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Abstract 

Although wildfires play a crucial role in ecological processes in the Mediterranean Basin, they often represent one 

of the primary disturbances for forests and other ecosystems, entailing landscape and habitat degradation and 

economic damages. They also determine the consumption of natural carbon reserves and the emission of 

greenhouse gasses (GHG) correlated with climate change. Accurate information relating to the impact of fire on 

the forest environment and how its effects are distributed over time and space, both from a qualitative and 

quantitative point of view, are a key factor for the subsequent implementation of medium and long-term territorial 

planning, in order to predict and manage irreversible processes of degradation of forests and landscape. In this 

context, remote sensing provides reliable tools and techniques for monitoring and quantifying the impact of burned 

areas with reference to satellite platforms. In post-fire monitoring, most studies have been based on optical satellite 

data acquired using passive multispectral sensors, that are closely correlated with the physiological and 

biochemical state of the vegetation. For these reasons, vegetation has its unique spectral signature (depending on 

the species and environmental conditions), and its observation enables its characterization and subsequent 

monitoring. Anomalies at the spectral level, indeed, conceal anomalies at the plant level. Although their 

effectiveness for this purpose has been widely proven, optical systems present some limitations, mainly due to 

their sensitivity to some environmental conditions, such as sunlight and cloud cover, which reduces the frequency 

of observation at the visible/infrared wavelength bands or the spectral confusion of burned areas with unburned 

low albedo surfaces (i.e., dark soils, water surfaces, shadow areas), or the premature signal saturation due to the 

high sensibility to increasing values of leaf area index (LAI). Furthermore, this type of sensors cannot capture 

many quantitative aspects since these wavelengths do not interact directly with the structure of the objects. 

Therefore, methods based on data acquired by cloud-independent and structure-dependent sensors at high spatial 

and temporal resolutions are needed. Among them, Synthetic Aperture Radar (SAR) are active sensors that 

generates their microwave impulses (2.4-100 cm) and transmits them from its antenna to a target. Calculating the 

amount of the signal fraction reflected back to the sensor (backscatter) characterizes the targetôs spectral radar 

signature. The penetration capacity of the impulse in the matter is directly proportional to the wavelength. For this 

reason, the SAR waves can pass through atmospheric particulate or interact with the vegetation cover structure. 

Therefore, to characterize and quantify the effects of a disturbance on vegetation, radar technology exploits the 

variations in backscatter caused by the modification of the vegetation cover and soilôs structure and moisture 

content. However, its processing and interpretation complexity causes this sensor not to be widely used compared 

to optical ones. 

Against that background, in this Ph.D. thesis, a complete and open-access workflow aimed at the investigation and 

mapping of the fire effects on Mediterranean ecosystems in the short term (pre-fire condition assessment; burned 

area detection; post-fire severity estimation and mapping) and the monitoring of the response of the environment 

during the first years after the event (post-fire recovery monitoring), was developed. To achieve this, free-available 

optical (Sentinel-2) and SAR (Sentinel-1) high spatial and temporal data were integrated, assessing the strengths 

and limitations of each of them and the advantages that are provided by the combination of both information. The 

first step concerned the construction of an accurate land use/land cover (LULC) map in a heterogeneous 

Mediterranean forest (located in Portugal) area to have an overview of the qualitative and quantitative state of 

vegetation present before the fire event. To this end, we applied an exhaustive grid search analysis to set the 

optimal hyperparameters of a machine learning model (random forest, RF) and the inclusion of different variables 
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(i.e., vegetation indices time-series, optical biophysical variables, and interferometric SAR - InSAR - coherence). 

This integration allowed reaching an overall accuracy (F-score) of 0.903, observing an improvement of 2.53% 

when SAR data were integrated into optical information. 

The second step dealt with the accurate detection of burned areas and delimitation of their perimeters. Two 

approaches were proposed to fulfil  the objective: the first concerned only the use of SAR data (backscatter, dual- 

and single polarized SAR indices, textures) for an unsupervised detection (using the k-mean algorithm, set using 

a silhouette score analysis) of burned areas in two different study sites (located in Portugal and Italy respectively), 

with a reached F-score of 0.803 (Portuguese site) and 0.853 (Italian site); the second approach proposed a 

multitemporal composite process, by combining both Sentinel-2 and Sentinel-1 images, and a subsequent object-

based geographic analysis (GEOBIA) to map burned areas on regional/national scales occurred during the entire 

fire season (2017) in Portugal, achieving F-score values of 0.914 (when only optical data is used) and 0.956 

(combining optical and SAR information).  

In the third step of the main workflow, the short-term fire effects, in the form of fire severity, and their spatial 

distribution are estimated. Three approaches were presented, two of which are similar and united by the use of the 

composite burnt index (CBI) protocol to determine the severity classes in the field and to define the training data 

of the model, which, in one case (study site located in Portugual), was constituted by the RF algorithm, while in 

the other case (study site located in Italy) an artificial neural network was built. The RF model reached an F-score 

of 0.838 when both the datasets were combined (S1 + S2), compared with the values achieved by using SAR 

(0.513) and optical (0.805). The results obtained using the artificial neural network (F-score > 0.95) gave proof of 

the great potential in the use of these advanced deep learning models. A third approach involved a spectral mixture 

analysis (SMA) of optical Sentinel-2 imagery to spectrally characterize and quantify the proportion of the three 

fraction components indicative of the main physical effects immediately after a forest fire (char, scorched 

vegetation and green vegetation).  

For the first years after a fire event, the investigation of temporal and spatial dynamics of the post-fire recovery of 

different Mediterranean vegetation types characterized the fourth step. Both SAR Sentinel-1 and optical Sentinel-

2 time series were analyzed separately according to the fire severity classes (obtained in the previous step), 

highlighting the complementary and essentiality of both information. Moreover, a burn recovery ratio (BRR), 

optimized through machine learning regressors for predicting pre-fire conditions, was proposed to estimate and 

map the spatial distribution of the degree of vegetation recovery. 

The development of these approaches and managing this amount of data required advanced techniques and 

solutions of geo-informatics, geo-statistics, geomatic, image processing, and advanced artificial intelligence 

models. Nevertheless, the whole process was developed and performed, fulfilling the principle of employing freely 

available data and open-source software and libraries (e.g., ESA SNAP, Scikit-Learn, OTB, Google Earth Engine) 

mostly executed in Python-script language. 

