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Abstract

Although wildfires play a crucial role in ecological processes in the Mediterranean Basin, they often represent one
of the primary disturbances for forests amttier ecosystems, entailing landscape and habitat degradation and
economic damages. They alsotatenine the consumption of natural carbon reserves and the emission of
greenhouse gasses (GHG) correlated with climate change. Accurate information relating to the impact of fire on
the forest environment and how its effects are distributed over time pawe,sboth from a qualitative and
guantitative point of view, are a key factor for the subsequent implementation of medium atetoneyritorial

planning, in order to predict and manage irreversible processes of degradation of forests and landbiape. In
context, remote sensing provides reliable tools and techniques for monitoring and quantifying the impact of burned
areas with reference to satellite platforms. In giwetmonitoring, most studies have been based on optical satellite
data acquired sing passive multispectral sensorthat areclosely correlated with the physiological and
biochemical state of the vegetation. For these reasons, vegetation has its unique spectral signature (depending on
the species and environmental conditions), andoliservation enables its characterization and subsequent
monitoring. Anomalies at the spectral level, indeed, conceal anomalies at the plant level. Although their
effectivenesdor this purposehas beemwidely proven optical systems present some limitasp mainlydue to

their sensitivity to some environmental conditions, such as sunlight and cloud cover, which reduces the frequency
of observation at the visible/infrared wavelength bands or the spectral confusion of burned areas with unburned
low albedo arfaces (i.e., dark soils, water surfaces, shadow areas), or the premature signal saturation due to the
high sensibility to increasing values of leaf area index (LAI). Furthermore, this type of seasoot capture

many quantitativeaspects since theseawvelengths do not interact directly with the structure of the objects.
Therefore, methods based on data acquired by délmebendent and structudependent sensors at high spatial

and temporal resolutions are needed. Among them, Synthetic Aperture (8&dR are active £nsorsthat
generatesheir microwave impulses (2-400 cm) and transmits them from its antenna to a target. Calculating the
amount of the signal fraction reflected back rto the
signature. The penetration capacity of the impulse in the matter is directly proportional to the wavelength. For this
reason, the SAR waves can pass through atmospheric particulate or interact with the vegetation cover structure.
Therefore, to charactee and quantify the effects of a disturbance on vegetation, radar technology exploits the
variations in backscatter caused by the modification
content. However, its processing and interpretationpdexity causes this sensor not to be widely used compared

to optical ones.

Against that background, in this Ph.D. thesis, a complete andampess workflow aimed at the investigation and
mapping of the fire effects on Mediterranean ecosystems in thetshar(prefire condition assessment; burned

area detection; podire severity estimation and mapping) and the monitoring of the response of the environment
during the first years after the event (pbist recovery monitoring), was developed. To achigwng, freeavailable

optical (Sentinel) and SAR (Sentinel) high spatial and temporal data were integrated, assessing the strengths
and limitations of each of them and the advantages that are provided by the combination of both information. The
first step concerned the construction of an accurate land use/land cover (LULC) map in a heterogeneous
Mediterranean forest (located in Portugal) area to have an overview of the qualitative and quantitative state of
vegetation present before the fire event. Tie #nd, we applied an exhaustive grid search analysis to set the

optimal hyperparameters of a machine learning model (random forest, RF) and the inclusion of different variables
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(i.e., vegetation indices tirmgeries, optical biophysical variables, anttrferometricSAR - INSAR - coherence).

This integration allowed reaching an overall accuracgdére) of0.903 observing an improvement of 2.53%
when SAR data were integrated into optical information

The second step dealt with the accurate detection of burned areaelsnitihtion of their perimetersTwo
approaches were proposedudil the objective: the first concernedly the use of SAR data (backscatter, dual

and single polarized SAR indicdsxtures) for an unsupervised detection (usingkthreean algorithm, set using

a silhouette score analysis) of burned areas in two different study sites (located in Portugal and Italy respectively),
with a reached core of 0.803 (Portuguese site) anf58. (Italian site); the second approach proposed a
multitemporal composite process, by combining both Serfirsald Sentinel images, and a subsequent object
based geographic analysis (GEOBIA) to map burned areas on regional/national scales occogédedeniire

fire season (2017) in Portugal, achievingdore values of 0.914 (when only optical data is used) and 0.956
(combining optical and SAR information).

In the third step of the main workflow, the shtetm fire effects, in the form of fire gerity, and their spatial
distribution are estimated. Three approaches were presented, two of which are similar and united by the use of the
composite burnt index (CBI) protocol to determine the severity classies field and to define thieaining data

of the model, which, in one case (study site located in Portugual), was constituted by the RF algorithm, while in
the other case (study site located in Italy) an artificial neural network was built. The RF model reacisedran F

of 0.838 when boththe datasets were combined (S1 + S2), compared with the vatigsved byusing SAR

(0.513 and optical ©.805. The results obtained using the artificial neural networkddre > 0.95) gave proof of

the great potential in the use of these advanced deepniganodelsA third approachinvolved aspectral mixture
analysis (SMA) of optical Sentin@ imageryto spectrally characterize ampgiantify the proportion of the three
fraction components indicative of the main physical effects immediately after a fweeg¢thar, scorched
vegetation and green vegetation).

For thefirst years after a fire event, the investigation of temporal and spatial dynamics of tfiegp@stovery of
different Mediterranean vegetation types characterized the fourth step. BRtB&#hinell and optical Sentinel

2 time series were analyzed separately according to the fire severity classes (obtained in the previous step),
highlighting the complementary and essentiality of both information. Moreover, a burn recovery ratio (BRR),
optimized through machine learning regressors for predictingifgeonditions, was proposed to estimate and
map the spatial distribution of the degree of vegetation recovery

The development of these approaches and managing this amount oéglsted advanced techniques and
solutions of geednformatics, geestatistics,geomatic,image processing, and advanced artificial intelligence
models. Nevertheless, the whole process was developed and performed, fulfilling the principle of employing freel
available data and opesource software and libraries (e.g., ESA SNAP, Stikdrn, OTB, Google Earth Engine)

mostly executed in Pythescript language

Keywords: fire severity Sentinell, Sentinel2, burn detection, podire recovery,gecinformatic machine

learning



Riassunto

Nel bacino del Mediterraneo, sebbene gli incendi svolgano un ruolo cruciale nei processi ecologici, spesso
rappresentano uno dei principali disturbi per le foreste e gli altri ecosistemi, comportando degradazione del
paesaggi e degli habitat, e danni economici. Gli incendi, inoltre, determinano il consumo di riserve naturali di
carbonio e I'emissione di gas serra (GHG) correlati al cambiamento climatico. Informazioni accurate relative
allimpatto dell'incendio sull'ambienterestale, e alla sua distribuzione nel tempo e nello spagipresentano

fattori chiave per la successiva attuazione della pianificazione territoriale a medio e lungo termine, finalizzata alla
prevenzione e gestione di quei processi irreversibili diatbgdgli habitat e depaesaggio. In questo contesto, il
telerilevamentaatellitarefornisce strumenti e tecniche affidabili per monitorare e quantificare l'impatto delle aree
bruciate. Nel monitoraggio pestcendio, la maggior parte degli studi si é&s&i@ su dati satellitari ottici acquisiti
utilizzando sensori multispettrali passivi, strettamente correlati allo stato fisiologico e biochimico della
vegetazionel a vegetazion@resentanfatti unafirma spettrale uwnioca(con piccole variaziona second della

specie e delle condizioni ambienta#)la suanalisine consente la caratterizzazione e il successivo monitoraggio

le anomaliespettrali, infatti, si traducono ianomalie a livello dllapianta.Sebbené 6 ef f i caci a dei se
per lo scopoappenadescrittosia stata ampiamente dimostragasipresentano alcune limitaziorfueste sono
principalmentecausatadala sensibilitdad alcune condizioni ambientatiomeluce solare e nuvolositghe ne
riduconola frequenza di osservazigredallaconfusione di aree bruciate con superfici a bassa albedo (es. suoli
scuri, superfici idriche, zone d'ombra) la sensibilita ai valori crescenti dell'indice di area fogliare (LAI) che
comporta ungrematura sarazione del segnaltnoltre, questtipi di sensori non interagiscono direttamente con

la struttura degli oggettionpermettendogli la cattura diolti aspettqualitatividella copertura vegetalPertanto,

sono necessari dati acquisiti da sensbepresentino sisndipenderadala copertura nuvolosa, sia la capacita di
interagire con lastruttura. Tra questi, i radar ad apertura sintetica (SAR) sono sensori attivi che generano i loro
impulsi a microonde (2;400 cm) e li trasmettono dallaro antema al un bersagligposto sulla superfice terrestre

