurrence for assessing the damage and addressing 

the post-event management. It concerns the implementation of two different mapping approaches for burned 

areas: one using only SAR images for the execution of an unsupervised classification procedure in two distinct 

Mediterranean sites (Chapter 3); the second approach concerns the integration of multitemporal composite 

and supervised geographic object-based classification approach (GEOBIA), testing on optical and multisource 

(optical+SAR) dataset, to map burned areas on a regional scale (Chapter 4). 

C. In the third phase, the analyses are deepened to assess the short-term effects, in the form of fire severity, for 

assessing and understanding the ecological impacts of the fire and the factors contributing to its behavior and 

propagation (Chapter 5 and Chapter 6). The integrated use of both optical and SAR data is evaluated in terms 
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of accuracy in two study cases. A spectral investigation of the short-term damages induced by the fire, at 

forest crown level, was carried out in Chapter 7, by employing a spectral mixture analysis (SMA). 

D. In the fourth step, the information about the pre-fire vegetation and the severity of the fire that resulted from 

the previous analyses are essential for assessing the medium-term impacts of fire on ecosystems and their 

capacity to repristinate the ecosystem services partially lost. Moreover, this knowledge is essential to address 

initiatives and strategies for post-fire management, particularly in high-risk areas such as Mediterranean 

countries. For these purposes, optical and SAR spectral time-series were employed for spatially and 

temporally monitoring the response and recovery of three different vegetation types, differentiating the 

investigation in function of the recorded fire severity during the three years after the event (Chapter 6). 

The remote sensing tecniques consists mainly of the phases of data processing and analysis, and interpretation of 

the information. During the various steps carried out during the research activity, emphasis was placed on 

developing procedures based on advanced image processing and machine learning algorithms through open-source 

software, toolboxes and Python-based libraries.  
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2. Investigation about the pre-fire condition of vegetation  

Adapted from  

De Luca, G., Silva, J.M.N., Di Fazio, S., Modica, G.: Integrated use of Sentinel-1 and Sentinel-2 data and open-

source machine learning algorithms for land cover mapping in a Mediterranean region. Eur. J. Remote Sens. 

55, 52–70 (2022). https://doi.org/10.1080/22797254.2021.2018667. 

 

Mapping the vegetation composition, besides providing information on the quantitative and qualitative  status of 

the area under study, is a necessary early  step in the analysis and monitoring protocols of the  state of the vegetation 

and ecosystems’ responses  affected by various environmental disturbances (Choudhury et al., 2021; Grabska et 

al., 2020; Monroe et al., 2020; Pollino & Modica, 2013; Rodman et al., 2021; Semeraro et al., 2019), including  

wildfires (I. Gitas et al., 2012a), storms (Giannetti et al., 2021; Hamdi et al., 2019), deforestation (Nicolau et al., 

2021), forest degradation (Giuseppe Modica et al., 2015), desertification (Hill et al., 2008) and climate change 

effect (Yang et al., 2013). Therefore, mapping the composition of forest vegetation is fundamental for the concrete 

implementation of sustainable land management policies at any scale, regional to global (e.g., the REDD    

activities; Gulinck et al., 2018; Nicolau et al., 2021).   

In the context of vegetation mapping and monitoring, several remote sensing techniques based on different types 

of multispectral sensors have been  developed and successfully used over the years (De Luca et al., 2019a; Grabska 

et al., 2019; Giuseppe Modica et al., 2016; Morin et al., 2019; Praticò et al., 2021; Solano et al., 2019).. The use 

of spectral signatures, temporally differentiated following the phenological cycles of the various seasons, allows 

a better spectral separability of  the investigated vegetation types and, therefore, their  recognition and 

characterization (Aragones et al., 2019; Aubard et al., 2019; Grabska et al., 2019, 2020; Morin et al., 2019; Praticò 

et al., 2021). Grabska et al. (2019) used a Sentinel-2 (S2) time-series to map forest composition showing the 

effectiveness of seasonal  phenology variations in improving spectral discrimination between species, achieving 

https://doi.org/10.1080/22797254.2021.2018667
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better accuracy  results than using single images. Moreover, the spectral vegetation indices (VIs) enhance the 

sensibility of single-bands spectral signals to the variability of the  bio-physical state of plant tissues, the 

photosynthetic  activity, and leaf productivity (Aragones et al., 2019; Marzialetti et al., 2019; Praticò et al., 2021; 

Semeraro et al., 2019). Strong correlations were found between specific regions of the electromagnetic spectrum 

and species-specific physiological characteristics useful in  estimating forest cover, especially using VIs based on  

infrared wavelengths: the normalized difference vegetation index (NDVI) (Marzialetti et al., 2019; Spadoni et al., 

2020), the normalized difference red-edge index (NDRE) (Evangelides & Nobajas, 2020), the normalized burn 

index (NBR) (Praticò et al., 2021; Shaun et al., 2020). The red-edge, near infra-red (NIR) and short wave infra-

red (SWIR) regions have, respectively, a  long-established correlation to the leaf pigments content, vegetation net 

primary productivity, and leaf  water content, being very effective in vegetation monitoring (Arevalo-Ramirez et 

al., 2020; Delegido et al., 2011; Eitel et al., 2011; Knipling, 1970). 

The free availability of the higher temporal and spatial resolution Copernicus S2 mission multispectral data (ESA 

Sentinel Homepage, 2022), provided by the European Space Agency (ESA), improved the accuracy of forest cover 

classification maps and allowed for the  launch of several successful monitoring studies at a  higher scale of detail 

(Grabska et al., 2020; Immitzer et al., 2016; Inglada et al., 2017; Praticò et al., 2021; Solano et al., 2019).   

In addition to the use of multispectral data, several authors studied the applicability of active synthetic aperture 

radar (SAR) systems for mapping land cover (Lapini et al., 2020; Nicolau et al., 2021; Perko et al., 2011; Waske 

& Braun, 2009). Besides the all-day and all-weather operational capability, these sensors provide different and 

complementary physical information helpful for improving the spectral data when  combined with optical imagery 

(Nicolau et al., 2021; Spracklen & Spracklen, 2021; Stroppiana et al., 2015).  The total signal backscattered from 

forest vegetation results from the combination and interaction of the canopy and ground backscatters (Lapini et 

al., 2020; Saatchi, 2019a; Yu & Saatchi, 2016). This backscatter response is affected by implicit sensor variables, 

such  as wavelength and polarization, and by some vegetation features as cover shape, structure, and orientation, 

moisture content, geometric and dielectric  property of the surface (De Luca, Silva, & Modica, 2021a; Lapini et 

al., 2020). 

The Copernicus mission provides two polar-orbiting SAR satellite platforms belonging to the Sentinel-1 (S1) 

constellation (S1-A and S1-B) carrying a C-band sensor (wavelength of 5.6 cm) with both cross-polarized (VH) 

and co-polarized (VV) polarization (ESA Sentinel Homepage, 2022). At these wavelengths, the backscatter is 

mainly due to the leaves, needles, and small branches of the upper canopy and presents lower penetration power 

than longer wavelengths (Lapini et al., 2020). Potentially, the information from the upper canopy could allow the 

discrimination between forest and non-forest areas.  Referring to forest applications, recently, Nicolau et al. (2021) 

assessed the potential of S1 time-series for  land use/ land cover (LULC) purposes in tropical forests, while 

Numbisi et al. (2019) utilized S1 time series  to discriminate agroforests environments in a heterogeneous 

savannah-forest transition zone. On the other hand, Lapini et al. (2020) assessed the multi-frequency  approach for 

Mediterranean forest classification, discriminating forest from non-forest areas and broadleaved from coniferous 

forests, using data from different SAR sensors (X-, C- and L-band). These authors concluded that the L-band is 

better for the first purpose, but C-band and X-band performed better for distinguishing coniferous and broadleaves. 

The utility of SAR signal in forest vegetation discrimination can be also explicated by its particular sensitivity to 

the forest stand height (Deutscher et al., 2013; W. Li et al., 2020; Perko et al., 2011; Siqueira, 2019).  The simple 

SAR backscatter is indirectly and empirically related to the forest stand height since its value increases with a high 
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presence of canopy scattering elements, proportional to forest height (vertical distribution) and canopy density, as 

a function of wavelength and polarization. Moreover, there is a geometric relationship between the SAR signal 

and the heights of the objects on the Earth’s surface, estimable through SAR interferometry (InSAR) models 

(Siqueira, 2019). The InSAR technique exploits the phase information of the radar signal to obtain information 

about the topography and height of the Earth’s surfaces (Ferretti et al., 2007; Ghosh et al., 2020). The S1 

constellation observes the same scene at two different times, applying the repeat-pass InSAR. The amount of 

temporal phase decorrelation occurring between two passes is one of the models used to estimate the forest stand 

height. The temporal decorrelation is assumed to be higher the greater the height of the canopy due to a more 

significant presence of small scatter elements (Siqueira, 2019). The interferometric coherence can represent the 

temporal phase decorrelation: the higher is the time phase decorrelation, the lower is the resulting coherence. 

Several authors (Deutscher et al., 2013; Ghosh et al., 2020; Perko et al., 2011; Siqueira, 2019) applied empirical  

models to estimate the forest stand height from the  interferometric coherence measure, with levels of  accuracy 

that can vary greatly depending on various  factors. For this reason, in this study, the coherence relationship with 

the forest stand height was exploited to discriminate the presence of standing forest concerning the other 

surrounding LULC classes. 

Considering the research experiences mentioned above, the combined use of both optical and SAR data would 

further improve the identification of forest  cover, as confirmed by several authors (Ienco et al., 2019; Morin et 

al., 2019; A Polychronaki et al., 2014; Spracklen & Spracklen, 2021; W. Zhang et al., 2019).  Spracklen and 

Spracklen (2021) used S1 and S2 timeseries to distinguish natural and plantation forests in a  tropical monsoon 

climate zone, concluding that the  different sensitivity of these two sensors makes them  complementary in 

analyzing the investigated vegetation surface. In particular, while the SAR backscatter depends on the vegetation’s 

physical properties, the optical signal is correlated to the biochemical state of vegetation. Several studies use 

combined data S1 and S2 data for vegetation cover purposes. Ienco et al. (2019) proposed a Convolutional Neural 

Network (CNN) architecture, combining S1 and S2 time-series  for LULC mapping in tropical regions, obtaining 

satisfactory results. Zhang et al. (2019) used the differences in temporal signatures between vegetation cover types,  

combining three temporal information of S1 and S2,  for distinguishing woody canopy from the herbaceous  

canopy in savanna ecosystems using the Support  Vector Machines (SVM) classifier. Morin et al. (2019) combined 

the use of S1, S2 and ALOSPALSAR data to estimate forest structure parameters  and the aboveground biomass 

in maritime pine plantations. In Mediterranean environment, besides the  literature concerning the single use of 

optical sensors  (e.g. Aragones et al., 2019; Aubard et al., 2019; Modica et al., 2016; Praticò et al., 2021), there 

seems to be a  lack of studies exploiting the SAR (Lapini et al., 2020)  and its integration with optical imagery for 

LULC  classification. Polychronaki et al. (2014), integrated  the Système Pour l’Observation de la Terre (SPOT)  

optical data with the European Remote Sensing (ERS)  C-band VV for LULC object-based classification  affected 

by a fire in a Mediterranean landscape. They observed that the use of SAR backscatter improved the accuracy, 

reducing the commission errors related to forest land cover class and the misclassification between forest and shrub 

classes in shadowed areas.  Chust et al. (2004) assessed the performances of combining ERS and SPOT images 

for Mediterranean LULC discrimination, resulting in a slight improvement of the obtained accuracy. 

Chatziantoniou et al. (2017) evaluated the combined use of Sentinel-1 and Sentinel-2 data for a  regional-scale 

Mediterranean wetlands classification,  and they concluded that SAR data did not significantly  improve 

classification accuracy. Some other authors focused on Mediterranean crop detection (Campos-Taberner et al., 
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2017; Lobo et al., 1996; Villa et al., 2015). Considering this, more studies should be carried out to explore the 

potential of integrating multispectral and SAR sensors on mapping heterogeneous Mediterranean ecosystems and 

to investigate how the single information contributes to the obtained accuracy. This work aimed to develop a 

supervised classification procedure by integrating S1 and S2 data for forest cover mapping in a Mediterranean area 

of southern Portugal. The obtained results are essential to fulfilling the main research framework in which this 

work was conducted, based on applying remote sensing methodologies to analyze and monitor wildfires’ effects 

in Mediterranean forest ecosystems. The first analysis on this study area was carried out to develop an unsupervised 

classification of the burned areas and  based only on SAR S1 data and reported in De Luca et al. (2021a), while 

the combined use of SAR S1 and  optical S2 data allowed to map the spatial distribution  of burn severity (De 

Luca, Silva, Oom, et al., 2021). 

The initial goal was to create a binary map to distinguish the forest cover from other LULC classes (pastures/ 

shrubs, urban, agricultural, etc.). Afterward, we decided to implement this workflow further by subdividing the 

forest ecosystems into three forests LULC classes better representing the territory: Eucalyptus, Pine, and native 

broadleaf forest (Quercus suber, Q.  ilex, etc.). In the same way, the main surrounding noforest LULC classes were 

classified individually (pastures/ shrubs, bare soil, urban and agricultural). For this purpose, we provided an 

original and open workflow (i.  e., implemented using diverse open-source software and freely available upon a 

reasonable request to the authors) based on an advanced coupling of SAR (S1) and multispectral (S2) time-series 

imagery. In particular, the time-series of SAR S1 backscatter (both VH and VV polarizations) and two derived 

indices, radar vegetation index (RVI) and radar forest degradation index (RFDI), were combined to the time-series 

of the optical S2 bands and three derived VIs: NDVI, NDRE, and  NBR. In order to optimize the classification 

procedure, the coherence measure coming from InSAR analysis of different pairs of dates in July 2018 was also 

added as additional information, as well as the optical-based biophysical variables fraction of green vegetation 

cover (fCOVER), the fraction of absorbed photosynthetically active radiation (fAPAR), and the leaf area index 

(LAI) calculated for the same month. The well-known Random Forests (RF) machine learning algorithm (Breiman, 

2001) was applied for classification through the use of open-source and Python-based libraries (The Python 

Language Reference, 2022). One of the main problems in applying machine learning classification algorithms is 

choosing the optimal values of the model’s hyperparameters. In this direction, another original contribution of this 

study was to provide an open workflow in which a thorough grid search approach automatically sets the optimal 

hyperparameters. The feature importance was performed during the RF classification process to evaluate each 

input variable’s contribution to the final mapping performance. 

2.1. Study area 

The study area (Figure 2.1) extends over the Serra de Monchique Mountain range located in the southern region 

of Portugal, Algarve (37° 18ʹN; 08° 30ʹW). Part of the study area is a Special Area of Conservation (SAC) falling 

within the European Natura 2000 network (Natura 2000 Site Code: PTCON0037). The territory is characterized 

by the typical heterogeneous and fragmented Mediterranean mountain landscape. The forest cover was mainly 

composed of Eucalyptus plantations (Eucalyptus globulus, Labill. 1800), mixed Mediterranean indigenous 

deciduous forests (Quercus suber L., Quercus ilex L., and other secondary Mediterranean native species), and 

coniferous plantations, composed by Pinus pinea L. or Pinus pinaster Aiton. A part of the autochthonous oak 

forest cover can be associated with the typical semi-natural landscape of the Iberian Peninsula (dehesa and 
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montado): woodlands and agro-forestry systems used for cork harvesting and grazing. A large part of the territory 

was covered by non-forest LULC classes represented by heathlands, sclerophyllous shrublands, pastures, bare soil, 

general uncultivated lands (e.g., derived from harvested forest plantations, agricultural and urban lands) (Sistema 

Nacional de Informação Geogrãfica, SNIG, 2021). 

 

Figure 2.1. Location of the study area in Portugal (left). Overview of the study area (right) using the Google Earth image as a basemap; 

the wildfire's perimeter that occurred in August 2018 is overlaid in light blue. 

2.2. Materials and methods 

The implemented procedure (Figure 2) was carried out using different free and open-source software solutions, 

starting from download to the classification output and testing and exploiting their interoperability. Most of the 

Sentinel images were unavailable on the official Copernicus Open Access Hub platform due to the Long-Term 

Access policy adopted by the ESA (Copernicus Long Term Archive Access, 2021).  Therefore, we adopted other 

alternative ways to speed up the data download phase. The S1 images were downloaded using the Alaska Satellite 

Facility (ASF) interface (ASF, 2022), while the Google Earth  Engine (GEE) Python API (Google Earth Engine  

Guides, 2022) was employed to pre-process and then download the S2 dataset. The data pre-processing for S1 was 

carried out using the Sentinel-1 Toolboxes implemented in the SNAP v.8.0.3 open-source software (ESA SNAP 

Homepage, 2022) provided by ESA. The classification algorithms were processed using the modules integrated 

into the Scikit-learn Python library (Pedregosa et al., 2011). 
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Figure 2.2. The workflow of the implemented procedure, based on free and open-source software and Sentinel-1 (S1) and Sentinel-2 

(S2) time-series imagery. 

2.2.1. Sentinel-1 dataset and pre-processing 

The SAR dataset was composed of a time-series of S1A/B ground range detected (GRD), acquired in 

interferometric wide (IW) mode, for each of the two available polarizations: co-polarized VV and cross-polarized 

VH. The time series comprised the period from April 2017 to July 2018, immediately prior to the fire event of 

August 2018, and it was composed of 82 images deriving from both ascending (42 images) and descending (40 

images) flight paths. In order to perform the InSAR analysis for coherence extraction, a total of six Single Look 

Complex (SLC) format images (three for ascending and three for descending flight path), presenting respective 



25 
 

same orbit-path and covering the month of July 2018, were downloaded. This month was chosen as it was the 

closest to the fire event, and, presumably, the vegetation conditions were more consistent with those at the time of 

the event. The images were in IW mode, which contains both amplitude and phase information of the backscattered 

SAR signal. 

2.2.1.1. Sentinel-1 ground range detected (GRD) pre-processing 

Concerning the GRD imagery, the application of the auto-downloaded orbit file and the thermal noise removal 

started the S1 pre-processing workflow. Subsequently, the images were first radiometric calibrated (β0) and then 

applied the radiometric terrain correction (RTC). The reduction of geometric and topographic errors was carried 

out by applying the radiometric terrain flattening and the terrain correction processes using the shuttle radar 

topography mission (SRTM) digital elevation model (DEM), characterized by a spatial sampling of 1 arc-second. 

The correction of topographical errors, in particular the ground flattening process, is an essential step to map the 

land cover because it reduces the error due to the difference in the structure and shape of the ground surface and, 

therefore, in the backscatter values (Mendes et al., 2019; Small, 2011). 

The bilinear interpolation resampling method was used for both DEM and output image resampling. All the S1 

images were stacked using the product geolocation as the initial offset method. Since the speckle noise is an 

impactful error for land cover mapping purposes (Lapini et al., 2020),  a multitemporal Lee filter (Quegan et al., 

2000; Santoso et al., 2015) with a 5x5 pixel window size was applied, followed by a backscatter time (monthly) 

averaging (BTA). This last step further improves the image signal concerning speckle noise and minimizes the 

effects of environmental and seasonal variables (De Luca, Silva, & Modica, 2021a; Lapini et al., 2020). 

 

2.2.1.2. Sentinel-1 SLC InSAR pre-processing 

For each of the two S1 platforms (A and B), all the pair combinations of the three SLC images were subjected to 

TOPS InSAR processing. Before applying the coregistration (Back-Geocoding) and Network Enhanced Spectral 

Diversity (NESD) optimization for each coregistered S1pair, we split the single images (TOPS-Split) and added 

the auto-downloaded orbit file. Then, we extracted the coherence information, characterized by a range value from 

0 (minimum coherence) to 1 (maximum coherence). A final terrain correction was applied, using the 1 arc-second 

digital elevation model (DEM) derived from the Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007), 

where the pixel spacing was resampled to 10 m x10 m. The three coherence maps resulting for each of the two 

flight paths were averaged to reduce the speckle noise, obtaining one coherence map for ascending and one for 

descending paths. 

2.2.1.3. Sentinel-2 dataset and pre-processing 

The optical S2 Level-2A (Bottom-Of-Atmosphere, BOA) multispectral time-series was composed of 64 images, 

considering the same time period of the S1 dataset (April 2017 – July 2018). Subsequently, a monthly average for 

each band were performed, while a pixel size resampling of 10m x10m was performed semi-automatically by the 

system during the download step, by setting the scale parameter (pixel resampled size = 10) and the projection 

system (EPSG: 32629), using the default nearest neighbor resampling algorithm. Each single-date image was 

masked by clouds before this last step, which generated an image for each month and each band from April 2017 

to August 2018 (as the final SAR dataset). In this case, we used the S2-Cloud Probability product available in the 
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GEE data catalog as a mask image up-sampled to 10 m spatial resolution. The cloud probability mask product is 

created with the Sentinel2-cloud-detector package (s2cloudless) for automated pixel-based cloud detection and it 

is based on the LightGBM machine learning library (LightGBM documentation, 2022), developed by Sentinel 

Hub's research team (Sentinel Hub Homepage, 2021). Each pixel contains a value between 0 and 100, representing 

the probability that the pixel is cloudy. Higher values are more likely to represent dense clouds or highly reflective 

surfaces but may omit less dense clouds. Lower values, although able to detect all clouds, could increase the risk 

that medium-high reflective surfaces could be mistaken for clouds (false positives). For our purpose, the value of 

10 was considered the pixel's threshold value, greater than which a pixel is considered as a cloud. No-data values 

replaced the masked pixels of S2, filled by applying a temporal-linear interpolation between consecutive images. 

Water surfaces were also masked since the study area was characterized by only three static water bodies 

(Barragem de Odelouca, Barragem do Funcho and Barragem do Arade) and these were not target LCLUs. 

Effectively, the stable spectral features of the water surfaces, characterized by a significant absorption of most of 

the NIR wavelength radiation (Donchyts et al., 2016; Gao, 1996; Schwatke et al., 2019), made it simple to detect 

detected them masking pixels of the S2 B8 band image (Jul2018) using the threshold <0.09. 

2.2.2. Sentinel-1 image layer creation 

From the resulted monthly BTA image layers, two dual-polarimetric SAR indices, adapted for the S1 sensor, were 

computed (eq. 2.1, 2.2) (Nasirzadehdizaji et al., 2019; Nicolau et al., 2021). 

RVIt = 4 · BTA_VHt / (BTA_VVt + BTA_VHt)                               (2.1) 

RFDIt = (BTA_VVt - BTA_VHt) / (BTA_VVt + BTA_VHt) (2.2) 

Where t represents one of the months constituting the time-series (from April 2017 to July 2018). The final SAR 

dataset used in the classification process was composed of the BTAVV, BTAVH, RVI, RFDI timeseries, and the 

two coherence maps (ascending and descending) for July 2018.  It is expected that the SAR vegetation indices 

potentially improve the discrimination of land cover because of the combination of VH polarization, related to the 

scattering elements of the canopy, and  the VV polarization, sensitive to the topographic and  morphological 

characteristics of the ground (Nicolau et al., 2021). 

2.2.3. Sentinel-2 image layer creation 

The 10 m and original 20 m spatial resolution bands (Drusch et al., 2012; ESA Sentinel Homepage, 2021), 

constituting  the monthly S2 time-series, were used to compute  four vegetation indices (eq. 2.3–2.5). 

NDVIt = (B8t – B4t) / (B8t + B4t) (2.3) 

NBRt = (B8t – B12t) / (B8t + B12t) (2.4) 

NDREt = (B6t – B5t) / (B6t + B5t) (2.5) 

 

Moreover, three additional biophysical variables were automatically computed for July 2018 using the SNAP 

toolbox biophysical variables processor: LAI, fCOVER, and fAPAR. The criterion of this month’s choice for 

biophysical variables estimation was the same as that already explained for the InSAR analysis. The quantitative-

qualitative conditions of the vegetations should be more similar to those at the time of the event (occurred in 

August 2018). These biophysical variables have been found helpful in integrating the information of the 

interferometric coherence considering their direct correlation with the structural characteristics of the vegetation 
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canopy (Ghosh et al., 2020). The final S2 dataset resulted was composed of all the 10 m resampled bands, the 

relative four vegetation indices for each month, and the three biophysical variables referred to only July 2018. The 

three biophysical variables calculated for July 2018 were clipped on the same area and stacked to the S1 dataset 

using the latter dataset as the master extent (S1+ S2). 

2.2.4. Image classification 

Supervised pixel-based image classification of forest cover was carried out using the RF algorithm (Breiman, 

2001; Cutler et al., 2007). This, based on a set of decision trees, is a machine learning model widely used in land 

cover mapping, forest classification and the estimation of other forest structural parameters (De Luca et al., 2019a; 

Ghosh et al., 2020; W. Li et al., 2020; Morin et al., 2019; Numbisi et al., 2019; Praticò et al., 2021). The RF 

algorithm was performed using the RFClassifier function from the Scikit-learn Python library package. In this 

study, the optimal RF hyperparameters were set using an exhaustive grid search approach implemented in Scikit-

learn (GridSearchCV), based on a cross-validation analysis between all the possible combinations of a given set 

of hyperparameters values (Table 2.1) and for a given training input set. 

Table 2.1. Set of parameters values tested and combined for exhaustive grid search-based optimization. The name and the definition 

of each parameter are the original ones reported in the RFclassifier module user guide 

Parameter name Values set Description 

n_estimators 
100, 650, 1200, 1750, 2300, 2850, 3400, 

3950, 4500, 5050, 5600, 6150, 6700, 

7250, 7800, 8350, 8900, 9450, 10000 

The number of trees in the RF model 

max_depth 
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 

110, 300, 500, 800, 1000 
The maximum depth of the tree 

min_samples_split 2, 5, 10 
The minimum number of samples required to 

split an internal node 

min_samples_leaf 1, 2, 4 
The minimum number of samples required to 

be at a leaf node 

max_features “auto”, “None”, “log2” 
The number of features to consider when 

looking for the best split 

 

The image classification has been implemented according to the following seven LULC classes:  Eucalyptus, Euc; 

Pinus, Pin; Autochthonous Forest, AuFor; Soil; Pasture and/or shrubs, Past/Shr; Urban,  Urbe; Agriculture, Agri. 

The training pixels were selected on 950 regions of interest (ROIs) with a square size of 4 × 4 pixels. The ROIs, 

scattered over the entire study area and with a balanced distribution among the seven LULC classes (Euc, 298; 

Pin, 78; AuFor, 131; Soil, 95; Past/Shr, 240; Urbe, 52; Agri, 56), were manually drawn by visual interpretation  

supported by the use of Google Earth very high-resolution satellite images (Google Earth Homepage,  2022).  

Numerous scholars (Kattenborn et al., 2019; Nicolau et al., 2021; W. Zhang et al., 2019) stated that training data  

for land use classification could be based on high-resolution imagery instead of field observations, allowing to  

achieve comparable results a saving time and costs, and  adequate representativeness of the full range of 

environmental characteristics present in those large portions  of territory, which are more challenging to catch by  

punctual field observation. 

2.2.5. Accuracy assessment 

The accuracy assessment of the classified map was performed using a validation dataset formed by 658 ROIs of 

different random sizes (from 1x1 to 20x15 pixels) drawn with the same criteria used for training ROIs and 

balancedly distributed among the seven classes. The confusion matrix was implemented and, following the 
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calculation of the producer’s and user’s accuracies (Congalton & Green, 2019), the single-class F-score (F-scorei) 

(eq. 2.6) and the multi-class F-score (F-scoreM) (eq. 2.7) (G. Modica et al., 2021a; Sokolova & Lapalme, 2009) 

were computed.  The F-scorei was calculated from the producer’s and user’s accuracies, representing the harmonic 

mean (De Luca, Silva, Oom, et al., 2021; G. Modica et al., 2021a): 

F-scoreM = 2 · (producer’sM· user’sM) / (producer’si + user’si) (2.6) 

where i represents the single class. 

The F-scoreM was calculated using the multi-class producer’sM (eq. 2.8) and user’sM (eq. 2.9) metrics, derived 

averaging the respective single-class producer’s and user’s accuracies for all the classes and expressed as: 

F-scoreM = 2 · (producer’sM· user’sM) / (producer’si + user’si) (2.7) 

producer’sM = (⅀i=1 producer’si) / n (2.8) 

user’sM = (⅀i=1 user’si) / n (2.9) 

where n represents the total number of classes. 

In addition to the integrated S1 S2 dataset (main target of this study), the entire classification process and 

subsequent accuracy assessment was applied  using each of the two single optical and SAR datasets,  in order to 

compare the results and evaluate how  effectively the integration of the two types of information can improve the 

outcomes. The optimal RF parameter values and the feature importance were also computed for each S1 and S2 

datasets. 

2.2.6. Results 

Table 2.2 shows the hyperparameters set for the RF algorithm using the exhaustive grid search optimization 

approach. The parameter optimization was carried out for each of the three dataset combination: the integrated 

SAR and optical (S1+ S2), the SAR (S1) and the optical (S2). Among the tested ones, the values resulted as optimal 

were: 1200 (S1+ S2, S2) for the number of trees; 110 (S1+ S2, S2) and 800 (S1) the maximum depth of a tree; the 

default values 2, 1, and “auto” (S1+ S2, S1, S2) resulted for the min_samples_split, min_samples_leaf and the 

max_features, respectively. The value “auto” implies that the maximum number of features considered equals the 

square root of the total number of features. The initial out-of-bag (OOB) error, expressing a predicted accuracy 

performance estimated by the RF model during the training step, resulted in 98.13% (S1+ S2), 88.98% (S1) and 

97.40% (S2) using the respective optimized hyperparameters set. 

Table 2.2. The adopted Random forests (RF) parameters values for each dataset combination tested (integrated SAR and optical, 

S1+S2; only SAR, S1; only optical, S2), set using the exhaustive grid search approach 

Parameter name Values set 

 S1+S2 S1 S2 

n_estimators 1200 1750 1200 

max_depth 110 800 110 

min_samples_split 2 2 2 

min_samples_leaf 1 1 1 

max_features 
“auto”  

(square root of the total 
number of features) 

“auto”  
(square root of the total 

number of features) 

“auto”  
(square root of the total 

number of features) 
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Figure 2.3 (top) shows the land cover map resulted from the RF classification process applied to the S1    S2 dataset 

and covering the entire study area. They are also magnified (bottom) three sample areas showing the details of the 

obtained classification. The total surface occupied by forest classes resulting from the classification equals 673.59 

km2 (excluding water surface that accounts for 9.81 km2). 

 

Figure 2.3. Land cover map resulted from the Random Forests (RF) classification applied to the S1+S2 dataset and referred to the 

entire study area (top); three exemplary square areas (500 m side) showing the details of the obtained classification (bottom). On the 

right, the surface distribution (%) of the Land Use Land Cover (LULC) classes resulted from RF classification (pie chart). LULC 

classes definition: Eucalyptus (Euc),  Pinus (Pin), Autochthonous Forest (AuFor), Soil, Pasture and/or Shrubs (Past/Shr), Urban (Urbe), 

Agriculture (Agri). 

The resulted distribution among the forest classes showed in Figure 3 (pie chart) is 139.13 km2 for Eucalyptus, 

11.13 km2 for Pinus, 29.71 km2 for Autochthonous Forest. The classes corresponding to the unforested surfaces 

present an area equal to 344.77 for Pasture\Shrubs, 79.26 km2 for Soil, 64.80 for Agriculture km2, 6.79 km2 for 

Urban. 

The Gini feature importance carried out from the RF process for each dataset combination tested (S1+S2, S1 and 

S2), which expresses the influence of each data layer on the algorithm prediction, is reported in Figure 4. The top 
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and bottom graphs respectively show the first fifteen layers with the highest importance, and the last fifteen layer 

bands describing the lowest importance values.  The NBR index achieved the highest values of importance 0.0184 

(S1+S2) and 0.0220 (S2) (Nov 2017), 0.0180 (S1+S2) and 0.0194 (S2) (Dec 2017), and 0.0151 (S1+S2) and 

0.0188 (S2) (Oct 2017), interspersed with the NIR band B8AJul2018 (0.0182, S1+S2; 0.0203, S2) and the 

NDREOct2017 (0.0155, S1+S2; 0.0166, S2). Observing the S1+S2 plot, follow the NDVIJun2018 (0.0149), B8Jul2017 

(0.0143), and the two biophysical variables fCOVER (0.0127) and fAPAR (0.0125). The cross- and co-polarized 

coherence image layers for ascending flight path, deriving from InSAR analysis, are present among the first fifteen 

layer bands that reached the highest importance, with 0.0117 and 0.0115, respectively. These represent the layers 

reached the highest importance when the single S1 dataset was used, with 0.0540 and 0.0479 respectively, together 

to the descending part of cross- (0.0436) and co-polarized (0.0286) coherence.  The other optical layers represented 

were the NDVIJul2017 (0.0124, S1+S2; 0.0142, S2), B7Jul2018 (0.0124, S1+S2; 0.0138, S2), B8Jul2018 (0.0120, S1+S2; 

0.0), B12Jul2017 (0.0115, S1+S2; 0.0149, S2), NDREMay2018 (0.0134, S1+S2), B8AJul2017 (0.0133, S1+S2; 0.0144, 

S2), B7Jul2018 (0.0129, S1+S2; 0.0138, S2), NDREJan2018 (0.0125, S1+S2). Concerning SAR layers, these are 

represented among the first fifteen only when the single S1 dataset is used: BTA_VHJun2018 (0.02478), RVIJul2018 

(0.0244), BTA_VHJul2018 (0.0226), RFDI Jul2018 (0.0223), BTA_VH Feb2018 (0.0217), RVI Jun2018 (0.0202), BTA_VH 

Jan2018 (0.0199), RFDI Jun2018 (0.0197), BTA_VH May2018 (0.0194), BTA_VH Oct2018 (0.0187), BTA_VH Dec2018 

(0.0182). On the other end of the feature importance ranking, the BTA_VVApr2018 expressed the lowest level of 

importance for both S1+S2 and S1 datasets (0.0 and 0.0112), followed by the B3May2018 (0.001, S1+S2) that 

represent the last layer when the single S2 is used. Using both the datasets,the B11Apr2018,  B2May2018 and B3Apr2018 

reached a level of importance lower than 0.0012; the B4Dec2017, B6Apr2018, BTA_VVMay2018, B11Oct2017, B5May2018 

lower than 0.0013; the B2May2018, B2Apr2018, B7Apr2018, B11Aug2017 and the B5Apr2018 equal to 0.0013. The feture 

importance ranking for S2 resulted to be quite consistent with this order. Observing the S1 plot, RVIMar2018, 

BTA_VVJan2018, RFDISep2017, RFDIMar2018, RFDIOct2017, show importance values less than 0.012; RVIOct2017, 

RVINov2017, RFDIApr2018, BTA_VHJul2017, RFDIAug2017, RFDINov2017, less than 0.013. 

The accuracy level of the land cover map was assessed for each class deriving the producer’s and user's metrics 

and their harmonic mean (F-score) from the confusion matrix showed in Figure 5. 

Considering the integrated S1+ S2 dataset, the producer’s accuracy reached values of 89.51% (Eucalyptus), 

91.65% (Authocthnous Forest), 92.22% (Pinus), 76.30% (Soil), 96.72% (Pasture/Shrubs), 94.46% (Agriculture) 

and 98.98% (Urban). Th user’s accuracy values were 97.75% (Eucalyptus), 70.32% (Authocthonous Forest), 

88.68% (Pinus), 93.02% (Soil), 94.64% (Pasture/Shrubs), 89.81% (Agriculture) and 92.70% (Urban). Considering 

the F-scorei for each class, the values reached are 93.45% (Eucalyptus), 79.58% (Authocthonous Forest), 90.41% 

(Pinus), 95.67% (Pas/Shr). 
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Figure 2.4. The figure shows the feature importance (Gini importance) expressed by the first fifteen image layers with the highest 

importance (left column) and by the last fifteen image layers with the lowest importance (right column), calculated for each dataset 

combination tested (integrated SAR and optical, S1+S2; only SAR, S1; only optical, S2). 

When one of the single dataset (S1 or S2) was tested, the producer’s accuracy achieved values of 74.83% and 

86.83% (S1 and S2) (Eucalyptus), 56.12% and 89.05% (S1 and S2) (Authocthnous Forest), 62.04% and 91.17% 

(S1 and S2) (Pinus), 46.10% and 76.60% (S1 and S2) (Soil), 81.68% and 96.59% (S1 and S2) (Pasture/Shrubs), 

90.25% and 94.70% (S1 and S2) (Agriculture) and 84.75% and 88.22% (Urban). Th user’s accuracy values were 

90.82% and 97.44 (S1 and S2) (Eucalyptus), 32.25% and 60.36% (S1 and S2) (Authocthonous Forest), 45.41% 

and 89.32 (S1 and S2) (Pinus), 55.40% and 91.43% (S1 and S2) (Soil), 78.50% and 94.58% (S1 and S2) 

(Pasture/Shrubs), 72.04% and 87.40% (S1 and S2) (Agriculture) and 86.26% and 85.75% (Urban). The single-

class F-scorei values were 82.05% and 91.83 (S1 and S2) (Eucalyptus), 40.96% and 71.95% (S1 and S2) 

(Authocthonous Forest), 52.44% and 91.17% (S1 and S2) (Pinus), 80.06% and 95.57% (S1 and S2) and (Pas/Shr). 

The overall accuracy of the map, expressed by the F-scoreM is equal to 90.33% (S1+S2), 68.23% (S1), 87.80% 

(S2). 
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Figure 2.5. The confusion matrix resulted from the accuracy assessment process and relative single-class User’s and Producer’s 

accuracies (upper). The bottom reported the single-class F-scorei and the multi-class Producer’sM, User’sM and F-scoreM accuracy 

metrics. LULC classes definition: Eucalyptus (Euc), Pinus (Pin), Autochthonous Forest (AuFor), Soil, Pasture and/or Shrubs 

(Past/Shr), Urban (Urbe), Agriculture (Agri) 

2.3. Discussion 

The main objective of this study was to obtain a map of the forest cover of an area around the municipality of 

Monchique, in southern Portugal, where a high severe fire occurred in August 2018 (De Luca, Silva, & Modica, 

2021a; De Luca, Silva, Oom, et al., 2021). The vegetation cover mapping and, especially, the distinction between 

forest and non-forest vegetation before a disturbance event is a decisive purpose for improving the analysis of its 

effects on the ecosystem and their monitoring from the short to the long term (Chu & Guo, 2013). The integrated 

use of S1 and S2 time-series for forest tree species classification was evaluated to deal with this aim. Several SAR 

vegetation indices (RVI, RFDI) and optical vegetation indices (NDVI, NFRE, NBR) were computed for each 

month of the time series and included. The coherence information of the last month of the time series (July 2018) 
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was calculated from the InSAR process and implemented as additional information for image classification. The 

classification approach was carried out by training the RF machine learning algorithm. 

2.3.1. Accuracy and uncertainty 

The good overall accuracy achieved by the integrated optical and SAR datasets in this approach, represented by 

an F-scoreM equal to 90.33%, is in line with the outcomes obtained from other studies where the combination of 

optical and SAR data was used (Spracklen & Spracklen, 2021; W. Zhang et al., 2019). This value should have 

been higher considering that most of the single classes exceeded the 90% threshold of F-scorei, with the class 

relating to the pasture cover (Past/Shr) reaching the value of 95.67%. The lowest F-scorei value was obtained by 

the AuFor (79.58%). It was caused by the wrong classification of pixels belonging to the AuFor class as Eucalyptus 

cover. These errors of commission of the AuFor class are represented by an user’s accuracy equal to 70.32%, in 

contrast with the producer’s accuracy value, equal to 91.65% in the same class. However, it is noticeable how the 

integration of the two sensors has improved the accuracy of this LULC class, considering that the F-scorei value 

for the optical single dataset was 71.95%. Probably, the origin of these errors relies on the combination of two 

main factors. First, the AuFor class comprises a mix of different Mediterranean broadleaved species, therefore not 

constituted by a specific and univocal spectral signature. Second, several isolated nuclei of Eucalyptus are scattered 

within the mixed Authocthonous forest. At the same time, within some gaps in the areas covered by Eucalyptus, 

there may be some small nucleus of species belonging to native vegetation, challenging to detect based on satellite 

imagery with 10 m of spatial resolution. It has to be considered that this spatial resolution of the Sentinel sensors 

could involve errors and uncertainties in the classification output to identify covers/ crowns smaller than this 

dimension. Zhang et al. (2019) supposed that this could simultaneously conduct two opposite scenarios for each 

pixel: overestimation or underestimation/missing of the actual cover of smaller covers/trees. Furthermore, Zhang 

et al. (2019) pointed out some other elements that could cause uncertainty in its study, based on the classification  

of wooded areas using S1 and S2 data: the method of  selection of training data, which may not be optimally  

representative of the actual conditions of the study area  depending on their number and spatial distribution; a 

temporal miss-match between the interpreted Google  Earth VHR data and Sentinel images; the presence of  

flooding, residual clouds, and shadows; other disturbances (e.g., fire, deforestation, etc.) that could affect  the 

spectral signatures. Another source of errors could derive from edge pixels between different land classes (Lapini 

et al., 2020). However, this does not spoil the excellent effectiveness of these data, considering the small extent of 

these errors on the final accuracy values and, above all, the free availability of the images and software to process 

them. In fact, the precision obtained in the classification of areas not covered by forest is to be considered optimal, 

despite the complexity of the cover background that composes it (crops, orchards, towns, pastures, shrubs, grasses, 

soil, rock, etc.). On the other hand, this result was expected since the use of interferometric coherence is strongly 

correlated with the structural characteristics of forest arboreal vegetation (Ghosh et al., 2020; Siqueira, 2019). 