 

Keywords: fire severity, Sentinel-1, Sentinel-2, burn detection, post-fire recovery, geo-informatic, machine 

learning 
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Riassunto 

Nel bacino del Mediterraneo, sebbene gli incendi svolgano un ruolo cruciale nei processi ecologici, spesso 

rappresentano uno dei principali disturbi per le foreste e gli altri ecosistemi, comportando degradazione del 

paesaggio e degli habitat, e danni economici. Gli incendi, inoltre, determinano il consumo di riserve naturali di 

carbonio e l'emissione di gas serra (GHG) correlati al cambiamento climatico. Informazioni accurate relative 

all'impatto dell'incendio sull'ambiente forestale, e alla sua distribuzione nel tempo e nello spazio, rappresentano 

fattori chiave per la successiva attuazione della pianificazione territoriale a medio e lungo termine, finalizzata alla 

prevenzione e gestione di quei processi irreversibili di degrado degli habitat e del paesaggio. In questo contesto, il 

telerilevamento satellitare fornisce strumenti e tecniche affidabili per monitorare e quantificare l'impatto delle aree 

bruciate. Nel monitoraggio post-incendio, la maggior parte degli studi si è basata su dati satellitari ottici acquisiti 

utilizzando sensori multispettrali passivi, strettamente correlati allo stato fisiologico e biochimico della 

vegetazione. La vegetazione presenta infatti una firma spettrale univoca (con piccole variazioni a seconda della 

specie e delle condizioni ambientali), e la sua analisi ne consente la caratterizzazione e il successivo monitoraggio: 

le anomalie spettrali, infatti, si traducono in anomalie a livello della pianta. Sebbene lôefficacia dei sensori ottici 

per lo scopo appena descritto sia stata ampiamente dimostrata, essi presentano alcune limitazioni. Queste sono 

principalmente causate dalla sensibilità ad alcune condizioni ambientali: come luce solare e nuvolosità, che ne 

riducono la frequenza di osservazione; o dalla confusione di aree bruciate con superfici a bassa albedo (es. suoli 

scuri, superfici idriche, zone d'ombra); o la sensibilità ai valori crescenti dell'indice di area fogliare (LAI) che 

comporta una prematura saturazione del segnale. Inoltre, questi tipi di sensori non interagiscono direttamente con 

la struttura degli oggetti non permettendogli la cattura di molti aspetti qualitativi della copertura vegetale. Pertanto, 

sono necessari dati acquisiti da sensori che presentino sia indipendenza dalla copertura nuvolosa, sia la capacità di 

interagire con la struttura. Tra questi, i radar ad apertura sintetica (SAR) sono sensori attivi che generano i loro 

impulsi a microonde (2,4-100 cm) e li trasmettono dalla loro antenna ad un bersaglio posto sulla superfice terrestre. 

Il calcolo della quantità della frazione di segnale riflessa verso sensore (backscatter) caratterizza la firma del radar 

spettrale del bersaglio. La capacità di penetrazione dell'impulso nella materia è direttamente proporzionale alla 

lunghezza d'onda. Per questo motivo, le onde SAR possono attraversare il particolato atmosferico o interagire con 

la struttura della copertura vegetale. Pertanto, per caratterizzare e quantificare gli effetti di un disturbo sulla 

vegetazione, la tecnologia radar sfrutta le variazioni di backscatter causate dalla modifica della copertura vegetale, 

della struttura del suolo, e del contenuto di umidità degli oggetti osservati. Tuttavia, la sua complessità di 

elaborazione e interpretazione fa sì che questi sensori non siano ampiamente utilizzati quanto quelli ottici. 

In tale contesto, la presente tesi di Dottorato propone un workflow completo ed open-source finalizzato all'indagine 

e mappatura degli effetti del fuoco a breve termine sugli ecosistemi mediterranei (valutazione delle condizioni pre-

incendio; rilevamento delle aree bruciate; stima e mappatura della severità post-incendio) e al monitoraggio 

temporale della risposta della vegetazione durante i primi anni dopo l'evento di incendio (monitoraggio del 

recupero post-incendio). Per assecondare questi obiettivi, sono stati integrati dati ottici (Sentinel-2) e SAR 

(Sentinel-1) gratuiti e ad alta risoluzione spaziale e temporale, valutando i punti di forza e i limiti di ciascuno di 

essi, e i vantaggi forniti dalla combinazione di entrambe le informazioni. Il primo step ha riguardato la 

realizzazione di un'accurata mappa della copertura e uso del suolo (LULC) in un'area Mediterranea eterogenea 

(situata in Portogallo) al fine di avere una panoramica dello stato qualitativo e quantitativo della vegetazione 

presente prima dell'evento di incendio. A tal fine, diverse variabili sono state calcolate ed utilizzate come dati di 
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input (ad esempio, serie temporali degli indici di vegetazione, variabili biofisiche ottiche e SAR interferometrico 

- InSAR - coerenza). Inoltre, è stata applicata un'analisi exhaustive grid search per impostare gli iperparametri 

ottimali di un modello di machine learning (foresta casuale, RF). Questa integrazione ha permesso di raggiungere 

un'accuratezza complessiva (F-score) di 0.903, osservando un miglioramento del 2,53% quando i dati SAR sono 

stati accoppiate alle informazioni ottiche. 

Il secondo step ha riguardato il rilevamento accurato delle aree bruciate e la delimitazione dei loro perimetri. Sono 

stati proposti due approcci per raggiungere questo obiettivo: il primo riguardava solo l'uso di dati SAR 

(backscatter, indici SAR a doppia e singola polarizzazione, texture) per un rilevamento non supervisionato 

(utilizzando l'algoritmo k-mean, impostato utilizzando un'analisi silhouette) delle aree bruciate in due diversi siti 

di studio (situati rispettivamente in Portogallo e in Italia), raggiungendo valori di F-score pari a 0.803 (sito 

portoghese) e 0.853 (sito italiano); il secondo approccio proponeva un processo di image composite 

multitemporale, combinando sia le immagini Sentinel-2 che quelle Sentinel-1, e una successiva classificazione ad 

oggetti (GEOBIA) per mappare le aree bruciate su scala regionale/nazionale da incendi avvenuti durante unôintera 

stagione degli incendi (2017) in Portogallo, ottenendo valori F-score di 0,914 (quando vengono utilizzati solo dati 

ottici) e 0,956 (combinando informazioni ottiche e SAR). 

Nel terzo step, vengono stimati gli effetti dell'incendio a breve termine, sotto forma di severità dell'incendio, e la 

loro distribuzione spaziale. Sono stati presentati tre approcci di cui due simili e accomunati dall'uso del protocollo 

Composite Burnt Index (CBI) per determinare le classi di severità sul campo e per definire i dati di addestramento 

del modello. In un approccio (sito di studio situato in Portogallo), si ¯ utilizzato lôalgoritmo RF come modello; 

mentre in un secondo approccio (sito di studio situato in Italia) è stata implementata una rete neurale artificiale. Il 

modello RF ha raggiunto un valore di F-score di 0,838 quando entrambi i set di dati sono stati combinati (S1 + 

S2), rispetto ai valori ottenuti utilizzando solo SAR (0,513) e solo ottico (0,805). I risultati ottenuti utilizzando la 

rete neurale artificiale (F-score > 0,95) hanno dato prova del grande potenziale nell'uso di questi modelli avanzati 

di deep learning. Un terzo approccio prevedeva lôapplicazione di una spectral mixture analysis (SMA) delle 

immagini ottiche Sentinel-2 per caratterizzare spettralmente e quantificare la proporzione delle tre componenti 

frazionali indicativi dei principali effetti fisici riscontrabili immediatamente dopo un incendio boschivo (carbone, 

vegetazione bruciata e vegetazione verde). 