Il calcolo della quantitdellafrazione d segnale riflessaersosensorelfackscattey caratterizza la firma del radar
spettrale del bersaglio. La capacita di penetrazione dell'impulso nella mat@estargbnte proporzionale alla
lunghezza d'onda. Per questo motivo, le onde SAR possono attraversare il particolato atmosferico o interagire con
la struttura della copertura vegetale. Pertanto, per caratterizzare e quantificare gli effetti di un didiaurbo s
vegetazione, la tecnologia radar sfrutta le variaziobadkscattecausate dalla modifica della copertura vegetale
della struttura del suojce del contenuto di umiditdegli oggetti osservatiTuttavia, la sua complessita di
elaborazione e interpretazione fa si che gwestsornon siao ampiamente utilizzatjuantoquelli ottici.

In tale contestda presente tesi di Dottorato propameworkflowcompleto @ opensource finalizzato all'indagine

e mappatura degli effetti delocoa breve terminsugli ecosistemi mediterranei (valutazione delle condizioni pre
incendio; rilevamento delle aree bruciate; stima e mappatura sielitapostincendio) e al monitoraggio
temporaledela risposta della vegetaziortirante i primi ani dopo I'eventadi incendio (monitoraggio del
recupero posincendio). Perassecondarguest obiettivi, sono stati integratdati ottici (Sentinel2) e SAR
(Sentinell) gratuiti e ad alta risoluzione spazialéeenporag, valutando i punti di forzai limiti di ciascuno di

essj e i vantaggi forniti dalla combinazione di entrambe le informazidnprimo step ha riguardato la
realizzazione di un'accurata mapgella copertura e ustel suolo (LULC) in un'areMediterraneaeterogenea
(situata in Portodl) al fine diavere una panoramica dello stato qualitativo e quantitativo della vegetazione

presente prima dell'evento di incendio. A tal fidverse variabilisono state calcolate ed utilizzate come dati di
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input (ad esempio, serie temporali degliiicicdli vegetazione, variabili biofisiche ottiche e SAR interferometrico

- InSAR - coerenza)lnoltre, & stata applicatan'analisiexhaustive grid searcher impostare gli iperparametri
ottimali di un modello dmachine learning¢foresta casuale, RF). Questa integrazione ha permesso di raggiungere
un‘accuratezza complessivag€ore) d0.903 osservando un miglioramento del 2,53% quando i dati SAR sono
statiaccoppiate allinformazioniottiche.

Il secondo stepa riguardato itilevamento accurato delle aree bruciate e la delimitazione dei loro perimetri. Sono
stati proposti due approcci per raggiungepgesto obiettivo: il primo riguardava solo l'uso di dati SAR
(backscatter indici SAR a doppia e singola polarizzazione, texXtuper un rilevamento non supervisionato
(utilizzando I'algoritmo kmean, impostato utilizzando un'anakghouettg delle aree bruciate in due diversi siti

di studio (situati rispettivamente in Portogallo e in Itali@ggiungendo valori di core para 0.803 (sito
portoghese) €0.853 (sito italiano); il secondo approccio proponeva un procedisimage composite
multitemporale, combinando sia le immagini Sentidehe quelle Sentindl, e una successietassificazione ad
oggetti(GEOBIA) per mapparke aree bruciate su scala regionale/naziodalimcendi avvenutiuranteu rinfera
stagione degli incendi (2017) in Portogallo, ottenendo valsiddte di 0,914 (quando vengono utilizzati solo dati
ottici) e 0,956 (combinando informazioni ottiche e SAR)

Nel terzo stepvengono stimati gli effetti dell'incendio a breve termine, sotto fornsawritadell'incendio, e la

loro distribuzione spaziale. Sono stati presentati tre approcci di cui due simili e accomunati dall'uso del protocollo
Composite Burnindex(CBI) per determinare le classiskveritdsul campo e per definire i dati di addestramento

del modello In un approccidsito di studiosituato in Portogallpsi =~ utili zzato | 6dal gorit.
mentrein un secondo approcc(sito di studio situab in Italia) & statamplementataina rete neurale artificiale. Il
modello RF ha raggiunto walore diF-scoredi 0,838 quando entrambi i set di dati sono stati combinati (S1 +
S2), rispetto ai valori ottenuti utilizzandolo SAR (0,513) esoloottico (0,805). | risultati ottenuti utilizzando la

rete neurale artificiale (6core > 0,95) hanno dato prova del grande potenziale nell'uso di questi modelli avanzati
di deep learning. Un terzo approccio prevedeva a p p | i ¢ a sdearal enixtutd analysié@MA) delle
immagini ottiche Sentine? per caratterizzarspettralmente quantificare la proporzione delle tre componenti
frazionaliindicativi dei principali effetti fisiciriscontrabilimmediatamente dopo un incendio boschfgarbone,
vegetazione bruciata e vegetazione verde).

Per i primi anni dopo un evento di incendio, l'indagine sulle dinamiche temporali e spaziali del recupero post
incendio d diverse tipologie di vegetazione mediterranea ha caratterizzato il quart®Gestdp serie temporali

SAR Sentinell che quelle ottiche Sentin2lsono state analizzate separatamente in base alle classi di gravita
dellincendio (ottenuteello stepprecedente), evidenziando la complementarieta e I'essenzialita di entrambe le
informazioni. Inoltre, & stato proposto umdice burn recovery ratio(BRR) per la stima e la mappatura dell
distribuzione spaziale del grado di recupero della vegetazione 6 i n d ottanizzatonelia fasetdfredizione

delle condizioni préncendiotramite algoritmo di regressione di machine learning

Lo sviluppo di questi approcci e la gestione di questa quantita di dati hanno richiesto tecniche e soluzioni avanzate
di gecinformatica, geostatistica, geomatidemjage processingg modelli avanzati di iefligenza artificiale.
Tuttavia, l'intero processo é stato sviluppato ed eseguito rispettando il principio dell'utilizzoglatdatamente
disponibili e software e librerie opesource (ad es. ESA SNAP, Scikiéarn, OTB, Google Earth Engine) eseguiti

principalmentdramitelinguaggio Python.



1. General Introduction

1.1. Wildland fire overview

Wildland fires are a primary natural component that influences the ecological dynamics of many ecosystems at
different spatial and temporal scales. On the one hand, fire stimulatghysizal activities and natural
regeneration, and promotes seed gertionaand production, positively and indirectly affecting the biodiversity

of the affected environmen(Emilio Chuvieco, 2009; Emilio Chuvieco et al., 2014; Moreira et al., 2020; Valké

& Deak, 2021) Moreover, it ca improve soil propertieashen the frequency is low and/or the temperatures
reached are not high enough to cause the volatilization of organic matter and ni#toatfiiz et al., 2018; Perrai

et al., 2018; Romeo et al., 202@n the other hand, firean represent a lonterm threat, contributing to
environmental degradation, namely, soil erosion, habitat simplification, biccbassmptionand greenhouse

gas (GHGs) emissions affectiagr quality and global climatéCascio, 2018; Hardy, 2005; Hauskt al., 2018;

Reid et al., 2016; Rosa et al., 20IMIpreover, the direct influence of human activity on its frequency or, indirectly,

the negative consequence that such activities have raised on global climate and the modification of landscape and
habitat patterns has led to a worsening fire susceptibility of some environments during the last @éidcluels

etal., 2009; Moreira et al., 2020%uch events negatively impact ecosystem services, such as food production,
fresh water stocks, wood products, microclimate, recreaton, tourism (Emilio Chuvieco et al., 2014)
Moreover, these events have direct saaonomic damages given by the loss ahhn life and infrastructure.
According to European fire statistics (Figutel) (EFFIS annual fire reports, 2022; European Environment
Agency, 2022), although the lofigrm trend ofburned area extension has decreased in Europe, some countries

have experienced more extreme events (in terms of the burned surface) during the last decades (e.g., Portugal)