Aspect demonstrated by the relevance resulting from the feature importance analysis of this data. 

2.3.2. Coherence 

As the tree canopy height is a dendrometric measure  describing the vegetation structure and it is a significant 

indicator of the aboveground biomass of forest  areas (Ghosh et al., 2020), in this study, we empirically  exploited 

the geometric relationship between the  InSAR coherence and the forest stand height as additional information to 

discriminate the forest cover.  Through the InSAR analysis, it is possible to use the phase information of the SAR 
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signal to characterize the topography and height of the Earth’s surface and the objects present on it. Phase 

decorrelation, with consequent loss of coherence values, occurs where the surfaces’ conditions change during the 

two moments of acquisition of the pair of interferometric images. The relationship between this decorrelation and 

the height of the forest surface is based on the empirical assumption that as the height of the trees increases, the 

volume and quantity of canopy increases, causing greater decorrelation. Therefore, a decrease in coherence could 

indicate an increase in canopy height (Ghosh et al., 2020; Perko et al., 2011; Siqueira, 2019). In this study, although 

the time gap was not large between the two acquisition dates of the SAR SLC images the average of the three 

coherence layers for each of the two flight paths was used to reduce the adverse effects of decorrelation. When 

observations are made at different times, the targets within a SAR resolution cell (e.g., small branches and  leaves) 

may have moved, causing an error in measuring the trigonometric gaze angle and, therefore, a  reduction in the 

interferometric coherence (Siqueira, 2019). The use of shorter wavelength SARs (X-band, C-band) involves a 

higher temporal decorrelation due to interaction with smaller objects, even for a time interval of just one day 

(Ghosh et al., 2020).  Concerning the coherence information in this study, the two polarizations resulted equally 

influent in the dataset classification. About this aspect conflicting testimonies were found in literature: Ghosh et 

al.  (2020) used only the co-polarized (VV) coherence information for forest stand height estimation due the higher 

noise produced by the volumetric effect of canopy scatter elements on cross-polarized SAR signal; on the other 

hand, Siqueira (2019) affirms that the cross-polarized coherence signature is in general more appropriate for 

characterizing forest structure as it is more correlated to the multiple volume scattering of  vegetation canopy. 

2.3.3. Optical and SAR layer integration; feature importance 

In this study, temporal spectral signatures for each optical band were exploited as a valuable expression of the 

seasonal phenological and photosynthetic activity variations. In particular, the use of optical vegetation indices is 

essential in the phenological discrimination and observation of the different types of forest vegetation, such as 

Mediterranean evergreen conifers and  deciduous forests (Aragones et al., 2019). However, the temporal spectral 

signature may also have limitations. Although their efficiency is proven, in Grabska et  al. (2019), it is reported 

that the species-specific characteristics do not only and uniquely influence the spectral reflectance, but often there 

are intra-specific  variations in reflectance caused by the age of the trees,  by states of stress or disease, or by local 

site conditions  such as level of coverage, the effects of the surface  texture of the roof and the resulting shadow 

effects,  the type of soil present which in conditions of sparse  foliage contributes to the reflected signal. These 

factors can cause as much significant deviations of the typical spectral signature values as to create overlaps 

between species and make it difficult for classifiers to discriminate. Vegetation indices improve these aspects, 

better characterizing the species-specific temporal dynamics of the various forest cover types. Aragones et al. 

(2019) used the NDVI time-series to characterize the phenological changes of five Mediterranean Pinus species 

for species discrimination. They observed how the index is subject to a significant decrease during the summer 

drought. Zhang et al. (2019), focusing on a savanna ecosystem, encountered such high differences in  NDVI time 

signatures between woody and nonwoody as to allow their distinction. 

However, the feature importance analysis shows that not all the spectral bands/indices contributed equally to the 

forest cover classification. Whether the integrated dataset or the single dataset is used, the feature importance 

shows the SWIR-based index (NBR), the red-edge-based (NDRE) and the B8A, B8, B7 and B12 bands as the most 

significant optical layers for RF prediction. This confirmed the findings of other  studies concerning the high 

efficiency of the SWIR and  red-edge bands for vegetation mapping (Grabska et al., 2019; Immitzer et al., 2016). 
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The red-edge bands are more sensitive to the photosynthetic pigments (chlorophyll a and b) levels and their 

variations from the biophysical and biochemical points of view. In contrast, the SWIR wavelengths are sensitive 

to the water content of the surface, since their optical absorbance increases with the increase of water content.  

Spracklen et al. (2021) observed how the SWIR-based indices were the most important in distinguish plantation 

from natural forest. This is probably due to the different water content in plant tissues, with a more significant 

presence in plantations with a high growth rate. Observing the feature importance of respect to the imagery’s 

seasonality, the autumn-winter images seem to have most influenced the algorithm performance, followed by the 

summer months. In these periods, the phenological difference between species is higher, contributing to the 

discrimination  of broadleaved species (Grabska et al., 2019). The fCOVER and fAPAR S2 biophysical variables 

also appeared among the most influential image layers. It should be considered that Ghosh et al. (2020), combining 

the use of S1 coherence and S2 biophysical variables (LAI and fraction of vegetation cover, FVC) and modeling 

using the RF regressor, found an excellent correlation with the canopy height. They concluded that since coherence 

information could potentially be affected by any object on the Earth’s surface greater than the SAR wavelength, 

the biophysical variables support this gap by indicating the presence and status of the vegetation cover, as well as 

by a proven direct correlation with the height of the canopy. 

Cloud cover, which is the main obstacle in dealing with time-series of optical data, was effectively addressed in 

this study by applying the S2-Cloud Probability mask product available in GEE, based on  an automated machine 

learning pixel-based cloud  detection, followed by linear interpolation for filling  the missing pixel values. Other 

errors could derive from discontinuities of time series due to cloud covers or other artifacts. In general, the gap-

filling methods may impact the quality of the images at various levels.  However, the consistency of these errors 

is relatively not relevant, and, generally, they do not weigh the statistical quality metrics, although they may be  

visually distinguishable (Inglada et al., 2017). If, on the one hand, the optical data require few and consolidated 

pre-processing steps, the SAR data are more complicated to manage during the processing and interpretation of 

the information due to various factors intrinsic to the characteristics of the signal/ sensor and their interaction with 

the characteristics of the affected surface (De Luca, Silva, & Modica, 2021a; Mihai A. Tanase et al., 2020). In 

order to reduce speckle noise, both a monthly BTA and a speckle filter were applied. In fact, as Lapini et al. (2020) 

stated, although the multitemporal averaging inherently introduces a reduction in speckle-noise, a performance 

improvement was observed when a filter was applied, mainly if the time series consists of a relatively low number 

of images.  Moreover, these authors pointed out how the execution of the backscatter temporal average of the 

whole SAR time series reduces seasonality effects (soil moistures, presence/ absence of leaves, trees water content, 

etc.) for forest classification purposes, preserving radiometric discrimination between classes. 

Recently several other authors (De Luca, Silva, Oom, et al., 2021; Lasko, 2019; Lehmann et al., 2015; Morin et 

al., 2019; Spracklen & Spracklen, 2021; Stroppiana et al., 2015; W. Zhang et al., 2019) have demonstrated that 

the combined use of optical and SAR data optimize both usage potential, filling the gaps of each other’s and 

increasing the accuracy of the returned products. However, excluding the case of InSAR coherence already 

discussed, no SARderived images are present among the most significant, and a co-polarized BTA image achieved 

the lowest value of feature importance. This indicates that, in the present case, the information given by the time-

series of the SAR data was not actually decisive in classifying the forest cover. This can be confirmed by 

comparing the accuracy values, where the integration of the two sensors resulted in an improved F-scoreM of only 

2.53%, in line with what was stated by Chust et al. (2004) and Chatziantoniou et al. (2017). However, the accuracy 
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improvements of more than 7% (F-scorei) found in some classes (e.g., Urbe), probable positive effect of the use 

of InSAR coherence on surfaces with lower decorrelation, should not be underestimated. 

Concerning the SAR information, there are also much more pronounced limitations. Nicolau et al. (2021) 

demonstrated that classes with similar ground cover and similar backscatter have a lower separability potential 

than classes with distinct scattering mechanisms. Finally, he concluded that using dual-polarimetric SAR indices, 

relating the two different types of polarization (VV and VH), improved the spectral separability between classes. 

In the present study, we calculated the RVI and RFDI for each month, using the respective monthly BTA. The use 

of both polarizations, combined through dual-polarimetric indices, integrates their respective information (De 

Luca, Silva, & Modica, 2021a; Nicolau et al., 2021). The cross-polarized backscatter is more sensitive to the 

distribution of volume scatters of canopy elements (leaves, branches, etc.) than the co-polarized signal. The latter 

is more associated with the underlayer soil backscatter (Meyer, 2019). Indeed, in the Mediterranean context, Lapini 

et al. (2020) better individuated the forest land cover when cross-polarization was used, even in a simple visual 

RGB SAR composite. Nevertheless, other authors such as Nicolau et al. (2021), using S1 time series for land cover 

classification, observed that the single polarization (VV or VH) did not achieve good results for multiple land 

cover classes classification. For this reason, besides the simple backscatter values (VV and VH), they used SAR 

indices such as the VV/VH ratio and the modified RFDI as additional spectral information to train the classifier. 

As mentioned above concerning coherence information, the sensitivity of the SAR signal to the structure of forest 

vegetation also depends on the wavelength used. Shorter wavelengths, such as C-band (5 cm) and the Xband (3 

cm), are more sensitive to the canopy surface characteristics because comparable with the dimensions of needles 

and leaves, and therefore more helpful in differentiating between coniferous and broad lives (Lapini et al., 2020). 

However, due to confusion with non-forest or secondary vegetation cover, misclassification is encountered (Lapini 

et al., 2020; Nicolau et al., 2021). Another factor to consider is the ease of saturation that the C-band has towards 

dense forest cover due to lower penetration capacities than longer wavelengths (Lapini et al., 2020; Meyer, 2019). 

Longer wavelengths (L-band and P-band) are proven to be better to estimate forest parameters (Morin et al., 2019), 

and therefore to better discriminate the forest vegetation (Lapini et al., 2020). Lapini et al. (2020), using only SAR 

data, proved that combining more wavelengths (multi-frequency approach), coming from different sources, leads 

to the highest accuracy of forest cover map. 

It is expected that the imminent (in 2022) launch of the BIOMASS mission (Le Toan et al., 2011), consisting of a 

P-band polarimetric SAR satellite, will further improve forests biomass estimations. This could also concern other 

aspects such as forest type classification and other forest parameters estimation. The future objective will be to 

evaluate these new data as integrative information of the already consolidated optical spectral response. 

Meanwhile, the approach proposed in this study demonstrated the effective potential of the combined use of S1 

and S2 imagery in classifying forest cover in a fragmented and heterogeneous Mediterranean landscape. The 

applicability of remote sensing in these conditions has always been a complex task due to the anthropogenic 

influence on the landscape and the natural variability of plants structure and response to the climate-related typical 

events (e.g., summer aridity, higher fire severity, etc.) (Lapini et al., 2020). The situation is worsened by the 

topographic aspect of the study area. The roughness and irregular Earth’s surfaces are more complicated to classify 

correctly than flat and homogeneous areas, mainly if SAR data are used, due to the effect of the slope exposure on 

both the sensor signal and on the characteristics of the vegetation cover (Inglada et al., 2017). 
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With this research, we demonstrated the reliability of our open workflow based on diverse free and opensource 

software to accurately map the forest cover, distinguishing the non-forest vegetation among the others LULC 

classes. Moreover, our workflow has been able to classify the vegetation cover more in-depth, discriminating 

between Eucalyptus, pine, and other forest types. This information could also be helpful in the framework of 

programmes aimed at long-term mapping and monitor of natural (or semi-natural) and planted forest cover. Future 

analysis dealing with sustainable forest management, habitat and biodiversity monitoring, carbon cycle estimation, 

and forest inventory could further exploit the reliability of our proposed research. 

2.4. Conclusion 

The forest and plant composition mapping is essential to analyze ecosystems’ quantitative and qualitative 

characteristics to facilitate various monitoring applications of their state and condition. In this context, remote 

sensing techniques and tools demonstrated to be very efficient, especially with the advent of easily accessible and 

open-source solutions (data and software). This study explored the potential of the combined use of SAR Sentinel-

1 SAR and optical Sentinel-2 band and indices time-series, integrated the InSAR coherence measure and the optical 

biophysics variables to classify forest cover and discriminate it from the surrounding non-forest land covers. A 

new cloud detection tool, provided by the Sentinel Hub team, was implemented to optimize the cloud masking, 

followed by a temporal linear interpolation for gaps filling. This allowed us to effectively manage one of the main 

problems encountered in the analysis of optical images. Among the layers that have had greater importance in 

obtaining good results are the NBR and NDRE, mainly from the autumn, and interferometric coherence. This study 

aimed to optimize a supervised classification procedure for the quantitative and qualitative analysis of the forest 

vegetation cover in the Mediterranean region in the time period immediately prior to a wildfire occurred in August 

2018. Obtaining a map of the vegetation cover, with a good level of accuracy achieved (> 90%), is a significant 

advantage to improve future monitoring and analysis of the study area and to be able to carry out an effective and 

more targeted management on specific ecosystems. This aspect is even more interesting if we consider that the 

approach presented by this study has been implemented with the combination of free imagery and open-source 

software, proving the efficiency of the interoperability of the various web platforms and open-source libraries, 

from download to final process (GEE, ASF, ESA SNAP, Scikit-learn, etc.). The spatial resolution offered by these 

satellites, although allowing classification at a good scale of detail, still does not allow the detection of small 

landscape elements, such as narrow roads and small patches of land cover, and still creates confusion where the 

land cover is not pure (e.g., commission errors were found where small nuclei of Eucalyptus settled in the 

autochthonous forest vegetation). In the distinction and classification of vegetation cover, the contribution of C-

band backscatter was found not to be as decisive as the InSAR coherence itself or some optical bands, as already 

observed in the literature. It is expected that the imminent launch of new SAR satellite platforms, such as the SAR 

L-band mission BIOMASS, will improve the contribution of this type of information.  Future studies should test 

and validate the proposed approach on different Mediterranean study areas,  equally contributing to the poor state 

of the art on  the use of multisensor data LULC classification in  this biome. The results obtained in this work will 

be  fundamental to set up a more focused investigation  on the integrated use of SAR and optical data for  

monitoring over time the study area so as to assess  the ecosystems’ response to wildfires.  
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3. Unsupervised detection of burned area using SAR data 

Adapted from  

De Luca, G., Modica, G., Fattore, C., Lasaponara, R.: Unsupervised Burned Area Mapping in a Protected 

Natural Site. An Approach Using SAR Sentinel-1 Data and K-mean Algorithm. In: Gervasi O. et al. (eds) 

Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, vol 

12253 (2020). Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_5; 

and 

De Luca, G., Silva, J.M.N., Modica, G.: A workflow based on Sentinel-1 SAR data and open-source algorithms 

for unsupervised burned area detection in Mediterranean ecosystems. GIScience Remote Sens. 58, 516–541 

(2021). https://doi.org/10.1080/15481603.2021.1907896. 
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In the Mediterranean basin, although wildfires are an integral part of natural ecosystems, their extent and  impacts 

have increased in the last decades, with thousands of hectares of forest areas burned every year and  with significant 

economic damages and landscape  changes (Chuvieco, 2009; Gitas et al. 2012; Lanorte et al.  2012; Ruiz-Ramos, 

Marino, and Boardman 2018; SanMiguel-Ayanza et al. 2018; San-Miguel-Ayanza et al. 2019). Moreover, fires 

are a long-term threat, contributing to soil erosion and habitat degradation, releasing greenhouse gases (GHGs), 

affecting air quality and global climate (Chuvieco, 2009; Gitas et al. 2012; Rosa, Pereira, and  Tarantola 2011).  

Timely and accurate detection and quantification of burned areas are necessary to assess the damages, address the 

post-fire management, and implement medium and long-term territorial and landscape restoration strategies 

(Chuvieco et al., 2019; Lasaponara and Tucci, 2019; Pepe et al., 2018). In this context, satellite remote sensing 

provides reliable tools and techniques for detecting and quantifying the extension of burned areas (Chu and Guo, 

2013; Chuvieco et al., 2019; Filipponi, 2019; Lizundia-Loiola et al., 2020; Otón et al., 2019), permitting rapid, 

cost-effective, temporally constant coverage and monitoring of large and less accessible regions (Pepe et al., 2018). 

Several studies concerning the localization and mapping of fires’ effects on vegetation were based on multispectral 

satellite data (Chuvieco et al., 2019; Filipponi, 2019; Imperatore et al., 2017; Lizundia-Loiola et al., 2020; Mouillot 

et al., 2014; Otón et al., 2019). These sensors are very efficient for the purpose due to their sensitivity in the visible, 

near and short infrared (NIR and SWIR) bands to changes in the state of vegetation and soil (Pereira et al., 1999; 

Chuvieco et al., 2019; Meng et al., 2017; Tanase et al., 2020; Miller et al., 2007; De Santis et al., 2009; Fornacca 

et al., 2018; Filipponi et al., 2018; Fernández-Manso et al., 2016). The optical spectral signature of the burned 

vegetation is unique and distinguishable from other disturbance factors or phenological changes in the short-term 
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period after a fire. This is mainly due to the combined effect of diverse factors: the reduction of vegetation amount, 

the presence of coal and ash, changes in the moisture content and temperature, and the reflectance of soil. However, 

some of these elements tend to be attenuated in a few weeks or months after the fire event, in particular where the 

fire severity was low (Pereira et al., 1999; Smith et al., 2005; Inoue et al., 2019), leading to a spectral confusion of 

burned areas with other disturbances or low unburned albedo surfaces (e.g., dark soils, water surfaces, shaded 

regions, ploughed fields, timber harvesting) (Imperatore et al., 2017; Kurum, 2015; Pepe et al., 2018; Fraser et al., 

2000; Stroppiana et al., 2015; Dijk et al., 2021; Rodman et al., 2021). Moreover, optical signal data are influenced 

by different phenological and physiological vegetation phases (e.g., seasonal senescence, leaf-off conditions), 

especially in the case of burned vegetation detection and monitoring at larger time intervals after the event 

(Gallagher et al., 2020; Verbila et al., 2008; Fraser et al., 2000). In this context, the synthetic aperture radar (SAR) 

sensors are active systems that avoid some of these problems, proving to be an alternative or complementary data 

source for burned area detection and fire effects monitoring (Lehmann et al., 2015; Lasko, 2019; Kurum, 2015; 

Stroppiana et al., 2015; Tanase et al., 2011; Martinis et al., 2017; Chuvieco et al., 2019 Lasaponara et al., 2019). 

The response of the radar signal is affected by the ensemble of environmental variables (e.g., land cover, vegetation 

cover structure, moisture content, dielectric property of objects, size/shape and orientation of the scatterers in the 

canopy) and variables related directly to the sensor (e.g., polarisation, wavelength, orbit) or the local surface 

properties (e.g., topography, orientation, surface roughness, local incident angle) (Gimeno and San-Miguel-Ayanz, 

2004; Hachani et al., 2019; Imperatore et al., 2017; Lapini et al., 2020; Santi et al., 2019, 2017; Tanase et al., 2011, 

2020, 2010). SAR data are more sensitive to canopy structure than optical-based products (Martins et al., 2016). 

In detecting burned areas, SAR technology uses the variations in microwave backscatter caused by vegetation 

cover and soil structure and moisture content modifications, which implies a dielectric permittivity variation, thus 

providing an efficient system for discriminating events that cause changes in objects on the Earth’s surface 

(Chuvieco et al., 2019; Donezar et al., 2019; Imperatore et al., 2017; Kurum, 2015; Pepe et al., 2018; Santi et al., 

2017; Tanase et al., 2011, 2020, 2015, 2010; Zhou et al., 2019). Ruiz-Ramos et al. (2018) noted that, in dry 

conditions, the backscatter signal tended to decrease even after several weeks after the fire, indicating how 

degraded conditions can persist significantly after the event. This highlights the efficiency of SAR data in 

monitoring burned areas and justifying the need for timely interventions to counteract the ecosystem degradation 

and avoid desertification phenomena (Hill et al., 2008; De Luis et al., 2001; Chuvieco, 2009). 

The variation of the backscattering signal due to the fire’s effect on reducing the crown structure can be of different 

evidence depending on the polarisation. Generally, cross-polarised signals (vertical-horizontal, VH, and 

horizontal-vertical, HV) show a decrease in the backscatter response due to the consequent reduced volumetric 

dispersion contribution. Conversely, the change in the co-polarised backscatter coefficients (vertical-vertical, VV 

or horizontal-horizontal, HH) can be attributed to higher soil exposure (Imperatore et al., 2017). Due to this 

different interaction with the various aspects of the effects of fire on the environment, both types of polarisation 

can be decisive in detecting burnt forest areas (Tanase et al., 2014). For other purposes, this aspect is already 

employed in vegetation monitoring through the use of radar-based polarimetric indices in which both types of 

polarisation are used depending on the type of product and the SAR sensor used (Gururaj et al., 2019; Mandal et 

al., 2020; Nasirzadehdizaji et al., 2019). The radar vegetation index (RVI) (Kim et al., 2009), full- or dual-

polarimetric, is a well-established SAR index (Szigarski et al., 2018) and generally used in studies related to 

vegetation biomass growth (Kim et al., 2014), in the LAI (leaf area index) estimation (Pipia et al., 2019) or in the 
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estimation of the water content of plants and soil (Kim et al., 2012; Trudel et al., 2015). Kim et al. (2012) 

demonstrated a high correlation between L-band RVI and other optical vegetation indices. The dual-polarisation 

SAR vegetation index (DPSVI) (Periasamy, 2018) also returned positive results for the study of plant biomass, 

demonstrating a good correlation with the normalised difference vegetation index (NDVI). However, single-

polarisation indices were also used with excellent results to map the burnt areas or fire severity (Lasaponara and 

Tucci, 2019; Tanase et al., 2015). 

More generally, most of the studies explored the backscattering behaviour after a fire in the Mediterranean 

environment (Imperatore et al., 2017; Kurum, 2015; Minchella et al., 2009; Tanase et al., 2015), but few of these 

have focused on the ability of SAR data to map the burned areas by measuring their accuracy with analytical 

methods (Belenguer-Plomer et al., 2019; Gimeno et al., 2004; Gimeno and San-Miguel-Ayanz, 2004; Lasaponara 

and Tucci, 2019; Martinis et al., 2017; Zhang et al., 2019). 

Several space missions provide satellite constellations operating SAR imaging dedicated to environment 

observation useful for fire monitoring purposes (Chuvieco, 2009; Chuvieco et al., 2019; Mouillot et al., 2014). 

Copernicus missions by the European Space Agency (ESA) provides free high spatial and temporal resolution 

SAR (S-1) and multispectral (S-2) data (ESA Sentinel Homepage, 2020). The S-1 constellation comprises two 

polar-orbiting satellites (S-1A and S-1B) performing C-band (from 3.75 cm to 7.5 cm wavelength) radar imaging. 

The good spatial and temporal resolutions added to the free distribution make the Sentinel mission particularly 

suitable for risk monitoring and rapid mapping (Martinis et al., 2017). Several studies have demonstrated the 

sensitivity of the C-band to changes in the vegetation and environment affected by fire (Imperatore et al., 2017; 

Kurum, 2015; Tanase et al., 2020, 2010). 

One of the strengths of the S-1 and S-2 data is their high spatial and temporal resolution. The spatial resolution 

has a considerable effect on the detection of burnt areas and their subsequent monitoring, lowering the omission 

errors typical of the coarser resolution data in detecting the smallest areas and improving spectral discrimination 

(Verhegghen et al., 2016; Boschetti et al. 2015; Stroppiana et al., 2015; Belenguer-Plomer et al. 2019; Mouillot et 

al., 2014). The advantages become more evident when the acquisition revisit time of these products is a few days, 

allowing the monitoring of temporal trends at an appropriate temporal scale (Boschetti et al., 2015; Verhegghen 

et al., 2016; Gitas et al., al., 2012; Tanase et al., 2020). 

Furthermore, ESA itself distributes the Sentinel application platform (SNAP) (ESA SNAP Homepage, 2022), a 

free and open-source software platform containing the toolboxes necessary for pre-processing and processing 

Sentinel data. The SNAP toolboxes, initially Java-based, can also be accessed from the Python programming 

language (The Python Language Reference, 2020), one of the most popular languages for remote sensing and 

scientific analysis, widely used in both operational and scientific domains (Hao and Ho, 2019), through the ESA 

SNAP-Python (snappy) interface (ESA SNAP Cookbook, 2022). 

The present work aimed to develop a semi-automatic procedure for mapping burned areas in Mediterranean 

regions using SAR S-1 data and based on the k-means clustering algorithm for an unsupervised image classification 

approach. Therefore, supporting the state-of-the-art of SAR-based burned area mapping. 

The k-means is one of the most straightforward iterative clustering algorithms, widely used in data mining and 

pattern recognition purposes (Dhanachandra et al., 2015; Nagpal et al., 2013, Jain 2010). One of the main 

difficulties for the k-means cluster analysis is to set the more suitable number of clusters (k value) in the 

initialisation phase. Among the different approaches proposed in the literature (Kodinariya and Makwana, 2013), 
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in our approach, we used the silhouette score (Rousseeuw, 1987) to set the value of the k parameter, which 

statistically measures the average separation distance (dissimilarity) between points within neighbouring clusters. 

The entire processing workflow (Figure 3.2), excluding accuracy assessment, was developed in Python-based 

open-source libraries and scripts, implementing ESA-snappy for image pre-processing and Scikit-learn (Pedregosa 

et al., 2011) processing and classification. It consists of the following fundamental steps: 1) speckle-noise 

reduction by calculating the backscatter time average of pre- and post-fire datasets and then applying a 

multitemporal filter; 2) calculation of the radar burn difference (RBD) and the logarithmic radar burn ratio 

(LogRBR) single-polarisation indices and the dual-polarimetric S-1 indices (ΔRVI and ΔDPSVI) in order to 

emphasise the areas of change; 3) gray-level co-occurrence matrix (GLCM) texture features extraction; 4) data 

reduction using the principal components analysis (PCA) transformation; 5) silhouette score analysis in order to 

set the k parameter value; 6) unsupervised classification using the k-means clustering algorithm. 

To confirm the method’s applicability, it was tested on two scenes representing two Mediterranean forest 

environments located in two different countries (Italy and Portugal). The validation of the classification maps was 

performed by comparison with reference maps based on S-2 Multispectral images and calculating accuracy metrics 

(recall, r, precision, p, and the F-score). 

3.1. Materials and methods 

3.1.1. Study sites 

The implemented methodology was tested in two Mediterranean areas of Southern Europe (Figure 3.1). The first 

is located in Algarve, the southernmost region of Portugal (37° 18’N; 08° 30’W), a forest area in the Serra de 

Monchique Mountain range (study site PO). The second is located in the central area of Sicily (South of Italy, 37° 

43’N; 14° 39’E), the “Rossomanno-Grottascura-Bellia” regional nature reserve (study site IT). The extent of the 

two study sites was obtained manually based on the overlapping area of the tiles of the various orbits of S-1. The 

two study sites extend to approximately 2550 km2 (IT) and 3600 km2 (PO). The sites are located at the same 

latitude and present very similar and comparable typical Mediterranean vegetation contexts. Most parts of the two 

study areas were dominated by genus Eucalyptus species (Eucalyptus spp.) and typical Mediterranean conifers 

(Pinus spp.), deriving mainly from artificial planting during the end of the 19th century and the 20th century. 

However, both areas study sites are also covered by areas with dense typical Mediterranean forest vegetation of 

secondary broad-leaved (ex. Quercus spp.) and coniferous trees, interspersed with sclerophyllous shrublands 

(Camerano et al., 2011; San-Miguel-Ayanz et al., 2016). The PO study site also includes agricultural areas and 

pastures. 

https://context.reverso.net/traduzione/inglese-italiano/extends+for
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Figure 3.1. Study sites: in the top, location of the study sites in Europe and in the respective countries; in the bottom, the overviews 

of the two study sites (post-fire Sentinel-2 images, SWIR-NIR-Green false-colour composite) where the burned areas are clearly visible 

(the dark-purple area in PO; the darker area in IT). 

The events occurred in August from the 3rd to the 10th, 2018, in the PO study site, covering 268.9 km2, while, in 

the IT study site, the fire occurred on August 6th, 2017, covering an area of 38.51 km2. Regarding the Sicilian 

natural reserve, the fire also affected neighbouring and similar forest areas outside its administrative boundaries. 

In the PO study site, fire affected the vegetation in a heterogeneous way at the spatial level, altering or removing 

the structure at various degrees, with a predominant crown fire occurrence, leaving residues of burns on the ground 

(ash and coal). In some places, where the severity was higher, the bare soil was exposed (Oom et al., 2018). 
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Figure 3.2. The workflow of the implemented approach. 

3.2. Dataset 

3.2.1. Sentinel-1 dataset 

The Sentinel-1A/B high-resolution ground range detected (GRDH) dual-polarised (VV and VH polarisations) time 

series, acquired in interferometric wide (IW) mode, was searched through the Copernicus Open Access Hub 

(2022). The spatial resolution of the product is 20 m x 22 m (ground range x azimuth), with a pixel spacing of 10 

m x10 m (ground range x azimuth) on the image, corresponding to the mid-range value at mid-orbit altitude 

averaged over all sub-swaths (ESA Sentinel-1 User Guide, 2016). The bulk downloading process was carried out 

https://scihub.copernicus.eu/
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using the aria2 command-line downloader (aria2 download utility Homepage, 2020), allowing to automate and 

speed up the acquisition of huge datasets. In total, we acquired two S-1 image datasets, one for each of the two 

study sites, respectively. The images were acquired to cover a time frame of about a month before and after the 

event date during the summer fire season (July-September), taking into account the need for the absence of rain 

that could affect the backscatter signal. For the PO study site, the dataset was formed by eight images for the pre-

fire period and five images for the post-fire period; for the IT study site, the pre-fire and the post-fire images were 

nine and five respectively. 

3.2.2. Reference data 

As reference data for the PO study site, the burned area perimeters provided by Instituto de Conservação da 

Natureza e das Florestas (ICNF) based on S-2 satellite imagery (SIG-ICNF, 2021) were adopted. The minimum 

extent of the mapped fires is 0.5 km2. Due to the insufficient quality of the official data (see the Supplementary 

material), we downloaded two Sentinel-2B Level-1C images, acquired one before (sensing date: 2017/08/01, 

09:50) and one after the fire (sensing date: 2017/08/11, 09:50), respectively, in order produce the reference map 

for the IT event. 

The two images were pre-processed and the normalized burn ratio (NBR) (Eq. 3.1) for the pre- and post-fire S-2 

data and, consequently, their temporal difference represented by ΔNBR index (Eq. 3.2) (Key et al., 2006) was 

calculated: 

NBRzj = (NIRzj - SWIRzy) / (NIRzj + SWIRzj) = (B8Azj – B12zj) / (B8Azj + B12zj) (3.1) 

ΔNBR = NBRprefire – NBRpostfire (3.2) 

where zj represents a fire-related time period (pre- or post-fire); NIR is the near infra-red band that in this case was 

represented by the band B8A (865 nm) of S-2 data; SWIR is the short-wave infra-red band represented by the band 

B12 (2190 nm) of S-2 data. These two bands are very sensitive to burned vegetation (Lanorte et al., 2012). For 

this reason, this index is generally used as a reference layer since it allows to better identify the perimeter of the 

burned areas than other methods (Ban et al., 2020; Donezar et al., 2018; Tanase et al., 2015; Zhang et al., 2019; 

Kurum, 2015; Tanase et al., 2010), in the absence of good quality official data. The shapefile used as reference 

was obtained by converting the binary map composed of pixels with ΔNBR values greater than 0.1 (conventional 

burned / not-burned threshold (Keeley et al., 2009). Moreover, the interpretation was visually strengthened and 

guided by using the RGB false-colour combination (SWIR-NIR-Red). The IT reference shapefile was filtered, 

deleting all the polygons with an area less or equal to 0.05 km2 to reduce redundancy and make the data consistent 

with the PO. 

3.3. Processing libraries 

The S-1 data pre-processing was carried out using the Sentinel-1 Toolbox implemented in ESA-SNAP v.7.0.4 

(ESA SNAP Homepage, 2022) and executed through Snappy (ESA SNAP Cookbook, 2022), the SNAP-Python 

interface which enables accessing and managing the SNAP Java application programming interface (API) from 

Python. The application script was built on Python v.3.6.8 (The Python Language Reference, 2022), a version 

compatible with the Snappy interface. The image processing and classification were implemented in Scikit-learn 

v.0.23.1 (Pedregosa et al., 2011, Scikit-learn Homepage, 2022), an open-source Python-based library that provides 

a collection of different data-processing modules concerning machine learning analysis and modelling (Pedregosa 
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et al., 2011). This library contains all the processing modules used in this study: the MinMaxScaler module, the 

sklearn.decomposition.PCA module, the sklearn.metrics.silhouette_score module and the sklearn.cluster.KMeans 

module. 

3.4. Image pre-processing and layers creation 

The S-1 data pre-processing steps (Figure 3.2), carried out for both the two time-series datasets, started by applying 

the auto-downloaded orbit file, followed by thermal noise removal. 

The images were then radiometric calibrated and converted to beta (β0) noughts backscatter standard conventions. 

Due to the rough terrain topography of both study areas and consequently the presence of geometric and 

radiometric distortions, a radiometric terrain flattening (RTC processing) and a terrain correction were performed 

using a digital elevation model (DEM) obtained from the shuttle radar topography mission (SRTM) (Farr et al., 

2007; Small, 2011), presenting a spatial-sampling of 1 arc-second. The bilinear interpolation resampling method 

was used for both DEM and output image resampling. During the RTC processing, the images were converted 

from β0 to gamma (γ0) nought automatically. In contrast, in the terrain correction step, the images were projected 

to WGS84/UTM zone 29N and 33N for the PO study site and IT study site, respectively. 

For each study site dataset, an image stack was made using the Create Stack Operator of Sentinel-1 Toolbox. The 

product geolocation was used as an initial offset method, and the extent of the master image was adopted on the 

slave images without resampling. The optimal master image for each dataset was chosen automatically by the tool. 

A multitemporal speckle Lee filter (Quegan et al., 2000; Santoso et al., 2015) of 15x15 pixel window size was 

carried out to apply a first reduction of the radar speckle noise. Subsequently, the speckle reduction was improved 

by calculating the backscatter time average (Lasaponara and Tucci, 2019), separately for the images before and 

after the fire, for each polarisation (VH and VV). Following the implemented pre-processing phase, four layers 

are obtained: i) Pre-fire time average VH; ii) Pre-fire time average VV; iii) Post-fire time average VH; iv) Post-

fire time average VV. 

For both study sites, these individual layers were used to compute two single-polarisation radar indices for change 

detection: the RBD (Eq. 3.3) (the difference between pre- and post-fire backscattered time average for each 

polarisation) and the LogRBR (Eq. 3.4) (log-scaled ratio of the backscattering coefficients between pre- to post-

fire for each polarisation). This latter index is derived from the radar burn ratio (RBR) (Tanase et al., 2015) used 

in change detection or fire severity detection (Lasaponara and Tucci, 2019; Tanase et al., 2015), scaled to 

logarithmic in order to optimise the noise distribution (Dekker, 1998)., 

The equations of the two indices are: 

RBDxy = Post-fire TimeAveragexy – Pre-fire TimeAveragexy (3.3) 

LogRBRxy = log10(Post-fire TimeAveragexy / Pre-fire TimeAveragexy) (3.4) 

where xy represents a specific polarization (VV or VH). 

Besides, two dual-polarimetric radar vegetation indices, the radar vegetation index (RVI) (Eq. 3.5) proposed by 

(Kim and Van Zyl, 2009) and modified for the S-1 dual-polarized SAR data (Gururaj et al., 2019; Mandal et al., 

2020; Nasirzadehdizaji et al., 2019), and the dual-polarisation SAR vegetation index (DPSVI) proposed by 

(Periasamy, 2018) (Eq. 3.6) were computed for pre- and post-fire datasets, respectively: 

RVIzj = 4 · TimeAverageVH / (TimeAverageVV + TimeAverageVH) (3.5) 

DPSVIzj = (TimeAverageVV + TimeAverageVH) / TimeAverageVV) (3.6) 
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where zj represents a fire-related time period (pre- or post-fire). 

From these two vegetation indices, the relative temporal difference was calculated (ΔRVI and ΔDPSVI) (Eq. 3.7, 

3.8): 

ΔRVI = RVIpost - RVIpre (3.7) 

ΔDPSVI = DPSVIpost - DPSVIpre (3.8) 

For the RBDVH, RBDVV, LogRBRVH, LogRBRVV, ΔRVI and ΔDPSVI index layers, five GLCM (Grey Level Co-

occurrence Matrix) texture features (Haralick, 1979; Haralick et al., 1973) were computed for each of the two 

study sites (Tab 3.1) fixing the size of the search window to 11x11 pixels. The five GLCM textures were computed 

to exhibit a more marked contrast between changed and unchanged areas, adding extra spatial information to 

support classification accuracy performance (Hall-Beyer, 2017; Li et al., 2014). 

Table 3.1. Name, group, and equation of used GLCM (Grey Level Co-occurrence Matrix) texture measures. Pi,j is the probability of 

values i and j occurring in adjacent pixels in the original image within the window defining the neighbourhood. i and j are the labels 

of the columns and rows (respectively) of the GLCM: i refers to the digital number value of a target pixel; j is the digital number value 

of its immediate neighbour. µ is mean and σ the standard deviation. 

GLCM 
Features 

Group Equation 

Dissimilarity Contrast ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

|𝑖 − 𝑗| 

Entropy Orderliness ∑ −ln⁡(𝑃𝑖,𝑗)𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 

Correlation 

Statistics 

∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0
[
 
 
 
(𝑖 − ⁡𝜇𝑖)(𝑖 −⁡𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)
]
 
 
 

 

Mean 𝜇𝑖 = ∑ 𝑖(𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

; ⁡𝜇𝑗 = ∑ 𝑗(𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 

Variance 𝜎𝑖
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖)

2

𝑁−1

𝑖,𝑗=0

; ⁡𝜎𝑗
2 = ∑ 𝑃𝑖,𝑗(𝑗 − 𝜇𝑗)

2

𝑁−1

𝑖,𝑗=0

 

 

The GLCM process originated a dataset consisting of 30 layers for each study-site, which constituted the input 

data for the next processing workflow step. 

The S-2 images downloaded to generate the IT reference data were pre-processed using the Sentinel-2 Toolbox. 

These were first resampled to 10 m × 10 m pixel size using the band B4 (Red; 664.6 nm) as reference source size 

and the bilinear interpolation as an upsampling method. Subsequently, the images were reprojected and clipped 

on the same area of the correspondent S-1 data. The Level-2A products (Bottom-of-Atmosphere) were generated 

using Sen2Cor v2.8 processor (ESA sen2cor Homepage, 2022). 

3.5. Data preparation 

3.5.1. Data normalization 

The data normalisation in the same continuous scale range [0-1] was carried out for all the S-1 single layers (Eq. 

3.9). This operation converts the original values of the input data into the new range through rescaling.  This step 

aimed to equalise the input features, reducing the influence of differences in their intervals, making them 
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comparable in numerical values and optimising the learning algorithm process (Angelov and Gu, 2019, Subasi, 

2020). The normalisation was carried out using the specific MinMaxScaler module contained in scikit-learn, given 

by: 

xnorm = (x - xmin)/(xmax - xmin ) (3.9) 

where xnorm is the new normalised value, x is the value to be normalised, xmin  and xmax  are the smallest and the 

highest value of the data (feature range).  

3.5.2. Data reduction: principal component analysis (PCA) transformation 

Considering the high number of input data layers, a principal component analysis (PCA) was performed to reduce 

the dimension of the dataset and select the optimum layer subset without losing the essential information (total 

variance) for image classification (Gimeno et al., 2004; Richards, 2013). The PCA module provides a linear 

dimensionality reduction based on singular value decomposition (SVD) in order to project the data in a lower-

dimensional space (eigenspace) and derive the new principal components (PCs) representing the directions of 

maximum variance of the eigenspace (Subasi, 2020). In this study, the first transformed PCs that explained a high 

enough cumulative variance (greater than or equal to 99%) were considered the optimal reduced representation of 

the original dataset and used as input in the classification process. 