Per i primi anni dopo un evento di incendio, l'indagine sulle dinamiche temporali e spaziali del recupero post-

incendio di diverse tipologie di vegetazione mediterranea ha caratterizzato il quarto step. Sia le serie temporali 

SAR Sentinel-1 che quelle ottiche Sentinel-2 sono state analizzate separatamente in base alle classi di gravità 

dell'incendio (ottenute nello step precedente), evidenziando la complementarietà e l'essenzialità di entrambe le 

informazioni. Inoltre, è stato proposto un indice burn recovery ratio (BRR) per la stima e la mappatura della 

distribuzione spaziale del grado di recupero della vegetazione. Lôindice ¯ stato ottimizzato nella fase di predizione 

delle condizioni pre-incendio tramite algoritmo di regressione di machine learning. 

Lo sviluppo di questi approcci e la gestione di questa quantità di dati hanno richiesto tecniche e soluzioni avanzate 

di geo-informatica, geostatistica, geomatica, image processing e modelli avanzati di intelligenza artificiale. 

Tuttavia, l'intero processo è stato sviluppato ed eseguito rispettando il principio dell'utilizzo di dati gratuitamente 

disponibili e software e librerie open-source (ad es. ESA SNAP, Scikit-Learn, OTB, Google Earth Engine) eseguiti 

principalmente tramite linguaggio Python.  
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1. General Introduction 

1.1. Wildland fire overview 

 Wildland fires are a primary natural component that influences the ecological dynamics of many ecosystems at 

different spatial and temporal scales. On the one hand, fire stimulates bio-physical activities and natural 

regeneration, and promotes seed germination and production, positively and indirectly affecting the biodiversity 

of the affected environments (Emilio Chuvieco, 2009; Emilio Chuvieco et al., 2014; Moreira et al., 2020; Valkó 

& Deák, 2021). Moreover, it can improve soil properties when the frequency is low and/or the temperatures 

reached are not high enough to cause the volatilization of organic matter and nutrients (Alcañiz et al., 2018; Pereira 

et al., 2018; Romeo et al., 2020). On the other hand, fire can represent a long-term threat, contributing to 

environmental degradation,  namely, soil erosion, habitat simplification, biomass consumption, and greenhouse 

gas (GHGs) emissions affecting air quality and global climate (Cascio, 2018; Hardy, 2005; Häusler et al., 2018; 

Reid et al., 2016; Rosa et al., 2011). Moreover, the direct influence of human activity on its frequency or, indirectly, 

the negative consequence that such activities have raised on global climate and the modification of landscape and 

habitat patterns has led to a worsening fire susceptibility of some environments during the last decades (Mitchell 

et al., 2009; Moreira et al., 2020). Such events negatively impact ecosystem services, such as food production, 

fresh water stocks, wood products, microclimate, recreation, and tourism (Emilio Chuvieco et al., 2014). 

Moreover, these events have direct socio-economic damages given by the loss of human life and infrastructure. 

According to European fire statistics (Figure 1.1) (EFFIS annual fire reports, 2022; European Environment 

Agency, 2022), although the long-term trend of burned area extension has decreased in Europe, some countries 

have experienced more extreme events (in terms of the burned surface) during the last decades (e.g., Portugal). 

 

Figure 1.1. Annual burned surface in European countries between 1980 and 2020, with more focus on the Mediterranean  European 

countries (EUMED5: Portugal, Spain, France (southern), Italy and Greece). European member countries not included in EUMED5 are 

designed as ñOther countriesò. The reference is https://www.eea.europa.eu/data-and-maps/daviz/burnt-forest-area-in-five-4#tab-

chart_5. The Data are, in turn, supplied by ñSan-Miguel-Ayanz, J., et al., Forest Fires in Europe, Middle East and North Africa 2020, 

EUR 30862 EN, Publications Office of the European Union, Luxembourg, 2021, doi:10.2760/216466, JRC1267665ò. 

Notably, in the Mediterranean basin, although wildland fires are an integral element of natural ecosystems and 

historically used as a tool for land-use management, their impacts have increased in the last decades, causing 

https://www.eea.europa.eu/data-and-maps/daviz/burnt-forest-area-in-five-4#tab-chart_5
https://www.eea.europa.eu/data-and-maps/daviz/burnt-forest-area-in-five-4#tab-chart_5
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significant economic damages and landscape disasters (Chuvieco, 2009; San- Miguel-Ayanza et al. 2018; San-

Miguel-Ayanza et al. 2019; Silva et al. 2019; Otón et al., 2019). 

Mediterranean ecosystems constitute a critical biome at the European level due to their high biodiversity and 

intense interaction with human activities  (Aragones et al., 2019; Emilio Chuvieco, 2009; Moreira et al., 2020). 

The typical Mediterranean climatic regime, characterized by long periods of summer drought, exacerbated by the 

current global warming, entails an increasing wildfire risk in terms of frequency, extension, and severity (Moreira 

et al., 2020). Fire severity is defined as the degree of direct environmental chemical-physical alterations, 

decomposition, and loss of above/below-ground organic and inorganic matter caused by the combustion process 

(De Santis & Chuvieco, 2007; Key & Benson, 2006; Lentile et al., 2006; Roth et al., 2012). It plays a critical role 

in the sustainability of Mediterranean habitats, influencing the competitive interactions between species and their 

post-fire recovery capability (Christopoulou et al., 2019; José Vidal-Macua et al., 2017; Lacouture et al., 2020; 

Morresi et al., 2019; Tanase et al., 2011; Viana-Soto et al., 2017). Moreover, the widespread accumulation of 

woody fuel, a consequence of the abandonment of the semi-natural and agricultural areas that has been occurring 

in Mediterranean landscapes, has been causing suitable conditions for the ignition and the progression of such high 

intensity fires (Xofis et al., 2022). Fire intensity, defined as the energy released by a fire per length of fire front 

per unit time (Keeley, 2009; Key & Benson, 2006). 

The immediate impact of the fire appears in the form of alteration of the vegetation cover, both structurally (e.g. 

canopy and biomass consumption) and chemical-physically, with the death or consumption of the organic matter 

and photosynthesizing tissues, caused by the direct heat transfer generated by the fire or the biomass combustion 

(Key & Benson, 2006; Lentile et al., 2006). Subsequently, in response to a fire event, Mediterranean habitats 

activate natural mechanisms for recovery of pre-fire ecological conditions. The effectiveness of these mechanisms 

depends on the characteristics of the fire itself, in turn, influenced by several environmental factors (combined 

action of vegetation type, wind, moisture, and topography), on its direct physical impact on the land surface, and 

on the degree of ecosystems resilience (Filipe X Catry et al., 2012; Fernández-García et al., 2018; Fernandez-

Manso et al., 2016; Frazier et al., 2015; Gouveia et al., 2010; Morresi et al., 2019).  