1000
— Portugal

— Spain
France

— ltaly

800 Greece

Total EUMEDS

Other countries (outside EUMEDS)

1000 hectars

e J Y RARY \ YA >

0
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Year

Figure 1.1. Annual lurned surfacein European countries between 1980 and 2020, mvite focuson the Mediterranean European
countries (EUMEDS5Portugal, Spairkrancesouthern)ltaly andGreece) Europearmember countries not included in EUMEDS are
designed as fi Ohe heterencecishtips:/fwww.eea.auropa.eu/daadmaps/daviz/burnforestareain-five-4#tab
chart_5 The Data are, iturn, supplied byiSanMiguel-Ayanz, J., et al., Forest Fires in Europe, Middle East and North Africa 2020,
EUR 30862 EN, Publications Office of the European Union, Luxembourg, 2021, doi:10.2760/216466, JRG1267665

Notably, n the Mediterranean basin, albugh wildand fires are an integra¢lementof natural ecosystemand

historically used as a tool for lantbe managementheir impacts have increased in the last decachassing
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significant economic damages and landsadipasterdChuvieco, 2009; SarMiguel-Ayanza et al. 2018; San
Miguel-Ayanza et al. 201;SBilva et al. 20190ténet al., 2019.

Mediterranean ecosystergsnstitute acritical biome at the European level due tioeir high biodiversity and
intense interaction with human activitigg&\ragones et al., 2019; Emilio Chuvieco, 2009; Moreira et al., 2020)
The typical Mediterranean climatic regineharactdeed by long periods of summer drougétacerbated by the
current global warmingentails an increasing wildfire risk in terms of frequency, extension, and seoitgira

et al.,, 2020) Fire severityis defined as the degree direct environmental chemicglhysical alterations,
decomposition, and loss of above/belgmund organi@and inorganianatter caused bthe combustion process

(De Santis & Chuvieco, 2007; Key & Benson, 2006; Lentile et al., 2006; Roth et al., #qdlays a critical role

in the sustainability of Mediterranean habitats, influencing the competitive interactions hefreages and their
postfire recovery capabilitfChristopoulou et al., 2019; José Viedhcuaet al., 2017; Lacouture et al., 2020;
Morresi et al., 2019; Tanase et al., 2011; Vi&wdo et al., 2017)Moreover, he widespread accumulation of
woody fuel,a consequece ofthe abandonment of the sematural and agricultural areas titsbeen occurring

in Mediterraneatandscapesas been causingisable conditions for the ignition and the progres®f such high
intensity fires(Xofis et al., 2022)Fire intensity,defined aghe energy released by a fiper length of fire front

per unit time(Keeley, 2009; Key & Benson, 2006)

Theimmediateimpact of the fireappears in the form d@lteration of the vegetatiorover, both structurdy (e.g.

canopy and biomass consumption) and chenrgbgkicaly, with the deathor consumptiorof theorganic matter
andphotosynthesizing tissuesausedy the direct heat transfer generated by thedirthe biomass combustion

(Key & Benson, 2006; Lentile et al., 200&gubsequentlyin responsdo afire event,Mediterranean habitats
activatenatural mechanisms for recoverymé-fire ecologicalconditions The effectiveness of these mechanisms
depends on the characteristics of the fire itself, in,tinffuenced by several environmental fact¢ecembined

action ofvegetation typewind, moisture andtopography, on its diret physical impact on the land surface, and

on the degree of ecosystems resilie(feédipe X Catry et al., 2012; Fernandéarcia et al., 2018; Fernandez
Manso et al., 2016; Frazier et al., 2015; Gouveia et al., 2010; Morresi et al., 2019)

Therefore, regarding thehortterm effects,it can be argued that theyepend on the susceptibjlitof the
ecosystemsFirst, the energy produced by firéntensity)is determined by the nature of the fuels available for
combustionandthe type of vegetatiorin particular, the densitgnd moisture content of fuelsleteorological
conditions play a decisive role (e.g., the falihdrastically reduce the fire intensity and duration while the winds
feed it with comburent), and land topography (e.g., the presence of natural barriers for the advancement of the
flames or slopes that, stead, facilitate the contact between them and the surrounding vegetatied)Vidal

Macua et al., 2017; Key & Benson, 2006; Moreira et al., 2020)

The compl e x i dsyn tbefMediterranedh cosydtem eeflects the complexity of the ecosystem itself.
Each of the thousands of individual componéhg constitute the ecosystamiquely responds to the fire event

but, if it could be more or less relevanthie individualy accounteddepend on the objectiveg¢Key, 2006) In

fact, he evaluation of the fire effect remains a judgment that changes accordin® st udy s cont e
objectivesAlthough intensity and severity are two highly correlated factors, the same intensity value can produce
different degrees of severity burn, depending on the combination of the various environmental and vegetational
factars seen abovédoreover, nome species are known to have adaptations that make them more resistant to fire

than othergMitchell et al., 2009; Romeo et al., 202The fire severity represents the most suitable metric for



describing the podire effects on vegetation. It is a coherent numerical scale that measures the magnitude of
change on a single factor and as a cosite of multiple ecological facto(&ey & Benson, 2006)
In this context, théefinition of protocols for the qualitative and @ptitativedescriptiorof short and longer effects
on Mediterranean ecosystems is crucial for better understanding their dynamics and planning approgiiate post
management strategié@Shu & Guo, 2013; Emilio Chuvieco et al., 2019; Carmen Quintano et al., . 20P@)istic
approach is generally used at large scalekimmandscape ecology in order to represent the severity of the burn
as an aggregate of effects on a given.area
From a landscape perspective, the widest used and accepted protocol frarehbire severity effects estimation
is the Composite Bun Irec (CBI) proposed by Key & Benson (200®ey & Benson, 2006and developed in
the framework of the FIREMON Project (2006). Thistitod is used to derive index values that summarize overall
burn ecological impacts within an area, that is, the average fire effects on a plot and the maitompaoreents
that compose it: soil, litter and vegetation. To derive the averaged severi¢yfoala sample plot, the metric
combines average conditions of many visaséessed ecological factors (e.g., percent of unaltered green
vegetation, torched trees and coal thickness, altered brown foliage) across multiple strata composing an ecosystem
(litter, herbs, shrubs, short trees, medium heightubinant trees and high/dominant trees). The sieom fire
effects are independently examined by strata so that they can be as relatively associable g pgssiBenson,
2006) The CBI is, therefore, a holistic approach that integrates the different fire effects that can be easily observed
on the ground converts them to nuinal values, and returns an average value, to simplify the severity
categorization procedure. It is not surprising, in light of this, that this approach was designed to make the high
variability observable in a pofite context as comparable as possibiihthe perspective of a multispectral sensor
mounted on a satellite platform, whose spatial unit (pixel) is expressed by simple single r@p&Benson,
2006; Sander Veraverbeke & Hook, 2018¢veral modifications and optimizations of the CBI protocol have been
proposed in the literatui@.g., De Santis & Chuvieco, 2007, 2009; Saulino et al., 2B6&fyever, the relevance
of CBI is given by having standardized and meelgicable to different ecosystems the approach for fire effects
assessing, as well as clarifying their definitions
Although theeffectsof burn severity varyvithin a continuumfor convenience and to be comparable to remote
sensing data, burn severitydftensummarizednto threediscrete classes (low, moderate and higtom which
it is possible to retrievéntermediate classg®e Luca, Silva, Oom, et al., 2021; De Santis & Chuvieco, 2007,
2009; Lentile et al., 2006)Employing the nomenclature used in several studies that evaluated the pure components
observable in an immediate pdist forest environmenl_entile et al., 2006; Quintano et al., 2013, 2020; AM S
Smith et al., 2007; S Veraverbeke et al., 2012; Savideaverbeke & Hook, 2013)indicative of the physical fire
effects, thalefinition as mentioned abowé severity classes could be replaced to make the assessment as objective
as possibléFigure 1.2):
x  Green componenfrom unburned tdow severity):the substrateheunderstorywegetation (herbs, shrubs and
trees less than 1 metemd trees canopies could result unaltered byofirenly slightly disturbed by hedn
these conditions, most of thgreen photosynthetiplant tissuesstay alive.Fallen trees should also be
considered (due to wind or soil instability) but in which the conditions of the canopy are as described above.
Fromasatellite perspective, and/or according tothgable targetinderstudy; this severity class may only
refer to the crowns of the dominant trees. Therefore, it could also incluesreah where the undergrowth