3.6. Image classification 

3.6.1. Classification algorithm (k-means) 

The burned areas’ classification was carried out using the popular k-means algorithm, a data clustering method 

introduced by James MacQueen (1967). It is known as one of the simplest and fastest unsupervised machine 

learning algorithms (Dhanachandra et al., 2015; Nagpal et al., 2013), widely used in remote sensing applications 

(Celik, 2009; Dhanachandra et al., 2015; M. Li et al., 2014; Phiri & Morgenroth, 2017; Rehman et al., 2019; 

Senthilnath et al., 2017). Given a dataset, the algorithm is based on the grouping (clustering) of the pixels with 

homogeneous characteristics in a predefined number (k) of clusters. The homogeneity of the pixels is defined by 

the minimum distance between their value and the single cluster’s centroid. The algorithm’s initialisation starts 

with a first random definition of the k centroids, optimised by the k-means++ method, and is based on the weighted 

distribution probability for the definition of the centroids. Then, it proceeds with the first assignment of each pixel 

to the nearest centroid, in terms of values’ Euclidean distance, and therefore with the first k clusters’ generation. 

After the first initialisation of the k centroids, each of them is recalculated many times over so that the dataset 

belonging to a cluster can be reassigned to the new cluster, obtaining the most appropriate assignment of each 

pixel to the clusters. This process is repeated iteratively until the centroids’ arrangement ceases to change, the 

tolerance or error value is satisfied, or until the maximum number of defined iterations is reached (Dhanachandra 

et al., 2015). The centroid of a cluster is the point to which the sum of distances from all the pixels in that cluster 

is minimised. Therefore, the k-means could be defined as an iterative algorithm that minimises the value of the 

sum of squared errors (SSE) of distances from each object to its cluster centroid (Dhanachandra et al., 2015). The 

k-means algorithm used in this work was based on a combination with the expectation-maximisation (EM) model 

(Dempster et al., 1977). 

3.6.2. Definition of a suitable number of clusters using the Silhouette Score 
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One of the main issues at initialising a clustering algorithm is setting the optimal number of clusters (k parameter). 

To solve this issue, we used the silhouette score approach (Rousseeuw, 1987), which is based on the separation 

distance between clusters, according to the following formula (equation 3.10): 

Silhouette Score = (bi – ai) / max(ai, bi) (3.10) 

where i is the value of a single-pixel contained in a cluster, a is the average distance (dissimilarity) between i and 

all other objects of the same cluster, and b is the average distance between i and the nearest cluster of which i is 

not a part (Rousseeuw, 1987). This coefficient measures how close each point in a cluster is to the neighbouring 

clusters’ points for a given number of clusters. The computation of its average results is a simple method to address 

k value (Rousseeuw, 1987). We calculated the mean of the silhouette score for different k values (k-space, from 2 

to 20) using the “relative” module provided in scikit-learn. To save on computation time, the calculation was 

performed on a sample of 100,000 points randomly distributed over the entire area of the two datasets. The score 

value can vary in a range from 1 (maximum separation: well clustered, best k-value) to -1 (minimum separation: 

misclassified, worst k-value). 

3.6.3. Classification application and post-process enhancement 

For each of the two transformed and reduced datasets, an unsupervised classification was carried out using the k-

means algorithm. The number of clusters (k parameter) was set according to the silhouette score analysis result, 

while the default number of iteration (300) was left. 

In order to identify the classes representing the real burned areas, the mean value of each radar index for each class 

was computed and plotted.  

Despite the noise reduction operations, the SAR data still presents some outliers, which are persistent due to the 

signal’s intrinsic characteristics. Moreover, since we used several images for each dataset covering a time-frame 

of about one month before and one month after the fire event, different surface-changes could have occurred (small 

fires, agronomic operations, etc.), leading to an erroneous assessment of commission errors. Therefore, following 

the raster data’s vectorisation, pre and post-fire scenes were filtered, eliminating clusters covering an area less or 

equal to 0.05 km2 (minimum mapping unit of reference data). 

3.7. Accuracy assessment 

The resulting classification maps were compared to the respective reference burned areas to assess their accuracy.  

The accuracy analysis regarded only those classes corresponding to the actual burned area, excluding the other 

classes. We chose these classes by observing the distribution of the average value of each of the six radar indices 

for each class. The classes that did not correspond to the burned area were aggregated together as “unburned class”. 

Both the classified and the reference images were vectorised to facilitate their analytical comparison. Therefore, 

after their superimposing, each classified pixel was labelled into one of the following categories (pixel-based 

accuracy assessment) (Goutte & Gaussier, 2005; Giuseppe Modica et al., 2020; Shufelt, 1999; Sokolova et al., 

2006): 

• True Positive (TP): when a pixel classified as burned corresponded to burned class in the reference data (pixel 

correctly classified). 

• False Negative (FN): when a pixel representing burned in the reference data was classified as not-burned 

(pixel not detected). 
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• False Positive (FP): when a pixel classified as burned did not correspond to burned class in the reference data 

(pixel erroneously detected). 

After counting the number of pixels belonging to one of the three categories for each image, the recall (r), Precision 

(p) and F-score accuracy metrics were calculated (eq. 3.11-3.13) (Goutte & Gaussier, 2005; Shufelt, 1999; 

Sokolova et al., 2006; Sokolova & Lapalme, 2009): 

r =  |TP| / |TP+FN| (3.11) 

p =  |TP| / |TP+FP| (3.12) 

Fscore= 2 ∙ (r∙p) / (r+p) (3.13) 

where r and p are functions of omission and commission errors. Their opposites, 1-r and 1-p, indicate the omission 

and commission errors, respectively. The F-score measures the overall accuracy using the harmonic mean of 

commission and omission errors. The r, p, and F can be in a range from 0 (total misclassification) to 1 (perfect 

classification) (Goutte and Gaussier, 2005; Modica et al., 2020; Sokolova and Lapalme, 2009). 

3.8. Results 

3.8.1. Data preparation 

To detect burned areas, the radiometric changes that occurred after the fire had to be highlighted. For this reason, 

radar vegetation indices were calculated, of which two were single-polarisation (RBD and LogRBR) and two dual-

polarimetric (RVI and DPSVI). Unlike the RBD and LogRBR indices that already express temporal differences, 

the respective ΔRVI and ΔDPSVI indices had to be derived from the original RVI and DPSVI. The RBD, LogRBR, 

ΔRVI and ΔDPSVI, used as the input layer for successive GLCM computation step, are shown in Figures 3.3 and 

3.4 for the PO, and IT study sites, respectively. 

 

Figure 3.3. The S-1 indices (RBDVH, LogRBRVH, ΔRVI, RBDVV, LogRBRVV, and ΔDPSVI) were obtained in the PO dataset pre-

processing steps. For each of these indices, the GLCM (Grey Level Co-occurrence Matrix) texture features were calculated. 
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Figure 3.4. The S-1 indices (RBDVH, LogRBRVH, ΔRVI, RBDVV, LogRBRVV and ΔDPSVI) were obtained in the IT dataset pre-

processing steps. For each of these indices, the GLCM (Grey Level Co-occurrence Matrix) texture features were calculated. 

3.8.2. PCA transformation 

The PCA was performed on the entire dataset to reduce their dimension. The cumulative variance explained by 

the PCs is reported in Figures 3.5 (PO) and 3.6 (IT). As shown, the PO dataset reached the threshold (0.99) at the 

9th PC, while the IT dataset expressed the same cumulative variance value at the 13th PC. These PCs, which for 

each dataset have reached the threshold and are represented by transformed images, have been chosen as input 

layers in the subsequent related processes. 

 

Figure 3.5. The cumulative variance explained by the principal components (PCs) for the PO study site. The red line identifies the 

first PCs that reached a cumulative variance of 0.99. 
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Figure 3.6. The cumulative variance explained by the principal components (PCs) for the IT study site. The red line identifies the first 

PCs that reached a cumulative variance of 0.99. 

3.8.3. Silhouette score 

Figures 3.7 (PO) and 3.8 (IT) show the trend of the averaged silhouette score calculated on relative PCA outputs 

for a k-space ranging from 2 to 20 clusters and for a sample of 100,000 random points. The highest values resulted 

from lower k-values, with the maximum value described by k = 2 for both datasets. The next highest value was 

found when k = 7 in both datasets with a Silhouette score of 0.166 and 0.191 for PO and IT, respectively. 

 

Figure 3.7. Silhouette score values, for the PO dataset, for a k-space range (k values) between 2 and 20. 

 

Figure 3.8. Silhouette score values, for the IT dataset, for a k-space range (k values) between 2 and 20. 
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3.8.4. Image classification and accuracy assessment 

The clusters resulting from the two datasets are shown in Figure 3.9. The number of classes resulting from the 

classification was equal to seven for both study sites, resulting from the silhouette analysis, which defined k 

parameter setting. 

 

Figure 3.9. Classification results, showing the seven classes for both study areas. The blue clusters (classes 3-4 in the PO, and 6 in IT) 

represent the burned areas’ classes. 

From a first visual interpretation of the entire classified maps, the association between the resulting classes and 

the burned areas is evident if these are visually compared with the radar indices of Figures 3.3 and 3.4. 

Figure 3.10 shows the distribution of the mean value of each of the six radar indices for each class (at the top). At 

the bottom is showed the mean of all the six indices for each class. For the PO study site, the RBD (both 

polarisations) and the LogRBR_VV maintain stable behaviour for all classes and do not allow class discrimination. 

The LogRBR_VV shows a slight increase in classes 3, 4 and 6, while the RBD_VV in classes 3 and 4. The other 

three indices clearly show different behaviour in classes 3 and 4 with lower values, especially observing the RVI 

and observing the IT plots, the LogRBR (both polarisation), and the RVI lower value in class 6. Classes 1 and 3 
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are characterised by a positive peak given by some indices: DPSVI, RVI, LogRBR_VH-VV and RBD_VV, 

respectively. Also, in this case, the RBD_VH had stable behaviour between the classes. 

 

Figure 3.10. The figure shows the distribution of the mean value of each radar index across all six classes for both study sites (PO and 

IT) (at the top). At the bottom, boxplots of indices values for each class are reported (the white rhombus marker indicates the mean 

values). 

In Figure 3.10, it is possible to clearly distinguish the classes that have lower and negative values and a mean 

below -0.02 for both study sites. Since we are using temporal difference indices, we assume that classes 3, 4 (PO) 

and 6 (IT) represent the burned areas. In total, considering only these fire-related classes, they covered an area 

equal to 300.10 km2 in PO (classes 3 and 4 together) and 51.59 km2 in IT (class 6). However, we noted the presence 

of several small areas distributed over all the scenes. For this reason, all the single clusters with a size less or equal 

than 0.05 km2 belonging to the fire-related classes were excluded. This threshold corresponds to the minimum 

mapping unit of the reference data used in the accuracy assessment. The remaining filtered burned clusters covered 

an area of 269.67 km2 in PO and 43.28 km2 in IT. 

Table 3.3. Distribution of each dataset’s pixels and the three accuracy categories (true positive, TP; false negative, FN; false positive, 

FP) for both study sites (PO and IT). 

GLCM Features PO IT 

TP 80.47 % 85.57 % 

FP 19.95 % 14.94 % 

FN 19.53 % 14.43 % 
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A visual overview showing the spatial distribution of the accuracy assessment categories (TP, green; FP, yellow; 

FN, red) is presented in Figure 3.11 for both study areas. In the same figure, the perimeter of the S-2 based 

reference burned area, used for accuracy assessment, has been superimposed (blue border). 

 

Figure 3.11. The maps show the spatial distribution of the three accuracy categories, true positive (TP, green), false positive (FP, 

yellow), false negative (FN), for IT and PO study sites, using the reference layer (blue) derived from S-2 data. 

The r, p and F-score accuracy metrics were calculated. The results show that the highest values for p and r and the 

F-score were reached by the IT classification, with 0.0.851, 0.0.856 and 0.853, respectively, compared to those 

produced by the PO dataset, which are 0.805, 0.801 and 0.803, respectively. 

3.9. Discussion 

3.9.1. SAR dataset and indices 

SAR data entails a more complicated extraction, management and understanding of the extracted information. 

Compared to the generally more stable accuracy performance of optical data, under optimal time conditions, it 

must be considered that the research on these is much more consolidated over time, and numerous methodologies 

of analysis and optimisations have been developed (Chuvieco et al., 2019; Pereira et al., 1999; Meng et al., 2017; 

Tanase et al., 2020; Miller et al., 2007; De Santis et al., 2009; Fornacca et al., 2018; Filipponi et al., 2018; 
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Fernández-Manso et al., 2016). Tanase et al. (2020) also stated that the development of methodologies for detecting 

burned areas from SAR sensors is infancy compared to the optical sensors. Further contributions in this field could 

improve the results. Some studies using deep learning with SAR data, have already shown that accuracy can be 

high (Ban et al., 2020). We consider that the two types of data should be used as complementary to fill each other’s 

gaps and optimise their usage potential (Lehmann et al., 2015; Stroppiana et al., 2015; Lasko, 2019). 

Concerning the number and dates of images used, we have decided to include approximately one month before 

and one month after the event, represented, in this case, by the more drastic months of the summer fire season 

(July and August). Since the events under study did not occur precisely on August 1st, this resulted in a different 

number of pre- and post-fire images. We have not included additional images (i.e., from September) to avoid rain 

interference, which would have involved further analyses in interpreting the noise. The imbalance in the number 

of pre- and post-fire images may affect their time average, an issue not explored in the present study. Nevertheless, 

even with a small number of post-fire images, the aim of reducing speckle noise has been fulfilled. 

This study aimed to test and establish the workflow’s functionality, focusing mainly on extracting valid and useful 

information from the SAR data. The approach has been applied only to two regions of the Mediterranean, 

presenting similar vegetation, climate, and latitude. If further tested and optimised, this method could be easily 

applicable and with good results, at least in the Mediterranean environments.  

The S-1 radar indices (Equations 3.3, 3.4, 3.7, and 3.8), calculated from the time-averaged data layers and for both 

study sites (PO and IT), present a well-defined area of low backscatter (darker area), indicative of the fire 

occurrence. This is in agreement with several research works (e.g., Belenguer-Plomer et al., 2019; Carreiras et al., 

2020; Imperatore et al., 2017; Tanase et al., 2015, 2010; Zhang et al., 2019) that show how a progressive fall in 

the cross-polarised intensity of the radar backscatter is always observed after a forest fire. This is related to the 

forest structure’s loss, leading to a less reflection of the C-band signal (Carreiras et al., 2020; Chuvieco et al., 2019; 

Donezar et al., 2019; Imperatore et al., 2017; Kurum, 2015; Pepe et al., 2018; Santi et al., 2017; Tanase et al., 

2010, 2011, 2020, 2015; Zhang et al., 2019), and the soil changes following the fire occurrence (Hachani et al., 

2019; Kurum, 2015; Martinis et al., 2017; Ruiz-Ramos et al., 2018; Tanase et al., 2010).  

A clear difference is observed in the PO study site in the co-polarised indices (RBD and LogRBR) obtained from 

VV polarisation. The corresponding burned areas are represented by lighter pixels (higher backscatter), but in any 

case, always distinguishable from the rest of the scene. This is partly observable in the upper plots of Figure 3.10. 

However, it must be taken into account that they represent the classes deriving from the classification and therefore 

affected by commission and omission errors. This particularity is not observed in the IT study site, demonstrating 

a different property of the signal from each polarisation and the possibility of having a different result, depending 

on a multitude of local conditions as stated in several studies (Belenguer-Plomer et al., 2019; Donezar et al., 2019; 

Imperatore et al., 2017; Tanase et al., 2010). This is because polarisations have a different interaction with 

vegetation scattering components based on their size and space orientation. Standing vertical tree trunks depolarise 

the incoming waves with different strengths than branches or leaves (Flores et al., 2019). The total backscatter 

coefficient from vegetation surface is the combination of the scattering components given by the volume of the 

stand, by the volume of the soil, and the combination of these two (Richards J.A., 2009; Flores et al., 2019). The 

backscatter from co-polarisation is typically stronger for rough surface scattering components (e.g., bare ground). 

The cross-polarised backscatter form vegetation is associated with the distribution of volume scatterers from leaves 

and small branches (Flores et al., 2019; Carreiras et al., 2020).  So, the cross-polarised backscatter coefficient has 
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higher sensitivity for volume changes, decreasing with the increase of burn severity at all frequencies due to the 

destruction of the canopy volume component (Tanase et al., 2010; Imperatore et al., 2017; Carreiras et al., 2020). 

The co-polarised signal VV is not so markedly affected by the loss of the canopy components but is affected by 

greater exposure of the underlying soil after the destruction of the canopy. As hypothesised by other studies 

(Tanase et al., 2010; Imperatore et al., 2017), this can result in a different and opposite behaviour compared to the 

cross-polarised signal, with an increase in backscattering. The sensitivity of the signal to the vegetation structure 

also depends on the wavelength. It determines the signal’s penetration capacity (the longer the band, the lower the 

frequency, the more the radar waves can penetrate the canopy of trees) and diffusion from the smaller or larger 

woody components of the forest. Therefore, it affects the degree of interaction of the signal with the underlying 

components such as the soil, whose contribution increases after disastrous events such as a fire (Saatchi et al., 

2016; Hosseini et al., 2017; Flores et al., 2019). The combined use of both polarisations, using dual-polarimetric 

difference indices (ΔRVI, ΔDPSVI), represents an effective tool for integrating the information. In general, the 

use of both polarisations (VV, VH) allows capturing the volume and structure variability of different sizes and 

orientations of the vegetation (Flores et al., 2019). Polarisation impacts differently how each element of the surface 

affects the backscatter. Therefore, the use of combined polarisation can help improve the retrieval of more 

information (Santi et al., 2019; Tanase et al., 2014), and it has already been shown how polarimetric data have 

high sensitivity towards changes in vegetation conditions (Engelbrecht et al., 2017; Chang et al., 2018; Mandal et 

al., 2020). Chen et al. (2018) show how indices that combine cross- and co-polarised bands had better performance 

than single-polarisation when used to map post-fire regrowth in different recovery intervention conditions. Plank 

et al. (2019) investigated the different behaviours of the quad-polarimetric L-band SAR backscatter properties 

during active fire and post-fire conditions. Moreover, a series of polarimetric decomposition procedures, including 

the RVI index, were computed to map the burned scar with an overall accuracy similar to the one we obtained in 

this research. Martinins et al. (2016) used several dual- and quad polarimetric L-band indices for monitoring forest 

degradation after the fire, demonstrating that these are very sensitive to forest structure and its modifications. 

However, none of them was able to discriminate between the intermediate levels of degradation. Dos Santos et al. 

(2013) show that L-band polarimetric indices can be applied to quantify and monitor the carbon stocks in the 

tropical forest affected by the fire. Other studies investigated the capability of dominant scattering mechanisms in 

fully-polarimetric data to detect burned areas using polarimetric decompositions models (Engelbrecht et al., 2017; 

Goodnough et al., 2011; Czuchlewski et al., 2005; Martins et al., 2016; Tanase et., 2014). All those researches 

obtained high accuracy values, demonstrating that polarimetric data increase SAR measurement sensitivity for 

scar detection and classification.  

Although the potential of polarimetric indices and backscatter decomposition models has been proven in these 

mentioned research, some of these dealt with the L-band use (Chen et al., 2018; Plank et al., 2019; Martins et al., 

2016; Dos Santos et al., 2013). Our research is the first to deal with ΔRVI and DPSVI in mapping burned areas 

using S-1 C band data to our best knowledge. Therefore, more research should be carried out to investigate this 

issue deeply. 

3.9.2. GLCM texture extraction and PCA transformation 

For GLCM texture calculation, the square processing window size is crucial since it defines the number of 

neighbour pixels used for texture calculations (Coburn et al. 2004). GLCM analysis results largely depend on the 
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relationship between the processing window’s size and the objects’ size and variability across the image (Coburn 

et al. 2004).  

Several studies confirmed that small sizes could miss important information for texture characterisation, failing to 

capture enough surface patterns, while too large windows could introduce systematic errors (Dorigo et al. 2012; 

Hall-Beyer et al., 2017; Coburn et al. 2004; Franklin et al., 2020; Murray et al. 2010; Caridade et al. 2008). This 

last hypothesis occurs when the window is too large, overlapping more land-use class edges (Franklin et al., 2000; 

Dorigo et al., 2012). Coburn et al. (2004) and Murray et al. (2010) demonstrated that using medium-high window 

size (between 7x7 and 15x15 pixels), there are improvements in the overall accuracy. In our case, small fires (i.e., 

less than 0.5 km2) were not considered. Moreover, given our research’s purpose (i.e., a binary detection of 

burned/not burned areas), delta indices are useful, considering that they highlight only those areas where changes 

occurred. Indeed, these indices do not provide any information on the actual land use cover. We fixed the window 

size to 11x11 pixels following these considerations and based on Muthukumarasamy et al. (2019) research aimed 

at land cover classification using S-1 and S-2 data.  However, if small and scattered burned areas have to be 

mapped, smaller window sizes should be considered. Similar consideration could be addressed about the window 

size used for the spatial averaging in each image of the time-series in multitemporal speckle filtering (Quegan et 

al., 2000). 

The datasets transformed and reduced by the PCA can be considered an optimal representation subset of the 

original ones. On the one hand, it maintains the most useful information in a few layers, speeding up the calculation 

process. On the other hand, the linear transformation performed on the original images, as a function of the 

maximum variance expressed, created new, improved imagery, able to discriminate better the changes caused by 

the fire, and therefore, optimising the unsupervised classification, as already pointed out by Gimeno et al. (2004).  

The first PC represents the maximum proportion of the original dataset variance (Fung and Ledrew, 1987). In our 

case, we used the first PCs obtained that explained a cumulative variance larger than 99%, which revealed with 

high contrast the area affected by the fire. This aspect is important so that the various characteristics of the scene 

can be circumscribed and classified within the various classes, directly influencing the values obtained in 

subsequent analyses. 

3.9.3. k-means classification and accuracy assessment 

 The silhouette score in the preliminary choice of the most suitable number of clusters has solved the well-known 

problem of parameter setting that allowed reducing the algorithm’s implementation time, i.e., avoiding a series of 

trial-and-error tests.  It is evident from the graphs shown in Figures 7 and 8 that for lower k values (<10), the 

silhouette score and, therefore, the clusters’ separation is more significant. A value of 7 seemed to be optimal to 

discriminate the various areas that characterized the scene, which was an expression of the different surface change 

levels.  

The k-means unsupervised classification was applied to the transformed dataset (PCs) to discriminate the burned 

areas without having prior knowledge of the characteristics and the number of classes characterising the surface 

background. Although the easy to use and speed execution time characterising the standard k-means algorithm has 

been widely recognised (Nagpal et al., 2013), extensions like the k-means++ (Arthur and Vassilvitskii, 2007) 

improved the reliability of the obtained classifications. Indeed, the standard k-means algorithm is very prone to 

the different numerical distribution of the individual layers’ values, making up the datasets, to the so-called outliers 

with extreme values. The choice of a centroid is generally random in this algorithm, leading to the definition of 
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always different centroids, even in identical and repeated conditions, limiting the results’ repeatability. Therefore, 

all data must be reported on the same scale. In our case, a normalisation (Eq. 3.9) of all layers values in the range 

[0, 1] has been carried out. Normalisation is a crucial step when the different input data have different values range. 

However, although MinMax normalisation is one of the most common ways to rescale the data, it keeps all the 

data values, including any outliers that can influence the result (Kandanaarachchi et al. 2020). These are very 

different values from the rest of the other data values, and the k-means algorithm is sensitive to them, affecting its 

performance (Gan et al., 2017; Hautamäki et al., 2005). These arise from common noise or errors in remotely 

sensed data (Liu et al., 2017) with anomalous values concerning the surrounding pixels (Alvera-Azcárate et al., 

2012). Several methods of outliers detection and correction are present in the literature for general data analysis 

(Kandanaarachchi et al. 2020, Campos et al. 2016, Angelov et al. 2019, Gan et al. 2017, Hautamäki et al. 2005) 

and specific remote sensing contexts (Liu et al. 2017, Alvera-Azcárate et al. 2012). Gan et al. (2017) reported a 

series of related work concerning outliers detection, dedicated to cluster analysis and specific to the k-means 

algorithm. Given the good results of the first test of the classification, this topic has not been addressed in this 

study case, but it could be further investigated in future work developments. 

Since the quality of the final clustering results depends on the arbitrary selection of initial centroid (Dhanachandra 

et al., 2015), the k-means++ (Arthur and Vassilvitskii, 2007), and implemented in the scikit-learn module, 

optimise the standard k-means algorithm by choosing the initial cluster centroids basing on the weighted 

distribution probability metric and only the first centroid is randomly selected. This seeding method yields a better 

performing algorithm and consistently finds a better clustering with lower resources than the standard k-means 

(Arthur and Vassilvitskii, 2007). 

To estimate SAR S-1 data accuracy in detecting burned areas, the classified maps were compared to the relative 

reference burned area obtained from S-2 images. From a first visual assessment of the classified maps (Figure 11), 

the 3, 4 (in IT) and 6 (in PO) classes seem to have detected a large part of the relative affected area, a condition 

confirmed by observing TPs’ distribution in Figure 10. Nevertheless, the F-score, p and r  accuracy metrics are 

those that give an analytic and objective picture of the classification algorithm performance (Modica et al., 2020; 

Shufelt, 1999). The results indicated a satisfying global accuracy, represented by the F-score, for both the study 

sites, similar to other works using only the SAR data (Belenguer-Plomer et al., 2019; Carreiras et al., 2020; 

Donezar et al., 2019; Gimeno et al., 2004; Gimeno and San-Miguel-Ayanz, 2004; Lasaponara and Tucci, 2019; 

Zhang et al., 2019; Goodnough et al., 2011). 

However, some commission and omission errors occurred. It should be noted that the omission and commission 

errors, represented by the opposite of r and p, respectively, presented similar values in both study sites. Figure 10 

shows how most FPs are located in scattered areas throughout the scene and probably represented by local surface 

changing conditions (i.e., topography, roughness, humidity, local incidence angle) affecting the backscatter signal 

(Belenguer-Plomer et al., 2019; Donezar et al., 2019; Gimeno et al., 2004; Gimeno and San-Miguel-Ayanz, 2004; 

Kurum, 2015). Concerning the effects of the terrain conformation and the sensor geometry, these were attenuated 

by using images deriving from both ascending and descending orbits (Tab. 1), allowing to observe the burned 

surfaces from multiple angles of incidence of radar beams. This is due to the reliefs’ topographic characteristics 

that determine the radar beam’s local incident angle, which plays a fundamental role in the radiometric radar 

response of the surface (Gimeno and San-Miguel-Ayanz, 2004; Kurum, 2015; Tanase et al., 2010). Also, Donezar 

et al. (2019) observed how the low detection of some burned areas could be since orography overshadowed these 
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areas facing the side opposite the radar beam, while this problem did not occur when using images of both orbits. 

This increases the chance that a burned surface that was shadowed in one image would be illuminated on another. 

The same behaviour was observed in Sayedain et al. (2020), where the use of both ascending and descending orbit 

directions improved the accuracy of land use classification with S-1 data. 

Still, regarding the commission errors, it is necessary to consider the variations inherent in the observed scenario 

within the time considered from the first pre-fire acquisition date to the last post-fire image date. During this time-

frame, other environmental and agricultural changes could also occur. More investigations should be carried out 

in these contexts. Taking these critical aspects into account, the time-series on which the backscatter was averaged 

has probably contributed to producing a better result, reducing the intrinsic noises of the radar data (Lasaponara 

and Tucci, 2019). Obviously, previous knowledge of the meteorological conditions present at the date of image 

acquisition must be taken into account to select an optimal time series or possibly consider the effects of rains 

(Gimeno et al., 2004). The multitemporal Lee filter’s use allowed further reduction of the noise and amalgamated 

pixels with different intensities to be similar to their neighbours, thus eliminating small isolated regions 

(Imperatore et al., 2017). 

3.9.4. Advantages and shortcomings of the implemented workflow 

The use of specific Python-based libraries allowed us to build a complete workflow and enclose it in a single script. 

Furthermore, the use of Python scripts offers the repeatability of the proposed model with high flexibility, allowing 

any further improvement (e.g., more reliable classification algorithm) with only small script changes. The process 

is not entirely automatic. Many steps require the user’s intervention, such as the imagery selection and the analysis 

of the results for clusters related to the burned areas. However, the availability of free and open-source software 

dedicated to remote sensing image processing such as ESA snappy allow connecting the first pre-processing steps 

to a large number of free toolkits and libraries for exploration, in-depth analysis, data processing, implementing 

advanced algorithms and graphics (Hao and Ho, 2019; Pedregosa et al., 2011).  

The main advantages of the approach developed here were related to (i) self-adaptation to local scattering 

conditions without the need for a priori information of the observed area; (ii) total free and open-source based 

workflow, from satellite data to the libraries used in the processing; (iii) possibility of adaptation and 

interchangeability of parts of the Python-based script (essential for custom improvements); (iv) ability to detect 

burnt areas during the summer period in territories with heterogeneous vegetation and topographical 

characteristics, typical in the Mediterranean environment. On the other hand, the main limitations concerned: (i) 

the misclassification of non-fire related modifications; (ii) dependence of accuracy on variables influencing radar 

scattering processes (e.g., type of ecosystem, topography). Therefore, there is a need for further improvements to 

reduce these limitations. 

3.10. Conclusions and recommendations 

Our study showed the potential of the implemented approach, based on Sentinel-1 SAR data, for semi-automated 

and accurate detection of burned areas in Mediterranean contexts, which is the first and necessary operational step 

for any subsequent investigations the disturbing effects on vegetation and the environment. This sensor showed to 

be sensitive to fire-induced changes, and this has been enhanced through the use of radar difference indices. In 

particular, the dual-polarimetric vegetation indices, RVI and DPSVI, used as differences between pre- and post-
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event (Δ), have never been used to the best of our knowledge for this purpose with S-1 data. Therefore, more 

investigation will have to be done to find out more about their behaviour. It could be interesting to study these two 

for the medium and long-term monitoring of post-fire effects and vegetative dynamics. 

The pre-processing approaches adopted have made it possible to reduce the adverse geometric and radiometric 

effects of sensor characteristics and local surface conditions (topography, roughness, humidity, local incidence 

angle, etc.). These factors mentioned above are those that most affect the backscatter signal. Meanwhile, the 

combination of using a time-average of the pre- and post-fire time series with a multitemporal speckle-filter can 

reduce the intrinsic speckle noise of the SAR data. The PCA analysis, reducing the amount of data deriving from 

pre-processing steps, allowing to decrease the time and computational resources requesting.  

Our findings confirm the reliability of open-source and Python-based processing solutions. On the one hand, they 

allow building an almost complete processing and analysis workflow, with a high degree of interchangeability and 

flexibility in the choice of components. On the other hand, they offer full repeatability when similar conditions 

arise or partially repeatability, in this case, using some parts of a process even if some steps requires user 

intervention.  

The research was conducted in two Mediterranean areas with similar environmental characteristics, located in 

different countries, to test the operability of the methodological workflow and its various components. Future 

developments may involve testing our approach over larger study areas affected by large and small fires in order 

to assess the impact of the spatial pattern of burned areas on the classification accuracy. It is also planned to 

improve some workflow components, such as the use of other radar indices or the use of more robust machine 

learning techniques, to minimise the presence of commission errors, resulting from signal confusion between 

burned areas and other land cover types. 
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4. Regional-scale detection of burned area using a multicomposite process and GEOBIA 

Adapted from 

De Luca, G., Silva, J.M.N., Modica, G.: Regional-scale burned area mapping in Mediterranean regions based 

on the multitemporal composite integration of Sentinel-1 and Sentinel-2 data. GIScience Remote Sens. 59, 1678–

1705 (2022). https://doi.org/10.1080/15481603.2022.2128251. 

 

 

Remote sensing techniques and optical satellite imagery have been extensively used for burned area detection on 

a regional/national scale (Barbosa et al., 1999; Crowley et al., 2019; Eva & Lambin, 1998; Filipponi, 2019; 

Kasischke et al., 1993; Pulvirenti et al., 2020; Setzer & Pereira, 1991) and globally (Chuvieco & Martin, 1994; 

Chuvieco et al., 2016; Giglio et al., 2018; Knopp et al., 2020; Otón et al., 2019; Tansey, Gre, et al., 2004), promoted 

by the increasing availability of numerous satellite platforms and more robust algorithms and software (Chuvieco, 

2009; Chuvieco et al., 2019). The efficiency of these sensors is due to the high sensitivity of the visible (VIS), 

near-infrared (NIR), and short-infrared (SWIR) spectral regions to changes in the surface affected by fire 

(Chuvieco, 2009; Chuvieco et al., 2019; Pereira et al., 1999). In the period immediately after a fire, burned 

vegetation presents an unequivocal spectral signature owing to the cumulative effects of the loss of green biomass, 

https://doi.org/10.1080/15481603.2022.2128251
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bare soil unveiling, ash and coal presence, and temperature and moisture changes (Inoue et al., 2019; Miettinen & 

Liew, 2008; Pereira et al., 1999; Smith et al., 2005). 

4.1. The compositing criteria: principles and literature review 

Among the methodologies provided in the literature aimed at large/regional-scale burned area mapping, the 

multitemporal image compositing criteria enable the mapping of fires that occur at different and progressive times, 

such as during an entire fire season, which is adequate to maintain the spectral discrimination between unburned 

and burned pixels in longer timeframes (Barbosa et al., 1998; Chuvieco et al., 2005; Qi & Kerr, 1997; Sousa et al., 

2003). Furthermore, several studies have demonstrated the ability of this method to deal with the influence of 

external factors such as clouds, cloud shadows, and high-brightness surfaces (Barbosa et al., 1998; Cabral et al., 

2003; Emilio Chuvieco et al., 2005; Mayaux et al., 2000; Qi & Kerr, 1997; Sousa et al., 2003). The multitemporal 

compositing criteria initially proposed with the aim of optimizing land cover classification because of its capacity 

to maximize the spectral reflectance of healthy vegetation (Cabral et al., 2003; Holben, 1986; Qi & Kerr, 1997), 

have been subsequently adapted for burned area detection by numerous authors (Barbosa et al., 1998; Chuvieco et 

al., 2005; Fernández et al., 1997; Miettinen & Liew, 2008; Pereira et al., 2017; Pereira et al., 1999; Silva et al., 

2004; Sousa et al., 2003; Tansey, Gre, et al., 2004; Tansey, Grégoire, et al., 2004). The main approaches used for 

land cover classification, such as the multitemporal normalized difference vegetation index (MNDVI), are 

unsuitable for burned surfaces because of their spectral characteristics, resulting in the worst discrimination 

(Chuvieco et al., 2005; Pereira et al., 1999), returning a low spectral separability between unburned and burned 

areas (Miettinen & Liew, 2008; Sousa et al., 2003), underestimating the results, and generating a large number of 

false positives (Barbosa et al., 1999; Cabral et al., 2003; Pereira et al., 2016). Other authors have improved the 

criteria for dealing with various artifacts. For example, the lowest reflectance value of red or short-wave infrared 

(SWIR) bands, coupled with the MNDVI criterion, has been used to reduce the presence of clouds in composite 

images, with the disadvantage of causing an increase in the presence of cloud shadows (Cabral et al., 2003; 

Chuvieco et al., 2005; Mayaux et al., 2000; Qi & Kerr, 1997). For these reasons, several alternative criteria have 

been proposed for multitemporal compositing in burn mapping. Barbosa et al. (1998), followed by other studies 

(Chuvieco et al., 2005; Miettinen & Liew, 2008), selected pixels with minimum NIR reflectance in the time series 

using low/coarse resolution satellite data, considering that burned vegetation has low reflectance in these spectral 

bands. The minimum NIR reflectance highlights the separability of charred fuels deposited over the ground, 

characterized by very low VIS and NIR reflectance, preventing the misinterpretation of clouds and vegetated areas. 

Therefore, burned territory unity (pixels) represents the minimum NIR value in a time series. The lowest NIR 

criteria produce higher separability between burned and unburned vegetation (Sousa et al., 2003). However, this 

emphasizes cloud shadows when used in more local-scale studies (Chuvieco et al., 2005; Pereira et al., 1999; Sousa 

et al., 2003) and requires supplementation with efficient cloud shadow removal approaches (Miettinen et al., 2013). 

Miettinen et al. (2008) evaluated several composite methods and considered the lowest value of NIR as one of the 

more permeants, but only if the dataset was cloud shadow masked before the process. The criteria of the third 

lowest NIR value selection were demonstrated to deal with this issue, achieving better performance in removing 

shadows. At the same time, the quality of the image and the spectral differences between vegetation covers were 

maintained without fine-grained spatial heterogeneity typical of other criteria (Cabral et al., 2003; Stroppiana et 

al., 2002). Researchers have also used the thermal infrared (TIR) band to detect burned areas (Chuvieco et al., 
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2005; Miettinen & Liew, 2008; Pereira et al., 1999; Sousa et al., 2003). In fact, recently burned areas are warmer 

than unburned surfaces, clouds, and shadows (Pereira et al., 1999; Pereira et al., 1999). Chuvieco et al. (2005) 

concluded that maximizing the TIR criteria was more accurate than maximizing other NIR-based criteria. 

Miettinen et al. (2008) highlighted the problem of using this band, including the underestimation of smaller burned 

areas owing to its lower spatial resolution. When the thermal band is not available, several authors (Cabral et al., 

2003; Chuvieco et al., 2005; Stroppiana et al., 2002) have suggested using the highest NIR value among the three 

minimum red reflectance values of the daily images because, as seen above, although minimizing NIR may be 

suitable, the presence of cloud shadows needs to be dealt with extra processing. This technique has been further 

integrated with the use of SWIR, which, similar to TIR behavior, avoids the selection of colder pixels (e.g., 

occupied by cloud shadows) more than NIR. Pereira et al. (2017) and Pereira et al. (2016) evaluated different 

criteria, the first, second, and third lowest NIR value and the maximum SWIR value among the three lowest NIR 

values (minNIRmaxSWIR criteria), in terms of spectral separability between burned/unburned areas and the 

presence of clouds and shadows. The final conclusions were that, although the lowest NIR presented higher 

separability between burned and unburned areas, it caused the identification of a large number of cloud shadows 

owing to the spectral similarity between burned vegetation and shadows at this wavelength, as also observed by 

Miettinen et al. (2008); the second lowest NIR criterion achieved the best results, followed by the 

minNIRmaxSWIR criterion, maintaining burn separability with a low incidence of cloud shadows. 

4.2. The opportunity for higher resolution data 

These approaches have been successfully applied for the regional to continental/global mapping of burned areas 

using coarser spatial resolution satellite data (e.g., NOAA/AVHRR, PROBA-V, SPOT-VEGETATION, and 

NASA Terra/Aqua MODIS). This could involve underestimating smaller burned areas and increasing omission 

errors (Roteta et al., 2019). Kasischke et al. (1993) observed that only 89.5% of burned areas larger than 20 km2 

were detected, without false positives, using AVHRR satellite data. An additional shortcoming of coarse-resolution 

data is their inability to distinguish medium/small unburned areas within the fire perimeter (unburned “islands”), 

representing potential areas of high biodiversity from which vegetation recovery can spread in a post-fire scenario 

(through speed dispersion and/or agamic regeneration) (Christopoulou et al., 2014; Meddens et al., 2016), 

overestimating the actual damage. The advent of sensors with increasingly better spatial and temporal resolutions 

has allowed the development of approaches that ensure a more accurate mapping of burned areas. Several authors 

have shown that using Landsat-7/8 multispectral satellite platforms (Axel, 2018; Boschetti et al., 2015; 

Christopoulou et al., 2014; Goodwin & Collett, 2014; Hawbaker et al., 2017; G. H. Mitri & Gitas, 2004; João M.N. 

Silva et al., 2019; Storey et al., 2021), high performance can also be achieved for larger burned area detection 

scales, improving the level of detail and accuracy obtained from coarse resolution sensors, particularly for smaller 

burned areas and unburned islands. Their higher temporal resolution, combined with finer spatial resolution, 

allowed a broad application of successful approaches based on single or multitemporal Sentinel-2 data for mapping 

burned areas. Recent studies have exploited the spectral endowment of sensors and the combination of derivable 

spectral indices (Filipponi, 2019; Knopp et al., 2020; Llorens et al., 2021; Mpakairi et al., 2020; Navarro et al., 

2017; Pulvirenti et al., 2020; Roteta et al., 2019; Sali et al., 2021; Smiraglia et al., 2020; Vanderhoof et al., 2021). 

Multispectral Sentinel-2 data were recently integrated into the fire detection procedure adopted by the European 

Forest Fire Information System (EFFIS) (EFFIS Rapid Damage Assessment, 2022), thus allowing the refinement 
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of the map of burned areas obtained from coarser-resolution sensors and the detection of fires below 30 hectares. 

However, the literature lacks the use of NIR-based multitemporal composite techniques applied to the higher 

temporal and spatial resolution Sentinel data to optimize the mapping of burned areas. 

4.3. Integration of SAR information 

In addition to optical data, synthetic aperture radar (SAR) active sensors have achieved good performance in 

burned area mapping and fire effect estimation (Belenguer-Plomer, Chuvieco, et al., 2019; De Luca, Silva, & 

Modica, 2021b; Donezar et al., 2019; M. Gimeno et al., 2004; Kurum, 2015; Lasaponara & Tucci, 2019; Lehmann 

et al., 2015; Pepe et al., 2018a; Stroppiana et al., 2015; M. Tanase et al., 2011; Mihai A. Tanase et al., 2020; P. 