Therefore, regarding the short-term effects, it can be argued that they depend on the susceptibility of the 

ecosystems. First, the energy produced by fire (intensity) is determined by the nature of the fuels available for 

combustion, and the type of vegetation. In particular, the density and moisture  content of fuels. Meteorological 

conditions play a decisive role (e.g., the rainfall drastically reduce the fire intensity and duration while the winds 

feed it with comburent), and land topography (e.g., the presence of natural barriers for the advancement of the 

flames or slopes that, instead, facilitate the contact between them and the surrounding vegetation) (José Vidal-

Macua et al., 2017; Key & Benson, 2006; Moreira et al., 2020). 

The complexity of fireôs effects on the Mediterranean ecosystem reflects the complexity of the ecosystem itself. 

Each of the thousands of individual components that constitute the ecosystem uniquely responds to the fire event 

but, if it could be more or less relevant to be individually accounted, depends on the objectives (Key, 2006). In 

fact, the evaluation of the fire effect remains a judgment that changes according to the studyôs context and 

objectives. Although intensity and severity are two highly correlated factors, the same intensity value can produce 

different degrees of severity burn, depending on the combination of the various environmental and vegetational 

factors seen above. Moreover, mome species are known to have adaptations that make them more resistant to fire 

than others (Mitchell et al., 2009; Romeo et al., 2020). The fire severity represents the most suitable metric for 
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describing the post-fire effects on vegetation. It is a coherent numerical scale that measures the magnitude of 

change on a single factor and as a composite of multiple ecological factors (Key & Benson, 2006). 

In this context, the definition of protocols for the qualitative and quantitative description of short and longer effects 

on Mediterranean ecosystems is crucial for better understanding their dynamics and planning appropriate post-fire 

management strategies (Chu & Guo, 2013; Emilio Chuvieco et al., 2019; Carmen Quintano et al., 2020). A holistic 

approach is generally used at large scales and in landscape ecology in order to represent the severity of the burn 

as an aggregate of effects on a given area.  

From a landscape perspective,  the widest used and accepted protocol for short-term fire severity effects estimation 

is the Composite Bun Index (CBI) proposed by Key & Benson (2006) (Key & Benson, 2006) and developed in 

the framework of the FIREMON Project (2006). This method is used to derive index values that summarize overall 

burn ecological impacts within an area, that is, the average fire effects on a plot and the main macro-components 

that compose it: soil, litter and vegetation. To derive the averaged severity value for a sample plot, the metric 

combines average conditions of many visual-assessed ecological factors (e.g., percent of unaltered green 

vegetation, torched trees and coal thickness, altered brown foliage) across multiple strata composing an ecosystem 

(lit ter, herbs, shrubs, short trees, medium height/sub-dominant trees and high/dominant trees). The short-term fire 

effects are independently examined by strata so that they can be as relatively associable as possible (Key & Benson, 

2006). The CBI is, therefore, a holistic approach that integrates the different fire effects that can be easily observed 

on the ground converts them to numerical values, and returns an average value, to simplify the severity 

categorization procedure. It is not surprising, in light of this, that this approach was designed to make the high 

variability observable in a post-fire context as comparable as possible with the perspective of a multispectral sensor 

mounted on a satellite platform, whose spatial unit (pixel) is expressed by simple single numbers (Key & Benson, 

2006; Sander Veraverbeke & Hook, 2013). Several modifications and optimizations of the CBI protocol have been 

proposed in the literature (e.g., De Santis & Chuvieco, 2007, 2009; Saulino et al., 2020). However, the relevance 

of CBI is given by having standardized and made replicable to different ecosystems the approach for fire effects 

assessing, as well as clarifying their definitions. 

Although the effects of burn severity vary within a continuum, for convenience and to be comparable to remote 

sensing data, burn severity is often summarized into three discrete classes (low, moderate and high), from which 

it is possible to retrieve intermediate classes (De Luca, Silva, Oom, et al., 2021; De Santis & Chuvieco, 2007, 

2009; Lentile et al., 2006). Employing the nomenclature used in several studies that evaluated the pure components 

observable in an immediate post-fire forest environment (Lentile et al., 2006; Quintano et al., 2013, 2020; A M S 

Smith et al., 2007; S Veraverbeke et al., 2012; Sander Veraverbeke & Hook, 2013) , indicative of the physical fire 

effects, the definition as mentioned above of severity classes could be replaced to make the assessment as objective 

as possible (Figure 1.2):   

× Green component (from unburned to low severity): the substrate, the understory vegetation (herbs, shrubs and 

trees less than 1 meter) and trees canopies could result unaltered by fire or only slightly disturbed by heat. In 

these conditions, most of the green photosynthetic plant tissues stay alive. Fallen trees should also be 

considered (due to wind or soil instability) but in which the conditions of the canopy are as described above. 

From a satellite perspective, and/or according to the variable target under study, this severity class may only 

refer to the crowns of the dominant trees. Therefore, it could also include sub-areas where the undergrowth 

has been affected by the fire while the foliage has not. 
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× Scorch component (from moderate to moderate-high severity): alteration of pre-fire green healthy vegetation 

foliage to brown dead plant tissues (scorched), mostly leaves/noodles killed by proximal heat radiated and 

convected from the surface fire or by fire-induced girdling, with the structural elements (trunk and branches) 

affected but unconsumed (except for the fine outer branching). The understory is generally heavily altered or 

consume. As mentioned above, fallen trees must be counted to describe this effects category. It is expected 

that delayed mortality will arise in the most affected tree canopies. Fallen trees should also be considered (due 

to wind or soil instability), but in which the conditions of the canopy are as described above. 

× Charcoal component (from high to very-high severity): Severe alteration or consumption of crown foliage and 

woody material, implicating conversion to inorganic carbon (charcoal), till, at extreme severities, the complete 

loss of woody fuel. Since CBI is a visual-based severity assessment approach, blackened woody tree parts 

from soot or high flames (without effectively affecting the internal tissues) have been generally included in 

this category of short-term effects. A mantle of coal and ash replaced the total absence of short vegetation. 

 

Figure 1.2. The figure illustrates four cases of post-fire effects on treeôs canopies, three of which represent the main post-fire 

components (green, top-left box; scorch, top-right box; charcoal, bottom-right box) and one mixed class (green-scorch, bottom-left 

box). The photos were taken in Serra de Monchique - Portugal (top-left box; photo on the right of the bottom-left box; photo on the 

right of the bottom-right box) and in the Aspromonte National Park - Italy (top -right box; photo on the left of the bottom-left box; 

photo on the left of the bottom-right box). 