has been affected by the fire while the foliage has not
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x  Scorch componenfrom moderateo moderatehigh severity): ateration of prefire green healthy vegetation
foliage to browndead plant tissuescorched) mostly leaves/noodles killed lgroximal heatradiatedand
convected from the surface fire or by firdlucedgirdling, with the structural elemenfgrunk and branches)
affected but unconsumed (except for the fiméerbranching).The understoryis generallyheavily altered or
consumeAs mentionedabove, fallen trees must be countediescribe this effects category. It is expected
that delayed mortality will arise ithe most affected tree canopies. Fallen trees should also be considered (due
to wind or soil instability), but in which the conditions of the canopy are as described above

x  Charcoal component (from high to vemgh severity): Severe alterationa@nsumption of crown foliage and
woody material, implicating conversion to inorganic carbon (charcoal), till, at extreme severities, the complete
loss of woody fuel. Since CBI is a visdahsed severity assessment approach, blackened woody tree parts
from soot or high flames (without effectively affecting the internal tissues) have been generally included in

this category of shotterm effects. A mantle of coal and ash replaced the total absence of short vegetation

Figure 1.2. The figureillustrates fourcases of posdfire effectson t r e e § threecah whiclp iegreserihe mainpostfire
componentggreen,top-left box; scorch, togright box; charcoal bottomright box) and one mixed class (gresoorch, bottorieft
box). The photos were taken in 18& de Monchique Portugal (topleft box; photo on the right of the botteleft box; photo on the
right of the bottorrright box) and in the Aspromonte National Patkaly (top -right box; photo on the left of the botteleft box;
photo on the left of ta bottomright box)

As mentioned abovéhe direct impact of fire influencdke effectiveness of poefite recovery strategies thate
activated by Mediterranean ecosystems immediately thié@vent(Filipe X Catry et al., 2012; Fernand&arcia
et al., 2018; Fernandédanso et al., 2016; Frazier et &015; Gouveia et al., 2010; Morresi et al., 20B3)well
as they can differ based onthe combination ofsamevariablesthat govern the behavior of the fire itself:
environment(soil moistureholding capacity microclimate) topographic(geomorphology aspect) vegetation
(type and quantity of vegetation present before and after tresfgeed bank able to mature under-fiteered
microclimate and soji] human activityChristopoulouet al., 2019; De Luis et al., 2006; José Vil¥dcua et al.,
2017; Key, 2006; Mitchell et al., 2009; Montes et al., 2004)

Once the fire damagehave been quantified and categorizetle monitoring of the lonterm impacts and the
response of environmeshould be set as a subsequent .gbla¢ postfire recoveryof vegetation cover structure
is a natural mechanisrthat promotes the restoration of numerous ecosystem services, such as the carbon

sequestration induced by the regenerating process of forest vegetation, which mitigates the carbon emissions to
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the atmosphere due to fi(€rolking et al., 2009; Huang et al., 2020; Morresi et al., 2019; Ryu et al., 2018;
Semeraro et al., 2019n Mediterranean ecosystentise recoveryrocess isery complexThe first stage of post

fire dynamic autesuccessionis usually characterized by prom@and massivecolonization of pioneer
Mediterranean annual grasses and perennial woody sfFabsceag Cistaceag Lamiaceae Pteridofite or
pioneer tree¢Capitanio & Carcaillet, 2008; De Luis et al., 2006; Mitchell et al., 2009; Montes et al.,. 270@4)
gaps caused by parts of dead and/or destroyed foliage expose the underlying layers, which are rapidly colonized
by flourishing herbaceous pioneer vegetatibtost of the taxa recognizable in a pfist environment play a
fundamental ecological role in the general recovery of degraded or abardeasd.g.,formeragriculturearea$

in Mediterranearerritories(Xofis et al., 2022)The £cond stagémedium and long terjrinvolvesthe gagilling

by the forest seedlings the areas previously occupied currentlysurroundeddy forest(Frazier et al., 2015;
Montes et al., 2004 his step can be anticipatedien the woody species are characterized by a high capacity for
asexuales. Eucalypts, Quercus, etc.) or sex\iediterranean pinesggeneratiofCapitanio & Carcaillet, 2008;
Filipe X Catry, Moreira, et al., 2013; Montés et al., 2004; Romeo et al., 283@aptations to fireThefollowing
competition phasedetermine the closure of the foliage of the riedividuals Meanwhile below the canpies

the seedlings adhadetoleranttrees continue to develdfapitinio & Carcaillet, 2008; Frazier et al., 2015)

1.2. Therole of spaceborne remote sensinfpr wildland fire monitoring

1.2.1. The optical domain

Remote sensing techniques and data have been extensively employed to detect and estimate the effects of fire on
ecosystemspromoted by the increasing availability of numerous satelétesorsat rising spatial, spectral, and
temporal resolutiongndevenmore robust analysis algorithms and processing soft{@dme & Guo, 2013; Emilio

Chuvieco et al., 2019; Corona et al., 2008; I. Gitas et al., 200Re}t of the methodologies presented in those
studies relied on the use wolultispectral optical imagero detect bured areas(Emilio Chuvie® et al., 2016;

Filipponi, 2019; Mpakairi et al., 2020; Otén et al., 2019; Pulvirenti et al., 2020; Santos et al., 2020; Silva et al.,
2004; Silva et al., 2019; Sousa et al., 20@3}fimate the degree and the spatial distribution of burn se(@sgty

Luca, Silva, Oom, et al., 2021; Ferndndearcia et al., 2018; Morresi et al., 2022; Saulino et al., 202@)assess

other consequences of the fire on environmental biological and structural features, such as biomass consumption
(Garcia et al., 2017gnd greenhouse gas emissi¢@stroukhov et al., 2022; Rosa et al., 2011)

Multi-spectral optical sensors are passive systems capable of capturing the reflected electromagnetic waves
(emanated by the Suim)the regions of the eladmagnetic spectrum includy between the visible and the infrared
(wavelength around 400 nm to 2300 nm, if therinfdared is excluded)The efficiency of thespassivesensors

is due to the high sensitivity of the visible (VIS), nédrared (NIR), andhortinfrared (SWIR) spectral regions

to the surfacechanges causedytfire (Chuvieco 2009; Chuvieco et al. 2019; Pereira et al. 1998hg the
definitions schematized b@huvieco et al(2020) the VIS region (0.40.7 um) covers the spectral wavelengths

our eyes can sense. The VIS is generally decomposed into three primary colors: blué @9, green (0.b

0.6um), and red (08.70m) . The spectr uimB@m)NIIRi erse gji w:nt (Weyond t h
perception capability ani$ highly sensitive to plant health (photosynthetic) statud vegetation net primary
productivity. Within this region, the Re&dge (0.70.75nm) partis distinguished to bparticularly sensitive to

leaf pigments contenThe SWIR region (1i2.50m) , in which the influence of t
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relevant, provides the best estimations of the moisture content of soilegathtion in the optical domaiA.
substanti al part of these wavelengt hs whollyabkobhedoobj ect s
reflected by themThe magnitude of reflection and/or absorption energy is defined bylthsicchemical
characteristics of the material or by physiological processes that can occur within the tissues of thénabjgects.
case of vegetation, the photosynthesis andatmeunt of chlorophyll determine a unique interaction with
electromagnetic waves if compared to other materials (FidBge left). For each specific portion of the
electromagnetic spectrum, therefore for each wavelength or band, the absorbed/reflecteladamecgyshould

be at stable range levels when the vegetation is healbwjously with intravariations as a function of different
factors such as vegetation type and environmental condifg@esFigure 1)3 This is because the chlorophyll
content is, m turn, related to the degree of stress of the @antto seasongbhysiological phases'hus, the
quantitativequalitative analysis of the differences between the spectral signature of healthy vegetation and its
signature in a changed condition (for exale, due to a firejs thetheoreticabasis of remote sensimgonitoring