Zhang et al., 2019). The Earth’s microwave backscatter is affected by variations in the structural parts and 

dielectric permittivity of the surface, triggered by vegetation cover, shape, size, and orientation of the canopy 

scatterers, soil structure, and moisture content modifications, making it a suitable system for discriminating 

alterations on the Earth’s surface. Factors such as wavelength, polarization, the orbit of the satellite sensor, and 

local topographic properties of the Earth’s surface can influence the SAR backscatter (De Luca et al., 2021; 

Gimeno et al., 2004; Hachani et al., 2019; Imperatore et al., 2017; Kurum, 2015; Tanase et al., 2011; 2010a; 2020). 

Polarization is an intrinsic feature of the primary sensor that influences the behavior of the SAR signal scattered 

by burned vegetation. Generally, after a fire event in a Mediterranean context, characterized by drier seasons, 

cross-polarized backscatter [vertical-horizontal (VH) and horizontal-vertical (HV)] decreases owing to its higher 

sensitivity to the reduced contribution of volumetric dispersion and moisture content. In contrast, the co-polarized 

signal [vertical-vertical (VV) or horizontal-horizontal (HH)] might show an increased backscatter attributable to 

higher soil exposure after the fire event (Imperatore et al., 2017). Although several studies have confirmed this 

finding (Carreiras et al., 2020; De Luca et al., 2021; Ruiz-Ramos et al., 2018; Tanase et al., 2010a; 2010b), the 

literature shows how several different backscatter behaviors can be observed for vegetation affected by fire and 

influenced by local environmental variables (Ban et al., 2020; F. S. R. V. Martins et al., 2016; Stroppiana et al., 

2015). Some authors have used multi-polarimetric indices to maintain the information provided by two different 

polarizations for various research purposes concerning environmental monitoring (Kim et al., 2012, 2014; Yunjin 

Kim & Van Zyl, 2009; Martins et al., 2016; Periasamy, 2018; Pipia et al., 2019; Szigarski et al., 2018; Trudel et 

al., 2012), including the radar vegetation index (RVI), which is one of the most widespread. De Luca et al. (2021) 

successfully used a dual-polarimetric RVI index to map burned areas in Mediterranean environments. Martins et 

al. (2016) used several dual-polarimetric SAR indices to analyze and monitor the temporal effects of fire in a 

Mediterranean environment. 

4.4. Aim and structure of the study 

This research maps a series of fires throughout the 2017 fire season, covering most of Portugal, using a 

multitemporal composite and supervised geographic object-based classification approach (GEOBIA). The main 

objective was to develop an open-source workflow based on optical and SAR multitemporal composite data for 

burned area mapping at a regional scale in Mediterranean regions, assessing the contribution of SAR data, given 

that most studies of burned area mapping in this region are based only on coarser optical data. Specifically, the 

aim and novelty of our proposed workflow rely on the following key points. 
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a. To optimize an optical-based multitemporal composite processing criterion using higher temporal and spatial 

multispectral data (Sentinel-2) and integrating SAR data (Sentinel-1) to accurately map the burned areas that 

occurred during the entire fire season. 

b. To compare the accuracy of burned area maps derived from S1 and S2 data with those derived from S2 data 

only. 

c. To assess the effectiveness of GEOBIA over a large region using open-source software and freely available 

datasets. 

4.5. Study area 

The analyses focused on a study area (Figure 4.1), including Portugal’s northern and central parts (between the 

39.5° and 42.1° parallels), expanding to 55,441.44 km2. This represented the area where major fires occurred 

during the exceptional fire season (June–October) of 2017 (ICNF, 2017; European Environment Agency, 2022).  

According to statistics provided by the Instituto da Conservaçăo da Natureza e das Florestas (ICNF, 2017), the 

total burned area from January 1 to October 31 was 442,418 ha. Almost all burned areas (>95% of the national 

burned surface) occurred inside the present study area. The southern part of Portugal was excluded because it was 

unaffected by significant events (in terms of the total surface area that affected the country during the fire season 

analyzed). Only one large fire (defined by ICNF as a fire exceeding 100 ha) occurred outside the study area in 

southern Portugal. 
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Figure 4.1. Location of the burned study area in Europe (top-left), in Portugal (bottom-left). The image on the right shows the overview 

of the study area (Sentinel-2 composite image based on the second-lowest NIR criterion, false-color composite SWIR-NIR-RED); the 

red areas represent the burned surfaces. 

4.6. Materials and methods 

4.6.1. Satellite dataset and pre-processing 

A multitemporal compositing approach was tested on different progressive fire events in the central and northern 

parts of Portugal during the fire season in 2017, from June to October. In Mediterranean European regions, this 

period is considered one of the most severe fire seasons in recent years in terms of the total area burned and 

environmental and civil damages (San-Miguel-Ayanz et al., 2018). The size of each event was very different, and 

the spatial distribution over the entire area was considered. Most of the surface (52.37 %) was affected during the 

fire events in October (ICNF, 2017). 

4.6.1.1. Sentinel-2 dataset 

The S2 Level-2A (Bottom of the Atmosphere) dataset was preprocessed and downloaded using the Google Earth 

engine (GEE), which sped up the process considering that most parts of the images are unavailable online in the 

Copernicus Open Access Hub owing to the long-term policy adopted, which allows only 12 months of the online 

retention period of the images (Copernicus Long Term Archive Access, 2021).  

Focusing on image research in the study area, the first period considered was from June 1 to November 15, 2017. 

Extending the image search period by a few weeks was necessary so that the number of images covering the last 

fire season to be analyzed was sufficient. Otherwise, applying the composite criterion could discard the last images 

of the fire season in which fires could be present. The number of available images for the study area with less than 

7.5% cloud cover was 227. After selecting only the red (B4), NIR (B8), and SWIR (B12) bands, the latter was 

resampled from a 20 m to a 10 m pixel space using bilinear interpolation to relate it to the first two bands. Each of 

these images was grouped per day of acquisition, and, according to this, a large image mosaic for each acquisition 

date, covering the entire study area, was produced. The GEE imageCollection.mosaic() function was used for 

mosaicking.  

On some acquisition dates, very few images were taken over the study area; therefore, some mosaics mainly 

consisted of unavailable pixels. These mosaics were excluded from the final dataset to reduce the time and memory 

process demand without affecting it. Considering this reduction, the final dataset consisted of three-monthly dates, 

represented by 15 image mosaics for the entire study area.  

As illustrated in the following sections, the change in the detection technique between the pre- and post-fire scenes 

was implemented to map the burned areas. To do this, a pre-fire composite image was constructed by applying the 

same pre-processing steps as for the post-fire image, to the images acquired from April 1 to May 31. 

4.6.1.2. Sentinel-1 dataset 

The S1 images were downloaded using the Alaska Satellite Facility (ASF, 2022) interface. The S1-A/B high-

resolution ground range detected (GRDH), acquired in interferometric wide (IW) mode, and dual-polarized 

[vertical-horizontal (VH) and vertical-vertical (VV) polarizations] were used. To cover the entire study area, 45 

https://asf.alaska.edu/
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images of the same flight path (path 147, ascending flight direction), consisting of three images for each sensing 

date (15 sensing dates) and covering the same sensing period adopted for the S2 dataset, were downloaded. 

The S1 pre-processing workflow commenced by applying precise orbit information and removing thermal noise. 

This workflow involved radiometric calibration (to beta, β0, nought backscatter standard conventions) (Small, 

2011) and radiometric terrain correction (RTC) processes, through which the images were radiometrically flattened 

and geometrically corrected using the shuttle radar topography mission (SRTM) 1 arc-second (Farr et al., 2007) 

digital elevation model (DEM). All S1 images were mosaicked as a function of the acquisition date, resulting in a 

final dataset of 15 large image mosaics covering the entire study area, and stacked, relying on the geolocation 

product to initialize the offset method. A multitemporal Lee filter with a 5 × 5 pixel of window size was employed 

to reduce the speckle noise (Lee & Pottier, 2009). To align each pixel of both datasets, consisting of a 10 m space 

sampling, the S1 and S2 mosaic datasets were finally stacked, choosing the extent of the S1 dataset as master data 

for the geolocation and the bilinear as the interpolation method. 
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Figure 4.2. The flowchart illustrates the second-lowest NIR (secMinNIR) scheme, SAR criteria, and their placement within the 

workflow. 

4.6.2. Multitemporal compositing 

4.6.2.1. Optical (Sentinel-2) part 

The second lowest NIR composite criterion (secMinNIR) (Figure 4.2) was adopted in this study for the optical 

dataset. Considering a time series in which each image corresponds to an acquisition date, each pixel of the final 

composite image contains the second-lowest value of NIR among the corresponding pixels (exactly aligned xy 

position in the image) of the entire image time series. For each xy pixel, the process searches for the sensing date 

where the pixel has the second lowest NIR value. 
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4.6.2.2. SAR (Sentinel-1) part 

To obtain an SAR composite image, information on the acquisition date of the image to which each pixel of the 

S2 composite belongs was created, that is, the date when the second lower value of NIR was observed. According 

to the literature, a fire event does not always correspond to a decrease in the SAR backscatter (Ban et al., 2020; 

Hosseini & McNairn, 2017; F. S. R. V. Martins et al., 2016; Stroppiana et al., 2015). In the Mediterranean 

environment, the results depend on different environmental (e.g., humidity and land cover) or sensory (e.g., 

frequency and polarization) factors (Mihai A. Tanase, Santoro, De La Riva, et al., 2010; Mihai A. Tanase, Santoro, 

Wegmüller, et al., 2010). This is why a similar compositing approach was not applied to the S1 data. Instead, based 

on the layer with the date of S2 compositing, for each pixel of the S1 data, the value recorded in the image with 

the first date of acquisition subsequent to the one corresponding to S2 compositing was chosen. Thus, both the 

optical and SAR datasets corresponded to information acquired at a similar moment. The S1 and S2 compositing 

procedure was written in a Python script and could be adapted to be performed on different time frames (monthly, 

bimonthly, during the entire fire season, etc.). In our case, the criterion was applied for the entire fire season (June-

October) and, separately, for the pre-fire period (April-May). 

4.6.3. Object-based burned area mapping 

Burned area mapping was carried out by performing supervised object-based geographic object-based image 

analysis (GEOBIA) classification. The large-scale mean shift (LSMS) algorithm for image segmentation (Michel 

et al., 2015) and random forest (RF) machine learning algorithm for classification (Breiman, 2001; Cutler et al., 

2007) were used. The two methods were implemented in Orfeo tool-box v.7.0.0 (OTB) (OTB Homepage, 2021) 

and Scikit-learn Python library v. 0.23.1 (Pedregosa et al., 2011), respectively. 

4.6.3.1. Input layer creation 

 From the two optical bands, NIR and SWIR (B8 and B12 bands, respectively), the normalized burn ratio (NBR; 

eq. 4.1) for the pre- and post-fire periods was computed. From the VH and VV layers, the dual-polarized radar 

vegetation index (RVI; eq. 4.2) was also calculated for the pre- and post-fire periods. The differences between the 

post-fire and pre-fire values were computed as ΔNBR (eq. 4.3) and ΔRVI (eq. 4.4) to allow a change detection 

approach. Two datasets were created and used as inputs for segmentation and image classification. One was formed 

by the four layers derived from optical and SAR data (S1+S2): ΔNBR and post-fire NBR for the optical data, and 

ΔRVI and post-fire RVI as SAR layers. The second included only two optical layers (S2): ΔNBR and post-fire 

NBR. 

NBRt = (NIR - SWIR) / (NIR + SWIR) (4.1) 

RVIt = 4 · VH / (VV + VH) (4.2) 

ΔNBR = NBRpostfire - NBRprefire (4.3) 

ΔRVI = RVIpostfire - RVIprefire (4.4) 

Before stacking, each layer band was normalized in the same continuous scale range [0–100] (eq. 4.5) to equalize 

and make them comparable as well as reduce the influence of their different scale ranges on the following 

segmentation process (De Luca et al., 2019b; De Luca, Silva, & Modica, 2021b): 

Xnorm = (X - Xmin) / (Xmax - Xmin) (4.5) 

where Xnorm is the normalized value, X is the original value, and Xmin and Xmax are the lower and highest pixel values 

of the layer band (original range), respectively. 
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4.6.3.2. Image segmentation 

The large-scale mean shift (LSMS) is a non-parametric segmentation algorithm introduced by Fukunaga and 

Hostetler (1975) and developed and improved by Michel et al. (2015). It is a tile-based approach, optimized for 

extensive and/or high-resolution imagery, comprising four successive steps: a) smoothing (filtering), for image 

noise reduction; b) segmentation, for image subdivision in segments; c) segment merging: for small-size segment 

reduction; d) vectorization: transformation in vector format, including spectral feature extraction (mean and 

variance). The first and second steps require setting the two parameters that most influence the final result: range 

radius and spatial radius. In terms of Euclidean distance, the range radius is the spectral threshold for regrouping 

two neighboring pixels. The spatial search distance of the neighboring pixels was set based on the spatial radius 

(measured in the number of pixels). While the spatial radius was set to 25, the range radius was set based on the 

minimum Euclidean distance between burned and unburned pixels calculated on 300 regions of interest (ROIs) 

(150 for burned and 150 for unburned areas) scattered over the entire study area. These ROIs, with a size of 4 × 4 

pixels, were chosen to cover all the most representative land covers (forest, mainly composed of native Quercus 

species, Mediterranean Pinus and Eucalyptus plantations; shrublands; pastures; agricultural orchards and crop 

areas), through visual interpretation supported by several ancillary pieces of information: the high spatial 

resolution Esri ArcGIS World Imagery map (Esri ArcGIS World Imagery, 2021) and Google Earth Satellite 

Imagery (Google Earth, 2021), the land use/land cover map of Portugal (Carta de Uso e Ocupação do Solo) (COS, 

2018), and the official burned area map of Portugal (ICNF, 2017). The mean value of the pixels in each ROI was 

computed separately for each optical and/or SAR layer band. The Euclidean distance was calculated for each 

combined pair of mean ROI values.  

The value of the 35th percentile resulting from the entire Euclidean distance list (composed of each Euclidean 

distance value between every combination of ROIs) was chosen as the range radius value for the smoothing step. 

To initialize the segmentation step, the process was repeated on the smoothed images by selecting a series of values 

around the 10th percentile of the Euclidean distance list calculated for the smoothed image. To finalize the 

parameter value set, we carried out a careful trial-and-error procedure to select a suitable range radius value for 

the segmentation step. The results were visually evaluated at each step of the segmentation process by using a 

composite optical image of the burned areas. We applied a criterion according to which the burned area was 

successfully segmented when it was completely “encapsulated” within one or more polygons. There must be no 

unburned parts in the same polygon. This approach was carried out for both datasets (S1+S2 and S2), and the final 

range radius parameter was set as follows: for S1+S2, 6 (smoothing) and 2 (segmentation); for S2, 12 (smoothing) 

and 5.8 (segmentation). 

In terms of space and radiometry, segments of less than 10 pixels were merged into adjacent segments. 

4.6.3.3. Object-based classification 

A well-known RF machine learning algorithm was implemented to classify the segments resulting from the LSMS 

segmentation. The training polygons were derived by selecting segments that matched the previously selected 

ROIs used in the segmentation step. In total, 300 training polygons were selected, with 150 for each of the two 

classes: unburned and burned. The mean (ms) and variance (vs) spectral data were used as spectral features to fit 

and predict the RF model. 
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The algorithm parameters were set by using the initial out-of-bag (OOB) error estimated by the RF model during 

the training step as a predictor of the final accuracy level. A set of values was chosen for each RF parameter, and 

the classification process was initiated for every possible combination of parameter values (Table 4.1). The 

combined values that reached the highest OOB were used in the RF model. 

 Finally, the Gini feature importance was computed to assess the contribution of each input spectral feature image 

layer to classification. 

Table 4.1. Parameter values of the Random Forest (RF) classifier tested through an exhaustive grid search approach to set the optimal 

combination. 

Parameter name Values set Description 

n_estimators 

100, 650, 1200, 1750, 2300, 
2850, 3400, 3950, 4500, 5050, 
5600, 6150, 6700, 7250, 7800, 

8350, 8900, 9450, 10000 

The number of trees in the RF model 

max_depth 
10, 20, 30, 40, 50, 60, 70, 80, 90, 

100, 110, 300, 500, 800, 1000 
The maximum depth of the tree 

min_samples_split 2, 5, 10 
The minimum number of samples 
required to split an internal node 

min_samples_leaf 1, 2, 4 
The minimum number of samples 

required to be at a leaf node 

max_features “auto”, “None”, “log2” 
The number of features to consider 

when looking for the best split 

 

4.6.4. Accuracy assessment 

The accuracy assessment was implemented using 1,000 validation sampling points distributed in the study area so 

that they did not overlap with the training polygons and were labeled following a stratified random approach 

(Congalton & Green, 2019). The official ICNF burned area map was used to initialize stratified sampling, from 

which 500 points were randomly distributed for each of the two classes (unburned and burned). Subsequently, the 

distribution of points was optimized through a careful visual assessment supported by the ancillary information 

already used for the training step (Esri ArcGIS World Imagery, 2021; Google Earth Homepage, 2022; COS, 2018) 

and by each pre- and post-fire Sentinel-2 mosaic image. In addition to avoiding the overlapping of the training 

polygons, this enabled the improvement of the ICNF map, namely the identification of unburned islands, which 

were frequently not mapped in the ICNF map. The ICNF maps of the burned area were based on field surveys and 

complemented with semi-automatic image classification of satellite imagery. Landsat and Sentinel-2 data from 

2017 were used (ICNF, 2017). True positive (TP), false negative (FN), and false positive (FP) accuracy categories 

were computed using the following criteria: 

− TP: the sum of burned and unburned corrected classified polygons. 

− FP: when an unburned validation polygon corresponds to a polygon classified as burned. 

− FN: when a burned validation polygon corresponds to a polygon classified as unburned. 

Subsequently, the precision, recall, and F-score accuracy metrics (eqs. 4.6, 4.7, and 4.8) were computed to 

evaluate the accuracy of the classified map (Goutte & Gaussier, 2005; Shufelt, 1999; Sokolova et al., 2006). 

precision = |TP| / |TP+FP| (4.6) 

recall = |TP| / |TP+FN| (4.7) 
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F-score = 2 · precision · recall / (precision + recall) (4.8) 

4.6.5. Spectral separability 

Some descriptive statistics of the classified product, namely the total weighted (involving the number of pixels of 

each polygon) average (µsw) and standard deviation (σsw) of the values of the spectral feature mean (µs) and variance 

(vs) of all the resulting polygons, separately for class (burned/unburned), were calculated to further investigate and 

characterize the resulting output.  

The relationship between the differently classified polygons was further analyzed by calculating their spectral 

separability. The modified M-statistic (Kaufman & Remer, 1994) was implemented using the weighted average of 

the mean values of the spectral polygons (eq. 4.9): 

M-statistic = |µ1 - µ2| / (σ1 + σ2) (4.9) 

where µ1 and µ2 are the weighted averages of the spectral mean values (µsw) for burned and unburned polygons, 

respectively, and σ1 + σ2 are the weighted standard deviations of the spectral mean values (σsw) for burned and 

unburned polygons, respectively. The spectral separability between the two targets increased with an increasing 

M-statistic. 

4.7. Results 

4.7.1. Optical multitemporal composite image 

Figure 4.3 shows an overview of the multitemporal compositing for the study area and the five illustrative areas. 

A composite image resulting from the application of the secMinNIR criterion is shown.  

This image consists of Sentinel-2 values observed on the date corresponding to the second-lowest NIR value, 

considering the time frame from June to October 2017. The RGB image combination (R = B12; G = B8; B = B4) 

highlights the areas where NIR is lower than the surrounding pixels, making them appear red. These areas are 

expected to represent the surfaces affected by fire events during the entire fire season. 

The destruction of the vegetative part (therefore, of the chlorophyll content) involves a decrease in the reflectance 

of NIR, followed by a simultaneous increase in red and SWIR; the latter was caused by reduced absorption by 

water (Miettinen et al., 2013; Pereira et al., 1999). The ΔNBR image, shown in Figure 4.4, was computed as the 

difference between the NBR composite image derived for the fire season time series (June–October) by applying 

the secMinNIR criterion and the NBR image derived for the time series covering the pre-fire period (April–May) 

by applying the same compositing criterion.  

Using the “post- less pre-fire” formula, the darker areas in the image correspond to lower values of the ΔNBR 

index, representing a high level of change between the two dates with a decline in NIR and an increase in SWIR. 
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Figure 4.3. Multitemporal composite output relative to the optical part of the dataset (Sentinel-2) that resulted from processing fire 

season images (June-October). Five illustrative areas are shown on a more detailed scale beside the overview of the entire study area 

(top left). The images are shown in RGB combination (R = B12; G = B8; B = B4). 
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Figure 4.4. The Figure shows the ΔNBR index map calculated by applying the subtraction NBRpost-fire – NBRpre-fire. The darker areas 

correspond to lower index values, while the brighter pixel means represent higher values. The overview of the entire study area is 

shown on the top-left; five illustrative areas are shown on a more detailed scale. 

4.7.2. SAR multitemoral composite image 

For each optical pixel chosen using the secMinNIR composite criterion, the SAR pixel with the same or the next 

closest acquisition date was associated with the optical data and used to create a SAR composite image for the 

same pre- and post-fire periods (April-May and June-October, respectively). The dual-polarized ΔRVI derived 

from the VH and VV composite SAR images relative to the difference between the pre- and post-fire periods is 

shown in Figure 4.5. Considering the gray scalar used in Figure 4.5, the pixels tend to darken as much as the ΔRVI 

value is lower, and vice versa. The datasets formed by the optical indices (ΔNBR and NBRpost-fire) and SAR indices 
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(ΔRVI and RVIpost-fire) were segmented using the LSMS algorithm. Segmentation was performed on the S1+S2 

and S2 datasets, which resulted in 2,136,807 and 2,238,504 objects, respectively. The area of the objects for the 

S1+S2 and S2 datasets ranged from 0.15 ha to 154,969.23 ha (mean = 2.78 ha; standard deviation = 186.40) and 

from 0.15 ha to 291,812.03 ha (mean = 2.81 ha; standard deviation = 265.98), respectively. 

 

Figure 4.5. The ΔRVI index map, calculated by applying the subtraction RVIpost-fire – RVIpre-fire. The darker areas correspond to lower 

index values, while the brighter pixels represent higher values. The overview of the entire study area is shown on the top-left; five 

illustrative areas are shown on a more detailed scale. 

4.7.3. Segmentation results 
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The segmentation results for the S1+S2 and S2 datasets are presented in Figures 4.6 and 4.7, respectively. The 

segments enclose groups of adjacent spectrally homogeneous pixels and, considering only the optical and/or SAR 

bands sensitive to fire, correspond to the same level of fire severity and are different from the surrounding segments 

representing burned or not-burned segments.  

The unburned part is represented both by most of the study area (unburned surface surrounding the burned areas) 

and by the small areas not reached by the fire, but which are within the burned areas (“unburned islands”). The 

Figures also show that the transition areas between burned and unburned areas, where the fire caused low-severity 

damage, were segmented separately from the higher-severity burned areas in both sensor combinations (S1+S2 

and S2). 
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Figure 4.6. Segmentation output that resulted from applying the Large-Scale-Mean-Shift (LSMS) algorithm to the S1+S2 dataset. The 

segments are presented in a blue border, while the base map is the S2 composite image based on the second-lowest NIR criterion 

(false-color composite B12-B8-B4). The segmentation is shown for the entire study area (top left) and five detailed illustrative areas. 

 

Figure 4.7. Segmentation output that resulted from applying the Large-Scale-Mean-Shift (LSMS) algorithm to the S2 dataset. The 

segments are presented in a blue border, while the base map is the S2 composite image based on the second-lowest NIR criterion (false 

color composite B12-B8-B4). The segmentation is shown for the entire study area (top left) and five detailed illustrative areas. 

4.7.4. GEOBIA classifications and accuracies 

Subsequently, the segmented data results were classified using the RF algorithm. The values of the RF parameters, 

set using the OOB estimated error as a predictive accuracy indicator, are listed in Table 4.2. As observed, the three 
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parameters did not vary between the two-sensor combinations, maintaining their default original values 

(min_samples_split:2; min_samples_leaf:1; max_features: “auto”). Reaching an OOB error of 0.924, the set values 

for n_estimators and max_depth parameters were 1,200 and 110, respectively, using a combination of both sensors 

(S1+S2). Using only S2 and an OOB value of 0.908, the values were 1,750 and 65. 

Table 4.2. The final combination of Random Forest (RF) parameter values that resulted from the exhaustive grid search-based test 

and was used in the classification approach for both datasets (S1+S2 and S2). 

Parameter name Values (S1+S2) Values (S2) 

n_estimators 1200 1750 

max_depth 110 65 

min_samples_split 2 2 

min_samples_leaf 1 1 

max_features “auto” “auto” 

 

The classifications resulting from the GEOBIA process for the S1+S2 and S2 datasets are shown in Figures 4.8 

and 4.9, respectively. The images show the segments classified as burned in the entire scene and five representative 

sample areas. Based on the images, a few differences appear between the sensor combinations. The classified 

segments encircle the regions affected by the fire. Only a minor confusion is noticeable at the level of some 

transition areas (e.g., Figures 4.8–4.9, bottom left), mainly where the low-severity fire occurred, as observed by 

comparing the respective ΔNBR maps (Figure 4.4, bottom left). Some commission errors were also noticeable, 

involving very small agricultural fields (Figures 4.8–4.9, bottom left). The S2 classified map shows that, although 

it incorporated small transitional areas omitted with the S1+S2 combination, it made more commission errors by 

including agricultural and unburned regions adjacent to these areas. 

The Gini feature importance was calculated to express the influence of the spectral features (mean and variance) 

of each image layer during the model prediction process (Figure 4.10). In both dataset combinations and 

corresponding burned area classification, the mean spectral feature of NBRpost reached the highest values (0.413 

for S1+S2 and 0.515 for S2), followed by the mean spectral features of ΔNBR (0.256 and 0.305), highlighting the 

importance of optical data for burned area mapping. When both optical and SAR data were used (S1+S2), the third 

and fourth most important features were derived from the SAR data: the mean spectral features of ΔRVI (0.125) 

and RVIpost (0.048). Below the mean spectral feature importance values, the variance achieved a lower importance 

value in both dataset combinations, with the lowest absolute variance values reached with the SAR indices (0.035, 

ΔRVI, and RVI). 
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Figure 4.8. Classification output, based on the S1+S2 dataset. Segments showing only the burned class (blue) are overlaid on an S2 

composite image based on the second-lowest NIR criterion (false color composite B12-B8-B4). The classification is shown for the 

entire study area (top left) and five detailed illustrative areas. 
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Figure 4.9. Classification output, based on the S2 dataset. Segments showing only the burned class (blue) are overlaid on an S2 

composite image based on the second-lowest NIR criterion (false color composite B12-B8-B4). The classification is shown for the 

entire study area (top left) and five detailed illustrative areas. 

The weighted descriptive statistics (µsw and σsw) calculated for the values of the spectral features (ms and vs) 

of all classified polygons, separately for burned/unburned classes and the image layer, are reported in Table 

4.3. Specifically, only the statistics calculated for the S1+S2 dataset were reported because the values 

retrieved for S2 (referable to ΔNBR and NBR) are similar.t 
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Figure 4.10. Feature importance for burned area mapping (Gini importance), expressed by each spectral feature (mean and variance) 

used in the classification process for both dataset combinations: S1+S2 and S2. 

Table 4.3. Weighted descriptive statistics (average, µsw; standard deviation, σsw), computed using the values of the spectral features 

(mean, ms; variance, vs) of all the classified polygons of each S1+S2 input layer (ΔNBR, NBR, ΔRVI, RVI), separately for burned and 

unburned classes. 

Image layer 
Spectral 

features 

Weighted average (µsw) Weighted standard deviation 

(σsw) 

  Burned Unburned Burned Unburned 

ΔNBR 
ms 29.7601 45.8026 4.8992 3.8137 

vs 2.4165 1.4901 2.8745 2.1497 

NBR 
ms 12.3907 23.8265 2.8068 4.1501 

v2 1.1457 1.5632 1.9540 1.8859 

ΔRVI 
ms 47.4288 49.5496 1.7230 1.0755 

v2 0.8201 0.7188 1.5703 1.5541 

RVI 
ms 17.5369 20.3481 3.8364 3.9241 

vs 2.6855 3.2240 5.6704 4.2363 

 

As expected, the weighted average of the spectral mean (ms) for both optical and SAR image layers was higher for 

the unburned class (45.8026, ΔNBR; 23.8265, NBR; 49.5496, ΔRVI; 20.3481, RVI) than the burned class 

(29.7601, ΔNBR; 12.3907, NBR; 47.4288, ΔRVI; 17.5369, RVI), and the respective weighted standard deviation 

was in the range between 1.7230 (ΔRVI) and 4.8992 (ΔNBR) for the burned class, and 1.0755 (ΔRVI) and 4.2363 

(RVI) for the unburned class. The second spectral feature, namely the variance (vs), did not exceed 2.6855 (RVI) 

and 3.2240 (RVI) for the burned and unburned classes, respectively. The total burned area that occurred during 

the considered fire season, resulting from classification, was 3,471.75 km2 using the S1+S2 dataset and 3,648.17 

km2 using the S2 dataset. The accuracy overview of the obtained burned area map was expressed as precision 

(proportionally inverse to commission errors), recall (proportionally inverse to omission errors), and F-score 

(representing the overall accuracy of the map). Using the S1+S2 dataset, the recall, precision, and F-score metrics 

were 0.954, 0.957, and 0.956, respectively. Using the S2 dataset, the recall, precision, and F-score metrics were 

0.969, 0.865, and 0.914, respectively. 

4.8. Discussion 

4.8.1. Image compositing 
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The final images were composed of all pixels affected by the fire events that occurred during the fire season 

considered (June–October). This means that all the single events that occurred in the period considered, even in 

the first month, were potentially equally highlighted in the image. Generally, when a single post-fire image is used 

to map a long time series of fires, less spectral discrimination of burned areas that occur during the starting and 

farthest periods of the fire season is expected. This is due to various environmental factors (climatic events, 

vegetation regrowth, biochemical changes in the burned material, etc.) that could lead to possible confusion with 

vegetation affected by phenological senescence and/or stress (Dijk et al., 2021; Fraser et al., 2000; Gallagher et 

al., 2020; Jukka Miettinen et al., 2013; Pereira et al., 1999; Rodman et al., 2021; Verbyla et al., 2008). The high 

discrimination between burned and unburned areas observed in the composite image is given by the lower NIR 

reflectance that the vegetation fire induces immediately after the event and in the first few weeks afterward. The 

minimum NIR values commonly occur on the dates closest to fire extinction. Under these conditions, the difference 

between the spectral signal from the surrounding background and the discriminability of the burn area was higher. 

However, choosing the NIR to its minimum value implies that in the final composite, the reflectance values of the 

surrounding vegetation background are among the lowest in the time series. Cabral et al. (2003) discuss this aspect. 

However, this makes the image compositing approach less appropriate for some specific applications (e.g., 

temporal growth monitoring, analysis of the spectral behavior of post-fire vegetation, etc.), the signal reduction is 

consistent throughout the image, and the relative differences between vegetation types are maintained. This 

procedure is particularly suitable for qualitative analyses, such as image classification. Choosing a low NIR value 

ensures that the pixel that best corresponds to the burned area is selected. However, when cloud shadows are 

present, this involves a substantial reduction in the NIR reflectance on the affected surface, which becomes an 

obvious problem if we directly choose the pixel with the lowest NIR value, as demonstrated in several studies 

(Barbosa et al., 1998; Chuvieco et al., 2005; Miettinen & Liew, 2008; Pereira et al., 2017; Pereira et al., 2016; 

Sousa et al., 2003). The same authors demonstrated a method to choose the second-lowest NIR to solve this 

problem. This is because the strong reduction in optical reflectance caused by cloud shadows has a higher 

magnitude than that caused by fire. Pereira et al. (2017) showed that the second NIR also overcame the criterion 

in which the highest SWIR value among the three pixels with the lowest NIR was used. This problem arises when 

the shadow occupies the same surface twice (or more). The advantage of the latter approach is that SWIR interacts 

with fire and shadows in a mutually opposite manner. The reflectance values of SWIR increase in the case of 

vegetation affected by fire because the absorption of electromagnetic waves at these wavelengths by the water is 

lacking (Pereira et al., 1999). Using ΔNBR boosted the sensitivity of these two bands to the burned vegetation. 

This well-known index, which is used in burned area mapping, severity estimation, and post-fire monitoring 

purposes, has been widely explored and its efficacy proven in the literature (Crowley et al., 2019; Donezar et al., 

2019; Epting et al., 2005; Fernández-García et al., 2018; Fornacca et al., 2018; Key & Benson, 2006; Kurum, 

2015; Miller & Thode, 2007; Pulvirenti et al., 2020; Roteta et al., 2019; Schepers et al., 2014; Vanderhoof et al., 

2021; P. Zhang et al., 2019), is also used for the creation of reference maps of burned areas (Ban et al., 2020; De 

Luca, Silva, & Modica, 2021b). 

Concerning the SAR data on the dual-polarimetric ΔRVI image, the burned areas were visually evident (Figure 

4.5), highlighting the efficiency of the data for visually detecting burned areas. The dual-polarimetric ΔRVI 

integrates the information of both polarizations (VH and VV), improving the backscatter interception of the 

variability of volume, structure, and size of the different components of the vegetation canopy and soil (De Luca, 
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Silva, & Modica, 2021b; Saatchi, 2019b). The combined contribution of these two elements forms the total SAR 

signal backscattered from the Earth’s surface, which is covered by vegetation (Saatchi, 2019b). Cross-polarization 

presents a higher sensitivity for the distribution of vegetation volume scatterers associated with small branches 

and leaves. Therefore, it is more efficient in detecting variations in the structure and volume of objects placed on 

the Earth’s surface, depending on the severity of the disturbance and the length of the wave used (Carreiras et al., 

2020; Imperatore et al., 2017; Saatchi, 2019; Tanase, Santoro, Wegmüller, et al., 2010). Cross-polarized 

backscatter tends to decrease when drought conditions persist on the surface (Ruiz-Ramos et al., 2018). On the 

other hand, co-polarization intercepts the signal backscattered from the rough surface of bare ground, which is 

more exposed to the destruction of the canopy after the fire component (Carreiras et al., 2020; Saatchi, 2019b). 

4.8.2. GEOBIA application 

Several studies have successfully applied GEOBIA to map burned areas for mapping purposes (Gitas et al., 2004; 

Mitri & Gitas, 2004; Polychronaki & Gitas, 2010, 2012; Sertel & Alganci, 2016; Shimabukuro et al., 2015) as an 

alternative classification technique to the pixel-based approach, observing that the former mitigates common biases 

provided by the pixel-based approach. Georgopoulos et al. (2019) presented an OBIA methodology based on 

mean-shift and support vector machine (SVM) algorithms for segmentation and classification, respectively, to map 

burned areas using Sentinel-2 data. The advantage of the GEOBIA approach is that, using the average value of the 

set of pixels contained within a segment, instead of any single value, the pixel variance caused by possible outliers 

is reduced, increasing the reliability of the classification (Radoux & Defourny, 2008). Considering only the spectral 

mean pixel value of the objects is a more efficient approach in the case of SAR data where, even if the speckle 

filter is applied, speckle noise remains in the images (Anastasia Polychronaki et al., 2013). The integration of both 

spectral features used in the present work (mean and variance) was thus expected to provide an advantage in 

classifying the two burned/unburned binary classes as additional information on the variability of the objects inside 

the polygons compared with using only the mean. However, the importance of the resulting features demonstrated 

that the former feature was not as decisive as the spectral mean for both optical and SAR data. This was because 

the spectral separability expressed by the mean was sufficiently discriminatory (Table 4.4). An M-statistic higher 

than 1 means that the discrimination is relatively strong (De Luca et al., 2019b; Kaufman & Remer, 1994). 

Furthermore, the weighted statistics (Table 4.3) demonstrated that the variance did not differ significantly between 

the burned and unburned classes. 

A combination of uncorrelated feature spaces (e.g., shape and topological features) is considered to be able to 

avoid classification confusion and improve accuracy (Gitas et al., 2004; Mitri & Gitas, 2004; Polychronaki et al., 

2013; Polychronaki & Gitas, 2010). 

4.8.3. Map accuracy 

The classification accuracy assessment results reached high levels in both cases (S1+S2 and S2), as represented 

by an F-score value of more than 0.9. Although there was an effective distinction between most agricultural areas 

(plowed fields) and burned areas, some commission errors distributed over the entire study area remained when 

only an optical dataset was used. Tillage exposed the underlying soil layers on the surface, eliminating the 

vegetation present and causing a spectral response in some cases comparable to that caused by a low-severity fire 

(Dijk et al., 2021). When ΔNBR was used, which was the most “important” layer for the learning model (Figure 

4.10), the spectral separability was indeed higher between agricultural fields and unburned polygons than between 
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the former and the burned surface (Table 4.5). However, the extent of these errors remained low, considering the 

size of the study area and minimal amount of spectral information used. Conversely, SAR achieved low 

separability in all cases (<1). Separability was sufficiently high if agricultural fields were compared with the 

burned class and when using the SAR layer with the highest importance in the RF learning process. Speckle noise 

may also play a dual role in this issue. Even after the filtering process, the SAR image layers presented persistent 

speckle outliers (Figure 4.5) owing to the intrinsic characteristics of the SAR signal (De Luca et al., 2021). At 

smaller scales (such as those of agricultural fields), this implies higher mixing with the background (Figure 4.5, 

bottom left). This could decrease the distinguishability of agricultural fields and affect small burned areas or 

transition areas between burned and unburned areas (Figure 4.5, bottom left). However, this would be relevant 

when using only SAR data, rather than integrating both optical and SAR information. Several studies (De Luca, 

Silva, & Modica, 2021b; Anastasia Polychronaki et al., 2013; Verhegghen et al., 2016) have addressed false 

positives and negatives using only SAR-based datasets caused by either the strong influence of moisture changes 

in bare soil or speckle noise. Considering the results of the present study, the feature importance demonstrates how 

the SAR product contributes to the final accuracy at a lower level than the optical product. However, the accuracy 

results indicate that the integrated use of optical and SAR datasets reduces commission errors, correcting the 

erroneous identification of burned areas that could occur using individual types of sensors, as already observed in 

Stroppiana et al. (2015). This confirms what other authors have considered using SAR as complementary data, 

rather than a substitute for optical data (De Luca, Silva, & Modica, 2021b; Lasko, 2019; Lehmann et al., 2015; 

Anastasia Polychronaki et al., 2013; Stroppiana et al., 2015). Optical sensors are more effective for burned area 

mapping because of the more robust relationship between the optical wavelengths and the effects of fire on 

vegetation.  

However, SAR data are fundamental not only for proven complementary information that improves classification, 

but also for fire detection in unfavorable atmospheric conditions, owing to the ability of microwaves to penetrate 

cloud cover (Richards, 2009c). However, this latter aspect is less important in the Mediterranean climate context 

than in the tropical zone. 

4.8.4. Final considerations and limitations 

Burned area maps, covering regional to continental/global territory, derived from coarse and medium spatial 

resolution satellite sensors (e.g., NASA Terra/Aqua MODIS, SPOT-VEGETATION, NOAA/AVHRR) have 

certainly been an important source of information for the fire science and application communities (Boschetti et 

al., 2015). As demonstrated in this and other studies, the free availability of Sentinel satellites with enhanced 

spatial and temporal resolution offers new opportunities that guarantee the fast distribution of burned area products 

at very high accuracy and large scales. This can only be achieved if all fire events, including small fires (between 

0.1 and 1 km2), and small unburned islands are detected. The use of improved spatial resolutions guarantees more 

precise monitoring, even within the same burned areas, because all the details (e.g., unburned spots) can be 

surveyed. The increase in time and processing consumption required by higher resolution is also overcome by the 

development of open-source software solutions and cloud platforms that allow the easy processing of large 

amounts of data (Chuvieco et al., 2019).  

The findings of this approach open a debate regarding the quality of official reference data. Official maps based 

on coarse data tend to overestimate burned areas. They fail to classify many unburned islands, rendering the 

produced map almost unusable as a reference. In our case, this problem was overcome by integrating freely 
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available high-resolution images with accurate visual analysis. However, in our opinion, this method is laborious. 

For this reason, there is a need for increasingly accurate mapping methods for relatively large territories (and/or 

specific fire seasons) that lack accurate maps of burned areas. 

The results of this study showed that using only the NIR and SWIR bands, already known to be the most sensitive 

bands for discriminating burned areas (Chuvieco et al., 2005; Pereira et al., 1999), with or without the integrated 

use of given SAR, it is possible to achieve high values of accurate burned area mapping quality (accuracy >90%). 

This is an essential aspect favoring a more rapid and effective practical operability of the approach. 

Although the integration of the SAR data slightly increased the accuracy, it did not overcome the importance 

expressed by the information of the optical indices during the learning process. 

Although this was not the case in this study, the method might be hindered by the frequent presence of cloud 

shadows on the same pixels, which is typical in more temperate European climates. The advantages of SAR should 

be investigated and possibly raised in these cases. Integrating the highest SWIR might be another valid solution, 

considering the already addressed weaknesses compared with the secoMinNIR. 