As mentioned above, the direct impact of fire influences the effectiveness of post-fire recovery strategies that are 

activated by Mediterranean ecosystems immediately after the event (Filipe X Catry et al., 2012; Fernández-García 

et al., 2018; Fernandez-Manso et al., 2016; Frazier et al., 2015; Gouveia et al., 2010; Morresi et al., 2019), as well 

as they can differ based on the combination of same variables that govern the behavior of the fire itself: 

environment (soil moisture-holding capacity, microclimate), topographic (geomorphology, aspect), vegetation 

(type  and  quantity  of  vegetation present before and after the fire as  seed bank able to mature under fire-altered 

microclimate and soil), human activity (Christopoulou et al., 2019; De Luis et al., 2006; José Vidal-Macua et al., 

2017; Key, 2006; Mitchell et al., 2009; Montès et al., 2004) 

Once the fire damages have been quantified and categorized, the monitoring of the long-term impacts and the 

response of environment should be set as a subsequent goal. The post-fire recovery of vegetation cover structure 

is a natural mechanism that promotes the restoration of numerous ecosystem services, such as the carbon 

sequestration induced by the regenerating process of forest vegetation, which mitigates the carbon emissions to 
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the atmosphere due to fire (Frolking et al., 2009; Huang et al., 2020; Morresi et al., 2019; Ryu et al., 2018; 

Semeraro et al., 2019). In Mediterranean ecosystems, the recovery process is very complex. The first stage of post-

fire dynamic auto-succession is usually characterized by prompt and massive colonization of pioneer 

Mediterranean annual grasses and perennial woody shrubs (Fabaceae, Cistaceae, Lamiaceae, Pteridofite) or 

pioneer trees (Capitanio & Carcaillet, 2008; De Luis et al., 2006; Mitchell et al., 2009; Montès et al., 2004). The 

gaps caused by parts of dead and/or destroyed foliage expose the underlying layers, which are rapidly colonized 

by flourishing herbaceous pioneer vegetation. Most of the taxa recognizable in a post-fire environment play a 

fundamental ecological role in the general recovery of degraded or abandoned areas (e.g., former agriculture areas) 

in Mediterranean territories (Xofis et al., 2022). The second stage (medium and long term) involves the gap filling  

by the forest seedlings in the areas previously occupied or currently surrounded by forest (Frazier et al., 2015; 

Montès et al., 2004). This step can be anticipated when the woody species are characterized by a high capacity for 

asexual (es. Eucalyptus, Quercus, etc.) or sexual (Mediterranean pines) regeneration (Capitanio & Carcaillet, 2008; 

Filipe X Catry, Moreira, et al., 2013; Montès et al., 2004; Romeo et al., 2020) as adaptations to fire. The following  

competition phases determine the closure of the foliage of the new individuals. Meanwhile, below the canopies,  

the seedlings of shade-tolerant trees continue to develop (Capitanio & Carcaillet, 2008; Frazier et al., 2015). 

1.2. The role of spaceborne remote sensing for wildland fire monitoring  

1.2.1. The optical domain 

Remote sensing techniques and data have been extensively employed to detect and estimate the effects of fire on 

ecosystems, promoted by the increasing availability of numerous satellite sensors at rising spatial, spectral, and 

temporal resolutions, and even more robust analysis algorithms and processing software (Chu & Guo, 2013; Emilio 

Chuvieco et al., 2019; Corona et al., 2008; I. Gitas et al., 2012a). Most of the methodologies presented in those 

studies relied on the use of multispectral optical imagery to detect burned areas (Emilio Chuvieco et al., 2016; 

Filipponi, 2019; Mpakairi et al., 2020; Otón et al., 2019; Pulvirenti et al., 2020; Santos et al., 2020; Silva et al., 

2004; Silva et al., 2019; Sousa et al., 2003), estimate the degree and the spatial distribution of burn severity (De 

Luca, Silva, Oom, et al., 2021; Fernández-García et al., 2018; Morresi et al., 2022; Saulino et al., 2020), and assess 

other consequences of the fire on environmental biological and structural features, such as biomass consumption 

(Garcia et al., 2017) and greenhouse gas emissions (Ostroukhov et al., 2022; Rosa et al., 2011).  

Multi -spectral optical sensors are passive systems capable of capturing the reflected electromagnetic waves 

(emanated by the Sun) in the regions of the electromagnetic spectrum including between the visible and the infrared 

(wavelength around 400 nm to 2300 nm, if thermal-infrared is excluded). The efficiency of these passive sensors 

is due to the high sensitivity of the visible (VIS), near-infrared (NIR), and short-infrared (SWIR) spectral regions 

to the surface changes caused by fire (Chuvieco 2009; Chuvieco et al. 2019; Pereira et al. 1999). Using the 

definitions schematized by Chuvieco et al. (2020): the VIS region (0.4ï0.7 µm) covers the spectral wavelengths 

our eyes can sense. The VIS is generally decomposed into three primary colors: blue (0.4ï0.5 µm), green (0.5ï

0.6 µm), and red (0.6ï0.7 Õm). The spectrumôs NIR region (0.7ï1.2 Õm) lies just beyond the human eyeôs 

perception capability and is highly sensitive to plant health (photosynthetic) status and vegetation net primary 

productivity. Within this region, the Red-Edge (0.7-0.75 nm) part is distinguished to be particularly sensitive to 

leaf pigments content. The SWIR region (1.2ï2.5 Õm), in which the influence of the Sunôs energy is still very 
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relevant, provides the best estimations of the moisture content of soil and vegetation in the optical domain. A 

substantial part of these wavelengths strikes objects on Earthôs surface and can be partially or wholly absorbed or 

reflected by them. The magnitude of reflection and/or absorption energy is defined by the physic-chemical 

characteristics of the material or by physiological processes that can occur within the tissues of the objects. In the 

case of vegetation, the photosynthesis and the amount of chlorophyll determine a unique interaction with 

electromagnetic waves if compared to other materials (Figure 1.3, left). For each specific portion of the 

electromagnetic spectrum, therefore for each wavelength or band, the absorbed/reflected energy balance should 

be at stable range levels when the vegetation is healthy, obviously with intra-variations as a function of different 

factors such as vegetation type and environmental conditions (see Figure 1.3). This is because the chlorophyll 

content is, in turn, related to the degree of stress of the plant and to seasonal-physiological phases. Thus, the 

quantitative-qualitative analysis of the differences between the spectral signature of healthy vegetation and its 

signature in a changed condition (for example, due to a fire) is the theoretical basis of remote sensing monitoring 

(Xie et al., 2008). 

In the period immediately after a fire, burned surfaces tend to be relatively dark in the VIS, due the dominant 

presence of black charcoal and the decrease in other reflective components (such as photosynthetically active 

pigments of vegetation). Local exceptions may concern the presence of exposed bright soil and/or light ash. At the 

same time, these conditions cause a significant decrease in NIR reflectance. Wavelengths falling in the SWIR 

region tend to present higher reflectance due to the decrease in moisture content (Pereira et al., 1999). The specific 

spectral signature of a portion of the burned vegetation surface, therefore, depends on the grade of occurred 

severity, namely, on the proportion of the main three post-fire fractional components (green vegetation, scorched 

brown vegetation, black charcoal) (Figure 1.3) and to the combined effect of diverse factors (changes in the 

moisture content and temperature, different reflectance from bared soil, etc.) (Pereira et al. 1999; Smith et al. 2005; 

Inoue et al. 2008). 