(Xie et al., 2008)

In the period immediately after a firburned surfaces tend to be relatively dark in kS, due the dominant
presewe of black charcoal and thdecreasen other reflective components (such @stosynthetically active
pigments of vegetation).ocal exceptions may concern the presenaxpbsedright soil and/or light ashAt the

same time, these conditions caussignificant decreasi NIR reflectance Wavelengths falling in the SWIR
region tend to present higher reflectance due to the decrease in moisture(Ertsrd et al., 1999 he speific

spectral signature of a portion of the burned vegetation surface, therefore, depends on the grade of occurred
severity, namely, on the proportion of the main three-fimsfractional components (green vegetation, scorched
brown vegetation, black chzoal) (Figurel.3) and to the combined effect of diverse factors (changes in the
moisture content and temperatuté#ferentreflectance from bared soil, et¢Bereira et al. 1999; Smith et al. 2005;
Inoue et al. 2008)

Charcoal
(from High to Very-High Severity)

Scorch
om Moderate to Moderate-High Severity)

Reflectance (x10000)
3 %558 8% ¢
Reflectance (x10000)

s % 5 & & 8 2

Weveeaghe om) Waveieagh (am)
Figure 1.3. Specific spectral ignatures of the threemain postfire fractional componentgepresenting the main physical effects
induced by the fire on vegetation: unburned/lowly affected green vegetation (left), scoarched vegetation (neiddily),
burnedtorchedvegetation (right)The photos were taken @oruche Portugal (lef}, in the Aspromonte National Parkaly (middle),
in Serra de Monchique (righ#\t the bottom, there are the respective spectral signatures retrieved from three different soutcas: spe
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library retrieved by the&Centro de Estudos Florestais (CE®)thelnstituto Superior de Agronomigisbon), ASTER spectral library
(Baldridge et al., 2009andSentinel2 image(visuatchosen)

The assessment of fire effects and their severity cdrabed ora mixture composed of these three typical post

fire fractional cover components, given ithgrong correlativity with the actual physical effects that occurred on
the ground, thudirectly comparability to the burn severity parameters traditionally assessed on field monitoring
standard protocolg¢Lentile et al., 2006; 2009; Smith et al., 2007; Sunderman & Weisberg, 2011; Sander
Veraverbeke & Hook, 2013¥or example that proposed by Key & BensdR006) aimed to standardize the
measurements of fire effects across space and time, in a context that is otherwise charactegheetgbility

(Key & Benson, 2006; Sander Veraverbeke & Hook, 2013)

The same prinpiles are applied for the lortgrm monitoring of posfire recovery.In the long termthese post

fire componentsend to be attenuatedth an inverse proportionality to tHe severitythatoccurred(Pereira et

al. 1999; Smith et al. 2005; Inoue et2008) The simultaneous initial rgrowth of bothherbaceouand woody
vegetation thus thephenological and physiological vegetatiwand and the increasing moisture conteatjses
anincrease in reflectance in specifiavelengthgVIS and NIR) ard, in any casea general rise in optical
brightnesswhile the SWIR reflectance tendsriiurn to lowewvaluesimmediately after the fir€De Luca, Silva,

& Modica, 2022; Frazier et al., 2015; Morresi et al., 2019)

However,optical systemsnesent some limitations, mainly foretin sensitiity to some environmental conditions,
such as sunlight and cloud cover, which reduces the frequency of observation at the visible/infrared wavelength
bands, and for the spectral confusion of burned areas with unburned low albedo surfadesk(iseils, water
surfaces, shadow aregkehmann et al., 2015; Minchella et al., 2009; Stroppian&,e2@l5) Furthermorethis

type of sensor cannot captisemequantitativeaspectssince these wavelengths do not interact directly with the
structure of the objec{Santi et al., 2017)

1.2.2. SAR sens®

Concurrently with opticabased data and approaches forned area detection and fire effects monitoring, the
synthetic aperture radar (SAR) sensors are active systems working in the microwave region of the electromagnetic
spectrum (2,4.00 cm). The high sensitivity of SAR signal to the structural propertiiseofegetation, with a
generally linear correlation between backscatter and vegetation bi¢Giess et al.2019; Quegan et al., 2000;
Saatchi et al., 2012; Saatchi, 2019; Yu & Saatchi, 204&) its capabilities for alveather and solar radiation
independency, make the SAR backscatter complementary information with opticéldethella et al., 2009;
Polychronaki et al., 2014; Tanase et al., 2011; Tanase, Santoro, Wegmdlller, et al., 2010; Zhou et.al., 2019)
Theresponse of the radar signal is affected by the ensemble of environmental variables (e.g. land cover, vegetation
cover structure, moisture content, dielectric property of objects, size/shape, and orientation of the scatterers in the
canopy) and variableglated directly to the sensor (¢jgplarizationwhich describes the orientation of the plane

of oscillation of a propagating signalvavelength andorbit) or to the local surface properties (etgpography,
orientation, surface roughness, and lacaident anglejMeritxell Gimeno & SarMiguel-Ayanz, 2004; Hachani

et al., 2019; Imperatore et al., 2017; Lapini et &2® Santi et al., 2017; Tanase et al., 2011; Tanase et al., 2020;
Mihai A. Tanase, Santoro, Wegmdlller, et al., 20IDhe behavior othe SAR signal is determined by the
wavelength used, as it defines the penetration capacity of microwaves acrossanhter and obj ect s on

surface: the greater the wavelength, the greater the ability to penetrate the material. For vegetated areas, this implies
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that longer SAR bands, such adand (15 30 cm) and hand (30° 100 cm), interact with deeper deiaand/or

larger elements of vegetation cover than shorter handh ashe X-band (3.757.5 cm) which, on the other hand,

are more suitable for examining the superficial layers and small elements of vegetation cover (such as small
branches and leave@inperatore et al., 201 Tanase, Santoro, De La Riva, et al., 2010)

The Earthés microwave backscatter is affected by wvar|
the surface, triggered by vegetation cover, shape, size, and orientation of the cartemrscsoil structure, and

moi sture content modifications, making it a suitable
In detecting burned areas, SAR technology usesetvariations inthe backscattecaused bythe fire-inducted
madification of vegetation cover and soil structure and moistunatent(Donezar et al., 2019; Imperatore et al.,

2017; Kurum, 2015; Pepe et al., 2018b; Santi et al., 2017; Tanase et al., 2011; Tanase, Santoro, W@ller
2010) Immediately after a disturbing event and for the first year after, the scattering effect of the damaged
vegetation structure is lacking/decreasing. At the same time, the contribution to the back diffusion by the humidity
and the roughrss of the exposed soil is higher. In Mediterranean ecosystems, this generally results in a lowering
of the crossolarized signajverticathorizontal, VH, and horizontalertical, HV)due to the consequent reduced
volumetric dispersiorcontributionof forest canopies (volume scattering), and an increase in tpelaonzed
signal(verticatvertical, VV or horizontahorizontal, HH) interacting with small branches, stems and, principally,

the soil surface (direct and specular backscattenich is highly expose after a fire (Imperatore et al., 2017;
Saatchi, 2019a)The backscatter, typically increasing with forest biomass, has been tiolramore directly
correlated to abovground biomass at crog®larization than cgolarizaions (Saatchi, 2019a; Saatchi et al.,

2012; Yu & Saatchi, 2016pue to this different interaction with the various aspects of the effects of fire on the
environment, both types of polarization can be decisive in detecting burnt forest @reaset al., 2018; Tanase

etal., 2014)