4.9. Conclusions and recommendations 

The objective of this study was to optimize a method of detecting burned areas that occurred during an entire fire 

season, based on a multitemporal compositing criterion and image segmentation, through the integration of optical 

and SAR data, open-source software, and algorithms. This study contributes to the development and harmonization 

of accurate methods used for the detection of burned areas at national and continental levels. These objectives 

were pursued based on the robustness and spatial adaptability of the algorithm. The approach was tested and 

validated on a large regional scale in a heterogeneous Mediterranean territory with fire conditions of varying 

severity and different burned vegetation and temporal progression. We believe that this method could be extended 

to other European ecosystems. Future studies might involve verifying the performance of the proposed 

classification workflow in other Mediterranean regions or ecosystems. However, the efficiency of SAR 

information when cloud shadows occupy the same pixel for more scenes should be tested and compared, especially 

in more temperate climates, as should the eventual integration of the highest SWIR value into the composite 

process. 

Our findings suggest that optical data can only achieve high levels of accuracy. However, optical and SAR imagery 

synergy can improve the accuracy of burned-area mapping. Despite this, we believe that optical data alone can be 

used as the first effective solution for the detection of burned vegetation areas, allowing easier data management 

and less time-consuming processing. These aspects are fundamental in operational scenarios in which disaster 

mapping methodologies such as fires are used. The utilization of other bands, frequencies, polarization 

combinations, or indices may provide improvements for further analysis. In particular, many optical indices have 

been implemented and proposed as optimized for the detection of burned areas compared to standard NBR [e.g., 

BAIS2 (Filipponi, 2018) or the recent NBR+ (Alcaras et al., 2022)]. Supplementary analyses should integrate, test, 

and compare these data to optimize the approach proposed in this study further. 

Further optimizations might entail using open-source cloud computing platforms, such as the Google Earth Engine 

(GEE), where an extensive database of satellite imagery and computational power is accessible to all users. 
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5. Fire severity estimation and mapping: an approach using machine learning and the 

combined optical and SAR data 

Adapted from  

De Luca, G., Silva, J.M.N., Oom, D., Modica, G.: Combined Use of Sentinel-1 and Sentinel-2 for Burn Severity 

Mapping in a Mediterranean Region. In: Computational Science and Its Applications – ICCSA 2021. Lecture 

Notes in Computer Science. pp. 139–154 (2021). https://doi.org/10.1007/978-3-030-87007-2_11. 

 

Wildfires are one of the most important ecological factors in Mediterranean ecosystems, with different degrees of 

impact depending on the severity and distribution of burns (Emilio Chuvieco, 2009; Fernández-García et al., 2018; 

Lanorte et al., 2013; San-Miguel-Ayanza et al., 2019; Saulino et al., 2020; João M.N. Silva et al., 2019). These 

effects determine, at different spatial and temporal scales, microclimatic and ecological changes that rearrange the 

habitats assets, positively (i.e., regeneration, regrowth, vegetation composition enrichment) or negatively (i.e., 

degradation, desertification, higher exosystemic vulnerability) (Emilio Chuvieco, 2009; Di Fazio et al., 2011; 
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Häusler et al., 2018; George H. Mitri & Gitas, 2012; Giuseppe Modica et al., 2015; Morresi et al., 2019; Saulino 

et al., 2020; Semeraro et al., 2019). Burn severity is defined as the degree of environmental change caused by fire. 

Analytically, it can be measured as the degree of chemical-physical changes, decomposition and loss of 

above/below-ground organic matter (Keeley, 2009; Key & Benson, 2006). It influences and determines, at various 

degrees, the transformation of the organic and mineral components of the soil, the conversion of biomass into 

inorganic carbon, structural transformation of habitats and, at the most extreme degree, the destruction of the 

biological communities of an ecosystem (Key & Benson, 2006). The knowledge on the spatial distribution of the 

burn severity is a crucial and essential step for assessing and monitoring the impacts of fire on ecosystems and to 

address optimal and timely post-fire management operations (De Luca et al., 2020; Fernández-García et al., 2018; 

I. Gitas et al., 2012a; Meng et al., 2018; George H. Mitri & Gitas, 2012; Morresi et al., 2019). Key & Benson 

(2006) proposed the composite burn index (CBI) for determining the burn severity, becoming a standard metric in 

literature. This index is based on the qualitative/quantitative measurement of ecosystem alterations, carried out 

through visual interpretation in sample field plots, comparing the aboveground biomass and necromass after the 

fire with their pre-fire conditions. In the CBI protocol, several ecological attributes are measured to estimate the 

effect of fire in the post-fire environment in five vertical structural layers (strata), from litter and duff consumption, 

canopy cover reduction, branch and wood consumption and plant mortality (De Santis & Chuvieco, 2009; Keeley, 

2009; Key & Benson, 2006). 

Remote sensing techniques and satellite data are effective when retriving the spatial distribution over large areas 

of the burn severity information carried out in the field plots, with a high level of correlation (De Santis & 

Chuvieco, 2007; Fernández-García et al., 2018; I. Gitas et al., 2012a; Keeley, 2009; Otón et al., 2019; M. A. Tanase 

et al., 2015b). Their use was encouraged by the availability of open-source data, acquired from satellite sensors 

with increasing spatial and temporal resolutions (Emilio Chuvieco et al., 2019), and software that provides 

advanced process and analysis tools. In this context, the Sentinel constellation (Copernicus mission) launched by 

the European Space Agency (ESA) provides free high temporal and spatial resolution data acquired by several 

sensors. The Sentinel-1 (S1) and Sentinel-2 (S2) missions consist, respectively, of a C-band synthetic aperture 

radar (SAR) and an optical multispectral sensor, both composed of two polar-orbiting satellites (S1A/B and 

S2A/B) (ESA Sentinel Homepage, 2022). The high sensitivity in the visible, near infrared (NIR) and short-wave 

infrared (SWIR) spectral bands to the effects of fire on ecosystems (José M. C. Pereira et al., 1999, 1999; J. M.N. 

Silva et al., 2004) allowed the rapid development and diffusion of optical-based approaches for this purposey, 

achieving efficient results (Cansler & McKenzie, 2012; Emilio Chuvieco et al., 2019; Epting et al., 2005; Fornacca 

et al., 2018; Mallinis et al., 2018; Morresi et al., 2019). Numerous authors, in the past decades, proposed different 

methods aimed at estimating and mapping burn severity using remotely sensed data (Cansler & McKenzie, 2012; 

De Santis et al., 2009; Fernández-García et al., 2018; Lanorte et al., 2013; Meng et al., 2018; Carmen Quintano et 

al., 2013; Saulino et al., 2020; Schepers et al., 2014) and effective vegetation indices using optical sensors 

(Fernández-García et al., 2018; A. Fernández-Manso et al., 2016; Filipponi, 2018; Miller et al., 2009; Parks et al., 

2014; Zheng et al., 2016). SAR data have also been explored in recent years for burn severity mapping (Addison 

& Oommen, 2018; Kurum, 2015; Lasaponara & Tucci, 2019; Mihai A. Tanase et al., 2014). Tanase et al. (2010) 

and Tanase et al. (2010) explored the suitability of different frequency SAR sensors for burn severity purposes in 

Mediterranean vegetation. Tanase et al. (2015) proposed a SAR index to estimate fire severity in temperate forests, 

based on the ratio between post and pre-fire SAR images. The sensitivity of SAR signal is given by the variation 
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in vegetation and soil structure and moisture content, which affect the dielectric properties of the surface and 

influence the level of microwave backscatter, in synergy with various environmental factors and/or intrinsic 

sensors characteristics (e.g. wavelength and polarization) (Imperatore et al., 2017; Mihai A. Tanase, Santoro, De 

La Riva, et al., 2010). Therefore, this type of active sensor may be a complementary source for monitoring the fire 

impacts on ecosystems, considering that it is not sensitive to cloud cover conditions (Lasko, 2019; Lehmann et al., 

2015; Stroppiana et al., 2015). However, few studies focused on integrating the two types of sensors for the 

estimation of burnt area (Stroppiana et al., 2015; Verhegghen et al., 2016) and, even less, for burn severity (M. A. 

Tanase et al., 2015a). This study aims to contribute to the state of the art by evaluating the capability of the 

integrated use of S-1 and S-2 to estimate burn severity using the random forest (RF) machine learning algorithm 

and the field-based CBI measurements as training data. A series of processing steps anticipated the severity 

estimation: a) download and pre-processing of optical and SAR time series and subsequent creation of input image 

layers; b) creation of three dataset combination: S1, S2 and S1+S2 , in order to evaluate the contribution of each 

sensor to the final accuracy; c) search and setting of optimal values of RF parameters using an exhaustive grid 

search approach. The single- and multi-class F-score was calculated to assess the accuracy of the maps. The feature 

importance was extracted to evaluate each of the input variables’ contribution to the final map accuracy. All the 

processes were carried out thought the use of open-source softwares and libraries excuted in python-script 

language (The Python Language Reference, 2022). 

5.1. Study site 

The study area is located in the south of Portugal (Algarve, 37° 18’N; 08° 30’W), in the Serra de Monchique 

mountain range. The site is characterized by typical Mediterranean vegetation. The forest areas were composed of 

coniferous (Pinus pinea L., Pinus pinaster Aiton.), broad-leaves trees (Quercus suber L., Quercus ilex L., other 

secondary Mediterranean native species), and Eucalyptus plantations (Eucalyptus globulus, Labill. 1800). A large 

part of the territory is covered by sclerophyllous shrublands or pastures, interspersed with agricultural and urban 

landscapes (SNIG, 2021). The fire event occurred in August from the 3rd to the 10th of 2018, covering 268.9 km2. 
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Fig. 5.1. Location of the study burned area in Portugal (on the left). On the right, overview of the study area (Sentinel-2 image on 

August 13th, 2018 false-colour composite SWIR-NIR-RED), where the red area represents the burned area. 

5.2. Materials and methods 

5.2.1. Satellite dataset 

The SAR dataset was composed of a temporal series of Sentinel-1A/B ground range detected (GRD), acquired in 

interferometric wide (IW) mode, dual-polarized (vertical-vertical VV, and vertical-horizontal VH polarizations). 

Five images for the pre-fire period (covering around the month before the starting date of the event) and five 

images for the post-fire period (covering the period from the end of the event until the end of the same month), 

including both the ascending and descending orbits. 

The optical dataset was composed of a temporal series of Sentinel-2A/B Level 2A (Bottom of Atmosphere 

reflectance), composed of three images before and three images after the fire (accounting for a similar time frame 

to that considered for the S1 dataset). 

5.2.2. Field data and ROIs selection 

The field sampling involved capturing post-fire conditions through geo-referenced photographs in different points 

sampled on the burned surface. Field data were collected in November of the same year of the fire (2018), before 

the growing season, to avoid confusion between regenerated and unburned vegetation. Fire severity quantification 

was based on the  visual interpretation of the photographs, supported by the Esri ArcGIS World Imagery (2021) 

map, providing post-fire medium/high-resolution images and by the field-notes taken during the on-field surveys. 

The protocol used in this study to quantify fire severity was the Composite Burn Index (CBI), consisting of visually 

estimation of post-fire change in several ecological variables for each of the five vegetation stratum (inert 

understory substrate and fuel; herbs, low shrubs and <1m high trees; tall shrubs and <5m high trees; subcanopy 

intermediate trees; dominant and codominant cover trees). The level of changed inducted by the fire was ranked 

between 0 (unburned) and 3 (highest level of severity). The average of all the index values for each variable and 

stratum represented the severity CBI value of the entire single plot observed. Based on the CBI values obtained, 

six fire severity categories were created: 1) Unburned soil/rock; 2) Unburned vegetation; 3) Low severity; 4) 

Moderate severity; 5) Moderate-High severity; 6) High severity.  

During the field surveying, 200 sampling photographs were taken, from which 185 sampling plots were observed. 

Each of these points was the centre of a 20 m x 20 m square sampling area (region of interest, ROI), homogeneous 

in terms of burn severity, matching 2x2 pixel areas on Sentinel images (considering resampling of the pixels at 10 

m; see Subsection 3.3). Each ROI was finally labelled with one of the six severity categories. 

5.2.3. Satellite data pre-processing and layers creation 

The data pre-processing was carried out using the Sentinel-1 and Sentinel-2 Toolboxes implemented in the SNAP 

v.8.0.1 open-source software (Snap, n.d.) (ESA SNAP Homepage, 2022) provided by ESA and executed through 

Snappy (Snap Cookbook, n.d.)  (ESA SNAP Cookbook, 2022), the SNAP-Python interface. 

5.2.3.1. Sentinel-1 
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The S1 pre-processing workflow started from the auto-downloaded orbit file application and the thermal noise 

removal. After the radiometric calibration to beta (β0) noughts backscatter standard conventions, the radiometric 

terrain correction (RTC) process was applied to the dataset, flattening (radiometric terrain flattening) and 

geometrically correcting (terrain correction) the images using the shuttle radar topography mission (SRTM) digital 

elevation model (DEM), presenting a spatial-sampling of 1 arc-second. The bilinear interpolation resampling 

method was used for both DEM and output image resampling. All the S1 images were stacked using the product 

geolocation as the initial offset method. To reduce speckle noise effects, a multitemporal Lee filter (Quegan et al., 

2000; Santoso et al., 2015), with a 5x5 pixel window size, was applied. The backscatter time average (BTA) was 

computed separately for the images before and after the event and for polarization to improve speckle reduction 

(De Luca et al., 2020; Lasaponara & Tucci, 2019; M. A. Tanase et al., 2015b). At the end of the S1 pre-processing 

steps, we had four resulted image layers: 1) BTA_VHpre-fire; 2) BTA_VVpre-fire; 3) BTA_VHpost-fire; 4) BTA_VVpost-

fire. From these image layers, three dual-polarimetric SAR indices were computed to have layers expressing the 

two polarisations’ combination. The dual-polarimetric SAR indices were the adapted version for S1 sensor 

(Mandal et al., 2020; Nasirzadehdizaji et al., 2019; Nicolau et al., 2021). 

RVIt = 4 · BTA_VHt / (BTA_VVt + BTA_VHt (5.1) 

DPSVIt = (BTA_VVt + BTA_VHt) / BTA_VVt) (5.2) 

RFDIt = (BTA_VVt - BTA_VHt) / (BTA_VVt + BTA_VHt)  (5.3) 

Where t represents one of the two time periods: before or after the fire. 

Moreover, the difference between pre- and post-fire of each respective image layer was computed (Δ = pre-fire – 

post-fire). 

At the end, the BTA_VHpost-fire, ΔBTA_VH, BTA_VVpost-fire, ΔBTA_VV, RVIpost-fire, ΔRVI, DPSVIpost-fire, 

ΔDPSVI, RFDIpost-fire, ΔRFDI formed the SAR-based input image layers in the next classification steps. 

5.2.3.2. Sentinel-2 

The S2 pre-processing concerned the pixel resampling to 10 m x 10 m pixel size. As with the S1 dataset, the time 

average was computed for the images before and after the fire. All 10 m and 20 m spatial resolution, and their 

respective pre- and post-fire difference (Δ), were used as image input layers in the classification processes: B2 

(Blue), ΔB2, B3c (Green), ΔB3, B4 (Red), ΔB4, B5 (RedEdge1), ΔB5, B6 (RedEdge2), ΔB6, B7 (RedEdge3), 

ΔB7, B8 (NIR), ΔB8, B8A (NarrowNIR), ΔB8A, B11 (SWIR1), ΔB11, B12 (SWIR2), ΔB12. 

The two S1 and S2 datasets, clipped on the same area, were stacked together using the S1 dataset as the master 

extent. The bilinear interpolation was performed to resample the pixels between master and slaves. 

5.2.4. Image classification 

The random forests (RF) algorithm (Breiman, 2001; Cutler et al., 2007) was used to perform a supervised pixel-

based classification, using a part (2/3) of the pixels contained and labelled in the ROIs as training data Three 

different dataset combinations were evaluated: only optical (S2); only SAR (S1); optical and SAR (S1+S2). To 

assess each image layer’s contribution to the classification, the feature importance (Gini importance) was 

computed for each of the three dataset combinations. The classification algorithm was implemented in the scikit-

learn library (RFclassifier module) (Pedregosa et al., 2011) and executed via a Python script. 

The optimal values of the algorithm parameters were determined using an exhaustive grid search approach. The 

exhaustive grid search is based on testing and cross-validation of each possible combination of the set of values 
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given for each parameter, returning the best combination for a given training input set. The GridSearchCV 

algorithm implemented in scikit-learn was used for this purpose. The combination of parameters tested is reported 

in Table 5.1. 

Table 5.1. Sets of parameters values tested and combined for exhaustive grid search-based optimization. The name and the definition 

of each parameter are the original ones reported in the RFclassifier module user guide (for deeper description, see https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html). 

Parameter name Values set Description 

n_estimators 
100, 650, 1200, 1750, 2300, 2850, 3400, 

3950, 4500, 5050, 5600, 6150, 6700, 
7250, 7800, 8350, 8900, 9450, 10000 

The number of trees in the RF model 

max_depth 
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 

300, 500, 800, 1000 
The maximum depth of the tree 

min_samples_split 2, 5, 10 
The minimum number of samples required to 

split an internal node 

min_samples_leaf 1, 2, 4 
The minimum number of samples required to be 

at a leaf node 

max_features “auto”, “None”, “log2” 
The number of features to consider when looking 

for the best split 

 

5.2.5. Accuracy assessment 

The remainder part of ROIs pixels (1/3) was used to validate the classification accuracy of the three burn severity 

maps (S2, S1 and S1+S2). The confusion matrix was carried out, from which the producer’s accuracy (defined as 

the ratio between the correctly classified pixels in a given class and the number of validation pixels for that class) 

and the user’s accuracy (the ratio between the correctly classified pixels in a given class and all the classified 

objects in that class) were calculated (Congalton & Green, 2019). From these measures, we calculated the single-

class F-score (F-scorei) (eq. 5.4) (De Luca et al., 2020; Goutte & Gaussier, 2005; Giuseppe Modica et al., 2020; 

Ok et al., 2013; Shufelt, 1999; Sokolova et al., 2006) and the multi-class F-score (F-scoreM) (eq. 5.5) (Sokolova 

& Lapalme, 2009), representing a form of overall accuracy. The F-score is the harmonic mean of recall and 

precision measures, which have the same respective meaning of producer’s and user’s accuracy. Therefore they 

were replaced in the equations (eq. 5.4, 5.6, 5.7) (G. Modica et al., 2021a). 

F-scorei = 2 ∙ (producer’si ∙ user’si) / (producer’si + user’si) (5.4) 

F-scoreM = 2 ∙ (producer’sM ∙ user’sM) / ( producer’sM + user’sM) (5.5) 

Where i is a single class; producer’sM and user’sM metrics are expressed as follows (eq. 5.6, 5.7):  

producer’sM = (⅀i=1 producer’si) / n (5.6) 

user’sM = (⅀i=1 user’si) / n (5.7) 

Where n is the total number of classes. 

5.3. Results 

5.3.1. Classified burn severity map 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Table 5.2 shows the RF classification algorithm’s optimal parameters values, set using an exhaustive grid search 

approach. This was carried out for each of the three data combination (S1, S2 and S1+S2) separately. 

Table 5.2. Random forests (RF) parameters values used for each of the three data combination (S1, S2 and S1+S2) and set using an 

exhaustive grid search approach. 

Parameter name Values set 

 S1 S2 S1+S2 

n_estimators 650 1200 1200 

max_depth 1000 90 110 

min_samples_split 2 2 2 

min_samples_leaf 1 1 1 

Figure 5.2 shows the three burn severity maps resulted from the classification processes  tested. Respectively, they 

represent the map resulting from using only the SAR image layers, the map resulting from using only the optical 

bands and, finally, the burn severity map obtained using the SAR and optical datasets together. 

 

Fig. 5.2. Burn severity maps resulted from the classification of the three data combination: Sentinel-1 dataset only (S1); Sentinel-2 

dataset only (S2); Sentinel-1 and Sentinel-2 data (S1+S2). 

In Table 5.3, the distribution (%) of the area of each burn severity classes is reported. 

Table 5.3. Distribution (%) of the area of each burn severity class for each data combination: Sentinel-1 dataset only (S1); Sentinel-2 

dataset only (S2); Sentinel-1 and Sentinel-2 data stack (S1+S2). 
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Burn severity classes Distribution (%) 

 S1 S2 S1+S2 

Unburned soil/rock 6.55 8.35 8.31 

Unburned vegetation 11.92 1.85 2.15 

Low severity 6.83 2.90 3.03 

Moderate severity 17.67 12.54 13.15 

Moderate-High severity 16.29 16.84 16.02 

High severity 40.74 57.51 57.34 

5.3.2. Feature importance 

The influence that each image layer gave to the classification of each of the three respective data combination is 

expressed by the feature importance, whose results are presented below by dividing them by dataset combination. 

The result of dataset S1+S2 is reported in Figure 5.3; the other two data combinations present almost the same 

behavior. 

 

Fig. 5.3. Feature importance (Gini importance) expressed by each image layer used in the classification process of the Sentinel-1 and 

Sentinel-2 data stack (S1+S2). 

5.3.2.1. Sentinel-1 

The BTA_VHpost-fire had the highest value of importance (0.1431), followed by its respective ΔBTA_VH image 

layer (0.1349) and by the VV bands (0.1125 and 0.0983 for ΔBTA_VV and BTA_VVpost-fire, respectively). The Δ 

of the dual-polarimetric indices presented close values of feature importance (from 0.0924 to 0.0886), while the 

post-fire dual-polarization indices reached a range of values between 0.0814 and 0.0788. 

5.3.2.2. Sentinel-2 
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The two-NIR, RedEdge2/3, ΔSWIR2 and Red bands for post-fire (B8Apost-fire, B8post-fire, B7post-fire, ΔB12, B6post-fire, 

B4post-fire) reached the highest values of feature importance: 0.0913, 0.0798, 0.0785, 0.0592, 0.0591 and 0.0554, 

respectively, followed by the Blue and SWIR2 post-fire (0.0481 and 0.0444). The lowest values are achieved 

mainly by the NIR-based Δ layers and the RedEdge1 bands (0.0384 to 0.0346). 

5.3.2.3. Optical+SAR 

The feature importance values roughly reflect what has already been seen for individual datasets. The B8Apost-fire, 

B8post-fire, B7post-fire, ΔB12, B6post-fire, B4post-fire image layers reported highest values: 0.0812, 0.0660, 0.0648, 0.0506, 

0.0483, 0.0431, respectively. The B2post-fire (0.0298) preceded the B12post-fire (0.0334). The BTA_VHpost-fire reached 

the fifteenth value of importance (0.0316); the other SAR based, especially both the BTA_VV layers, returned the 

lowest values. 

5.3.3. Map accuracy 

The accuracy of each map was evaluated using several accuracy metrics, and the resulted values are reported 

below. The F-score was calculated both for the single classes (F-scorei) to have a more comprehensive measure 

for each of them and for all the classes (F-scoreM), thus expressing the map’s overall accuracy. The initial out-of-

bag (OOB) error, representing a forecast accuracy performance estimated by the RF model during the training 

step, was also reported. 

5.3.3.1. Sentinel-1  

Considering the F-scorei for each class, the values are 0.732 (unburned soil/rock), 0.372 (unburned vegetation), 

0.267 (low severity), 0.434 (moderate severity), 0.489 (moderate-high severity), 0.721 (high severity). The overall 

accuracy expressed by the F-scoreM is 0.513. The OOB error was equal to 0.5101. 

5.3.3.2. Sentinel-2 

The F-scorei for each class is 0.933 (unburned soil/rock), 0.879 (unburned vegetation), 0.615 (low severity), 0.683 

(moderate severity), 0.773 (moderate-high severity), 0.898 (high severity). The F-scoreM is 0.805. The OOB error 

was 0.7805. 

5.3.3.3. Optical+SAR 

For each single class, the values of F-scorei reached are 0.933 (unburned soil/rock), 0.899 (unburned vegetation), 

0.696 (low severity), 0.738 (moderate severity), 0.818 (moderate-high severity), 0.916 (high severity). The F-

scoreM resulted 0.838. The OOB error was equal to 0.7996. 

5.4. Discussion 

The burn severity maps obtained in this study provided a different level of accuracy. Although the optical 

information could already suffice to map burn severity, thanks to the univocal spectral properties that characterize 

these effects (José M. C. Pereira et al., 1999; José M.C. Pereira, 1999; J. M.N. Silva et al., 2004), the use of both 

types of sensors, with the integration of SAR data, leads to better accuracy values. This confirms what other authors 

had already observed in their studies, such as Stroppiana et al. (2015) for burn area mapping, and Tanase et al. 

(2015b) for burn severity mapping, proving the importance of an integrated information in burned areas monitoring 
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framework. When using only optical data, however, several factors can be a souce of spectral confuse, especially 

at medium-low severity classes, such as the presence of mixed spectral characteristics within the pixels due, for 

example, to the mixture of unburned and partially unburned vegetation (Carmen Quintano et al., 2013). Tanase et 

al. (2015b) noted that the joint use of optical and SAR data improved the classification of areas unburned or 

affected with low severity. Other authors also considered the phenological status of vegetation as an element that 

can lead to errors (e.g. low photosynthetic activity, summer drought stress, leaves fall) (Gallagher et al., 2020; 

Inoue et al., 2019; Picotte & Robertson, 2011; Verbyla et al., 2008). Moreover, ash and smoke encrustations on 

the green leaves surface can alter the optical spectral reflectance (Saulino et al., 2020). 

Considering the performance of only SAR data, we achieved the worst result. In other studies using SAR data, 

such as Addison et al. (2018), a level of 60% of overall accuracy is considered high for this type of data. The better 

performance of VH polarization, compared to VV polarization, in both data configuration (S1 and S1+S2) 

confirmed what literature reported (Imperatore et al., 2017; Lasaponara & Tucci, 2019; M. A. Tanase et al., 2015b). 

We achieved these results using mono-temporal image layers (pre- or post-fire) in order to understand the 

contribution of each of those to fire severity estimation, although the bi-temporal spectral indices resulted more 

correlated to CBI field measurements (Fernández-García et al., 2018; Key & Benson, 2006). Moreover, the CBI 

index could present different correlation performance with different vegetation cover type. Studies demonstrate 

that the CBI is more correlated with forest areas than with shrubs and herbs (De Santis & Chuvieco, 2009; Epting 

et al., 2005; Key & Benson, 2006), indicating that the performance of burn severity assessment may vary as 

vegetation type varies (Schepers et al., 2014). 

The contribution of each input layer was explained using the feature importance analysis. The sensitivity of the 

NIR and SWIR bands was confirmed (José M. C. Pereira et al., 1999; José M.C. Pereira, 1999; Schepers et al., 

2014). However, it is interesting to observe how the RedEdge, Red and Blue bands were also fundamental in 

achieving the result. Some authors had already hypothesized this aspect. Filipponi et al. (2018) proposed a second 

version of the burn area index (BAI2), built also using the S2 RedEdge (B6, B7) and the NarrowNIR bands. 

Fernández-Manso et al. (2016) tested the suitability of RedEdge-based indices for burn severity estimation, 

achieving good results. Fernández-García et al. (2018) use more spectral information than the other NBR type 

indices, combining Red, Blue, NIR and SWIR bands, considering them very suitable for initial burn severity 

assessments across different climatic gradients due to their respective sensitivity to atmospheric aerosols, 

chlorophyll levels, the cellular structure of the leaves and canopy density, and soil and vegetation moisture. 

5.5. Conclusions 

This study aims to assess the potential of integrating SAR data to optical datasets to estimate and map burn severity 

and contribute to the state of the art. The integration improved the accuracy of the results. A more in-depth 

investigation would be helpful to understand how these data can effectively complete the derived information.  

In the present work, the various types of vegetation cover were not distinguished. For example, a high severity 

was attributed without distinction to both pastures, shrubs and forests, as required by the CBI protocol. Future 

studies could investigate the correlations between severity mapped and vegetation type, an essential key in post-

fire monitoring and management of forest regeneration processes and spatial patterns. 

 



97 
 

 

 

 

 

 

  



98 
 

6. Fire severity estimation and mapping: an approach using deep learning and the 

combined optical and SAR data 

Adapted from  

De Luca, G., Modica, G.: Canopy fire effects estimation using Sentinel-2 imagery and deep learning approach. 

A case study on the Aspromonte National Park. In: Communications in Computer and Information Science 

(CCIS) – AII2022: International Conference on Applied Intelligence and Informatics. Springer (2022). Accepted. 

 

Forest fires are among the principal factors affecting the Mediterranean environment, both from an ecological and 

a socio-economic aspect (Moreira et al., 2020). The spatial distribution of burned area, the frequency of the fires 

and the amount of structural and physical-chemical modifications that they cause on the affected habitats activate 

subsequent ecological transformations and alterations of the vegetation cover and of the organic-mineral 

components of the soil. These factors that impact, at different temporal and spatial scales, the physiologic 

dynamics, the microclimate and the water balance of ecosystems might be either degradative or positive (Morresi 

et al., 2019; Rosa et al., 2011; Semeraro et al., 2019). Indeed, if on the one hand the fire can induce decomposition 
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of biomass into inorganic carbon, desertification, sterility of ecosystems and their loss of resilience, up to the 

destruction of entire biotic communities, on the other hand, and at the right doses of frequency and severity, the 

fire can stimulate the interaction and competitiveness of some Mediterranean species, activating regeneration 

processes and enriching biodiversity (De Luis et al., 2006; Mitchell et al., 2009; Montès et al., 2004; Moreira et 

al., 2020; Riaño et al., 2002). The accurate quantitative estimation and qualitative categorization of the short-term 

effects induced by fire on forest vegetation are therefore fundamental analysis to predict and understand their 

ecological and socio-economic evolution over the time and therefore to be able to plan suitable post-fire 

management policies. 

The application of remote sensing data and techniques, especially optical satellite imagery, have been providing 

increasingly efficient outcomes in the characterization and mapping of the burn consequences (such as fire 

severity) on ecosystems (e.g. (Han et al., 2021; Meng et al., 2015; Morresi et al., 2019, 2022; Saulino et al., 2020)). 

The availability of free optical imaging systems with high spatial and temporal resolution, such as the multispectral 

Sentinel-2 satellites of the Copernicus mission managed by the European space agency (ESA) (ESA Sentinel 

Homepage, 2022), have encouraged the advancements in this framework. Sentinel-2 platforms (two different 

satellites, A and B) provide the wavelengths mainly sensitive to the fire effects, namely visible, near infrared 

(NIR), red-edge and short-wave infrared (SWIR) (José M. C. Pereira et al., 1999), at a native pixel resolution of 

10x10m or 20x20m and with a revisit time of 2-3 days at mid-latitudes. 

Simultaneously, the development of open-source and user-friendly libraries and software performing complex 

machine learning algorithms (e.g. OTB, Scikit-learn, TensorFlow+Keras, etc.) increased the opportunities of draw 

up efficient prediction and classification workflows (Bot & Borges, 2022; G. Modica et al., 2021b). Classic 

supervised machine learning models (principally random forest and support vector machine) rendered performing 

results in terms of accuracy (between 70% and 90%) when tested on high resolution optical satellite data for 

supervised classification of fire effects severity e.g. (e.g Amos et al., 2019; Bot & Borges, 2022; De Luca, Silva, 

Oom, et al., 2021; Sali et al., 2021). Most of these works were based on the associating spectral information and 

field based measurements carried out using well-established protocols (e.g. CBI (Key & Benson, 2006)) for fire 

severity gradient estimation. In recent years, some studies went as far as to test advanced deep learning models 

based on artificial neural networks (ANN) in order to improve burned areas detection (Hu et al., 2021; Knopp et 

al., 2020), overcoming the 90% of accuracy in most of the cases. However, to the best of our knowledge, few 

experiments attempted to exploit deep learning models for estimating fire effects on vegetation (Farasin et al., 

2020; Monaco et al., 2020). 

The aim of this study was to contribute to the lacking state of the art by proponing a deep learning-based approach 

to categorize the level of fire effects severity hat have affected the forest canopies of the Aspromonte national Park 

(2021 fire season) using Sentinel-2 multispectral imagery. In particular, taking as training information four field-

based visual physical effects that can affect canopy forest (low affected, moderately affected, highly affected and 

very-highly canopy), the level of fire severity was classified by performing a artificial neural network (ANN) 

model formed by a sequential of Dense hidden layers implemented in Keras library (Keras Homepage, 2022). The 

contribution of each single image layer band to the learning process was estimated by operating a feature 

importance based on a weighted linear regression. The single-class F-scorei accuracy metric was used to compute 

the accuracy performed by the classification model for each fire effect severity category. The overall accuracy was 

instead carried out using the multi-class F-scoreM. The analysis continued by comparing the fire effects severity 
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result with a vegetation cover map of the Aspromonte Park (Spampinato et al., 2002) so that it was possible to 

investigate their distribution among the different affected forest types. 

6.1. Study area 

The fire events considered in this study involved the Aspromonte National Park (Aspromonte Park, 2022), located 

in the southernmost continental Province of Italy (Reggio Calabria, 38° 16’N; 15° 84’E), affecting a total area of 

about 70 km2 and occurring between July and August 2021 (Figure 6.1). The examined events were part of a larger 

(>160 km2) ensemble of fire events striking the entire Province territory during the assessed fire season. 

The Aspromonte Park, extending for 641.53 km2 NE-SW and constituting the last continental extension of the 

Apennine Mountain range, is characterized by a wide phytoclimatic range (from Lauretum to Fagetum) and high 

heterogeneity of flora, resulting from the combination of different environmental and topographic factors (latitude, 

altitude range, proximity to the sea, slope exposition, etc.). Moreover, it contains 21 special habitat sites afferent 

to the Natura2000 network (https://ec.europa.eu/environment/nature/natura2000/index_en.htm), pointing out its 

ecological and socio-economic substantial role for the territory. An exhaustive description of the Aspromonte 

vegetation could be found in (Spampinato, 2014). In this work, only the fire affecting forest vegetation was taken 

into consideration (35.26 km2), discriminated using the Aspromonte Vegetation Cover Map (Spampinato et al., 

2002). 

 

Fig. 6.1. Location of the study area (left). On the right, the yellow line delimits the Aspromonte national Park perimeter, while the 

total burned area falling inside the Park are represented in blue. 

6.2. Materials and methods 

6.2.1. Dataset and pre-processing 

The multispectral Sentinel-2 dataset was composed of two Level 2A (Bottom of Atmosphere reflectance) (ESA 

Sentinel Homepage, 2022) cloud-free images acquired before (28/07/2021) and after all the fires occurred 

https://ec.europa.eu/environment/nature/natura2000/index_en.htm
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(16/09/2022) respectively, downloaded through the Copernicus Open Access Hub (Copernicus Access Hub, 2022), 

the official ESA platform for the distribution of Sentinel satellite data. 

All the image bands at native resolution of 10x10m (blue, B2; green, B3; red, B4; NIR, B8) were directly involved 

to construct the final dataset, while the image bands at native resolution of 20x20m (red-edge704, B5; red-edge739, 

B6; red-edge780, B7; NIR864, B8A; SWIR1610, B11; SWIR2186, B12) were resampled to 10x10m pixels spacing 

using the red band (B4) as pixel spacing reference and the bilinear interpolation as resampling method. 

For each image band; the respective difference between post and pre-fire (delta, Δ) images was carried out. All the 

post-fire and Δ image bands formed the final dataset employed in subsequent analysis. This according to what was 

done in a previous work (De Luca, Silva, Oom, et al., 2021) by the same research group in which a dataset formed 

by post-fire and delta Sentinel-2 image bands was modelled through random forest algorithm to estimate the fire 

severity in a Mediterranean site. 

6.2.2. Field measurements and sampling points collection 

Several geo-referenced photos and descriptive notes were taken during the field sampling campaign in the period 

immediately after the fire events (September 2021). Supported by Google Satellite high resolution images (Google 

Earth Homepage, 2022), the selection of suitable sampling points (one point = one pixel) was subsequently carried 

out on the basis of those field data. The method of fire effects severity estimation was inspired by the CBI protocol, 

based on the quantification of structural and physical alterations occurred on several vegetation layers (Key & 

Benson, 2006). However, in this study, only the dominant and co-dominant trees cover was assessed, directly 

categorizing the observed alterations into one of the four severity classes: low, moderate, high and very-high. In 

total, 1,000 sampling points for each severity class were retrieved. Moreover, additional 250 samplings points 

were reserved to trace the bare soil, since it might be present between the canopy ground projection edges, leading 

to commission errors. 

6.2.3. Artificial Neural Network (ANN) construction and image classification 

6.2.3.1. ANN architecture and hyperparameters optimization 

The ANN structure was characterized by a sequential model of simple Dense hidden layers, in which each neuron 

is densely connected with each neuron of the previous/next layer. The relu (rectified linear unit) function was 

applied to activate all the hidden layers, except for the last one which was activated with the softmax function in 

order to retrieve the probability distribution of the output data. Each pixel of the dataset is labeled with the class 

that had reached the highest probability coefficient for that pixel. The weight regularization was implemented 

using a L2 kernel regularizer (based on the square of the value of the weight coefficients) to reduce overfitting. 

The RMSProp, sparse_categorical_crossentropy and accuracy finally compiled the model as optimizer, loss and 

metric functions respectively. 

The most suitable model hyperparameters values (dimensionality of the output tensor of each hidden layer, epoch, 

number of batches and kernel regularizer) were determined by testing several possible combinations of pre-choose 

values and assessing, for each test, the training and test accuracy metric resulted. The best combination of 

hyperparameters, defined by the reaching of the highest validation accuracy, was kept as final configuration for 

subsequently prediction step. The tested hyperparameters values were: dimensionality of the layers output tensor 

(units for all the hidden layers) [50, 100, 250, 500, 1000]; epoch [5, 10, 20, 30, 40]; number of batches (50, 100, 
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150, 200, 250); kernel regularizer weight coefficient [0.001, 0.002, 0.003, 0.004]. The number of hidden layers 

was also tested in arrange between 2 and 5 after having set the hyperparameters. 

6.2.3.2. Model training and feature importance calculation 

A part (1/2) of the sampling points were randomly choose, equally for each fire effect class, and used to train the 

ANN model. The remaining part (1/2) of sampling points were used as validation set. 

The importance of each image band was estimated by performing a weighted linear regression approach on a 

smaller sample (20%) of relative training and validation points. The pre-built model KernelExplainer, 

implemented in SHAP library (SHAP, 2022), was used for this purpose, in which the returned coefficients and 

values from game theory determine the crude indicators of importance 

6.2.4. Accuracy assessment 

Beside the accuracy metric provided by the ANN model, a confusion matrix was constructed using the same 

validation sampling points (1/2 of the total number of sampling points). For each severity class, the producer’si 

and user’si (i = single severity class) accuracy metrics were retrieved from the confusion matrix, and their 

respective single-class (F-scorei, Eq. 6.1) and multi-class (F-scoreM, Eq. 6.2) harmonic means were calculated. 

F-scorei = 2 ∙ (producer’si ∙ user’si) / (producer’si + user’si) (6.1) 

F-scoreM = 2 ∙ (producer’sM ∙ user’sM) / ( producer’sM + user’sM) (6.2) 

Where i is a single class; producer’sM and user’sM metrics are expressed as follows (eq. 6.3, 6.4):  

producer’sM = (⅀i=1 producer’si) / n (6.3) 

user’sM = (⅀i=1 user’si) / n (6.4) 

Where n is the total number of classes. 

6.3. Results 

6.3.1. Final structure of the ANN 

The ANN optimal hyperparameters used in the classification process, retrieved by implementing a comparison the 

accuracy and loss metrics values restituted after having tested the different parameters hyperparameters 

combinations, are reported in Table 6.1. 

Table 6.1. Artificial Neural Network optimal hyperparameters used in the classification process, retrieved by comparing the accuracy 

and loss metrics of various values combinations tested. 

Hyperparameter name Optimal value set 

Number of hidden layers 
6 Dense layers (5 activated with relu + 1 

activated with softmax) 

Units (for each Dense hidden layer) 
500 (relu layers) 

5 (softmax layer) 

Kernel regularizer 0.0025 

Epochs 40 

Batch size 250 

https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html),%20was
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The final structure of the ANN was formed by a concatenation of layers ordered as follows: an input layer (shape: 

number of input image bands); five Dense hidden layer (units: 500; activation: relu) each of which regularized by 

a Kernel regularizer function (weight coefficient: 0.0025); a final Dense hidden layer (units: fire effect categories; 

activation: softmax). 

6.3.2. Classified fire effects map 

Figure 6.2 shows the spatial distribution of the fire effect categories resulted from the classification process (low, 

green; moderate, yellow; high, orange; very-high, red). 

The distribution of the four fire effects among the affected forest cover types (forest cover type labels legend 

according to (Spampinato et al., 2002)), inside the Aspromonte Park, is illustrated in Figure 6.3. 