 

Figure 1.3.  Specific spectral signatures of the three main post-fire fractional components, representing the main physical effects 

induced by the fire on vegetation: unburned/lowly affected green vegetation (left), scoarched vegetation (middle), heavily 

burned/torched vegetation (right). The photos were taken in Coruche - Portugal (left), in the Aspromonte National Park - Italy (middle), 

in Serra de Monchique (right). At the bottom, there are the respective spectral signatures retrieved from three different sources: spectral 
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library retrieved by the Centro de Estudos Florestais (CEF) of the Instituto Superior de Agronomia (Lisbon), ASTER spectral library 

(Baldridge et al., 2009), and Sentinel-2 image (visual-chosen). 

The assessment of fire effects and their severity can be based on a mixture composed of these three typical post-

fire fractional cover components, given their strong correlativity with the actual physical effects that occurred on 

the ground, thus directly comparability to the burn severity parameters traditionally assessed on field monitoring 

standard protocols (Lentile et al., 2006; 2009; Smith et al., 2007; Sunderman & Weisberg, 2011; Sander 

Veraverbeke & Hook, 2013), for example, that proposed by Key & Benson (2006), aimed to standardize the 

measurements of fire effects across space and time, in a context that is otherwise characterized by high variability 

(Key & Benson, 2006; Sander Veraverbeke & Hook, 2013). 

The same principles are applied for the long-term monitoring of post-fire recovery. In the long term, these post-

fire components tend to be attenuated with an inverse proportionality to the fire severity that occurred (Pereira et 

al. 1999; Smith et al. 2005; Inoue et al. 2008). The simultaneous initial re-growth of both herbaceous and woody 

vegetation, thus the phenological and physiological vegetation trend and the increasing moisture content, causes 

an increase  in  reflectance  in specific wavelengths (VIS and NIR)  and,  in  any  case, a  general rise in  optical  

brightness, while the SWIR reflectance tends to return to lower values immediately after the fire (De Luca, Silva, 

& Modica, 2022; Frazier et al., 2015; Morresi et al., 2019). 

However, optical systems present some limitations, mainly for their sensitivity to some environmental conditions, 

such as sunlight and cloud cover, which reduces the frequency of observation at the visible/infrared wavelength 

bands, and for the spectral confusion of burned areas with unburned low albedo surfaces (i.e., dark soils, water 

surfaces, shadow areas) (Lehmann et al., 2015; Minchella et al., 2009; Stroppiana et al., 2015). Furthermore, this 

type of sensor cannot capture some quantitative aspects, since these wavelengths do not interact directly with the 

structure of the objects (Santi et al., 2017). 

1.2.2. SAR sensors 

Concurrently with optical-based data and approaches for burned area detection and fire effects monitoring, the 

synthetic aperture radar (SAR) sensors are active systems working in the microwave region of the electromagnetic 

spectrum (2,4-100 cm). The high sensitivity of SAR signal to the structural properties of the vegetation, with a 

generally linear correlation between backscatter and vegetation biomass (Chen et al., 2019; Quegan et al., 2000; 

Saatchi et al., 2012; Saatchi, 2019; Yu & Saatchi, 2016), and its capabilities for all-weather and solar radiation 

independency, make the SAR backscatter complementary information with optical data (Minchella et al., 2009; 

Polychronaki et al., 2014; Tanase et al., 2011; Tanase, Santoro, Wegmüller, et al., 2010; Zhou et al., 2019). 

The response of the radar signal is affected by the ensemble of environmental variables (e.g. land cover, vegetation 

cover structure, moisture content, dielectric property of objects, size/shape, and orientation of the scatterers in the 

canopy) and variables related directly to the sensor (e.g., polarization, which describes the orientation of the plane 

of oscillation of a propagating signal;  wavelength, and orbit) or to the local surface properties (e.g., topography, 

orientation, surface roughness, and local incident angle) (Meritxell Gimeno & San-Miguel-Ayanz, 2004; Hachani 

et al., 2019; Imperatore et al., 2017; Lapini et al., 2020; Santi et al., 2017; Tanase et al., 2011; Tanase et al., 2020; 

Mihai A. Tanase, Santoro, Wegmüller, et al., 2010). The behavior of the SAR signal is determined by the 

wavelength used, as it defines the penetration capacity of microwaves across materials and objects on the Earthôs 

surface: the greater the wavelength, the greater the ability to penetrate the material. For vegetated areas, this implies 
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that longer SAR bands, such as L-band (15 ï 30 cm) and P-band (30 ï 100 cm), interact with deeper strata and/or 

larger elements of vegetation cover than shorter bands, such as the X-band (3.75-7.5 cm) which, on the other hand, 

are more suitable for examining the superficial layers and small elements of vegetation cover (such as small 

branches and leaves) (Imperatore et al., 2017; Tanase, Santoro, De La Riva, et al., 2010).  

The Earthôs microwave backscatter is affected by variations in the structural parts and dielectric permittivity of 

the surface, triggered by vegetation cover, shape, size, and orientation of the canopy scatterers, soil structure, and 

moisture content modifications, making it a suitable system for discriminating alterations on the Earthôs surface. 

In detecting burned areas, SAR technology uses these variations in the backscatter caused by the fire-inducted 

modification of vegetation cover and soil structure and moisture content (Donezar et al., 2019; Imperatore et al., 

2017; Kurum, 2015; Pepe et al., 2018b; Santi et al., 2017; Tanase et al., 2011; Tanase, Santoro, Wegmüller, et al., 

2010). Immediately after a disturbing event and for the first year after, the scattering effect of the damaged 

vegetation structure is lacking/decreasing. At the same time, the contribution to the back diffusion by the humidity 

and the roughness of the exposed soil is higher. In Mediterranean ecosystems, this generally results in a lowering 

of the cross-polarized signal (vertical-horizontal, VH, and horizontal-vertical, HV) due to the consequent reduced 

volumetric dispersion contribution of forest canopies (volume scattering), and an increase in the co-polarized 

signal (vertical-vertical, VV or horizontal-horizontal, HH), interacting with small branches, stems and, principally, 

the soil surface (direct and specular backscatter) which is highly exposed after a fire (Imperatore et al., 2017; 

Saatchi, 2019a). The backscatter, typically increasing with forest biomass, has been found to be more directly 

correlated to above-ground biomass at cross-polarization than co-polarizations (Saatchi, 2019a; Saatchi et al., 

2012; Yu & Saatchi, 2016). Due to this different interaction with the various aspects of the effects of fire on the 

environment, both types of polarization can be decisive in detecting burnt forest areas ( Chen et al., 2018; Tanase 

et al., 2014). 