1.2.3. ESA Copernicus Sentinel satellites

Several space missions provide satellite constellations opeBAiRgrd multispectralbptical imaging dedicated
to environment observatiorwhich is helpful forfire monitoring purposegEmilio Chuviecoet al., 2019)
Copernicus missiondy the European Space Agency (ESpiovides free high spatial and temporal resolution
C-bandSAR (Sentinell) and multispectral (Sentin@) data.The Sentinell constellation comprises two polar
orbiting satellites performing-®and (from 3.75 cm to 7.5 cm wavelength) radar imagliing two Sentinel
platforms were launched on 03 April 2014 (A) artde 25 April 2016 (B).The SentineR constellation is
constitutedby two polarorbiting satellitesplaced in the same staynchronous orhjtperforming 13 spectral
bands: four bands at 10 reed(Bluesoznm Greemsonm Redsanm NIRsz2nm), six bands at 20 met(RedEdgeosnm
RedEdgesonm RedEdgesonm NIRgsanm SWIRe130m SWIR20mm) and three bBnds at 60metkers (Coastal
aerosalaonm Water vapoussnm SWIR-Cirrusiszann) spatial resolutionThe first satellite oBentinel2 (A) has been
in orbit since 23 June 2018&eanwhilethe second oneBj waslaunched on 7 March 201(ESA Sentinel
Homepage022)
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Figure 1.4. The European Space Agency (ESZ9pernicusnultispectral (optical) Senting (on the left) and the SAR Sentirfie(on

the right) platformsPictures were retrieved froimtps://sentinels.copernicus.eu/web/sentinel/home

The high spatial and temporal resolutions, together with the free distributiake the Sentinel missisn
particularly suitable for risk monitoring and rapid mapp{iMgartinis et al., 2017)The spatial resolution has a
considerable effect on the detection of dareas and their subsequent monitoring, lowering the omission errors
typical of the coarser resolati data in detecting the smallest areas and improving spectral discrimination
(BelenguetPlomer, Tanase, et al., 2019; Boschetti et al., 2019; Stroppiana et al., 2015; Verhegghen et.al., 2016)
The adwantages become more evident when the acquisition revisit time of these products is a few days, allowing
the monitoring of temporal trends at an appropriate temporal @asehetti et al., 2019; I. Gitas et al., 2012a;
Mihai A. Tanase et al., 2020; Verhegghen et al., 2016)

Furthermore, ESA itself distributébe Sentinel application platform (SNAP) (ESA SNAP Homepage)? @2

free and opersource software platform containing the toolboxes necessary f@rpeessing and processing
Sentinel data. The SNAP toolboxes, initially Jédesed, can also keccessed from the Python programming
language (The Python Language Reference2R0ihe of the most popular languages for remote sensing and
scientific analysis, widely used in both operational and scientific domhamsigh the ESA SNAPPython
(snappy) mterface (ESA SNAP Cookbook 29).

1.2.4. Software, libraries, toolsand algorithmsfor image processing

Following the acquisition of the raw datilm the satellite systemrepresented by digital images, the remote
sensing activity mainly consists ektracting, processing, and analyzing the data and interptagrigformation
through specific image processing procedures. Since data derived from these systems coudddieerps,
advanced techniques integrate atistics,informatic (geeinformatics),data mining, pattern recognition and
machine learning methods in order to organize, aralpodel and map the information extracfBdt & Borges,
2022; Emilio Chuvieco et al., 2019; Lapini et al., 20Z)ese includearious methods of data analysis in which,
through statistical models, advanced algorithms extract and learn information from data, and theanthey
associate and replicate, recognize and classify this information autonomously into new groupgBdtdata
Borges, 2022; Lary et al., 2016; Ramezan et al., 2B&note sensinglata processingnd analysisand the
implementation of advanced algorithms are operations thatreespecific information technolodyT) solutions

and high computational resources. For this reason, several IT systems and advanced image processing software
have been developed in recent years, of whidigaificant contribution comes from free and opmurce

distributions. Among these are the libraries and the modules built and implemeatptbgramming scripting
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language (@., Python, Java). Decomposition and adaptability are the main features that allow the construction
and combination of the mbsuitable processing solutigh. Wang et al., 2019; Zhong et al., 2018)plementing

the resources provided by different software withlie same workflow, increasing its inteompatibility
capabilities, allowdor creaing increasingly optimized algorithnteatoptimize the results.

With the remarkable advancesthre latestgeneration higfresolution Earttobservation, the amount of retety

sensed data has been accumulatethexabytescale andhasbeen increasing in petabytes every year. In order to
satisfy the huge calculations required, always better specific hardware is necessary, thus facilitating the
development and diffusion aloud computing. Many platforms have also been developed in this area, some of

which are available with an opesource licenséL. Wang et al., 2019)

1.3. Objectives and organization of the thesis

In the framework of this Ph.D. thesimrtly carried out abroad in collaboration with the Remote Sensing research
laboratory of thé-orest Research Centre, School of Agricultfrdne Unversity of Lisbon (Portugaljhe research
activity aims at the development of a complete workflow for the analysis and monitoring of the shoetiunah
termseffects of fires on Mediterranean forest ecosystems, witprihgary purpose to supply the staof the art

with original contributionsMultisensorprocedures have been built by integrating both optical (Sert)nahd

SAR (Sentinell) freely available data and, in some applications, comparing and evaluating the accuracy of the

three different pssible configurations (optical only, SAR only apptical+SAR in orderto find the most suitable

in terms of accuracy achieved.

The workflow constituting this thesisbés main structu

Chapters illustrating six distinct and original scientific contributions carried out by investigating different fire

events that occurred in tvomuntries of Mediterranean Europe. Eablapterimed to optimize the methodologies

employed for the respective objective. Summarizing the four phases: below

A. The workflow starts with the classification of the quantitative and qualitative conditions ofetiietation
before the eveniThe assessmentf fire effects is based on tlestimation othefire-inducedchangesn the
prefire vegetation statusinformation about therefire condition of thesites under study is therefore
essential. IChapter2 a supervised classification was developed and optimized by integrating optical and
SAR information to retrieve a higaccuracy landiseand landcover (LULC)map The single and integrated
use of both sensor sources was evaluated, and the results weresdxplaitprove the accuracy of the final
map. The LULGllustratesthe scenario of the study site before the fire event.

B. Timely and accurate detection and quantification of burned arealse the secondperationaphaseof the
workflow and,simultaneouly, the first stem@fter the fire occurrence for assessing the damage and addressing
the postevent managemerit conceris the implementation of two different mapping approadbeb¥urned
areasone using only SAR images for terecutionof anunsupervised classificatiggroceduren two distinct
Mediterranean sitefChapter3); the second approaatoncers the integration of multitemporal composite
and supervised geographic objbetsed classification approach (GEOBI#stingonoptical and mltisource
(optical+SAR) datasetto mapburned areas on a regional scale (Chafter

C. In the third phase, the analyses are deepened to #ssedwriterm effects, irtheform of fire severity, for
assessing and understanding the ecological impadte dif¢ and the factors contributing to its behavior and

propagation (Chaptérand Chapte6). The integratd use of both optical and SAR data is evaluated in terms

17



of accuracy in two study cases spectralinvestigationof the shortterm damages inducday the fire, at
forest crown levelwas carried ouin Chapter 7by employing a spectral mixture analysgMA).
D. In the fourth step, the information about the-fire vegetation and the severity of tfiee that resulted from
the previous analysemre esential for assessing theediumterm impacts of fire on ecosystems and their
capacity to repristinate the ecosystem services partially lost. Moreover, this knowledge is essential to address
initiatives and strategies for pefite management, particulgrlin highrisk areas such as Mediterranean
countries. For these purposesptical and SAR spectral tirseries were employed for spatially and
temporally monitoring the response and recovery of three different vegetation types, differentiating the
investigation in function of the recorded fire severityring the three years after the ev@@ihapter 6)
The remote sensingcniquesconsistamainly of the phases of data processing and analysis, and interpretation of
the information. During the various steps carried out during the research activity, emphasis was placed on
developingproceduredased omdvancedmage processing amdachine learninglgorithms througltopensource

software, toolboxes arfélythonbasedibraries
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2. Investigation about the prefire condition of vegetation