On 35.26 km2 of total forest cover burned, the fire had a lower and moderate impact on 14.47 km2 (41.03%) and 

9.18 km2 (26.04%) of forest vegetation, respectively. A surface equal to 4.54 km2 (12.88%) and the 7.07 km2 

(20.05%) were instead affected by high and very-high effects severity. Observing the apportionment of the fire 

effects categories among the forest types (burned surface > 2 km2), it is noticeable as the most affected were the 

areas naturally or artificially covered by coniferous, in particular by Pinus nigra spp. Laricio: “Natural pine Laricio 

forest”  (Low, 6.06 km2; Moderate, 2.92 km2; High, 1.24 km2; Very-High, 1.80 km2), the “Mountain artificial 

(reforestation) coniferous forest with a prevalence of pine Laricio” (Low, 2.23 km2; Moderate, 1.43 km2; High, 

1.02 km2; Very-High, 2.35 km2), the “Degraded natural pine Laricio forest” (Low, 2.20 km2; Moderate, 1.53 km2; 

High, 0.67 km2; Very-High, 1.02 km2) and the “Hilly artificial (reforestation) coniferous forest with a prevalence 

of pine Laricio” (Low, 0.42 km2; Moderate, 0.43 km2; High, 0.52 km2; Very-High, 0.88 km2). 

 

Fig. 6.2. Fire effects severity map resulted from the classification process showing the spatial distribution of the four fire effects 

severity categories (Low, Moderate, High and Very-High) on the forest vegetation of the Aspromonte national Park. 
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Fig. 6.3. Surface distribution of the four fire effects severity (Low, Moderate, High and Very-High) among the affected forest types 

(the legend of forest cover type is according to (Spampinato et al., 2002)). 

6.3.3. Feature importance 

Figure 6.4 reports the importance that each image input layer exerted during the learning processing, for each of 

the four fire effect categories, resulted from the weighted linear regression approach. The highest importance (> 

0.6) was achieved by the post-fire NIR band, followed by red band (0.43), the ΔNIR (0.28), the ΔSWIR2186 (0.18) 

and the SWIR2186 (0.17). On the other hand, the green and blue image bands, and the respective Δ, resulted to 

render lowest influence (< 0.05). 

 

Fig. 6.4. Feature importance (SHAP Kernel Explainer) exerted by each image band layer. 

6.4. Map accuracy 
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Figure 6.5 report the training and validation loss (upper) and accuracy (bottom) metrics calculated directly by the 

ANN model. 

 

Fig. 6.5. Plots displaying the values of the loss (top) and the accuracy (bottom) of training and validation processes calculated at each 

epoch of the classification process.  

The confusion matrix retrieved in order to assess the accuracy of the map is shown in Figure 6.6. From the 

confusion matrix, the single-class F-scorei accuracy metric values computed for each fire effect category were 

97.52% (Low), 93.01% (Moderate), 95.33% (High), 99.18% (Very-High) and 89.92% (Soil). The multi-class F-

scoreM, representing the overall accuracy of the map, was 95.12%. 

 

Fig. 6.6. Confusion matrix reporting the accuracy of the classified map. The single-class user’si, producer’si, F-scorei and the multi-

class user’sM, producer’sM,  F-scoreM accuracy metrics are reported. 
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6.5. Discussions 

This study qualitatively and quantitatively estimated the fire effects severity that affected the forest vegetation of 

Aspromonte Park during the 2021 fire season. The analysis showed as conifers (Laricio pine) forests were the 

most affected, both in terms of surface and the severity. Although the high susceptibility to fire widespread is 

common for these forest type (A. Fernández-Manso et al., 2021; Moreno et al., 2021), other unknowns may have 

played a relevant role in this case: the location of the ignition points and the arrangement of the firefighting teams. 

The only canopy damages were considered because, thought the sub-foliage layers are important from an 

ecological point of view (as also provided in the CBI protocol), this is not adaptable to the use of optical radiometric 

information due to their inability to penetrate the foliage.  

The methodology for fire effects severity estimation proposed in this study based on a simple ANN model resulted 

to be reliable in terms of accuracy. Considering the spatial resolution of Sentinel-2, the accuracy resulting from 

the confusion matrix is very high and no particular case of overfitting can be found in the curves of Figure 5. The 

classified map spatial distribution of the four fire effects severity categories confirms what emerged from accuracy 

metrics. Minor exceptions are observable for soil class that was confused with moderately affected forest cover, 

as also proved by the confusion matrix outcomes. This could be due to the lower number of sampling points used 

for this class. However, the discriminations of bare soil and rocks in burned areas needs more accurate stratagems, 

such as the use of a longer observations (time series) (Pereira-Pires et al., 2020). In general, spectral confusion is 

ever expected at moderate severity gradients, caused by the concomitant presence of affected and unburned covers 

(De Luca, Silva, Oom, et al., 2021; Fernandez-Manso et al., 2016; Carmen Quintano et al., 2013; A M S Smith et 

al., 2007) and/or by the presence char and ash posed on the underlying slight exposed layers or on the foliage (De 

Santis & Chuvieco, 2007; Key & Benson, 2006; Rogan & Franklin, 2001). Further investigations involving 

spectral mixture analysis for mixed pixels accounting (Carmen Quintano et al., 2013), as well as the use of higher 

resolution optical images (although not free-available at the moment) could be tested to deal with the above 

mentioned issues. 

Accounting the performance of the feature importance, the red, NIR and SWIR bands (and their respective 

temporal difference) are the most influent wavelengths for  fire effects severity estimation, corroborating what has 

been widely proved in literature since earlier applications (De Santis & Chuvieco, 2007; García-Llamas et al., 

2019). These are indeed the spectral bands used to construct two of the main vegetation indices already used in 

this context, the normalized burn ratio (NBR) and the normalized difference vegetation index (NDVI). Observing 

the Figure 5, the red band seems more related to the Moderate and High fires, at the expense of Very-High category. 

The latter appear to have been better managed by NIR and (followed by) SWIR, two chlorophyll and moisture-

related wavelengths. The red-edge bands (at 739 nm and 780 nm) also expressed a medium importance. Other 

studies pointed out the relevance of red-edge for post-fire effect investigations (De Luca, Silva, Oom, et al., 2021; 

A. Fernández-Manso et al., 2016; Filipponi, 2018). In De Luca et al. (De Luca, Silva, Oom, et al., 2021), using the 

Gini coefficient to calculate the feature importance of Sentinel-2 bands for fire severity estimation, the B6 and B7 

bands resulted decisive for the classification process. Filipponi et al. (Filipponi, 2018) proposed a new spectral 

indices for burned areas detection based on Sentinel-2 red-edge wavelengths. In this work, the blue and green 

resulted to be the less influent image bands. 

6.6. Conclusions 
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This study presented an effective deep learning-based procedure to accurately estimate and map the fire effects 

severity that affected the Mediterranean forest vegetation of a national park. The use of these advanced artificial 

intelligence algorithms has been not as investigated in literature as the classic machine learning models (e.g., 

random forest, support vector machine, etc.). For these reasons, the proposed approach, based on a very simple 

ANN, was a preliminary trial which was set to test its reliability for the purpose. This study confirmed as the use 

of a simple Dense ANN achieves very good results and might be taken into consideration in future applications. 

This represents an optimal compromise between accuracy level and ease of implementation. The use of the python-

based open-source and user-friendly Keras interface (on the TensorFlow architecture), in fact, enabled to exploit 

the calculation operations of the deep learning algorithms without requiring special programming skills. The 

outcomes were very promising, and next experimentation might involve more robust models for incrementing 

precision, such as the convolutional neural networks widely employed for image processing. 
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7. Spectral mixture analysis of forest crown fire damage 

Remote sensing techniques have been extensively employed to detect and estimate the effects of fire on ecosystems 

(Chu & Guo, 2013; Emilio Chuvieco et al., 2019; Corona et al., 2008; I. Gitas et al., 2012a). Several scholars 

applied satellite multispectral optical imagery to detect burnt areas (Emilio Chuvieco et al., 2016; Filipponi, 2019; 

Mpakairi et al., 2020; Otón et al., 2019; Pulvirenti et al., 2020; Santos et al., 2020; J. M.N. Silva et al., 2004; João 

M.N. Silva et al., 2019; Sousa et al., 2003), estimate the degree and the spatial distribution of burn severity (De 

Luca, Silva, Oom, et al., 2021; Fernández-García et al., 2018; Morresi et al., 2022; Saulino et al., 2020), and assess 

other consequences of the fire on environmental biological and structural features, such as biomass consumption 

(Garcia et al., 2017) and greenhouse gas emissions (Ostroukhov et al., 2022; Rosa et al., 2011). Most of the 

methodologies presented in those studies relied on the use of optical spectral indices (e.g. normalized burn ratio, 

NBR) and/or their temporal difference (e.g. ΔNBR), in which the fire-sensitive infrared based bands are involved, 

such as near-infrared (NIR), typically related to photosynthetic tissues and chlorophyll content, and shortwave-

infrared (SWIR), related to vegetation moisture content (José M. C. Pereira et al., 1999). Although highly effective 

for those purposes, spectral indices present some limitations for the direct estimation and quantification of the 

physical elements constituting the vegetation affected by fire at various degrees (De Santis et al., 2009; De Santis 

& Chuvieco, 2007; Leigh B Lentile et al., 2009; Carmen Quintano et al., 2013). Their empirical non-linear and 

non-physical relationship with real field fire consequences, based on the indirect models for combining optical 

reflectance to material burn consequences (Daldegan et al., 2019), does not allow the actual quantification of the 

elements typically present in a post-fire environment (Hudak et al., 2007; Y. E. Shimabukuro & Ponzoni, 2019; A 

M S Smith et al., 2007; Sander Veraverbeke & Hook, 2013). Scorched tissues, foliage and wood consumed, 

remaining green vegetation, and substrate color change, are some standard visual parameters generally associated 

to post-fire vegetation conditions and used for field-based burn severity estimation (Key & Benson, 2006; Sander 

Veraverbeke & Hook, 2013). Simplifying,  fire affected vegetation surfaces are usually composed of a mixture of 

combustion products (ash and charcoal), scorched vegetation, and green live vegetation (Carmen Quintano et al., 

2017). The relative abundance of each of these elements is related to the degree of burn severity (Tane et al., 2018). 

Assuming the image pixel as surface unit, it is clear that the assessment of post-fire effects and regeneration 

constitutes a sub-pixel issue that could be resolved by quantifying the proportion of each the abovementioned 

elements (I. Gitas et al., 2012a).  

In this context, spectral mixture analysis (SMA) has been widely used for satellite-based analysis and monitoring 

approaches in different environmental application and in several biomes (Drake et al., 1999; Fernández-García et 

al., 2021; Franke et al., 2018; Y. E. Shimabukuro & Ponzoni, 2019). Similarly, applications of SMA for fire effects 

characterization have proven to be effective, providing some advantages in burned area detection (Daldegan et al., 

2019; C Quintano et al., 2006; Sunderman & Weisberg, 2011) and as burn severity indicator (Fernandez-Manso 

et al., 2016; Ó. Fernández-Manso et al., 2009; Hudak et al., 2007; Kokaly et al., 2007; L.B. Lentile et al., 2006; 

Leigh B Lentile et al., 2009; Carmen Quintano et al., 2013, 2017, 2020; Robichaud et al., 2007; Rogan & Franklin, 

2001; Alistair M S Smith et al., 2005; Tane et al., 2018; Sander Veraverbeke & Hook, 2013) and providing explicit 

physical meaning of post-fire components, comparable to field-based measurement protocols (Fernández-García 

et al., 2018; L.B. Lentile et al., 2006; Leigh B Lentile et al., 2009). The assessment of fire effects and their severity 

can be based on mixture composed of these three typical post-fire fractional cover components, given they directly 

comparability to the burn severity parameters traditionally assessed on field monitoring standard protocols (L.B. 
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Lentile et al., 2006; Leigh B Lentile et al., 2009; A M S Smith et al., 2007; Sunderman & Weisberg, 2011; Sander 

Veraverbeke & Hook, 2013), for example that proposed by Key & Benson (2006), aimed to standardize the 

measurements of fire effects across space and time, in a context that is otherwise characterized by its variability 

(Key & Benson, 2006; Sander Veraverbeke & Hook, 2013). Spectral Mixture Analysis applications for the 

monitoring of post-fire recovery, on the other hand, are scarcer (Fernandez-Manso et al., 2016; Riaño et al., 2002; 

Röder et al., 2008; Sankey et al., 2008; A M S Smith et al., 2007; Solans Vila & Barbosa, 2010; Souza et al., 2003; 

S Veraverbeke et al., 2012), incomparable to those based on spectral indices. The advantages of SMA for fire 

effects characterization relies on the accounting of sub-pixel spectral features, which enable the estimation of the 

direct proportion of these physical features within each pixel, and thus a more accurate delineation of real 

heterogeneity of fire scars (Daldegan et al., 2019; Ó. Fernández-Manso et al., 2009; Carmen Quintano et al., 2017). 

This makes the approach applicable to any type of optical sensor, both in terms of spectral and spatial resolution 

(Fernández-García et al., 2018; Leigh B Lentile et al., 2009). 

The reliability of SMA results depends on endmembers (pure component) selection, these should indeed be as 

representative as possible of pure components constituting the spectral fraction of all image pixels (Somers et al., 

2011). The selection of endmembers constitutes a key role in determining the reliability of the results of the SMA 

approach, being incisive in accurately fractional cover estimation (Carmen Quintano et al., 2012, 2013, 2020; 

Somers et al., 2011). These should indeed be as representative as possible of pure components constituting the 

spectral fraction of all image pixels (Somers et al., 2011). In literature is highlighted the importance of using ad-

hoc techniques to define the optimal spectral endmembers (Fernandez-Manso et al., 2016; Carmen Quintano et al., 

2017, 2020; Roth et al., 2012; Tane et al., 2018; Tompkins et al., 1997), even if each endmembers-selection 

technique might show a slight different balance between the efficiency of the created spectral library and the 

maintenance of the spectral variability (Tane et al., 2018). Several automatic endmember selecting algorithms 

were developed (Boardman et al., 1995; C. Chang et al., 2010; Dennison et al., 2004; Dennison & Roberts, 2003; 

Roberts et al., 2003; Tompkins et al., 1997; Winter, 1999) and common used in SMA approaches (Daldegan et al., 

2019; Fernandez-Manso et al., 2016; Ó. Fernández-Manso et al., 2009; Nascimento & Dias, 2005; Carmen 

Quintano et al., 2020; Tane et al., 2018). A pioneer method is represented by the purity pixel index (PPI) 

(Boardman et al., 1995), widely exploited in literature (C. Chang et al., 2010; C -I. Chang & Wu, 2015; Chein-I 

Chang & Plaza, 2006; Ó. Fernández-Manso et al., 2009; Heylen & Scheunders, 2013; Nascimento & Dias, 2005; 

Plaza & Chang, 2005; Suryoprayogo et al., 2018).  

The launch of Copernicus Sentinel-2A/B constellation by the European Space Agency (ESA) (ESA Sentinel 

Homepage, 2022), providing free high temporal and spatial multispectral images, enabled to fill some gaps 

maintained by coarser spatial resolution data. Nevertheless, few studies have applied SMA on Sentinel-2 images 

to analyse burned areas (Montorio et al., 2020; Carmen Quintano et al., 2019b, 2020).  

The purpose of this work was to estimate the proportion of the three fraction components indicative of the main 

physical effects observable immediately after a forest fire. In this regard, the present study aimed to quantitatively 

estimate and map three levels of physical alterations caused by the fire on tree crowns, in a large fire occurred in 

a Mediterranean area composed by different tree species and forest types, through the application of a linear SMA 

(LSMA) on multispectral Sentienl-2 data. 

7.1. Study site 
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The study area is located in the Algarve (Figure 7.1), southwestern Portugal (37° 18’N; 08° 30’W), at Serra de 

Monchique (max. elevation 902 m). The area has a typical Mediterranean climate, with cool, rainy winter, and hot, 

dry summer (Köppen-Geiger climate type Csa) and is partly included in the European Natura2000 network as 

Special Area of Conservation (SAC) (Natura2000 Site Code: PTCON0037). Most of the forest cover is composed 

by eucalypt (Eucalyptus globulus, Labill. 1800) short-rotation plantations and evergreen cork oak woodlands 

composed by Quercus (spp. suber L. and ilex L.) and representing the typical Iberian agro-forestry systems (dehesa 

and montado), whose purposes are the economic activities such as cork production and grazing, in some cases 

mixed with secondary native species conforming the meso-Mediterranean forest ecosystem. Few isolated groups 

of Mediterranean coniferous (Pinus pinea L., Pinus pinaster Aiton.) plantations are also present on the study area. 

The remainder and larger part of the study site is covered by heathlands and/or pastures, composed by typical 

herbaceous and sclerophyllous shrubby species, in some areas accompanied by anthropic land covers (agriculture, 

urban) (Alves et al., 2007; De Luca, Silva, Di Fazio, et al., 2022; Häusler et al., 2018; Mitchell et al., 2009; J. San-

Miguel-Ayanz et al., 2016). 

A fire event occurred on the first days (3rd - 10th) of August 2018, affecting 268.9 km2 of the study area (De Luca, 

Silva, & Modica, 2021a). The forest cover was impacted at various degrees of severity: at highest severity only 

the combustion residues of biomass (ashes, charcoal and torches) remained, while the bare soil below was exposed; 

where the severity of the fire event was lower the canopy structure was less affected, in part consumed by direct 

burn or killed by proximal heating, with the (partially or totally) dead trees, and respective canopies, remained 

standing (scorched), while the undercover vegetation was killed and/or in part consumed; at lower severity degrees 

tree canopies, or at least their upper parts remained green. 
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Figure 7.1. Location of the study area in Portugal (top left). Overview of the study area (top right), with the burned area perimeter 

highlighted by the red line. On the bottom, a panoramic view of the landscape showing the heterogeneity of the crown damage level 

on the forest vegetation. 

7.2. Data and methods 

7.2.1. Satellite dataset and pre-processing 

The Sentinel-2A Level 2A (Bottom of Atmosphere reflectance) optical imagery was employed to implement the 

LSMA. Two separated free-cloudy images, one representing the pre-fire condition (19th July 2018) and one the 

early post-fire condition (18th August 2018) was downloaded. Moreover, three additional free-cloudy images, each 

acquired every August of 2019 (13th), 2020 (27th) and 2021 (22nd) years, were retrieved in order to carry out a 

preliminary analysis of recovery status of forest vegetation across the first years after the event. The dataset was 

downloaded through the Copernicus Open Access Hub (Copernicus Open Access Hub 2022) and pre-processed 

using the Sentinel-2 Toolbox implemented in ESA-SNAP v.8.0.9 (ESA SNAP Homepage 2022) and executed by 

Snappy, the SNAP-Python interface (ESA SNAP Cookbook 2022). The pre-processing consisted of a bilinear 

pixel resampling to 10 m x 10 m followed by a of all the images in order to align each pixel. 

7.2.2. Spectral endmember definition and selection 
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Three fraction components, indicative of the main physical effects observable in an immediate post-fire forest 

environment (Figure 7.2 top), were defined: % char component (%ch), representing the solid residues from 

vegetation combustion, with charred combustion products prominent at the surface; % scorched component (%sc), 

brown dead plant tissues, mostly leaves, killed by heat radiated and convected from the surface fire, with the 

structural elements unconsumed by fire (trunk, branches and foliage); % green vegetation component (%gr), 

composed by the unaffected green foliage cover. These represent the three main elements characterizing post-fire 

forest surface. The proportions in which they are present reflect the real heterogeneity of fire effects occurred (L.B. 

Lentile et al., 2006; A M S Smith et al., 2007; Sander Veraverbeke & Hook, 2013). The three pure endmembers 

(%ch, %sc, %gr) involved in the LSMA were chosen applying a semi-automatic hybrid selection algorithm, the 

purity pixel index (PPI) on a set of previously selected spectral signatures (Figure 2 bottom). For this purpose, 

three different sorts of sources were used to retrieve the selection of signatures: image endmembers, namely 

signatures directly chosen from the image; signatures taken from the ASTER v. 2.0 spectral library (Baldridge et 

al., 2009); a set of laboratory measured signatures using a ASD FieldSpec 3 spectroradiometer (Analytical Spectral 

Devices Inc., Boulder, CO, USA), carried out by the Pyrogeography Laboratory of the Instituto Superior de 

Agronomia (CEF/ISA),University of Lisbon. A set of pixels adequately representing the three pure components 

(%ch, %sc, %gr) were visually selected as image endmembers. The careful visual interpretation of the image was 

supported by the use of Esri ArcGIS World Imagery high-resolution satellite map (Esri ArcGIS World Imagery, 

2021) and georeferenced photos took during fieldworks, hence driven by the direct knowledge of the study areas. 

From the ASTER spectral library, four cork oak leaf signatures and two eucalyptus leaf signatures were considered 

as green endmembers; the scorched component, instead, was accounted by six signatures of mixed-vegetation leaf 

and grass litter and three signatures of cork oak litter (no photosynthetic vegetation). The use of the spectral 

reflectance of dead vegetation or litter as a valid representative of the spectrum of the scorched component was 

used by De Santis & Chuvieco (2007). The endmembers collected with the field spectrometer were green and 

scorched eucalyptus leaves, and charred wood. 

To ensure strict comparability between all spectral signatures used in the analysis, those ones retrieved from 

CEF/ISA and ASTER spectra llibraries were convolved with the Sentinel-2 Spectral Response Functions v.3 (S2-

SRF), for each Sentinel-2 band, in the spectral range from 300 to 2600 nm, with an interval of 1 nm. 

Next, the three purest endmembers were found through PPI, to be used in LSMA of the Sentinel-2 images. The 

PPI algorithm repeatedly projects the spectral information on a large number of random vectors (skewers) counting 

the number of times each pixel is an extreme for each skewer, and choosing the pixels most often recorded as 

extreme (C. Chang et al., 2010; Nascimento & Dias, 2005). The number of skewers was set to 1000, following 

Nascimento et al. (2005), who found no improvements in pixel purity above this threshold. 
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Figure 7.2. The three main vegetation conditions observable in an immediate post-fire forest environment, representing the three pure 

components present in the image pixels (top): charrred (%ch), scorched (%sc), and green (%gr). At the bottom, there are the respective 

spectral signatures retrieved from three different sources and converted to Sentinel-2 spectral bands: CEF/ISA spectral library, ASTER 

spectral library, and image endmembers. 

7.2.3. Spectral unmixing and fraction image extraction 

Once chosen the three final spectral endmembers, the proportion (relative abundance) of each pure component 

contained within each mixed pixel of the image was estimated by applying a non-negative constrained least squares 

(NN-CLS) model. The Least-squares approach family is a common mathematical procedure used by LSMA to 

estimate abundance (Y. E. Shimabukuro & Ponzoni, 2019; Y E Shimabukuro & Smith, 1991). This method 

estimates the proportion of each endmember within the pixel minimizing the sum of squared errors (residuals) (Y. 

E. Shimabukuro & Ponzoni, 2019). For each of the three endmembers searched, the LSMA decomposed each pixel 

of the multispectral input image as a weighted linear combination of the pure component spectral responses and 

generated an image (commonly defined as a fraction image or abundance map) whose pixels contain the abundance 

(the proportion, expressed in grayscale pixel value), of the respective spectral component (Carmen Quintano et al., 

2012, 2013; Roberts et al., 1993; Settle & Drake, 1993; Y. E. Shimabukuro & Ponzoni, 2019; Tane et al., 2018). 

7.2.4. Forest area masking 

Since the analysis of fire effects was focused on tree crowns, it was necessary to delineate the forest areas contained 

within the fire perimeter in order to avoid confusion with surrounding surfaces (Daldegan et al., 2019). The 

integration of two masks was applied in this study in order to refine the result. First, the LULC map, retrieved as 

in Chapter 2, was used to select the forest cover. Afterwards, the pixels were further filtered using the tree cover 

density map for 2018, provided by European Environment Agency (EEA), where each pixel shows tree cover 

density in a range from 0-100%. A 10% was applied as threshold above which the land was considered forest, in 

accordance with the Food and Agriculture Organization (FAO) definition (FAO, 2020). 

7.2.5. Relationship between fraction images and ΔNBR 
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After the calculation of the normalized burn index (NBR) (eq. 7.1) for the pre-fire and the early post-fire images 

respectively, their temporal difference (pre-post, ΔNBR) was computed. 

NBR = (NIR - SWIR) / (NIR + SWIR) = (B8 – B12) / (B8+B12) (7.1) 

Where NIR and SWIR represent the respective bands (B8 and B12 in Sentinel-2, respectively). This index has 

been widely used as a spectral reference data of consequence of fire on vegetation (Ban et al., 2020; De Luca et 

al., 2020; De Luca, Silva, & Modica, 2021a; Donezar et al., 2019; Morresi et al., 2019) because the high fire 

sensitivity of its composing bands (José M.C. Pereira, 1999). For this reason, the bivariate relationship between 

the fraction images and the corresponding ΔNBR pixels was investigated by plotting the respective scatter plots. 

Additionally, the distribution of ΔNBR pixels into the respective resulted clusters was also investigated. 

7.3. Result 

7.3.1. Selected endmembers and derived fraction images 

Figure 7.3 reports the three endmembers, in the form of spectral signature, selected by the PPI index. All the 

signatures have been adapted to the Sentinel-2 wavelength centres using the S2-SRF function. The EM1 represents 

the scorch component of the spectre, characterized by a general higher reflectance in all the bands compared to the 

other two components, especially to the green component (EM3); minimum pics of reflectance (p) at 490 nm 

(Blue) and 2190 nm (SWIR) with, respectively, 3319.59 p and 3363.84 p; oppositely, the maximum pic is observed 

at 865 nm (NIR) reaching 7220.60 p. In the SWIR domain, the EM1 maintained a decreasing trend as the 

wavelength increase, similarly to the EM3 trend. The former differs, in addition to the aforementioned greater 

reflectance, due to the absent inflection at the level of the Green band, typical of photosynthesizing vegetation 

spectral behaviour. The EM3n in fact, presents the typical patterns of green vegetation, with a higher absorption 

of Blue (289.00 p) and Red (360.00 p) opposed to a slight reflection in Green wavelength (346.00 p), and a 

maximum pic at 865 nm (4374.00 p) followed by a decrease to 819.00 p at higher SWIR wavelength (2190 nm). 

The charcoal component, represented by EM2, is characterized by a linear and slightly increasing pattern, with a 

minimum at 490 nm (546.70 p) and a maximum at 2190 nm (1288.85). 

The fraction images, generated from the application of the NN-CLS spectral mixture model to the image acquired 

in 2018, and representing the proportion of each of the three endmembers (scorch, charcoal and green), are shown 

in Figure 3 alongside the respective endmember. The value of each pixel is directly associated with the proportions 

(abundance) (in a range between 0 and 1) of each of the three respective endmembers of the scene selected through 

PPI index. The grey-scale colour makes perceptible the prevalence of charcoal component (EM2), in terms of both 

occupied area and proportion, considering the higher the proportion the brighter the colour of the pixel. This more 

evident observing the RGB map located in the lower left corner (representing the proportion of the three 

components for only the areas occupied by forest vegetation after masking the land cover classes, as defined in 

Section 3.4), where the %ch component (Blue) occupied most of the surface compared to %gr (Green) and %sc 

(Red). The ternary plot (lower right corner), finally, illustrates the proportion of each single pixels among the three 

components (relative to only the forest areas showed by RGB map) as potion in an equilateral triangle. The 

observed result corroborates what has just been said, with the point cloud shifted mainly towards the vertex 

representing the charcoal component.  
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Figure 7.3. At the top, the three endmembers (EM1, %sc; EM2, %ch; EM3, %gr) selected through PPI analysis and the respective 

fraction images extracted by means of NN-CLS spectral mixture model for the post-fire 2018 Sentinel-2 image. At the lower left 

corner, the RGB map constructed using the three components %sc (Red, R), %gr (Green, G) and %ch (Blue, B) on the pixels occupied 

by only forest vegetation after the background had been masked (Section 3.4). At the lower right corner, a ternary plot is presented in 

which the proportion of each single pixels among the three components is accounted as potion in an equilateral triangle. The ternary 

plot was computed using the pixels occupying forest areas already illustrated in the RGB map; the colour palette follows that of the 

respective EM. 

7.3.2. Relationship with ΔNBR 

The scatterplots representing the bivariate relationship between the three EMs and the ΔNBR data are shown in 

Figure 7.4. The regression curve was calculated for each plot and reported, as well as the relative R2. The EM2 

and the EM3 show an expected opposite behaviour. The ΔNBR has higher value where the %ch component is 

more abundant. Conversely, %gr and NBR are inversely related also. The relationship between %sc and ΔNBR 
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presented inverse proportionality, although low values of EM1 did not correspond to such high values of ΔNBR 

as seen for EM3, while medium and higher EM1 values had also a sparser average distribution in the scatter plot. 

 

Figure 7.4. Scatterplots showing the bivariate relationship between each EM (EM1, top; EM2, middle, EM3, 

bottom) and the ΔNBR pixel values. For each scatterplot, the linear regression curve (red line) was calculated and 

the relative R2 was reported. 

7.4. Discussion 

7.4.1. Endmembers selection 

Endmembers should be spectrally representative of the features of interest. Several authors suggest (Fernández-

García et al., 2021; Carmen Quintano et al., 2013, 2017; Shimabukuro & Ponzoni, 2019) that the selection of the 

endmembers from the image is more convenient because there are no problems of spectrum scale divergence, that 

the selection of the endmembers from the image is more convenient because: i) are easy to retrieve, ii) are in the 

same radiometric scale of the analyzed image, iii) incorporate the same spectral corrections of the analyzed image, 

iv) involve the specific spectral variability of the scene. The highest spectral purity of target components can, 

instead, be obtained from signatures measured in field or laboratory although they do not account for the 

atmospheric influence and/or image noise generally addressed with calibration and correction techniques (Drake 

et al., 1999; Carmen Quintano et al., 2013, 2017). On the other hand, is difficult to find the ideal conditions in 

which image pixels are fully occupied by a pure component. This difference is observable in Figure 2, where the 

signatures deriving from the two different ASTER and CEF/ISA spectral libraries had very close values even if 

they were taken in different areas and at different times. Oppositely, the signatures of the image endmembers, 

which inevitably have to contend with impurities, show higher intra-variability, which generally is as apparent as 
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the lower the resolution (Tane et al., 2018). Some authors have effectively exploited the advantages of the 

combined use of endmembers deriving from different sources (e.g. image and laboratory (Rogan & Franklin, 

2001); image, field and laboratory (Tane et al., 2018) field and/or laboratory). Fernandez-Manso et al. (2016) 

incorporated both image and reference endmembers to build the initial spectral library, to then define the optimal 

spectra through the use of selection indices. 

Observing the resulting three endmembers (EM1, EM2 and EM3) in Figure 7.3, the semi-automatic hybrid method 

of endmember selection proposed in this study (based on both image and laboratory endmembers sources) 

demonstrated to be appropriate for its purpose. The initial step of spectral signature filtering and selection, using 

the PPI index, enabled to minimize the potential noise caused by signatures not conforming to the searched 

components (%sc, %ch, %gr).  Moreover, the multi-source origin of the spectral library made it spatially and 

temporal generalized, a key prerogative to reduce the slight variability in reflective characteristics of a specific 

cover across the scene which could be caused by different environmental and site-specific variables (sunlight 

angle, topographic effects, site-specific soil characteristics, canopy exposition, plant-plant specific characteristics) 

(Carmen Quintano et al., 2013; Y. E. Shimabukuro & Ponzoni, 2019; Somers et al., 2011). Nevertheless, the 

eventual effects of the different spectral scales caused by the different spectral sources used should be deeply 

investigated. Tane et al. (2018) reported that the use of spectra collected at different location and spatial scales is 

a common practice to model cover fractions and suggested that it could be easily converted for fire scar assessment, 

at least a regional scale. Actually, the same authors found some biases when study areas-specific endmembers 

were used at coarse spatial resolutions. In Quintano et al. (2013) are reported some other authors affirming that 

the three post-fire components (%sc, %ch and %gr) are quite similar across a large range of ecosystems. 

Vereverbeke et al. (2013) also simplified the research on the main three components that reached a high correlation 

to GeoCBI (brown, black and green), pointing out that pure pixels do not occur for many land cover classes in 

post-fire environments. Although, on one hand, Sunderman & Weisberg (2011) suggest that the use of 

endmembers directly measured on the field immediately after the fire by using a spectroradiometer might improve 

the results, on the other hand, the use of specific field-measured spectral signatures excludes more the applicability 

of the methods to other generic study areas, or at least sharing similar Mediterranean biome, which was the purpose 

of this study. The second step, finally, using the automatic PPI algorithm to reduce the size of the just created large 

spectral library, was able to keep endmembers variability and their coherence with respective post-fire true field-

elements reflectance signatures (Figure 3).  

Concerning the choice of considering together the main species representing the vegetation LULC types present 

on the scene (Q. suber, Q. ilex, Eucaliptus, Pine) as unique component %gr, this was possible since these targets 

exhibited similar spectral responses (Figure 7.2). Considering the %sc component, the comparison of the curves 

confirms that the spectral signature of dead leaf litter is very similar to the spectrum of a scorched tree canopy, as 

already mentioned by De Santis et al. (2007). 

7.4.2. Fraction images analysis 

The LSMA applied on Sentinel-2 imagery successfully characterized the effects of fire on Mediterranean forest 

vegetation. The satellite spectral information was translated into physical information proportions of the three post-

fire related components analyzed in each pixel: scorch (dead or non-photosynthetic vegetation, characterized by 

brown/ochre colour), charcoal (biomass totally carbonized, characterized by black color) and green vegetation, 

unaffected by fire.  
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Observing the post-fire short-term fraction images (Figure 7.3), the preponderance of %ch fraction over the other 

two components is noticeable. Indeed, most of the study area was covered by shrubs and/or herbaceous vegetation, 

besides the undergrowth settled under the forest cover (De Luca, Silva, Di Fazio, et al., 2022; De Luca, Silva, 

Oom, et al., 2021), inducing the formation of a charcoal and ash layer constituted by burned vegetation and litter. 

The charcoal (black) is the fraction more directly correlated to the biomass portion lost/consumed and to the carbon 

emission (Carmen Quintano et al., 2020), an effective quantitative indicator of the real physical effects of fire on 

vegetation (L.B. Lentile et al., 2006). For this reason, several studies proved that it could be used as unique 

estimator of burn severity, enabling a higher accuracy than vegetation indices (Ó. Fernández-Manso et al., 2009; 

Hudak et al., 2007; L.B. Lentile et al., 2006; Leigh B Lentile et al., 2009; Carmen Quintano et al., 2013, 2017, 

2020; A M S Smith et al., 2007; Sander Veraverbeke & Hook, 2013). Quintano et al. (2020) observed as the 

proportion of charcoal, together with the evapo-transpiration driver, were the variables that most contributed to 

model the burn effect. 

Observing the bivariate relationship with ΔNBR (Figure 7.4), some of the pixels belonging to the %gr and %sc 

are superimposable. This is admissible considering the similarity that the two classes might have, for example 

when when the fire-induced stress affect the surrounding alive green vegetation weakening its spectral response; 

or, inversely, due to the presence of still green foliage among scorched canopy (A M S Smith et al., 2007). The 

superimposition with %ch component should be mainly caused by the exposure of the char carpet covering the 

ground (De Santis & Chuvieco, 2007; Rogan & Franklin, 2001). Commonly, the higher severity classes are 

associated to high value of ΔNBR, and vice versa. The bivariate relationship carried out in this study corroborate 

this aspect. 

7.4.3. Additional general observations 

The findings of this study showed a high effectiveness of SMA methods to delineate the high heterogeneity that 

characterize the crown damage level (L.B. Lentile et al., 2006). The ways in which the fire disturbs forest 

vegetation, in fact, are very variable due to several local environmental factors strongly influencing fire spread and 

intensity, and driving the formation of diversified conditions and degrees of burn and unburned patterns (Daldegan 

et al., 2019; Key & Benson, 2006; L.B. Lentile et al., 2006). The sub-pixel level analysis performed with spectral 

unmixing allows to account the different fire-related elements contained in each of these mixed pixels, which 

otherwise would not be representative of any of the objects present inside the portion of surface. This is obviously 

also applied to post-fire recovery monitoring. As stated by Veraverbeke et al. (2012), typical mixed composition 

of satellite pixels that characterize the post-fire vegetation regrowth establishes a sub-pixels issue. Daldegan et al. 

(2019) observed that sub-pixel SMA is able to detect recurrent fire scars occurred a few time previously, for which, 

if simple spectral indices were used, the reflectance signal would be so faint as to be confused with the fractions 

of vegetation spectral response that has grown back in the meantime.  

Fraction images are based on full multispectral dimensionality information of sensor data, exploiting all the 

available reflective wavelengths,, instead of a ratio between few bands like as vegetation indices (Carmen 

Quintano et al., 2020; Sunderman & Weisberg, 2011; Sander Veraverbeke & Hook, 2013).  

As observed by Veraverbeke et al. (2013), the use of SMA is a necessary information, rather than complementary, 

when quantitative physical parameters relative to post-fire effects on vegetation need exanimating (e.g. the biomass 

lost). The estimation of biomass consumption or carbon emission, for example, requires the quantification of 
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complex physical indicators, among which the charcoal fraction could be included for its directly relationship, 

difficult to obtain through the only empirical relationship offered by vegetation index-based models. 

7.5. Conclusions 

Post-fire immediate consequences quantification and mapping, with the essential distinction of crown fire from 

surface fire, is an important step in allowing inferences on fire behavior and ecosystems responses, which are 

important both for fuel management and for fire suppression. 

This paper investigated the utilization of LSMA on multispectral Sentinel-2 satellite imagery, .to analyze, quantify 

and map three main physical components observable at the forest tree crown level as effects of the occurrence of 

a fire: charcoal component, scorch component, and green component. Results complement the findings of a small 

set of previous studies that support the use of SMA in mapping fire effects and severity due to its ability to produce 

fractions representative of subpixel components directly related to fire severity. 

The main challenge for SMA to become a global means of objective post-fire condition analysis is to determine 

an adequate basic spectral library (Tane et al., 2018). In this study, the application of LSMA involved a semi-

automatic hybrid method to select the most suitable endmembers. The effectiveness of a post-fire effects analysis 

method is also dependent on its ability to capture the great variability of the phenomenon. LSMA fraction products, 

being more related to the field-based parameters such as those revealed in CBI (scorched canopy, canopy 

consumed, charred wood, green canopy, etc.), is more suitable to deal with heterogeneity (Sander Veraverbeke & 

Hook, 2013). Their physical meaning makes this information adequate for the construction of general standard 

models for evaluating the effects of fire, at least in the same biome (in this case, the Mediterranean), to be integrated 

with common methods based on spectral indices.  

In this study only a heterogeneous study area was evaluated, however further analyzes are needed on different 

Mediterranean study areas in order to better evaluate their effectiveness and to encourage the development of 

improved techniques involving the increasing availability of free images at finer spatial and temporal resolutions 

(eg Sentinel-2) and open-source software. Considering this last aspect, noticeable is the advantageous operability 

and increased sharing capacity that Python-based libraries guarantee. 
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8. Temporal vegetation recovery post-fire 

Adapted from  

De Luca, G., Silva, J.M.N., Modica, G.: Short-term temporal and spatial analysis for post-fire vegetation 

regrowth characterization and mapping in a Mediterranean ecosystem using optical and SAR image time-

series. Geocarto Int. 1–35 (2022). https://doi.org/10.1080/10106049.2022.2097482. 

 

Mediterranean ecosystems are critical at the European level due to their high biodiversity and intense interaction 

with human activities (Aragones et al., 2019; Moreira et al., 2020). The typical climatic regime of the 

Mediterranean region, characterized by long periods of summer drought, entails an increasing wildfire risk in terms 

of frequency, extension, and severity (Emilio Chuvieco, 2009; Moreira et al., 2020). This latter factor, defined as 

the degree of environmental chemical-physical alterations, decomposition, and loss of above/belowground organic 

matter caused by fire (Keeley, 2009; Key & Benson, 2006), plays a critical role in the sustainability of 

Mediterranean habitats, influencing the competitive interactions between species and their post-fire recovery 

capability (Fernández-García et al., 2018; Frazier et al., 2015; Lacouture et al., 2020; Morresi et al., 2019; Tanase 

et al., 2011). Moreover, the widespread accumulation of woody fuel, consequent to the abandonment of the semi-

natural and agricultural areas that have been occurring in Mediterranean territories, causes suitable conditions for 

the ignition and the progress of such high intensity/severity fires (Xofis et al., 2022). After a forest fire, the spatial 

https://doi.org/10.1080/10106049.2022.2097482
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and temporal analysis of both the fire severity and the vegetation response and recovery is a crucial step for 

assessing the fire impact on ecosystems and their capacity to repristinate the ecosystem services partially lost due 

to the fire (Huang et al., 2020; Ryu et al., 2018; Semeraro et al., 2019). The post-fire recovery of vegetation cover 

structure promotes the restoration of numerous ecosystem services, such as the carbon sequestration induced by 

the regenerating process of forest vegetation, which mitigates the carbon emissions to the atmosphere due to fire 

(Frolking et al., 2009; Huang et al., 2020; Morresi et al., 2019; Semeraro et al., 2019). 