1.2.3. ESA Copernicus Sentinel satellites 

Several space missions provide satellite constellations operating SAR and multispectral optical imaging dedicated 

to environment observation, which is helpful for fire monitoring purposes (Emilio Chuvieco et al., 2019). 

Copernicus missions, by the European Space Agency (ESA), provides free high spatial and temporal resolution 

C-band SAR (Sentinel-1) and multispectral (Sentinel-2) data. The Sentinel-1 constellation comprises two polar-

orbiting satellites performing C-band (from 3.75 cm to 7.5 cm wavelength) radar imaging. The two Sentinel-1 

platforms were launched on 03 April 2014 (A) and the 25 April 2016 (B). The Sentinel-2 constellation is 

constituted by two polar-orbiting satellites placed in the same sun-synchronous orbit, performing 13 spectral 

bands: four bands at 10 meters (Blue492nm, Green559nm, Red664nm, NIR832nm), six bands at 20 meters (Red-Edge704nm, 

Red-Edge740nm, Red-Edge782nm, NIR864nm, SWIR1613nm, SWIR2202nm) and three bands at 60 meters (Coastal 

aerosol442nm, Water vapour945nm, SWIR-Cirrus1373nm) spatial resolution. The first satellite of Sentinel-2 (A) has been 

in orbit since 23 June 2015, meanwhile the second one (B) was launched on 7 March 2017 (ESA Sentinel 

Homepage 2022). 
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Figure 1.4. The European Space Agency (ESA) Copernicus multispectral (optical) Sentinel-2 (on the left) and the SAR Sentinel-1 (on 

the right) platforms. Pictures were retrieved from https://sentinels.copernicus.eu/web/sentinel/home. 

The high spatial and temporal resolutions, together with the free distribution, make the Sentinel missions 

particularly suitable for risk monitoring and rapid mapping (Martinis et al., 2017). The spatial resolution has a 

considerable effect on the detection of burned areas and their subsequent monitoring, lowering the omission errors 

typical of the coarser resolution data in detecting the smallest areas and improving spectral discrimination 

(Belenguer-Plomer, Tanase, et al., 2019; Boschetti et al., 2019; Stroppiana et al., 2015; Verhegghen et al., 2016). 

The advantages become more evident when the acquisition revisit time of these products is a few days, allowing 

the monitoring of temporal trends at an appropriate temporal scale (Boschetti et al., 2019; I. Gitas et al., 2012a; 

Mihai A. Tanase et al., 2020; Verhegghen et al., 2016). 

Furthermore, ESA itself distributes the Sentinel application platform (SNAP) (ESA SNAP Homepage 2022), a 

free and open-source software platform containing the toolboxes necessary for pre-processing and processing 

Sentinel data. The SNAP toolboxes, initially Java-based, can also be accessed from the Python programming 

language (The Python Language Reference 2022), one of the most popular languages for remote sensing and 

scientific analysis, widely used in both operational and scientific domains through the ESA SNAP- Python 

(snappy) interface (ESA SNAP Cookbook 2022). 

1.2.4. Software, libraries, tools, and algorithms for image processing 

Following the acquisition of the raw data from the satellite system, represented by digital images, the remote 

sensing activity mainly consists of extracting, processing, and analyzing the data and interpreting the information 

through specific image processing procedures. Since data derived from these systems could be quite diverse, 

advanced techniques integrate geo-statistics, informatic (geo-informatics), data mining, pattern recognition and 

machine learning methods in order to organize, analyze, model and map the information extracted (Bot & Borges, 

2022; Emilio Chuvieco et al., 2019; Lapini et al., 2020). These include various methods of data analysis in which, 

through statistical models, advanced algorithms extract and learn information from data, and then they can 

associate and replicate, recognize and classify this information autonomously into new groups of data (Bot & 

Borges, 2022; Lary et al., 2016; Ramezan et al., 2019). Remote sensing data processing and analysis, and the 

implementation of advanced algorithms are operations that require specific information technology (IT) solutions 

and high computational resources. For this reason, several IT systems and advanced image processing software 

have been developed in recent years, of which a significant contribution comes from free and open-source 

distributions. Among these are the libraries and the modules built and implemented in a programming scripting 

https://sentinels.copernicus.eu/web/sentinel/home
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language (e.g., Python, Java). Decomposition and adaptability are the main features that allow the construction 

and combination of the most suitable processing solution (L. Wang et al., 2019; Zhong et al., 2018). Implementing 

the resources provided by different software within the same workflow, increasing its inter-compatibility 

capabilities, allows for creating increasingly optimized algorithms that optimize the results. 

With the remarkable advances in the latest-generation high-resolution Earth observation, the amount of remotely 

sensed data has been accumulated to an exabyte-scale and has been increasing in petabytes every year. In order to 

satisfy the huge calculations required, always better specific hardware is necessary, thus facilitating the 

development and diffusion of cloud computing. Many platforms have also been developed in this area, some of 

which are available with an open-source license (L. Wang et al., 2019). 

1.3. Objectives and organization of the thesis. 

In the framework of this Ph.D. thesis, partly carried out abroad in collaboration with the Remote Sensing research 

laboratory of the Forest Research Centre, School of Agriculture of the University of Lisbon (Portugal), the research 

activity aims at the development of a complete workflow for the analysis and monitoring of the short and medium 

terms effects of fires on Mediterranean forest ecosystems, with the primary purpose to supply the state of the art 

with original contributions. Multisensor procedures have been built by integrating both optical (Sentinel-2) and 

SAR (Sentinel-1) freely available data and, in some applications, comparing and evaluating the accuracy of the 

three different possible configurations (optical only, SAR only and optical+SAR) in order to find  the most suitable 

in terms of accuracy achieved. 

The workflow constituting this thesisôs main structure is composed of four main phases, distributed across six 

Chapters illustrating six distinct and original scientific contributions carried out by investigating different fire 

events that occurred in two countries of Mediterranean Europe. Each chapter aimed to optimize the methodologies 

employed for the respective objective. Summarizing the four phases below: 

A. The workflow starts with the classification of the quantitative and qualitative conditions of the vegetation 

before the event. The assessment of fire effects is based on the estimation of the fire-induced changes on the 

pre-fire vegetation status. Information about the pre-fire condition of the sites under study is therefore 

essential. In Chapter 2 a supervised classification was developed and optimized by integrating optical and 

SAR information to retrieve a high-accuracy land use and land cover (LULC) map. The single and integrated 

use of both sensor sources was evaluated, and the results were exploited to improve the accuracy of the final 

map. The LULC illustrates the scenario of the study site before the fire event.  