Adapted from

De Luca, G., Silva, J.M.N., Di Fazio, S., Modica, @tegrated use of Sentinel and Sentinel2 data ar openr
source machine learning algorithms for land cover mapping in a Mediterranean regigar. J. Remote Sens.
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(SAR) Sentinel-1 (S1) and optical Sentinel-2 (52) data for land use/land cover (LULC) mapping in Revised 18 November 2021
a heterogeneous Mediterranean forest area. The time-series of each SAR and optical bands, Accepted 11 December 2021
three optical indices (normalized difference vegetation index, NDVI; normalized burn ratio, KEYWORDS

NBR; normalized difference red-edge index, NDRE), and two SAR indices (radar vegetation Synthetic aperture radar

index, RVI; radar forest degradation index, RFDI), constituted the dataset. The coherence (SAR); SAR interferometry
information from SAR interferometry (InSAR) analysis and three optical biophysical variables (inSAR); interferometric
(leaf area index, LAI; fraction of green vegetation cover, fCOVER; fraction of absorbed photo- coherence; Google Earth

synthetically active radiation, fAPAR) of the single final month of the time-series were added to ~ Engine (GEE); SAR and
exploit their correlation with the canopy structure and improve the classification. The random multispectral time-series
forests (RF) algorithm was used to train and classify the final dataset, and an exhaustive grid analysis; biophysical
search analysis was applied to set the optimal hyperparameters. The overall accuracy reached indicators

an F-scorey, of 90.33% and the integration of SAR improved it by 2.53% compared to that

obtained using only optical data. The whole process was performed using freely available data

and open-source software and libraries (SNAP, Google Earth Engine, Scikit-Learn) executed in

Python-script language.

Mapping the vegetation composition, besides providing information on the quantitative and qualitative status of
the area under study, is a necessary early step in the analysis and monitoring protocols of the state of the vegetation
add ecosystemsd responses af f e c(Cloddhupyyet al, 202%; Grabskaetn vi r or
al., 2020; Monroe et al., 2020; Pollino & Modica, 2013; Rodman et al., 2021; Semeraro et al.jrkdiding

wildfires (I. Gitas et al., 2012a¥torms(Giannetti et al., 2021; Hamdi et al., 2018¢forestatior{Nicolau et al.,

2021) forest degradatio(Giuseppe Modica et al., 2015Jesertification(Hill et al., 2008)and climate change
effect(Yang et al., 2013)Therefore, mapping the composition of forest vegetation is fundamental for the concrete
implementation b sustainable landnanagement policieat any scale, regional to global (e.g., the REDD
activities; Gulinck et al., 2018; Nicolau et al., 2021).

In the context of vegetation mapping and monitoring, several remote sensing techniques based onygliéferent

of multispectral sensors have been developed and successfully used geardfize Luca et al., 2019a; Grabska

et al., 2019; Giuseppe Modica et al., 2016; Morin et al., 2019; Pratico et al., 2021; Solano et al.TA@1%e

of spectral signatures, temporatlifferentiated following the phenological cyclestbé variousseasons, allows

a better spectral separability of the investigated vegetation types and, therefore, their recognition and
characterizatiofAragones et al., 2019; Aubard et al., 2019; Grabska et al., 2019, 2020; Morjr2@18].Pratico

et al., 2021) Grabska et al(2019)used a Sentin&? (S2) timeseries to magorest compositiorshowing the

effectiveness of seasonal phenology variations in improving spectral discrimination between species, achieving
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better accuracy results than using single images. &ere the spectral vegetation indices (VIs) enhance the
sensibility of singlebands spectral signals to the variability of the -fiysical state of plant tissues, the
photosynthetic activity, and leaf productiv{xragones et al., 2019; Marzialetti et al., 2019; Pratico e2@21;
Semeraro et al., 2019¥trong correlations were found between specific regions of the electromagnetic spectrum
and speciespecific physiological characteristics useful in estimating forest cover, especially using VIs based on
infrared wavelentis: the normalized difference vegetation in@eoVI) (Marzialetti et al., 2019; Spadoni et al.,
2020) the normalized difference reddge index (NDREJEvangelides & Nobajas, 202Ghe rormalizedburn

index (NBR) (Pratico et al., 2021; Shaun et al., 202Z)e rededge, near infraed (NIR) and short wave infra

red (SWIR) regions have, respectively, a lasgablished correlation to the leaf pigments content, vegetation net
primary prauctivity, and leaf water content, being very effective in vegetation monitphirgyalo-Ramirez et

al., 2020; Delegido et al., 2011, Eitel et al., 2011; Knipling, 1970)

The free availability of ta higher temporal and spatial resolution Copernicus S2 mission multispectral data (ESA
Sentinel Homepage, 20§, provided by the European Space Agency (ESA), improveadtgracy oforest cover
classification mapand allowed for the launch of severatsessful monitoring studies at a higher scale of detail
(Grabska et al., 2020; Immitzer et al., 2016; Inglada.eR017; Pratico et al., 2021; Solano et al., 2019)

In addition to the use of multispectral data, several authors studied the applicability of active synthetic aperture
radar (SAR) systems for mapping land cofleapini et al., 2020; Nicolau et al., 2021; Perko et al., 2011; Waske

& Braun, 2009) Besides the alflay and alweather operational capability, these sensors provide different and
complementary physical information helpful for improving the spectral data when combined with optical imagery
(Nicolau et al., 2021; Spracklen & Spracklen, 2021; Stroppiana et al.,.2Th8)total signal backscattered from
forest vegetation results from the combination and interaction of the canopy and ground backkepiterst

al., 2020; Saatchi, 2019a; Yu & Saatchi, 20T8)isbackscatter response is affected by implicit sensor variables,
such as wavelength and polarization, and by some vegetation features as cover shape, structure, and orientation,
moisture content, geometric and dielectric property of the su(l2ed.uca, Silva, & Modica, 2021a; Lapini et

al., 2020)

The Copernicus mission provides two pedabiting SAR satellite platforms belonging to the SentihgB51)
constellation (S4A and S1B) carying a Gband sensor (wavelength of 5.6 cm) with both cudarized (VH)

and cepolarized (VV)polarization ESA SentineHomepage, 202). At thesewavelengths, the backscatter is
mainly due to the leaves, needlaad smalbranches of the upper canopyd presentkower penetratiopower

than longer wavelength{apini et al., 202Q)Potentially, the information from thgper canopygould allow the
discrimination betweeforest anchonforest areas. Referring to forest applications, régeNicolauet al.(2021)
assessed the potential of S1 tiseries for land usdand cover (LULC) purposes in tropical forests, while
Numbisi et al.(2019) utilized S1 time series to discriminate agroforests environments in a heterogeneous
savannakorest transition zone. On tlsther handLapini et al.(2020)assessed the muftequency approach for
Mediterranean forest classification, discriminating forest fromfieoest areas and broadleaved from coniferous
forests, using data fromtifferent SAR sensors XC- andL-band).These authorsoncluded that the-band is

better forthe firstpurpose, but éband and Xband performed better for distinguishing coniferous and broadleaves.
The utility of SAR signal in forest vegetation discrimination can be also explicatidl figrticular sensitivityto

the forest stand heigleutscher et al., 2013; W. Li et al., 2020; Perko et al., 2011, Siqueira, 2Z0A8)simple

SAR backscatter is indirectly and empirically related to the forest stand higicghitsvalue increasewith a high
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presence of canogscattering elementproportional to forest height (vertical distribution) and canopy density, as

a function of wavelength and polarization. Moreover, theie geometriaelationship between the SA&gnal

and thehei ghts of the objects on the Earthoés gsnodelsace,
(Siqueira, 2019)The InSAR technique exploithe phasénformation of the radar signal to obtain information
about the topography and height of thear t h 6 s (Ferretti ét alg 2087; Ghosh et al.,, 202The S
constellation observes the same scene at two differens,tiapplying the repegiass INSARThe amounbf
temporal phase decorrelationcurring betweetwo passes is one of the models usedstimatehe forest stand

height. The temporal decorrelation is assumed to be higher the grealwightofthe canop due to a more
significant presencef smallscatter elements (Siqueira, 2019). The interferometric coherence can represent the
temporalphase decorrelatiorthe higher is the time phase decorrelation, the lower is the resulting coherence.
Several author@Deutscher et al., 2013; Ghosh et al., 2020; Perko et all, Ziqueira, 2019 pplied empirical
models to estimate the forest stand height from the interferometric coherence measure, with levels of accuracy
that can vary greatly depending on various factors. For this reason, in this stuthhehence rakionshipwith

the forest stand height waxploited todiscriminate the presence of standing forest concerning the other
surrounding LULC classes.