The efficiency of remotely sensed data applied to wildfire assessment has increased significantly in the last decade, 

thanks to the availability of satellite imagery at increasing spatial, spectral, and temporal resolutions (Chu & Guo, 

2013; Emilio Chuvieco et al., 2019; García-Llamas et al., 2019; I. Gitas et al., 2012a; Mallinis et al., 2018).  Remote 

sensing techniques based on time-series of optical vegetation indices (VIs) have been widely used for post-fire 

analysis and monitoring (Chompuchan & Lin, 2017; Chu & Guo, 2013; Frazier et al., 2015; I. Gitas et al., 2012a; 

Gouveia et al., 2010; Huang et al., 2020; Meng et al., 2018; Morresi et al., 2019; Ryu et al., 2018; Semeraro et al., 

2019). VIs maximize the sensitivity to plant biophysical characteristics and reduce the effects of atmosphere, 

surface topography and soil variability (Morresi et al., 2019; Xofis et al., 2022). The normalized difference 

vegetation index (NDVI) is widely employed to detect and examine the post-fire vegetation recovery using a multi-

temporal approach (Fernández-García et al., 2018; Goetz et al., 2005; Lacouture et al., 2020; George H. Mitri & 

Gitas, 2012; Morresi et al., 2019; A Polychronaki et al., 2014; Ryu et al., 2018; Semeraro et al., 2019). Other VIs 

based on shortwave infrared (SWIR) bands are also applied for long-term post-fire vegetation monitoring (Chen 

et al., 2011; Chompuchan & Lin, 2017; Epting et al., 2005; Grabska et al., 2020; Kennedy et al., 2012; Morresi et 

al., 2019; Ryu et al., 2018; Semeraro et al., 2019). Semeraro et al. (2019) showed that integrating NIR and SWIR 

data improved vegetation water content retrieval. Morresi et al. (2019) also used the NDVI and SWIR-based 

indices (normalized burn ratio, NBR and normalized difference moisture index, NDMI) to analyze the post-fire 

recovery dynamics in Mediterranean landscapes; the latter indices are more sensitive to those purposes.  

Despite their proven efficiency in fire effects analysis, optical data have some limitations, namely the presence of 

clouds (Huang et al., 2020; Lacouture et al., 2020; Minchella et al., 2009; Morresi et al., 2019). Also, the spectral 

confusion between cloud shadows and burned areas creates considerable difficulties in discriminating one from 

the other (Emilio Chuvieco et al., 2005; José M. C. Pereira et al., 1999). Furthermore, NIR-based VIs can be 

affected by earlier saturation already at relative low conditions of vigorous photosynthetic activity and growth of 

the leaf structure due to their high sensitivity to the chlorophyll content and their high correlation with the leaf 

area index (LAI) (Chompuchan & Lin, 2017; Huang et al., 2020; Minchella et al., 2009; Q. Wang et al., 2005). 

Moreover, the optical waves do not penetrate the canopy, only providing information on the regeneration of the 

most superficial vegetation layers (Chompuchan & Lin, 2017). In the context of post-fire monitoring, this translates 

into a fast recovery of the VIs values, close to those of pre-fire conditions, corresponding to an overestimation of 

full recovery of the ecosystem and a not entirely realistic relationship between fire severity and post-fire regrowth 

dynamics (Meng et al., 2015, 2018; Tanase et al., 2011; Wang et al., 2005; Zhou et al., 2019). Some studies (e.g., 

Morresi et al., 2019; Ryu et al., 2018), analysing long-term post-fire spectral dynamics, observed that SWIR-based 

VIs express a more gradual temporal recovery rate than NDVI. The latter was 1-5 years earlier due to its greater 

sensitivity to photosynthetically active vegetation, combining the red and NIR bands. However, other scholars 

stated that spectral optical signals remain coherent only when restricted to the first decade after the disturbance 

(Frazier et al., 2015; Kennedy et al., 2012; Tanase et al., 2011). 



122 
 

In this context, active synthetic aperture radar (SAR) can integrate optical information in vegetation recovery 

analysis and mapping (Chen et al., 2018; Martins et al., 2016; Minchella et al., 2009; Tanase et al., 2015). Its high 

sensitivity to the structural properties of the vegetation, with a generally linear correlation between backscatter and 

vegetation biomass (Chen et al., 2019; Martins et al., 2016; Quegan et al., 2000; Saatchi, 2019; Saatchi et al., 2012; 

Yu & Saatchi, 2016), and its capabilities for all-weather and solar radiation independency, make the SAR 

backscatter complementary information with optical data (Minchella et al., 2009; Polychronaki et al., 2014; Tanase 

et al., 2011; Zhou et al., 2019). SAR data, however, has its challenges. The complex interactions between the 

backscatter and scattering components of the soil and vegetation affected by the fire are influenced by intrinsic 

SAR sensor/signal parameters (e.g., wavelength, polarization, incidence angles, look direction), 

structural/geometrical (objects structure, amount of scattering elements, surface roughness, geometry and 

topography of study area) and dielectrics characteristics of the affected surfaces, as well as environmental 

conditions (e.g., soil moisture, rain, wind) (Ban et al., 2020; Chen et al., 2018; De Luca, Silva, & Modica, 2021a; 

Tanase et al., 2014; Tanase, Santoro, De La Riva, et al., 2010; Tanase, Santoro, Wegmüller, et al., 2010). Among 

these factors, the wavelength is the one that most influences the ability of waves to penetrate vegetation cover, and 

thus the type and amount of information that can be derived about the impact of disturbance on it (Tanase et al., 

2011). SAR shorter wavelengths (e.g., C-band, 3.8-7.5 cm) mainly interact with vegetation scattering elements 

such as leaves/needles, twigs and small branches, or herbaceous vegetation; this reduces the capacity to penetrate 

the regrowing dense forest canopy, meanwhile becoming less sensitive to structural modifications of vegetation 

strata (Chen et al., 2018; Minchella et al., 2009; Paloscia et al., 1999; Saatchi, 2019; Santi et al., 2017; Tanase et 

al., 2011). Moreover, the different polarizations of the SAR signal affect the interaction with the forest surface.  

Immediately after a disturbing event and for the first year after, the scattering effect of the damaged vegetation 

structure is lacking/decreasing. At the same time, the contribution to the back diffusion by the humidity and the 

roughness of the exposed soil is higher. In Mediterranean ecosystems, this generally results in a lowering of the 

cross-polarized signal, interacting with multiple scattering within the forest canopies (volume scattering), and an 

increase in the co-polarized signal, interacting with small branches, stems and, principally, the ground surface 

(direct and specular backscatter) (De Luca, Silva, & Modica, 2021a; Imperatore et al., 2017; Richards, 2009b; 

Saatchi, 2019a). The backscatter, indeed, typically increasing with forest biomass, has been found more directly 

correlated to above-ground biomass at cross-polarization than co-polarizations (Saatchi, 2019a; Saatchi et al., 

2012; Yu & Saatchi, 2016). Both polarizations can be decisive in detecting better the different effects of fire on 

vegetation (Chen et al., 2018; Tanase et al., 2014). SAR polarimetric indices were generally employed for 

environment monitoring (De Luca, Silva, & Modica, 2021a; De Luca et al., 2021; Kim et al., 2014; Mandal et al., 

2020; Nasirzadehdizaji et al., 2019; Periasamy, 2018; Pipia et al., 2019; Saatchi, 2019).  

This work builds on previous research based on Sentinel-1 (S1) adapted dual-polarimetric SAR indices (dual-

polarization SAR vegetation index, DPSVI; the radar vegetation index, RVI) applied to burned areas detection (De 

Luca, Silva, & Modica, 2021a), with the addition of the radar forest degradation index (RFDI), for burn severity 

estimation and mapping (De Luca, Silva, Oom, et al., 2021). 

Among the several space agencies providing satellites platforms operating both optical and SAR sensors at 

different spatial, temporal and spectral resolutions (Emilio Chuvieco et al., 2019), the Copernicus missions by 

European Space Agency (ESA) include in its fleet both C-band band (centre wavelength of 5.6 cm) SAR (S1), 

with both cross- (VH) and co- (VV) polarizations, and multispectral (Sentinel-2, S2) sensors, each of which 
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consists of two polar-orbiting satellites (S1A/B and S2A/B, respectively) (ESA Sentinel Homepage 2022). The 

high spatial and temporal resolution makes the Copernicus constellation particularly suitable for mapping, 

quantitative-qualitative characterization, and temporal monitoring of the effects of fire on ecosystems; its free 

availability, moreover, is a fundamental attribute in risk management and monitoring framework (De Luca, Silva, 

& Modica, 2021a; De Luca, Silva, Oom, et al., 2021; Gitas et al., 2012; Martinis et al., 2017; Tanase et al., 2011; 

Tanase et al., 2020; Verhegghen et al., 2016). 

Although numerous studies are using SAR C-band S1 or/and optical S2 imagery for burned area detection  (Ban 

et al., 2020; Carreiras et al., 2020; De Luca, Silva, & Modica, 2021; Donezar et al., 2019; Pulvirenti et al., 2020; 

Roteta et al., 2019; Tanase et al., 2020) or burn severity estimation (Amos et al., 2019; De Luca, Silva, & Modica, 

2021a; A. Fernández-Manso et al., 2016; Mallinis et al., 2018; Morresi et al., 2022; Carmen Quintano et al., 2019a), 

the contributions concerning their combined use in assessing and monitoring the temporal response of ecosystems 

to fire effects and the subsequent recovery patterns are very scarce (Evangelides & Nobajas, 2020; Han et al., 

2021; Zhang et al., 2021); even less in Mediterranean ecosystems.  

Understanding the spectral interactions between these patterns and the main factors that influence the damage and 

recovery processes is also important. Depending on fire severity, type of vegetation and climate conditions, 

recovery processes can be very heterogeneous, with large changes in forest structure and species composition 

(Lacouture et al., 2020; Morresi et al., 2019). Considering the post-fire recovery as a homogeneous and predictable 

process is almost unrealistic, as stated by Morresi et al. (2019). Understanding the quantitative relationship 

between post-fire vegetation recovery and fire severity allows the assessment of the temporal effects of fire on 

ecosystem characteristics such as biodiversity, evapotranspiration, carbon cycling, soil chemical and physical 

properties (Emilio Chuvieco, 2009; Emilio Chuvieco et al., 2014; Häusler et al., 2018; Hill et al., 2008; Kasischke 

et al., 2011; Meng et al., 2018). Some authors evaluated post-fire recovery processes in relation to the fire severity 

category (Fernandez-Manso et al., 2016; Martins et al., 2016; Meng et al., 2018; Ryu et al., 2018; Viana-Soto et 

al., 2017). However, few studies have analysed both S1 and S2 data on different fire severity categories and 

different types of forest cover in the Mediterranean region. 

The spatial assessment of the post-fire recovery temporal rates was also explored by several authors proposing and 

applying recovery indices to both optical (Chompuchan & Lin, 2017; Chou et al., 2008; Lin et al., 2004; Meng et 

al., 2018; Morresi et al., 2019; Ryu et al., 2018) and SAR (Minchella et al., 2009). Some of these indices considered 

the effects of delayed vegetation mortality (Chompuchan & Lin, 2017), of annually varying meteorological effects 

(Ryu et al., 2018), or inter-annual modifications of natural phenological cycles (Morresi et al., 2019) by adding 

approximate parameters based on the generalization of the surrounding unburned vegetation. However, further 

investigations are needed given the increased availability of better resolution satellite images, such as S1 and S2, 

and performant open-source prediction algorithms based on machine learning.  

The present study aims to: 

• Assess post-fire forest recovery dynamics and their spatial patterns in a Mediterranean ecosystem, using S1 

and S2 spectral vegetation indices. 

• Assess the relationship between the recovery rate, the type of vegetation, and the fire severity level, by also 

taking into consideration the climatic conditions.  

• Estimate and map the spatial distribution of recovery degree through the burn recovery ratio (BBR), based on 

pre- and post-fire conditions and optimized through machine learning regressors. 
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8.1. Masterials and methods 

8.1.1. Study area 

The study area is the Serra de Monchique mountain chain, located in the Algarve region, south of Portugal (37° 

18’N; 08° 30’W), part of which is included in the European Natura 2000 network as a Special Area of Conservation 

(SAC) (Natura 2000 Site Code: PTCON0037). The climate is typically Mediterranean, with hot, dry summers and 

mild humid winters, with oceanic influences given by the relative proximity of the Atlantic Ocean and the heights 

of the mountain range that intercept the humidity (Martins et al., 2015). Considering the surface occupied, the 

forest cover is mainly composed of Eucalyptus plantations (Eucalyptus globulus, Labill. 1800) and cork oak forests 

(Quercus suber L.), part of which consists of the typical semi-natural agro-forestry system (montado in 

Portuguese), and part consisting of more close forest stands. Typical meso-Mediterranean forest ecosystem with 

other Mediterranean oaks species (e.g., Quercus ilex L.) and other secondary Mediterranean autochthonous broad-

leaves trees are also present. A small part of the forest cover is also composed of isolated areas of Mediterranean 

conifers (Pinus pinea L., Pinus pinaster Aiton.) (Alves et al., 2007; Catry et al., 2015; De Luca et al., 2022; Häusler 

et al., 2018; San-Miguel-Ayanz et al., 2016). However, the largest part of the study area is covered by heathlands 

and pastures, composed of typical herbaceous and sclerophyllous shrubby flora alternating with agricultural fields 

surrounding small urban areas (De Luca, Silva, Di Fazio, et al., 2022; Mitchell et al., 2009; J. San-Miguel-Ayanz 

et al., 2016). 

8.1.2. Description of the fire event 

The fire event (Fig. 8.1) occurred in August 2018 from the 3rd to the 10th, affecting 268.9 km2, almost entirely 

represented by herbaceous, shrub and forest areas (De Luca, Silva, & Modica, 2021a). For most of the burnt surface 

(> 50%), the event was of high severity where, regardless of the type of vegetation, only the residues of the burned 

biomass (ash and coal) remained on the ground, and the bare ground was left exposed. Where the fire had 

moderate-high severity, the vegetation structure was, however, affected at various levels, with the consumption of 

the lower layers (grass and shrubs) and a predominant crown fire occurrence, which did not destroy all the canopy 

structure. In moderate and low severity categories, representing less than 15% of the burned surface, the fire 

affected the vegetation partially, with part of the canopy killed by heat proximity and the other amount remaining 

alive (De Luca, Silva, Oom, et al., 2021; Oom et al., 2018). 
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Figure 8.1. Location of the study area in Portugal (top-left). Overview of the study area (top-right) using the Google Earth Satellite 

map as a base map; the wildfire perimeter of August 2018 is overlaid in light blue. The landscape of the burned area (bottom) where 

all the categories of fire severity are observable. 

8.1.3. Dataset and pre-processing 

8.1.3.1. Sentinel-1 dataset and pre-processing 

The SAR dataset was composed of S1-A/B Level-1 high-resolution ground range detected (GRDH) time-series, 

acquired in interferometric wide (IW) mode, dual-polarized available: co-polarized VV and cross-polarized VH.  

The time series covered a period of four years (April 2017-Jun 2021) and, considering that the fire event time 

occurred in the first days of August 2018, the timeframe was split into a pre-fire (from April 2017 to July 2018) 

and post-fire (from the second half of August 2018 to June 2021) periods. Moreover, the Long-Term Access policy 

of the ESA (Copernicus Long Term Archive Access, 2021) makes very time-expensive the massive download of 

images from the official Copernicus Open Access Hub platform. Therefore, the S1 images were downloaded using 

the Alaska Satellite Facility (ASF) interface (ASF, 2022), which also provides the python code for bulk-

downloading. The S1 time series comprised 273 images, including ascending (51 pre-fire and 88 post-fire) and 

descending (49 pre-fire and 85 post-fire) flight paths. 
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The pre-processing of the S1 dataset was carried out using the Sentinel-1 Toolboxes, implemented in the SNAP 

v.8.0.3 open-source software (ESA SNAP Homepage, 2022), and performed via the SNAP-Python interface 

(Snappy), the access provider to SNAP Java API (ESA SNAP Cookbook, 2022). Starting by applying the auto-

downloaded orbit information file and the removal of the thermal noise, the SAR data pre-processing involved the 

radiometric calibration to beta (β0) noughts backscatter standard conventions (Small, 2011) and the radiometric 

terrain correction (RTC) process. RTC consists of the radiometric terrain flattening and the geometric terrain 

correction of the images using a digital elevation model (DEM) to reduce the geometric and radiometric distortions 

due to the rough surface topography. The shuttle radar topography mission (SRTM) DEM at 1 arc-second spatial 

resolution (Farr et al., 2007) was resampled using the bilinear interpolation method (De Luca, Silva, & Modica, 

2021a; Mendes et al., 2019); no pixel resampling was instead necessary to the GRDH image products, already 

available in 10 m x 10 m resampled pixel spacing (ground range x azimuth) (ESA Sentinel-1 User Guide 2016). 

Subsequently, the stack of all the time series was carried out separately for each of the two flight paths. The 

geolocation of a master image (automatically chosen by the model among the time series) was adopted in this 

phase. An image Refined-Lee speckle filter (Lee & Pottier, 2009), with a 7x7 pixel window size, was applied to 

reduce the first speckle-noise effects. Finally, a backscatter monthly time average was computed for each month. 

The backscatter time average, besides reducing the massive amount of the images compositing the time series, 

further minimize the adverse effects of speckle noise and environmental variables affecting the SAR signal (De 

Luca, Silva, & Modica, 2021a; Lapini et al., 2020; Tanase et al., 2015; Zhang et al., 2019). 

8.1.3.2. Sentinel-2 dataset and pre-processing 

The optical time series was composed of 253 (60 pre-fire and 193 post-fire) S2-A/B Level-2A (Bottom-Of-

Atmosphere, BOA) multispectral images. These images cover the same period of the S1 dataset (April 2017-Jun 

2021), excluding the first half of August 2018 (when the fire occurred). Due to the same problem concerning the 

oldest-acquisition image accessibility from the official Copernicus database (section 2.3.1), the S2 dataset was 

downloaded from the Google Earth Engine (GEE) collections database and executed through the GEE Python API 

(Google Earth Engine Guides, 2022). The GEE Python API was also employed for S2 image pre-processing before 

the download, including resampling all S2 bands to 10 m of GSD using the nearest neighbour resampling 

algorithm. Additionally, the S2-Cloud Probability was used to mask each pixel of the time-series images by 

cloudiness probability (scaled from 0 to 100). The S2-Cloud Probability mask is available in the GEE Data catalog 

(GEE Data Catalog: Copernicus S2-Cloud Probability, 2022), sampled to 10 m of GSD, generated using the 

automatic pixel-based sentinel2-cloud-detector package (s2cloudless) (Sentinel2-cloud-detector repository, 2022), 

developed by Sentinel Hub’s research team (Sentinel Hub Homepage, 2022) and based on the LightGBM machine 

learning library (LightGBM documentation, 2022). Higher values of cloud probability have a higher ability to 

detect dense clouds or highly reflective surfaces, but the omission of less dense clouds could be equally high. 

Lower values allow the possibility of detecting all the clouds on the scene; however, they increase the risk of more 

frequent commission errors due to the confusion between clouds and medium-high reflectance surfaces, masking 

them from the resulting image. To this end, a pixel probability threshold of 10 was set based on previous 

experiences in the same study area (De Luca, Silva, Di Fazio, et al., 2022). The masked pixels are replaced by 

applying a temporal linear interpolation involving all the time-series images, differentiating pre-fire and post-fire 

sub-sets. After the cloud masking, the images were averaged each month using the criterion adopted for the S1 

time series. 
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8.1.4. Land cover and fire severity maps 

The temporal analysis of post-fire vegetation recovery was applied to three main LULC classes representing the 

vegetation of the study area: the eucalyptus (Euc) plantations; the autochthonous forest (AuFor), both natural and 

the semi-natural, consisting of two dominant species, Quercus suber and Q. ilex, and other secondary broadleaves; 

heathlands, shrublands or pastures vegetation (Pas/Shr). The pine class was excluded in this study due to its limited 

representativeness in the study area. The definition of the primary reference LULC classes was carried out using 

a classified LULC map retrieved from a supervised machine learning-based classification processing developed 

in Chapter 2 and based on the combined use of both SAR S1 and optical S2 data. The LULC map has a spatial 

resolution of 10 m x 10 m, and its overall accuracy is higher than 90%. 

The burned vegetation was monitored based on the fire severity. The spatial distribution of fire severity, retrieved 

as explained in Chapter 5, was obtained applying the random forest (RF) machine learning model on a dataset 

constituted by an S1+S2 dataset and derived indices, and trained using a set of field measurements of the composite 

burn index (CBI) (Key & Benson, 2006). Based on the CBI sampling protocol, six conventional fire severity 

categories were detected (Key & Benson, 2006), and five of them were considered in the further analyses: a) 

unburned soil/rock (not taken into consideration); b) unburned vegetation; c) low severity: low impact of the fire, 

which was mainly kept at ground level with low levels of alteration of the shrub and/or tree cover; d) moderate 

severity: level of alteration of the vegetation higher than in low severity category, with the fire reaching the lower 

layers of the forest canopy, resulting in a mixture of scorch and green vegetation; e) moderate-high severity: 

predominance of burnt vegetation with a high percentage of tree foliage affected by scorch, and a part of the woody 

components of the canopy partially or totally consumed by fire; f) high severity: the short vegetation is consumed, 

as well as most of the tree's foliage, the surface is mainly covered with ash and charcoal. 

8.1.5. Climate variables 

Two datasets with monthly climate variables series were retrieved, from April 2017 to January 2021, to analyse 

the relationship with the temporal profiles of vegetation affected by fire: monthly rainfall (mm) and average 

monthly temperature (°C). After analysing the meteorological stations' spatial distribution, the data were retrieved 

from 16 stations distributed over the study area (SNIRH, 2022). 

8.1.6. Data preparation and analysis 

8.1.6.1. Vegetation indices calculation 

Three S1-adapted dual-polarimetric SAR indices were computed for each resulting month averaged image of the 

S1 time series: the RVI (Eq. 8.1), the RFDI (Eq. 8.2) and the DPSVI (Eq. 8.3) (Mandal et al., 2020; 

Nasirzadehdizaji et al., 2019; Nicolau et al., 2021; Saatchi, 2019a). 

RVIt = 4 · VHt / (VVt + VHt) (8.1) 

RFDIt = (VVt - VHt) / (VVt + VHt) (8.2) 

DPSVIt = (VVt + VHt) / VVt) (8.3) 

Where t represents the corresponding image date (months) constituting the time series (April 2017 - June 2021), 

and VV and VH represent the respective single-polarized backscatters. Besides the SAR VIs, computed separately 

for orbit path (RVI_As, RVI_Ds, RFDI_As, RFDI_Ds, DPSVI_As, DPSVI_Ds), the backscatter time-series for 
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the single co- and cross-polarization (VH_As, VH_Ds, VV_As, VV_Ds) were also involved to compose the final 

SAR dataset.   

A similar procedure was carried out for each month image of the S2 time-series, for which five spectral indices 

were calculated: the NDVI (Eq. 8.4), the green normalized vegetation index (GNDVI) (Eq. 5), the normalized red-

edge vegetation index (NDRE) (Eq. 8.6), the normal burn index (NBR) (Eq. 7) and the normalized difference 

water index (NDWI) (Eq. 8.8). 

NDVI = (B8t – B4t) / (B8t + B4t) (8.4) 

GNDVI = (B8t – B3t) / (B8t + B3t) (8.5) 

NDRE = (B6t – B5t) / (B6t + B5t) (8.6) 

NBR = (B8t – B12t) / (B8t + B12t) (8.7) 

NDWI = (B8At – B11t) / (B8At + B11t) (8.8) 

B3, B4, B5, B6, B8, B11 and B12 represent the S2 bands conventionally named (ESA Sentinel Homepage 2022). 

The final optical dataset was composed of the monthly time series of the VIs above. 

8.1.6.2. ROIs collection and temporal profiles extraction 

The temporal analysis of vegetation dynamics affected by the fire was divided according to the LULC class and 

the fire severity category. A series of square 3x3 pixel regions of interest (ROIs) were collected to fulfil these 

criteria. Each ROI was homogeneous regarding LULC class and fire severity; the whole dataset covered the spatial 

distribution of the land cover and fire severity. The ROIs were retrieved by visual assessment of LULC and fire 

severity maps and the Esri ArcGIS World Imagery high-resolution satellite map (Esri ArcGIS World Imagery, 

2021). A total of 700 ROIs were collected and distributed: 50 ROIs for each fire severity category for both forest 

LULC classes and the high severity category of Past/Shr class; 25 ROIs for each low, moderate and moderate-high 

fire severity category for Past/Shr LULC. The choice of 25 ROI was due to the difficulty of finding homogeneous 

areas of Past/Shr vegetation belonging to these three severity categories. Using the mean value of ROIs allows to 

examine the overall change occurring inside these sampling units through the entire observation period and 

compare the different profiles, avoiding the influence of the values of single pixels (Lacouture et al., 2020). 

8.1.6.3. Correlation between temporal profiles and climate variables 

The monthly temporal profiles of rainfall and temperature were constructed and compared to the temporal profiles 

of each S1 and S2 spectral index to investigate the influence that the climate variables had on the dynamics of 

post-fire vegetation recovery. To define the relationship with the vegetation dynamics of post-fire recovery, we 

implemented a Pearson’s correlation analysis (r) between the temporal profiles of each S1 and S2 index and the 

climate variables. 

8.1.6.4. The burn recovery ratio (BRR) 

The spatial distribution of the degree of vegetation recovery was estimated and mapped using the burn recovery 

ratio (BRR) (Eq. 8.9), proposed by Chompuchan et al. (2017), in turn inspired by the recovery index of Chou et 

al. (2008) and Lin et al. (2004), which represents the ratio between the value of a given VI at the time of assessment 

(VIpost-fire) and its value at the reference pre-fire time (VIR_pre-fire). 

BRR = VIpost-fire / VIR_pre-fire (8.9) 
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As further explained below, VIpost-fire and VIR_pre-fire values falling inside the burned perimeter were predicted by 

the mean of a regression algorithm to minimize the inter-annual biases.  

Due to the natural inter-annual variations that may have occurred in unburned vegetation, if an image taken in the 

pre-fire period was used for BRR calculation, it would lead to biases for each year of its estimation. Morresi et al. 

(2019), for example, exploiting the concept already used in Miller (2007) for the computation of the relative NBR, 

integrated their recovery index with a coefficient calculated by averaging the difference between pre-fire median 

and annual post-fire VI values of unburned vegetation  to account the inter-annual phenological changes. In this 

study, to cope with this aspect, the unburned reference values for each index and each year of BRR assessment 

were estimated using the RF machine learning regression model (Breiman, 2001). To this end, 250 additional 

sample ROIs (ROIsBRR) (3 x 3 pixels) were selected for each of the three LULC classes in areas not affected by 

the fire (outside the fire perimeter). Their pixel values were used as reference unburned training points for the RF 

model. For each year of calculation of the BRR, the respective ROIsBRR pixels of the same year were used as 

trainers; meanwhile, all the pixels falling within the burned area were reconstructed by interpolating them with the 

individual pre-fire image values (June 2018). This month was chosen since it was the closest to the fire event to 

also be present for all the observed following years (2019, 2020 and 2021), implicating that the conditions of the 

vegetation were more similar to those at the time of the fire event, as already considered by De Luca et al. (2022). 

Furthermore, the cloud-free seasonal period was optimal to avoid using those pixels reconstituted from cloud gaps 

and the rain noise on the SAR signal. Thus, the new unburned pixels for the BRR calculation have been predicted. 

The RF regressor parameters values were set using those already calculated in Chapters 2 and 5 and optimized for 

the study area through an exhaustive grid search approach. 

Based on the BRR results, six recovery rate categories were created, similar to those proposed by Chompuchan et 

al. (2017): very low (condition worse than before the fire ) (BRR< 0),  low (0 < BRR < 0.25), moderate (0.25 < 

BRR < 0.50), moderate-high (0.50 < BRR < 0.75), high (0.75 < BRR < 1) and very high (BRR > 1). The BRR was 

calculated in June (springer greenness peak) of each year after the fire (2019, 2020, 2021) for NBR (BRRNBR), 

NDVI (BRRNDVI), NDRE (BRRNDRE) and RVI (ascending and descending; BRRRVI_As and BRRRVI_Ds). 

8.2. Results 

8.2.1. Temporal profiles 

The temporal profiles of S1 and S2 spectral indices (Figures 8.2-8.4) show the mean reflectance value of the pixels 

retrieved from ROIs, separated by LULC class and fire severity category. The time series, divided between the 

pre-fire period (April 2017 - Jul 2018) and the post-fire period (second half of August 2018 - Jun 2021), is 

composed of images representing the monthly averages of the observed timeframe. 

Different patterns are distinguishable in each temporal profile, with a common breakpoint denoting the fire event 

in August 2018. An evident and expected difference between the two types of sensors is also found. Other 

noticeable differences in the LULC class, fire severity category, seasonal variability, and long-term trend are also 

observed. Large variability in the short-term post-fire behaviour (within the first year after the fire) is evident in 

both S1 and S2 indices but is significantly attenuated during the second and the third post-fire year in the S2 time 

series. 
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Figure 8.2. Temporal profiles of optical vegetation indices, for each of which a comparison between the three different LULC classes 

is displayed. 
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Figure 8.3. Temporal profiles of SAR dual-polarized vegetation indices, for each of which a comparison between the three different 

LULC classes is displayed. 
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Figure 8.4. Temporal profiles of SAR single-polarization backscatter, for each of which a comparison between the three different 

LULC classes is displayed. 

8.2.2. Optical Sentinel-2 profiles 

As expected, for each LULC class, similar behaviour is observed between the different temporal profiles divided 

by fire severity category in the time frame preceding the fire event. Such profiles thus outline LULC-specific 

spectral signatures, an aspect much more evident in optical-based profiles than in SAR-based profiles (Figures 

8.2-8.4). 

After the fire event, different recovery patterns are recognizable according to the severity category in all the optical 

indices. Two common patterns are observed among all the profiles. A pronounced drop of the Vis values, with a 

magnitude related to the fire severity, in the period immediately following the fire event and maintained for about 

a year; a recovery of the pre-fire levels of spectral response (positive increasing trend) after the first year. 

Observing the unburned category, the three vegetation classes had specific seasonal patterns during the observed 

period, with slight variations in the temporal dynamics between the different spectral indices in specific years. The 

highest index values occur in the same period for all the LULC classes: the autumn-winter period with peaks 

observed in December in almost all periods of all spectral indices, with some variation found in the two SWIR-

based indices. The AuFor class showed less pronounced seasonal fluctuations and lower amplitude of the curve, 

opposite to the Euc profiles characterized by higher amplitude. Keeping the minimum values higher than the other 

classes, the AuFor secondary growth phase takes place in the earlier summer period between June and July, 

attributable to the growth of new leaves, with the only exception for the year 2019, in which there is no summer 
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increase in the values of all the analysed spectral indices. This phase is anticipated by a minimum value occurring 

during the second half of May (NDVI, GNDVI, NDRE) or April (NBR, NDWI). The Pas/Shr class, generally 

characterised by lower VIs values compared to the forest classes, presents its single and regular period of annual 

growth that goes from September-October (minimum value), when the autumnal rains break the summer drought, 

through the whole winter, reaching the maximum peaks in December-January, and until they start to dry again at 

the end of spring. 

The AuFor and Past/Shr post-fire profiles relative to the low severity category profiles present values very close 

to the reference unburned vegetation profiles in all the spectral indices. The intra-annual variability of phenology 

is clear in the time series even after the fire occurrence. The periods of growth and decrease are comparable 

between the two severity categories along almost the entire post-fire period. The impact of the low severity fire on 

the surface occupied by eucalyptus trees led to a lowering of the values of all the calculated optical indices. 

However, the magnitude of the recovery is the same as the corresponding unburned profile. Noticeable is the 

higher amplitude of the Euc low-severity profile compared to those falling into the other severity categories of the 

same LULC class. After a detachment the first year after the fire event, the moderate-high and high fire severity 

profiles showed similar values and followed the cyclical trend already observed for the unburnt category. However, 

the spectral response of the high fire severity category showed a steeper decrease immediately after the fire, more 

pronounced in SWIR-related VIs. Concerning the recovery degree observed in the temporal profiles, a complete 

recovery seems to be recorded for AuFor and Pas/Shr classes in all the VIs, except for the SWIR-based indices, 

highlighting a slower recovery of AuFor vegetation. Unlike what was observed for the other two classes, Euc 

profiles failed to restore the respective pre-fire Vis values within the analysed post-fire period. 

8.2.3. SAR Sentinel-1 profiles 

The comparison of SAR-based profiles denotes significant differences in the interactions between SAR indices 

and each LULC class, including those related to the ascending or descending orbit paths (Fig 8.3). The 

characterization of specific pre-fire seasonality and post-fire recovery patterns is complex in most profiles, mainly 

in the case of the single-polarized VV backscatter signal (Fig 8.4). Indeed, the fire event is visually perceptible, 

observing the profiles. A distinction between pre- and post-fire patterns is observed for all the LULC and fire 

severity combinations except the VV-related profiles. Furthermore, co-polarized profiles tend to slightly increase 

values in the post-fire period in all severity categories, but with an amplitude of the curve fluctuations that increase 

with fire severity. The profiles of dual-polarized SAR indices (Fig 8.3) are similar to those of the optical indices, 

exhibiting a better relationship between the fire severity category and the SAR signal (Fig 8.2). The RFDI 

represents an exception, which shows an expected increase after the fire. The post-fire response of the SAR indices 

is more evident for high and moderate-high severity categories than for moderate or low severity and stronger for 

Euc and Pas/Shr. Indeed, the SAR response of vegetation affected by low severity fire does not present 

distinguishable traits from the unburned vegetation profile in most cases. Conversely, Euc low severity profiles 

differ from unburned and high severity profiles during the first post-fire year. The common characteristic of all 

SAR profiles for all the LULC classes and fire severity categories is a slower recovery trend than optical profiles. 

In the case of Euc, even after three years, the indices' values do not reach those of pre-fire situations (Fig 8.3). In 

the case of pre-fire or unburned vegetation, a general slight decrease is visible over the whole period when DPSVI 

and RVI are used (resulting in an increasing trend for RFDI), as observed in optical indices profiles. For the Euc 

class, the decreasing trend can be observable until November 2019 - February 2020, after which a slight increase 
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is detectable. The same behaviour appears in ascending and descending VH backscatter profiles for all LULC 

classes and ascending VV backscatter for AuFor. 

8.2.4. Climate variables and relationship with satellite temporal profiles 

The Bagnouls-Gaussen Thermo-pluviometric diagram in Fig. 8.5 shows the temporal profiles (April 2017 - 

January 2021) of the monthly rainfall and monthly mean temperatures, highlighting the Mediterranean climate of 

the study area (mild and rainy autumn, winter and early spring seasons, dry summers). Notable decreases in rainfall 

are observed in December 2018 (12.6 mm), March 2019 (14.8 mm) and February 2020 (3.96). Another 

exceptionality is given by the maximum peak recorded in March 2018 (266.7 mm); other maximum peaks were 

observed in October 2018 (122.5 mm), December 2019 (129.84 mm) and November 2020 (112.2 mm). The 

seasonal thermal variation is not high, and this is due to the oceanic influence that mitigates the average 

temperature during the year.  

 

Figure 8.5. Bagnouls-Gaussen Thermo-pluviometric diagram reporting the temporal profiles of the monthly rainfall and monthly 

average temperatures. The precipitation axis (right) has an interval double compared to the temperature axis (left). 

The Pearson’s correlation coefficient between climate variables and temporal trends of both SAR and optical data 

was computed to investigate their linear relationship, considering the fire severity category, the LULC class and 

period considered (pre- or post-fire). The resulting Pearson’s coefficient values are reported in the heatmaps of 

Figures 8.6-8.8. 
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Figure 8.6. Heatmaps reporting the Pearson’s correlation coefficient performed between optical vegetation indices (NDVI, GNDVI, 

NDRE, NBR and NDWI) and climate variables monthly rainfall (Rain) and monthly mean temperature (Temperature). The correlation 

was carried out separately between the pre- and post-fire period and fire severity categories. The heat map colour palette gradient 

describes the Pearson’s values range from lower (dar blue) to higher (yellow-light green). 
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Figure 8.7. Heatmaps reporting the Pearson’s correlation coefficient performed between SAR single polarizations  (RVI_As, RVI_Ds, 

RFDI_As, RFDI_Ds, DPSVI_As, DPSVI_Ds) and climate variables monthly rainfall (Rain) and monthly mean temperature 

(Temperature). The correlation was carried out separately between the pre- and post-fire period and fire severity categories. The heat 

map colour palette gradient describes the Pearson’s values range from lower (dar blue) to higher (yellow-light green). 
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Figure 8.8. Heatmaps reporting the Pearson’s correlation coefficient performed between SAR dual-polarized vegetation indices 

(VH_As, VH_Ds, VV_As, VV_Ds) and climate variables monthly rainfall (Rain) and monthly mean temperature (Temperature). The 

correlation was carried out separately between the pre- and post-fire period and fire severity categories. The heat map colour palette 

gradient describes the Pearson’s values range from lower (dark blue) to higher (yellow-light green). 

For optical datasets (Fig 8.6), a general positive correlation between rainfall and spectral indices can be observed 

for most LULC classes and fire severity categories, higher for Pas/Shr and the post-fire period. The NDRE index 

of non-forest vegetation was most correlated with the rainfall in the pre-fire period, with values not lower than 

+0.48. The degree of correlation for the post-fire period decreases with increasing fire severity, with the minimum 

value recorded for the NBR profile used AuFor class affected by high severity (+0.087). The AuFor class mainly 

showed a lower correlation with rainfall than the other two LULC classes. Oppositely, most of the correlations 

with temperature were negative, with values that reached -0.89 (Pas/Shr-GNDVI-moderate severity-pre-fire). The 

AuFor class had some exceptions, presenting positive correlations for the SWIR-based indices (NBR and NDWI), 

with a higher positive correlation (+0.38 to +0.46) for low fire severity.  

Concerning SAR datasets (Fig 8.7), the RVI and DPSVI indices reached a similar correlation in their respective 

orbit path. For AuFor class, these indices had a higher correlation with the rainfall variable in the pre-fire condition, 

showing values between +0.14 (RVI ascending) and +0.67 (DPSVI ascending). This class reached a higher 

correlation in the two indices in post-fire conditions. For Ecu and Pas/Shr the highest positive and/or negative 

correlation was observed in pre-fire conditions, ranging from -0.47 (RVI descending) to +0.5 (DPSVI ascending). 
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During the post-fire period, both Ecu and Pas/Shr achieved values not exceeding +0.2 in any case. The RFDI 

showed values of opposite correlations to RVI for both orbit paths in Euc and Pas/Shr classes. Considering the 

AuFor class, the RFDI reached a similar and opposite to the DPSVI. A higher correlation was found between 

single-polarization profiles and the rain variable. Noticeable is the high level of r reached by VV_Ds in all three 

LULCs during the post-fire period (0.24 < r < 0.75). Except for some cases (e.g., VV_Asc for Pas/Shr; VH_Ds 

for Euc), the other single-polarized combinations followed this trend in both pre-fire and post-fire periods. 

A divergence was observed between dual-polarized indices and single-polarized backscatter and between 

ascending and descending orbit paths when correlated with the monthly mean temperature. After the fire event, 

the unburned and low severity categories correlated to the pre-fire period using dual-polarized VIs in descending 

mode. With ascending VIs, a slight divergence was observable for the low severity category. The other fire severity 

categories registered similar behaviour, except AuFor, which changed signs from negative (pre-fire) to positive 

(post-fire) or vice versa (RVI_Ds). Generally, pre-fire condition guaranteed highest correlation coefficient (e.g., r 

= 0.81, RVI_As, Euc; 0.77, DPSVI_As, Euc; 0.61, DPSVI_Ds, Pas/Shr). Dissimilar behaviours were found using 

single-polarized backscatter profiles. The unburned vegetation did not maintain its correlation level with the 

climatic variable in all the cases. The VH_As was an exception, although this data presented the highest continuity 

between pre-fire and post-fire values in almost all the categories.  The VV_Ds showed the highest negative 

correlation with temperature in the post-fire period, totally contrasting with the values expressed before the fire 

event. 

8.2.5. Spatial distribution of recovery rate: the BRR 

 Figures 8.9 and 8.10 show the spatial distribution of the general recovery rate of vegetation for the NDVI, NBR 

and RVI_As, and for NDRE and RVI, respectively. Areas in dark red (BRR < 0) denote slow/absent recovery, 

with values of the VIs lower than in the pre-fire conditions; conversely, where the BRR was more than one (light 

green areas), the recovery condition was higher than the pre-fire condition. Considering the different VIs, the three 

maps showed noticeable differences, with BRRNBR reporting recovery levels much lower than BRRNDVI. This 

disparity is kept during subsequent years, although the spatial pattern of re-greenness is quite similar, with a 

recovery distribution starting from the area around the unburned island (Monchique town) located on the west side 

of the study area toward the easter and north part/side of the study area. Other high-recovery areas are patchy and 

spread throughout the 2021 map. Concerning SAR BRR, the recovery level has higher absolute values starting 

from 2019, and its spatial distribution is more homogeneous across the area. However, comparing the two highest 

recovery categories during the temporal progression from 2019 to 2021, the SAR shows a lower and more gradual 

regrowth rate than BRRNDVI. Some dark red areas are viewable in the year after the fire, recognizable by a sudden 

decrease in BRR values compared to the previous year, resulting from other fires' recurrence after August 2018. 

Although present on the map (Figures 8.9 and 8.10), these fires have been detected in advance and excluded from 

any calculation (ROIsBRR and pixel distribution). 