Considering the research experienoentioned aboviehe combined use of both optical aBAR datawould

further improve the identification of forest cover, as confirmed by several aiftboce et al., 2019; Morin et

al., 2019; A Polychronaki et al., 2014; Spracklen & Spracklen, 2021; W. Zhang et al., 28A&cklen and
Spracklen(2021)used S1 and S2 timeseries to distinguish natural and plantation forests in a tropical monsoon

climate zone, concluding that the different sensitivity of these two sensors makes them complementary in

e

analyzing the investigated vegetation surface. Itiqudar, while the SARackscatterdependsn t he veget at.

physical propertiesthe opticalsignal is correlated to the biochemical statevegetation Several studies use
combined data S4nd 2 data for vegetation cover purposesco et al(2019)proposed a Convolutional Neural
Network (CNN) architecture, combining S1 and S2 tiseries for LULC mapping in tropical regions, obtaining
satisfactory resultZhang et al(2019)used the differences in termabsignatures between vegetation cover types,
combining three temporal information of S1 and S2, for distinguishing woody canopy from the herbaceous
canopy in savanna ecosystems using the Support Vector Machines (SVM) cladsifieet al.(2019)combined

the use of S1, S2 and ALOSPALSAR data to estimate forest structure parameters and the aboveground biomass
in maritime pine plantations. In Mediterranean emwiment, besides the literature concerning the single use of
optical sensors(e.g.Aragones et al., 2019; Aubard et al., 2019; Modica et al., 2016; Pratico et al., 2@2é)

seems to be a lack of studies exploiting the $ledpini et al., 2020)and its integrabn with optical imagery for

LULC classificationPolychronaki et al(2014) integrated the Systéeme Pdéub Obser vati on de | a
optical data with the European Remote Sensing (ER8ar@ VV for LULC objectbased classification affected

by a fire in a Mediterranean landscapéey observedhat the use of SAR backscatter improvkd accuracy

reducing the commission errors relatedorestiand cover class and thasclassification betweeforest and shrub

classes in shadowed aredshust et al(2004)assessed the performances of combining ERS and SPOT images

for Mediterranean LULQliscrimination, resulting in a slight improvement of the obtained accuracy.

Chatziantoniolet al.(2017)evaluated the combined use of Sentihelnd Sentine? data for a regionadcale
Mediterranean wetlands classification, and they concluded that SAR data did not significantly improve

classification accuracy. Some ottarthors focusedn Mediterranean crop detectigBamposTaberner et al.,
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2017; Lobo et al., 1996; Villa et al., 201%}onsidering this, more studies should be carried out to expher
potential of integrating multispectral and SAR sensors on map@tegyogeneous Mediterraneacosystems and

to investigate howthe singleinformation contributes to the obtained accuratiyis work aimed to develop a
supervised classification proag@ by integrating S1 and S2 d&taforestcover mapping in a Mediterranean area

of southernPortugal. The obtained results agsential tdulfilling the main research framework in whichis

work was conducted, based on applying remote sensing métigiekoto analyze and monitor wildfigs e f f ect s
in Mediterranean forest ecosystems. Tirst analysion this study area was carried oudlewvelop amunsupervised
classification of the burned areas and based only on SAR S1 data and repbDeddutaet al (2021a) while

the combined use of SAR S1 and optical S2 data allowed to map the spatial distribution of burn(Beverity
Luca, Silva, Oom, et al., 2021)

The initial goal was to create a binary map to distinguish the forest &mwve other LULC classes (pastufes
shrubs, urban, agricultural, etc.). Afterwawte decidedo implement this workflow further by subdividing the
forest ecosystems into three forelstdLC classedetter representing the territorgucalyptus, Pineandnative
broadleaf forest (Quercus suber, Q. ilex, etc.). In the same way, the main surrounding noforest LULC classes were
classified individually (pasturéshrubs, bare soil, urban and agricultural). Bds purposewe provided an
original and open woflow (i. e., implemented using diverse opsourcesoftware andreely available upon a
reasonable request tivze authorsbased on an advanced coupling of SAR) @idmultispectral (S2) timeeries
imagery. In particular, the timgeries of SAR S1 bacgatter (both VHand VV polarizations) and two derived
indices, radar vegetation index (RVI) and radar forest degradatier (RFDI), were combined to the tirseries

of theoptical 2 bands and three derived VIs: NDVI, NDRE, and NBR. In order to opmithie classification
procedure, theoherence measure coming from INSAR analgtidifferentpairs of dates in July 2018 was also
addedas additionainformation, as well as the opticahsed biophysicalariables fraction of green vegetation
cover fCOVER), the fraction of absorbguhotosynthetically activeadiation (fAPAR), and the leaf area index
(LAI) calculatedfor the same month. The wedhown Randonfrorests (RF) machine learniatgorithm Breiman,

2001) was applied for classificatidhrough theuse of opersource and Pythebased librariesThe Python
Language Reference, 282 One of themain problemsn applying machine learningassification algorithmss
choosing the optimal values oftheo d e | 6 s h y ple thipdirectiom anbtleeriginal contributionof this

study was t@rovide an open workflow in which a thorough grid search approach automatically sets the optimal
hyperparameters. THeature importancevas performed during the Refassification proces® evaluate each
inputvai abl e 6 s ¢odhefinal mapping pedonmance.

2.1. Study area

The study areaHigure 2.1) extends over the Serra de Monchique Mountain range located in the southern region

of Portugal, Algarve (37A 18 8pdcial Abed df Cohgervalion.(SAG)dalling of t h
within the European Natura 2000 network (Natura 2000 Site Code: PTCONO0037). The territory is characterized

by the typical heterogeneous and fragmented Mediterranean mountain landscape. The forest cover was mainly
composed of Eucalyptus plantationSu€alyptus globulysLabill. 1800), mixed Mediterranean indigenous

deciduous forestguercus subelL., Quercus ilex_., and other secondary Mediterranean native species), and
coniferous plantations, composed Binus pheal. or Pinus pinasterAiton. A part of the autochthonous oak

forest cover can be associated with the typical sehiral landscape of the Iberian Peninsulahésaand

22



montad®: woodlands and agtwrestry systems used for cork harvesting and gra&ngrge part of the territory
was covered by neforest LULC classes represented by heathlands, sclerophyllous shrublands, pastures, bare soil,
general uncultivated lands (e.g., derived from harvested forest plantations, agricultural and urban lagmig) (Sist

Nacional de Informacéo Geogréfica, SNIG, 2021)

Figure 2.1.Location of the study area in Portugal (left). Overview of the study area (right) using the Google Earth image as a basemap;
the wildfire's perimeter that occurred in August 2018 is oventaligiht blue

2.2. Materials and methods

The implemented procedure (Figure 2) wasried outusing different free and opesourcesoftware solutions
starting from download to thelassification outputind testing and exploiting their interoperability. Mo$tthe
Sentinel images were unavailatile theofficial Copernicus Open Access Hub platfodue tothe LongTerm
Access policy adopted by tiieSA (Copernicus Long Term Archive Access, 2D2 Therefore, we adopted other
alternative way#$o speedip the data download phase. TheiiBages werelownloaded using the Alaska Satellite
Facility (ASF) interface (ASF, 2@, while the Google Earth Engine (GEE) Pythial (Google Earth Engine
Guides, 202) was employed to prprocess and then downloa@t82 dataset. The data ymecessindor S1 was
carried out using the SentirélToolboxes implementeith the SNAP v.8.0.3 opesource software (ESA SNAP
Homepage, 2@ provided by ESA. The classification algorithms were processed tigngnodulesntegated
into the ScikitlearnPython library(Pedregosa et al., 2011)
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