Figure 8.11 reports the proportion of the area occupied by each BRR category for each LULC class and year, 

assessed for the NBR, NDVI and RVI_As indices; BRRNDRE and BRRRVI_Ds are not shown since they displayed 

similar values of BRRNDVI and BRRRVI_As, respectively. 



139 
 

 

Figure 8.9. Burn recovery ratio (BRR) was separately calculated for NDVI (BRRNDVI; first row), NBR (BRRNBR; second row) and 

RVI_As (BRRRVI_As; third row). The columns separate the three post-fire dates of observation: June 2019 (first column), 2020 (second 

column), and 2021 (third column).  The colour palette represents a recovery gradient from very low (dark red) to very high (light 

green). 
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Figure 8.10. Burn recovery ratio (BRR) separately calculated for NDRE (BRRNDRE; first row) and RVI_Ds (BRRRVI_Ds; second 

row). The columns separate the three post-fire date of observation: June 2019 (first column), 2020 (second column), 2021 (third 

column). The colour palette represents a recovery gradient from very low (dark red) to very high (green). 
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Figure 8.11. Distribution of the number of pixels (%) falling in every burn recovery ratio (BRR) category, separately calculated for: 

vegetation index, NDVI (BRRNDVI; first row), NBR (BRRNBR; second row) and RVI_As (BRRRVI_As; third row); date of observation, 

June 2019 (internal ring), June 2020 (medium ring), 2021 (external ring); LULC class, AuFor (first column), Euc (second column) 

and Pas/Shr (third column). The colour palette represents a recovery gradient from very low (dark red) to very high (light green). 

Figures 8.9 and 8.11 show that the BRRNBR points out lower degrees of recovery for all the LULC classes. The 

substantial difference is denoted in the percentage values of pixel distribution in the two lowest recovery classes 

(very low and low), for Euc (40.88% and 27.36%) and Pas/Shr (55.50% and 16.44%) classes on the first date after 

the fire (Jun 2019). For AuFor class, the pixels falling in the Very low category were only 4.15%, but the 23.25% 

resulted in low recovery on the same date. The other optical and SAR VIs did not classify pixels into the very low 

BRR category, while the number of pixels labelled as low recovery was less than 1%. However, as expected, in 

all the cases, a positive recovery trend was detected; indeed, a shift in the distribution of pixels from lower to 
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higher recovery categories when increasing years after the fire is observable. Concerning SAR-based BRRRVI_As, 

although it appears that most of the pixels fell within higher recovery levels already starting from the first year 

after the fire, the relative increase in the number of pixels within the same BRR category for each observation year 

is significantly lower than that observed in the optical data. Looking at the categories of high and very high  

recovery, respectively, the AuFor went from 10.99% (2019) to 59.26% (2021) and from 2% (2019)  to 13% (2021)   

for BRRNBR; from 38.13% (2019) to 43.06% (2021) and from 5.60% (2019) to 52.82% (2021) for BRRNDVI; while 

for BRRRVI_As  from 41.17% (2019) to 40.44% (2021) and from 26.16% (2019) to 39.91% (2021). 

8.3. Discussion 

8.3.1. Optical time-series 

This study reveals a strong relationship between vegetation recovery rate and fire severity category (Figure 8.2), 

as expected based on existing literature (Meng et al., 2018; Morresi et al., 2019; Ryu et al., 2018). In higher severity 

categories the maintenance of lower values of the profiles during most of the observation period is due to the 

double effect of the loss of photosynthetic vegetation and the presence of charcoal and ash (José M. C. Pereira et 

al., 1999). Each LULC class showed a specific temporal pattern. Typically, tree species' predisposition to fire 

resistance and/or adaptation affects the recovery rate and patterns (Catry et al., 2012; Filipe X Catry, Pausas, et 

al., 2013; Chompuchan & Lin, 2017; Gouveia et al., 2010), especially for low and moderate fire severity. The 

seasonal stability of AuFor vegetation, characterizing the unburned vegetation, and the highest annual variability 

of Pas/Shr, with the relative differences detected by NIR- or SWIR-based VIs, comply with what was observed by 

Soares et al. (2022) concerning the phenology adaptation strategies of Portuguese cork oak ecosystems. 

Generally, a gradual spectral post-fire recovery is displayed in almost all cases at the end of the observing period, 

mainly when the species are characterized by a high regeneration capacity and vegetative growth (Semeraro et al., 

2019). In the final monitoring year, the optical profiles no longer present dynamic patterns and differences between 

the various severity categories. Similar behaviour of recovery patterns of the photosynthetic activity and the 

ecosystem's physiological cycles after a few years from the fire event was reported in other studies (Chompuchan 

& Lin, 2017) using optical profiles based on NIR and SWIR bands. As expected, the lower and moderate severity 

categories faster achieved advanced recovery stages in AuFor and Pas/Shr, near or equal to the initial unburned 

VIs values. This is supposed to be due to vegetation generally remaining totally or partially unburned, contributing 

positively to the optical reflectance. Meng et al. (2018) observed that a low level of fire-inducted damage does not 

induce such a significant reconstruction action by tree species to be detected by the VIs. This statement could 

justify the Euc low severity profile behaviour, characterized by a parallel pattern to the unburned profile; however, 

further and longer-time investigations are needed to explain these aspects. 

Additionally, Catry et al. (2013) demonstrated in their study that although Eucalyptus spp. has a general fire-

resistant behaviour, it presents higher fire-susceptivity when placed in artificial plantations. It should be considered 

the result reported by Hausler et al. (2018), where it was observed that four years after the fire event, many 

eucalyptus surfaces have not yet fully recovered the levels of evapotranspiration, thus suggesting that it may take 

longer for a full recovery. These results highlight the higher efficiency of native species in restoring the ecological 

equilibrium. These observations are corroborated by the spatial distribution of recovery rate, represented by the 

BRR. 



143 
 

Regarding the interpretation of forest LULC classes profiles, a specific influence of the underlying vegetation 

should be considered (Meng et al., 2018). Where plant structural layers are vertically superimposed, gaps between 

the dominant foliage that leave the underlying vegetation uncovered make it very difficult to distinguish the unique 

spectral signatures of each vegetation layer by optical sensors. (Lacouture et al., 2020). This is commonly 

observable in moderately burnt areas, where the gaps in the foliage caused by the fire expose the underlying 

vegetation that has regrowth in the meantime (Meng et al., 2018; A Polychronaki et al., 2014). This behaviour can 

be ascribed to the ability of optical sensors to detect only the external reflective surface of objects and to the 

saturation of the optical VIs at relatively low levels of LAI, with an increased rate that could be induced by the 

rapid colonization of herbaceous and shrubby vegetation. (Frazier et al., 2015; Zhao et al., 2016). 

The gradual declension of the VIs profiles perceptible in the unburned forest classes (AuFor and Euc), opposite to 

the increasing trend associated with a frequent and growing fire disturbance regime, was already observed and 

described in other studies (Goetz et al., 2005; Ryu et al., 2018; Semeraro et al., 2019). The stasis in the 

physiological trend may be due to a combination of different factors. The reaching of the point of maximum 

vegetation increase in which the levels of competition between plants are lowered, and the rainfall decrease, 

lengthening the drought period (Figure 5).  

Although annual optical fluctuations seem more influenced by season-specific phenological dynamics than by 

rainfall's direct effect, it should be considered that plant phenology is closely related to the climatic variables, and 

this is reflected in all-optical VIs (Fernández-García et al., 2018; Morresi et al., 2019; Poon & Kinoshita, 2018; 

Ryu et al., 2018; Song & Woodcock, 2003). The correlation indices displayed in the heatmaps (Fig 8.6) show that 

precipitation positively impacts physiological activity, especially for Pas/Shr and Euc vegetation. Significant drops 

in optical VIs occurred in these two LULCs classes between the end of June and August, corresponding to a sharp 

decrease in total rainfall during these months, highlighting that some vegetation types may be more sensitive to a 

meteorological parameter than another. The lower correlation with rainfall regimes of AuFor describes the low 

susceptibility to water stress that characterized Mediterranean corks, corroborating what was found by the recent 

study of Soares et al. (2022) and what was observed by Vidal-Macua (2017). The former study observed a high 

sensitivity of herbaceous species and shrubs belongings to the cork oak ecosystems to high temperatures 

(negatively) and precipitations (positively), supporting our findings (Figure 8.6). 

Concerning the temperatures, the greater susceptibility to high summer temperatures is confirmed, concomitant 

with a phase of vegetative stasis.  

Focusing on the observation, the NIR- and RedEdge-based VIs showed faster recovery trends than SWIR-based 

VIs. This confirms what other scholars (Frazier et al., 2015; Morresi et al., 2019; Ryu et al., 2018; M. Tanase et 

al., 2011; Q. Wang et al., 2005; Zhao et al., 2016) stated concerning, on the one hand, the greater sensitivity of the 

combination of the Red and NIR bands to photosynthetically active vegetation and the LAI, induced by the rapid 

regrowth of vegetation canopy; on the other hand, the complementary SWIR-based VIs sensitivity the immediate 

damage caused by the fire on the forest cover and to the gradual development of the canopy cover, which might 

take even a few years longer (1-4) than the NIR-based ones, as observed in other studies. 

8.3.2. SAR time-series 

The comparison of the different profiles shows how the interactions of the SAR signal, both individual polarized 

backscatter (Figure 8.4) and dual-polarimetric VIs (Figure 8.3), are not so easy to interpret as in the case of optical 

reflectance. Generally, our results show that the cross-polarized backscatter and dual-polarized index (RVI and 
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DPSVI) values of the burned areas initiate an incremental trend phase, representing the beginning of the vegetation 

recovery phase, starting from the first year after the fire event in a way that is directly proportional to the fire 

severity category and as a function of the type of vegetation (LULC class). This was after an initial decrease 

immediately after the fire event, which was also proportional to the fire severity. However, the recovery dynamics 

are different between the type of VI used, and the characterization of specific phenological patterns is complex. 

This was expected given the greater sensitivity of the SAR signal to local environmental parameters. In particular, 

surface and soil moisture can heavily influence SAR recovery backscatter (Hachani et al., 2019; Kasischke et al., 

2011; Tanase et al., 2011; Zhou et al., 2019), while less influential seems to be the biochemical composition of the 

exposed soil (Minchella et al., 2009). Nonetheless, geomorphology and topography can directly or indirectly affect 

hydrological processes and, consequentially, vegetation recovery dynamics (José Vidal-Macua et al., 2017). The 

drainage or retention capacity of the rock basement or the slope's orientation towards the sun's direct radiation 

determines local ground water balance and evapotranspiration (Christopoulou et al., 2019; Röder et al., 2008; 

Viana-Soto et al., 2017). 

The indirect effects that fires of this size and severity can cause surrounding unburned vegetation should also be 

considered. The micro-climatic conditions and the hydrological balance are altered by the destruction of the 

proximal coverings, whose mitigating and balancing properties are well known (shading, wind repair, humidity 

balance, rainfall interception, etc.). The artificial ecosystems (such as eucalyptus plantations) used for biomass 

production are more susceptible to these alterations, both for their ecological vulnerability and higher nutritional 

needs (Catry et al., 2015; Häusler et al., 2018). This could partly explain the decline in the unburned SAR curve 

of the Euc. Differentially, native species in a natural or semi-natural environment are predisposed to adaptive 

strategies to environmental adversities (Catry, Pausas, et al., 2013; Soares et al., 2022). 

The results of the interactions between SAR polarization and surface dynamics can have different meanings 

depending on the observation biome (Chen et al., 2018; Tanase et al., 2011). For this reason, coupling climate 

variables profiles (Figure 8.5) to spectral SAR response is helpful. The interception of rain by vegetation, 

especially by the forest cover, plays a fundamental role in the water balance of the ecosystem, resulting in a 

difference between the total rainfall recorded and that reached the ground, which would greatly influence the SAR 

signal (Ban et al., 2020; Frison et al., 2018). Although few intra-seasonal dynamic fluctuations were found in the 

SAR profiles, many of them (e.g., all the dual-polarization combinations: RVI, DPSVI, and RFDI ascending for 

AuFor and Pas/Shr; RVI, DPSVI and RFDI descending for AuFor class) showed evident inter-seasonal patterns 

driven by humidity conditions, in particular by rain (Figure 8.5) when compared to the relative plot (Figure 8.4). 

Noticeable are the effects of the exceptional amount of rain that fell in March 2018 and of that rainfall that fell in 

November-December 2017 on the response of the SAR signal, observable in all combinations. The peak of the 

SAR curve relative to June 2017, noticeable in most of the profiles, is difficult to interpret; this behaviour, among 

other things, is not found in the patterns following the fire event both for the unburned vegetation and that affected 

by low/moderate severities. A notable detail is a minimum value that is observed in many SAR profiles (VH, 

DPSVI, RFDI, RVI_As/Ds for AuFor and Euc; VV_Ds for all the LULCs; VV_As for AuFor and Euc) and almost 

all related severity categories, and all the relative categories of severity in the months of January-February 2020. 

Observing the plots of the climatic variables (Figure 8.5), this can be correlated to an exceptional decrease in 

rainfall (3.11 mm in February 2020) that occurred in conjunction with exceptionally mild temperature levels (14.35 

°C in February 2020: +1.75 ° C compared to February 2019; + 7.85 ° C compared to February 2018). However, 
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the co-polarised signal seems to have been perceptibly driven by the rainfall in all the possible path-severity-LULC 

combinations, and more than the other profiles, with parallelism between curve fluctuations and a general 

increasing trend after the fire event. Ban et al. (2020) explained that the rain events after the fire and intercept bare 

soil, encountering little or no interception by the destroyed vegetation, influence the co-polarized signal inducing 

its increase. Furthermore, the same authors observed that the VV backscatter values were generally higher than 

VH, an aspect also found in the profiles of the current study. Minchella et al. (2009) also observed increasing VV 

backscatter using C-band in Mediterranean forest ecosystems affected by the fire. The VV dynamic patterns of 

burned vegetation were driven by soil moisture fluctuations during the monitored five years after the fire event, 

especially at high fire severity. Periods at a lower soil dielectric constant, such as summer, resulted in lower VV 

backscatter values. Indeed, rapid re-growth of forest cover increases the similarity to herbaceous vegetation 

patterns (Minchella et al., 2009). These observations could explain the presence of high amplitudes (high 

fluctuations) during the different seasons of VV profiles, in some cases proportional to the fire severity category. 

However, given the relatively short observation period (three years), the attenuation effects given by the increasing 

vegetation recovery were not observed. 

8.3.3. SAR polarization dependency 

The abovementioned aspects concern the more general topic of differences between cross- and co-polarization in 

interacting with the surfaces covered by forest. Immediately after a severe fire event and for the first post-fire year, 

oppositely to the perceptible increase already described for VV backscatter, a noticeable decrease in the VH 

backscatter is observable (Figure 8.4). This opposite behaviour of the two polarizations accords with other studies 

(De Luca, Silva, & Modica, 2021a; Imperatore et al., 2017; Mari et al., 2017). The burn of stems and large branches 

reduces the volumetric backscattering contribution of these structural vegetation components (i.e., scatterers), to 

which the cross-polarized signal is sensitive. Consequently, as microwave penetration through the damaged 

canopy increases, the effect of surface and double bounce dispersion on total backscatter is more prominent, 

induced by the greater proportion of exposed soil moisture components and the underlying soil (to which the co-

polarized signal is sensitive) (Chen et al., 2018; Martins et al., 2016; Tanase et al., 2011; Tanase, Santoro, De La 

Riva, et al., 2010). In unburned forested areas, the high reflection pattern of  VV co-polarized signal is instead 

associated with backscattering returned from vertical stand largest trees and trunks (Martins et al., 2016).  

As expected, except for the VV_Ds profile for Euc class, no ability to distinguish between different severity 

categories was observed in all co-polarized combinations. When the severity of the fire that affected the forest 

vegetation was moderate, the decrease in VH is more gradual as the trees most affected are those of the intermediate 

vertical layer, which contribute less to the total AGB than the specimens of the dominant layer. Regarding the VH 

profile for the Pas/Shr class, it is more difficult to interpret its patterns, especially for the higher severity categories. 

Due to their biases, a clear conclusion cannot be obtained when only using single-polarization temporal 

backscattering, despite the higher overcome of cross-polarized already observed in other studies (Martins et al., 

2016; Tanase et al., 2011). Agree with Chen et al. (2018). Instead, dual-polarized VIs improved the delineation of 

the proportionality between fire severity and time profiles, demonstrating their attitude to decrease the cross- and 

co-polarized biases., 

8.3.4. SAR orbit path dependency 
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The separate analysis of the orbit paths made it possible to delineate the divergences arising from the sensor 

geometry on the temporal profiles. This was due to the look direction of the SAR, which causes the signal to 

interact geometrically differently with the local structural orientation of the regrowing forest (M. Tanase et al., 

2011). A fundamental role is played by the effects of the terrain, which determines the local angle of incidence of 

the microwave beam (Gimeno & San-Miguel-Ayanz, 2004; Kurum, 2015; Tanase, Santoro, De La Riva, et al., 

2010). The presence of reliefs can cause radar shadow effects, for which some areas facing the side opposite the 

radar beam are not detected by one of the two paths (Richards, 2009a), as well as directly influencing the local soil 

water balance (Christopoulou et al., 2019; Röder et al., 2008; Viana-Soto et al., 2017). This confirms the need to 

use both orbit paths to construct complete information about what is observed. Some authors have highlighted the 

role of both orbits in increasing the detection capabilities of burned areas (De Luca, Silva, & Modica, 2021a; 

Donezar et al., 2019) or the LULC classification (Sayedain et al., 2020). A further observation is that the 

differences between orbit paths are noticeable when the single polarizations are compared. Integrating these two 

in the dual-polarized indexes seems to attenuate the look direction effects. 

8.3.5. Spatial distribution of vegetation recovery rate, the BRR 

The spatial distribution of the vegetation recovery categories, represented by the optical BRR (Figures 8.9-8.11), 

complies with what emerges from the analysis of the temporal profiles. The BRR results (Figure 8.11) 

demonstrated that the surface occupied by native forest reaching the highest recovery level was more than Euc 

vegetation at the end of the observed period (2021). Even observing the map of Figure 8.9, it is clear that the west-

east development track, spatially and temporally traced by the vegetation regrowth, follows the disposition of the 

areas occupied by AuFor vegetation when compared to the LULC map. When optical VIs based on NIR (BRRNDVI) 

and RedEdge (BRRNDRE, in supplementary material) are used, most pixels fell into the higher recovery categories 

since the first year after the fire event than when using the index NBR. Furthermore, the SWIR-based index 

includes most of the pixels within the lowest recovery classes (Very low and Low) in the first two post-fire years. 

The other optical indices did not detect pixels in the very low category, while less than 1% of the pixels fell in the 

low category.  The season of occurrence of the fire also influences the characteristics with which it affects the 

vegetable fuel. A higher humidity of the fuel could increase the variability of the fire and, equivalently, of the VIs 

responses (Lacouture et al., 2020), especially of SWIR-based ones. Although, in the present study, having the fire 

occurred during the dry season (August 2018), it was characterized by homogeneous severity and intensity over 

large and contiguous areas (De Luca, Silva, Oom, et al., 2021).  

The relative increase of BRRRVI recovery in the subsequent year was noticeable compared to the respective optical 

indices. The BRR relative to the RVI index showed that most of the pixels already fell into higher recovery 

categories in the first year after the fire. However, the spatial distributional track of the recovery adheres to that of 

optical BRRs. Anyway, if the relative change over time is analyzed and compared to the BRRNDVI, a more gradual 

recovery is detectable for the BRRRVI_As, as already found in the temporal profile. However, the more complex 

interpretation of the SAR makes it more challenging to characterise specific spatial patterns. Factors such as the 

different influence exerted by the remaining charcoal on the fire-affected surfaces, the high sensitivity to humidity, 

and the wavelength used suggest that a further examination is needed concerning the efficiency of using the SAR-

based BRR. 

8.3.6.  SAR wavelength dependency 
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The behaviour of SAR is obviously determined by the wavelength used. The use of dual-polarized allowed to 

capture the different recovery dynamics between the severity category and the vegetation type. The penetration 

capacity of SAR allows a more gradual and realistic regrowth of the vegetation structure, unlike the earlier 

saturation that occurred in the optical profiles, which implies a limitation for long-term monitoring, as pointed out 

by other scholars. Tanase et al. (2011) observed that NDVI reached unburned reference values 30 years earlier 

than cross-polarized backscatter in post-fire Mediterranean forest regrowth. For the same purpose, Polychronaki 

et al. (2014) revealed that while the sensitivity of the NDVI to short vegetation recovery led to earlier saturation, 

C-band VV backscatter differentiated regrowth stages in dense pine forests for the first 18 years after the event. In 

Zhou et al. (2019), complete recovery of tundra vegetation was detected in three years, two years less than those 

estimated from C-band SAR data. In the present study, the SAR profiles did not reach the total recovery values 

dictated by the unburned profiles, highlighting the usefulness of this supplementary information for ambient 

monitoring. After three years, the regenerated vegetation could not reach pre-fire density levels. In any case, an 

easier achievement of unburned values resulted when C-band interacted with native complex vegetation. A high 

degree of recovery is also observed in Pas/Shr profiles. This accords with what other studies noted, such as the 

abovementioned Zhou et al. (2019) in which, monitoring short vegetation post-fire dynamics in a tundra 

environment, the C-band reached a saturation level in the first five years after the fire, failing after a certain 

threshold to detect the occurring changes. Also, Tanase et al. (2011) demonstrated that although a strong sensitivity 

to the different recovery stages is present when C-band was used in the first decade after the event, the highest 

discrimination was observed at L-band. Quegan et al. (2000) determined that the backscatter coefficient in C-band 

became stable for areas occupied by forest vegetation with more than 30-40 tons·ha-1 of biomass. For the same 

reason, any green surface covers not consumed by fire or even partially damaged might contribute intrusively to 

the optical reflectance values, making it challenging to discriminate patterns related to the underlying vegetation 

only by this type of sensor (Lacouture et al., 2020). SAR short bands are also more susceptible to signal 

decorrelation factors, such as noise caused by tree crowns that move with the wind (Brisco et al., 2017). 

This high sensitivity of the C-band to vegetation smaller scattering elements might allow greater efficacy in 

detecting the effects of fire on non-complex structures and the regrowth phases of short vegetation (herbaceous, 

shrubs, etc.) (Martins et al., 2016; Minchella et al., 2009; Tanase et al., 2011; Zhou et al., 2019) or, parallelly, 

when forest vegetation structure which had been affected by lower fire severity was not sufficiently damaged. In 

the latter case, insignificant changes could be observed in longer wavelengths (L and P band) (Menges et al., 2010). 

For example, Martins et al. (2016) criticized the L-band based indices (including dual-polarized indices) because 

they failed to differentiate between fire-related tropical forest degradation classes. However, this wavelength has 

been found to be sensitive to forest structures. Moreover, it was demonstrated that, during the first period after the 

fire event, the lower penetration capacity of the C-band allows it to be less affected by soil influence than the L-

band when vegetation structure had been semi-destroyed by the fire (Zhou et al., 2019). The remnant of the burned 

trees on site might further influence the cross-polarized backscatter response in C-band. Tanase et al. (2011) 

observed an increase in the values. A lower backscatter was instead observed where artificial post-fire managing 

processes were carried out, removing the burned standing trees after a fire. This could lead to confusion with forest 

regrowth the first year after the fire event. 

8.3.7. Additional observation about recovery rates and optical profiles 
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In Mediterranean ecosystems, the recovery process is very complex, as it can vary based on environmental (soil, 

microclimate, etc.) and landscape (geomorphology, aspect, etc.) variables, vegetation (type and quantity of 

vegetation present before and after the fire), as well as specific factors of the fire event (e.g., severity, occurrence, 

etc.) (Christopoulou et al., 2019; Emilio Chuvieco, 2009; De Luis et al., 2006; Mitchell et al., 2009; Montès et al., 

2004). Generally, the first stage of post-fire dynamic auto-succession is usually characterized by prompt and 

massive colonization of pioneer Mediterranean annual grasses and perennial woody shrubs (Fabaceae, Cistaceae, 

Lamiaceae, Pteridofite, etc.) or pioneer trees (Capitanio & Carcaillet, 2008; De Luis et al., 2006; Mitchell et al., 

2009; Montès et al., 2004). Most of the taxa recognizable in a post-fire environment play a fundamental ecological 

role in the general recovery of degraded or abandoned areas (e.g., ex agriculture) in Mediterranean territories 

(Xofis et al., 2022). The tracing of the spectral profiles related to the rapid post-fire recovery is thus generally 

highly related to the sensitivity of the VIs towards the dynamics of herbaceous vegetation rather than the regrowth 

of the tree canopy (Morresi et al., 2019). This is typical also in other environments biomes: in the sub-tropical 

climate, with perennial understory plants resprouting from belowground buds immediately after the fire and 

reaching pre-fire condition after a few months (Lacouture et al., 2020); Zhou et al., (2019), analyzing the first 3 

years of post-fire recovery of a Tundra ecosystem, observed that graminoid herbaceous vegetation actuate the most 

significant colonization (35-50% cover), followed by deciduous and ericaceous shrubs (33-42% cover). This leads 

to an increase in spectral optical profile values and, thus, according to some authors (Frazier et al., 2015; Morresi 

et al., 2019), biased estimates of the real trend of tree canopies' spectral recovery.  

The second stage, generally observable in the medium and long term, in the areas previously occupied by the forest 

or surrounded by it, involves filling the gaps by the forest seedlings (Frazier et al., 2015; Montès et al., 2004). The 

renewal that occurs in the medium and long term inside the gaps left by fires causes an increase in reflectance in 

specific wavelengths and in any case, a general rise in optical brightness. The gaps caused by parts of dead and/or 

destroyed foliage expose the underlying layers, which are rapidly colonized by flourishing herbaceous pioneer 

vegetation already from the first post-fire vegetative seasons. This translates into an increase in reflectance in the 

infrared wavelengths at the optical spectral level, especially in the Red-Edge and NIR (Meng et al., 2015, 2018). 

Consequently, the spectral trajectories of forest recovery do not necessarily match directly to changes in the 

succession of one of the two forest layers (Frazier et al., 2015). This step can be anticipated where the woody 

species are characterized by a high capacity for asexual (es. Eucalyptus, Quercus, etc.) or sexual (Mediterranean 

pines) regeneration (Capitanio & Carcaillet, 2008; Filipe X Catry, Moreira, et al., 2013; Montès et al., 2004). In 

the case of tree species, the recovery rate and patterns are related to their adaptations to fire (Filipe X Catry, Pausas, 

et al., 2013; Chompuchan & Lin, 2017).  

Moreover, the thermo-Mediterranean cork oak has also adopted mechanical defense related to the bark, especially 

the cork oak, making it difficult to damage the internal tissues from fires of moderate severity (Filipe X Catry et 

al., 2012; Filipe X Catry, Pausas, et al., 2013). The simultaneous initial growth of both short and woody vegetation 

causes increases in optical reflectance and SAR backscatter. The competition phase that follows determines the 

closure of the foliage of the new individuals, causing an impenetrable barrier between the optical sensor and the 

undercover vegetation (Meng et al., 2018). The latter, however, continues to develop below the canopy, as well as 

the shade-tolerant tree seedlings and the height and DBH of dominant tree seedlings (Capitanio & Carcaillet, 2008; 

Frazier et al., 2015). In this case, the SAR has higher detection potential thanks to its ability to penetrate inside the 

canopy coverage as a function of the wavelength. Some authors (Meng et al., 2018) assume it is unrealistic to 
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consider that the rapid recovery of optical spectral profiles is caused by the contributions of all the different forest 

vertical layers (stratum). Optical spectral vegetation indices, in fact, cannot separate the vegetation recovery of the 

upper layers from that of the lower layers. The same authors (Meng et al., 2018) advise associating well the 

relationship between recovery rate (and burn severity gradient) with the time passed since the event, that is to 

distinguish the various temporal passages in which the different types of spectral signatures originating from the 

succession of different layers of regrowing vegetation can overlap and lead to errors, especially for the higher 

categories of burn severity. For example, in the short term, the spectral patterns of the still destroyed tree's foliage 

can be influenced by the regrowth of the underlayer vegetation, while in the long term, the regrown tree crowns 

cover the underlying layers of grass and shrubs. To overcome these limitations, Meng et al. (2018) used the 

combination of structural data from active sensors (LiDAR) so that the real structural nature of the regrown 

vegetation could be better isolated from the purely spectral response. 

This is true only when the post-fire recovery process is considered as the pre-fire structural and species-specific 

conditions return. This approach contrasts with the natural dynamics, sometimes causal or typical, determined by 

numerous factors. Furthermore, plants and ecosystems could change their environment in the short or long term 

during the succession stages, achieving new levels of equilibrium that are more convenient, although different 

from the initial states (De Luis et al., 2006; Montès et al., 2004).  

8.3.8. Additional observation about site topography and geomorphology influence on recovery dynamics 

Local water availability is determined by the topographical and geomorphological factors of the site. Aspect, for 

example, is related to solar radiation and, thus, moisture accumulation (and evapotranspiration), besides 

photosynthetic activity. Generally, warmer sides receiving higher solar radiation are slightly less favorable for the 

affirmation of humidity-demanding vegetation due to the accelerated transpiration, leading to more severe drought 

stress, especially in the earliest stage of recovery (Christopoulou et al., 2019; José Vidal-Macua et al., 2017; Röder 

et al., 2008; Viana-Soto et al., 2017). Also, considering the variable photosensitivity of plants, how these factors 

act both indirectly and directly on the selectivity of the species during post-fire recovery is easily deductible (José 

Vidal-Macua et al., 2017; Röder et al., 2008). 

Lithological features also affect hydrological factors such as absorption, retention, and water drainage. Rock 

basement nature plays a fundamental role in either soil production (quantitatively and qualitatively) and loss 

(erosion), as well as in planting succession and competition by their root penetration capability (fundamental for 

stability and nutrients accessing) (Christopoulou et al., 2019; José Vidal-Macua et al., 2017). On the other hand, 

fire directly affects the rock basement and soil structure by removing roots and destroying the litter layer. This 

causes changes in the chemical-physical properties of the substrate and induces indirect and direct effects e.g., 

reduced water interception, storage, and infiltration capacity and an increase in overland erosive flow erosion 

(Diakakis et al., 2017). 

8.3.9. Final considerations 

Considering the findings of the present study, as well as the consulted literature, we found that the optical S2 and 

SAR S1 VIs appeared to have a higher aptitude for monitoring vegetation regrowth, which can be used effectively 

as complementary information to assess and monitor the short-term response of ecosystems to fire. Some 

limitations persist, such as the predisposition of optical data to reach saturation, partially compensated by the weak 

SAR C-band penetration capacity through the forest canopy. Further literature examination and considerations 
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concerning the SAR wavelength dependency are reported in the supplementary material. Integrating multi-

frequency SAR (L-band and/or P-band), VHR data, or LiDAR information can optimize the capture of the spectral 

and structural properties of the regrowth vegetation and quantify the understory seedling recovery rate more 

precisely (Meng et al., 2018). 

Besides those already argued, many factors influence the SAR results or help their interpretation. The behaviour 

of the SAR depends very much on the environmental conditions, and further investigations will have to be carried 

out. In this study, two climatic variables are taken into consideration. However, we would like to suggest other 

parameters that should be investigated and compared, including pedological and lithological characteristics, soil 

moisture, topography, and territory geomorphology. Besides the heterogeneity of  LULCs analyzed (especially 

AuFor and Pas/Shr), the topographical variability of the Mediterranean ecosystem strongly influences the 

microwave signal (Tanase et al., 2011; Tanase, Santoro, De La Riva, et al., 2010; Tanase, Santoro, Wegmüller, et 

al., 2010), as highlighted by the differences resulted from the dependent analysis of the orbital path. The use of 

averaged ROIs value for both the optical and SAR dataset, added to the speckle noise filter applied to SAR, 

attenuated the variability of each curve (Frazier et al., 2015; Martins et al., 2016; Minchella et al., 2009; Tanase et 

al., 2011). Several studies investigated how topographical and geomorphological variables positively or negatively 

influence local vegetation recovery dynamics and population post-fire biodiversity and how they are affected in 

turn (Christopoulou et al., 2019; Diakakis et al., 2017; José Vidal-Macua et al., 2017; Röder et al., 2008; Viana-

Soto et al., 2017). Slope and aspect, for example, determine solar wave incidence radiation, which largely 

influences both water/moisture balance, evapotranspiration, and photosynthetic activity (Röder et al., 2008). On 

the other hand, slope and lithology affect erodibility, water drainage/accumulation, as well as root penetration 

capacity (Christopoulou et al., 2019). More considerations based on current literature are reported in the 

supplementary material. 

8.4. Conclusions 

 The results reported in this study show that Mediterranean ecosystems respond rapidly to disturbances, initiating 

effective restoration processes. However, earlier recovery of unburned values is attributable to a premature 

saturation affecting both NIR-based indices and SAR C-band wavelength. Regrowth trends are observable from 

the first months after the fire event reaching an apparent almost complete recovery occurring by the three years of 

analysis in optical and SAR VIs. The vegetation type influences the time and the magnitude of recovery temporal 

activity in terms of spectral response, with a noticeable difference between native and non-native forest vegetation. 

However, the proportionality between recovery pattern and fire severity categories was kept. The higher degree of 

recovery occurred for the autochthonous forest class (AuFor), followed by Pas/Shr, reflected the higher 

adaptability of these ecosystems to stress regimes and efficiency in restoring the ecological equilibrium, directly 

proportional to their more differentiated structure and biodiversity compared to the area occupied by eucalyptus 

plantations. These observations were corroborated by the BRR, representing the spatial distribution of recovery 

rate, whose outcomes demonstrated that the surface occupied by highly and very highly recovered AuFor 

vegetation was more than that occupied by Euc vegetation during the three years of observation; even more evident 

when optical indices were used (BRRNBR, BRRNDVI and BRRNDRE). In order to account for the natural phenological 

temporal effects, the BRR calculation was optimized using the RF machine learning regressor with which the 

hypothetical unburned conditions of the fire-affected area for each time of estimation of the index were predicted 
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and reconstructed. However, although optical BRR has been demonstrated to be effective, the SAR-based needs 

further studies for its interpretation. 

A high proportionality was found between the fire severity and the recovery profiles during the first two post-fire 

years, following an equally proportionated sharp decrease in optical and SAR values. Some exceptions persisted, 

such as for the SAR co-polarized (VV) profiles, due to their high moisture and exposed soil dependency. In fact, 

from the comparison and correlation of climate variables and temporal profiles, it has been clear that the 

precipitation events directly affected the C-band SAR profiles, especially in the categories of higher severity, 

where the interception of the vegetation cover guarantees the precipitation attenuation had been lacking. This 

denotes the menace of fire events toward the hydrological balance of the soil. 

Considering these aspects, the management of SAR images required greater attention due to the higher presence 

of outliers and speckle noise caused by the intrinsic nature of the data. Using long time-series, the biases are more 

evident; however, several pre-processing processes were used to optimize the workflow and mitigate these issues, 

such as the speckle filter and the time average. Optical-related biases were also finely addressed, such as 

eliminating the clouds through the new product provided by Sentinel Team (s2cloudless) and subsequent linear 

interpolation to reconstruct the fill gaps.  

Generally, this study demonstrated that the combined use of different sensors is essential to correctly delineate the 

dynamics that occur in Mediterranean fire-frequented habitats, compensating for the limitations of the single 

sensor, especially when a small temporal scale is needed. Moreover, the integration of free and open-source 

analysis software with equally free-available high temporal and spatial resolution data enables the accessibility by 

a wider audience involved in the forest risks monitoring framework.  

However, the dynamics of post-fire Mediterranean vegetation must be further examined in long-term monitoring 

protocols in this and other study areas to assess the complete response even to delayed effects. Moreover, additional 

indicators and sensors may be necessary to determine which combination of temporal patterns best reflects the real 

post-fire dynamics in the Mediterranean ecosystems and their chemical, physiological and structural features. 

Focusing on SAR data, medium-long term monitoring may require the integration of multifrequency techniques 

with longer wavelengths (L-, P-band), able to penetrate further into the regenerated canopy, thus enabling in better 

understanding of forest recovery processes. The imminent availability of new data types (e.g., ESA BIOMAASS 

mission, Le Toan et al., 2011) and the development of cloud platforms (e.g., multi-mission algorithm and analysis 

platform, MAAP, 2022) will optimize the performance and the already high inter-compatibility of these resources. 

Further investigation could also involve the machine learning regression models to predict temporal and spatial 

recovery patterns, basing the regression on the values of the recovery metrics calculated. In this regard, we believe 

our results will efficiently provide helpful information. 
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9. General conclusions and future perspectives 

In the Mediterranean Basin, although wildland fires are a natural element playing a key role in ecological processes 

and bringing benefits when severity and frequency are low, considering the intrinsic fire-adaptation of several 

habitats, human-induced changes in both climate and landscapes have been worsening fire regimes (increased 

severity, frequency, and distribution of wildland fires), making them socially, economically, and ecologically 

unmanageable. Accurate and tempestive information about the impacts of the fire on the environment, how its 

effects are distributed over time and space, and what is the response of the environment during the subsequent 

years after the event, are therefore of primary importance to predict and manage post-fire processes, in order to 

mitigate the degradation of forests and, landscapes, and the loss of ecosystem services.  

In the present Ph.D. thesis, these purposes have been fulfilled by proposing several case studies constituting a 

complete open-source workflow for post-fire assessment, based on remote sensing data and geo-informatic 

techniques. It involved: i) the knowledge of the pre-fire conditions of the study site; ii) the precise semi-automatic 

identification, mapping and quantification of burned areas and perimeters; iii) the estimation, quantification, and 

classification, as well as spectral analysis, of the damages induced on vegetation cover; iv) the use of multitemporal 

observations of spectral-physiological response of vegetation and post-fire recovery. In particular, the potential of 

the integrated use of SAR (Sentinel-1) and optical (Sentinel-2) free-available satellite data was explored. Each 

single case study represents an innovative/optimized approach which contributed to cover some gaps in the present 

state of the art and that could be applied operationally in a general post-fire context, namely in Mediterranean 

forest and woodland ecosystems. The research was conducted in several Mediterranean areas, with similar 

environmental characteristics, located at around the 38° parallel of two different Countries (Portugal and Italy), to 

test the operability of the methodological workflow and its various components. In our opinion, the approaches 

proposed in this Ph.D. thesis could be extended to other European ecosystems. Future studies might test and 

validate the provided methodologies on different and more extended study areas to assess their versatility. 

Within the overall objective of the research activity, several milestones have been fulfilled: 

✓ In-depth practical investigation of the interaction between multispectral and SAR information with different 

land cover types, namely burned and unburned vegetation. 

✓ Development of optimized approaches for the pre-processing of raw SAR data, to reduce the geometric and 

radiometric effects dependent on the local conditions of the surface (e.g., topography, roughness, humidity, 

local angle of incidence) that typically affect the backscatter signal. 

✓ Multitemporal analysis for the characterization of spectral proprieties of post-fire recovery vegetation, by 

highlighting the difference between optical and SAR observations. Moreover, differentiating the analysis by 

type of vegetation and fire severity. 

✓ Employment of advanced algorithms to find the most suitable hyperparameters values machine learning 

models, to maximize their performance. 

✓ Finding that, although optical information alone achieves sufficient results, optical and SAR imagery synergy 

can improve the accuracy in all cases. 

Emphasis was placed on the implementation of open-source image processing algorithms, Python-based libraries 

and machine learning models to develop semi-automatic procedures for extracting, processing, modelling and 

interpreting the information, and obtain quantitative-qualitative maps of the estimated aspects. estimated. A 

considerable milestone has been achieved with the use of deep learning (Chapter 6): these advanced artificial 
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intelligence (AI) algorithms have not been investigated in the literature as much as the classic machine learning 

models (e.g., random forest, support vector machine) for the study of fire events. Investing in deep learning-based 

workflows development might return minimise the presence of commission and omission errors in outcomes. 

The results obtained demonstrate the efficiency of the interoperability of the various platforms, software, and 

libraries. They enable both to build an almost complete processing and analysis workflow, with a high degree of 

interchangeability and flexibility in the choice of components, and guarantee a high degree of shareability and full 

repeatability. Further developments could involve the use of open-source cloud computing platforms, where a 

large database of satellite imagery and computing power is accessible to all users (scientists, researchers, 

developers and amateurs). 

The availability of innovative programming technologies with user-friendly interfaces enabled the exploitation of 

sophisticated calculation operations for information processing and data mining to a wide audience of researchers 

and scientists, bringing the full support of AI in various applications to be customary. However, paradoxically, the 

biggest obstacle remains the scarcity of sample field data which are necessary for the calibration of remote sensing 

methods: e.g., widely distributed and georeferenced measurements about severity assessment, dendrometric-

structural forest values, land cover, habitats classification. Our hope is that greater effort (shared by both the 

researchers themselves and the administrators) will be spent in order to homogenize and make available the data 

already present, and to organize (finance) relevant campaigns aimed at covering the entire European territory. An 

effort on par with what has been done for the distribution of the same processing algorithms. So as, in an 

autonomous and efficient way, remote sensing researchers can develop and validate more and more models, 

inevitably leading to greater reliability of the same. Doing so would increase the autonomy of remote sensing 

scientists, allowing the validation of a greater number of models which, inevitably, would transform into a greater 

number of more effective and versatile results. 
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