B. Timely and accurate detection and quantification of burned areas involve the second operational phase of the 

workflow and, simultaneously, the first step after the fire occurrence for assessing the damage and addressing 

the post-event management. It concerns the implementation of two different mapping approaches for burned 

areas: one using only SAR images for the execution of an unsupervised classification procedure in two distinct 

Mediterranean sites (Chapter 3); the second approach concerns the integration of multitemporal composite 

and supervised geographic object-based classification approach (GEOBIA), testing on optical and multisource 

(optical+SAR) dataset, to map burned areas on a regional scale (Chapter 4). 

C. In the third phase, the analyses are deepened to assess the short-term effects, in the form of fire severity, for 

assessing and understanding the ecological impacts of the fire and the factors contributing to its behavior and 

propagation (Chapter 5 and Chapter 6). The integrated use of both optical and SAR data is evaluated in terms 
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of accuracy in two study cases. A spectral investigation of the short-term damages induced by the fire, at 

forest crown level, was carried out in Chapter 7, by employing a spectral mixture analysis (SMA). 

D. In the fourth step, the information about the pre-fire vegetation and the severity of the fire that resulted from 

the previous analyses are essential for assessing the medium-term impacts of fire on ecosystems and their 

capacity to repristinate the ecosystem services partially lost. Moreover, this knowledge is essential to address 

initiatives and strategies for post-fire management, particularly in high-risk areas such as Mediterranean 

countries. For these purposes, optical and SAR spectral time-series were employed for spatially and 

temporally monitoring the response and recovery of three different vegetation types, differentiating the 

investigation in function of the recorded fire severity during the three years after the event (Chapter 6). 

The remote sensing tecniques consists mainly of the phases of data processing and analysis, and interpretation of 

the information. During the various steps carried out during the research activity, emphasis was placed on 

developing procedures based on advanced image processing and machine learning algorithms through open-source 

software, toolboxes and Python-based libraries.  
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2. Investigation about the pre-fire condition of vegetation  

Adapted from  

De Luca, G., Silva, J.M.N., Di Fazio, S., Modica, G.: Integrated use of Sentinel-1 and Sentinel-2 data and open-

source machine learning algorithms for land cover mapping in a Mediterranean region. Eur. J. Remote Sens. 

55, 52ï70 (2022). https://doi.org/10.1080/22797254.2021.2018667. 

 

Mapping the vegetation composition, besides providing information on the quantitative and qualitative  status of 

the area under study, is a necessary early  step in the analysis and monitoring protocols of the  state of the vegetation 

and ecosystemsô responses  affected by various environmental disturbances (Choudhury et al., 2021; Grabska et 

al., 2020; Monroe et al., 2020; Pollino & Modica, 2013; Rodman et al., 2021; Semeraro et al., 2019), including  

wildfires (I. Gitas et al., 2012a), storms (Giannetti et al., 2021; Hamdi et al., 2019), deforestation (Nicolau et al., 

2021), forest degradation (Giuseppe Modica et al., 2015), desertification (Hill et al., 2008) and climate change 

effect (Yang et al., 2013). Therefore, mapping the composition of forest vegetation is fundamental for the concrete 

implementation of sustainable land management policies at any scale, regional to global (e.g., the REDD    

activities; Gulinck et al., 2018; Nicolau et al., 2021).   

In the context of vegetation mapping and monitoring, several remote sensing techniques based on different types 

of multispectral sensors have been  developed and successfully used over the years (De Luca et al., 2019a; Grabska 

et al., 2019; Giuseppe Modica et al., 2016; Morin et al., 2019; Praticò et al., 2021; Solano et al., 2019).. The use 

of spectral signatures, temporally differentiated following the phenological cycles of the various seasons, allows 

a better spectral separability of  the investigated vegetation types and, therefore, their  recognition and 

characterization (Aragones et al., 2019; Aubard et al., 2019; Grabska et al., 2019, 2020; Morin et al., 2019; Praticò 

et al., 2021). Grabska et al. (2019) used a Sentinel-2 (S2) time-series to map forest composition showing the 

effectiveness of seasonal  phenology variations in improving spectral discrimination between species, achieving 

https://doi.org/10.1080/22797254.2021.2018667
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better accuracy  results than using single images. Moreover, the spectral vegetation indices (VIs) enhance the 

sensibility of single-bands spectral signals to the variability of the  bio-physical state of plant tissues, the 

photosynthetic  activity, and leaf productivity (Aragones et al., 2019; Marzialetti et al., 2019; Praticò et al., 2021; 

Semeraro et al., 2019). Strong correlations were found between specific regions of the electromagnetic spectrum 

and species-specific physiological characteristics useful in  estimating forest cover, especially using VIs based on  

infrared wavelengths: the normalized difference vegetation index (NDVI) (Marzialetti et al., 2019; Spadoni et al., 

2020), the normalized difference red-edge index (NDRE) (Evangelides & Nobajas, 2020), the normalized burn 

index (NBR) (Praticò et al., 2021; Shaun et al., 2020). The red-edge, near infra-red (NIR) and short wave infra-

red (SWIR) regions have, respectively, a  long-established correlation to the leaf pigments content, vegetation net 

primary productivity, and leaf  water content, being very effective in vegetation monitoring (Arevalo-Ramirez et 

al., 2020; Delegido et al., 2011; Eitel et al., 2011; Knipling, 1970). 

The free availability of the higher temporal and spatial resolution Copernicus S2 mission multispectral data (ESA 

Sentinel Homepage, 2022), provided by the European Space Agency (ESA), improved the accuracy of forest cover 

classification maps and allowed for the  launch of several successful monitoring studies at a  higher scale of detail 

(Grabska et al., 2020; Immitzer et al., 2016; Inglada et al., 2017; Praticò et al., 2021; Solano et al., 2019).   

In addition to the use of multispectral data, several authors studied the applicability of active synthetic aperture 

radar (SAR) systems for mapping land cover (Lapini et al., 2020; Nicolau et al., 2021; Perko et al., 2011; Waske 

& Braun, 2009). Besides the all-day and all-weather operational capability, these sensors provide different and 

complementary physical information helpful for improving the spectral data when  combined with optical imagery 

(Nicolau et al., 2021; Spracklen & Spracklen, 2021; Stroppiana et al., 2015).  The total signal backscattered from 

forest vegetation results from the combination and interaction of the canopy and ground backscatters (Lapini et 

al., 2020; Saatchi, 2019a; Yu & Saatchi, 2016). This backscatter response is affected by implicit sensor variables, 

such  as wavelength and polarization, and by some vegetation features as cover shape, structure, and orientation, 

moisture content, geometric and dielectric  property of the surface (De Luca, Silva, & Modica, 2021a; Lapini et 

al., 2020). 

The Copernicus mission provides two polar-orbiting SAR satellite platforms belonging to the Sentinel-1 (S1) 

constellation (S1-A and S1-B) carrying a C-band sensor (wavelength of 5.6 cm) with both cross-polarized (VH) 

and co-polarized (VV) polarization (ESA Sentinel Homepage, 2022). At these wavelengths, the backscatter is 

mainly due to the leaves, needles, and small branches of the upper canopy and presents lower penetration power 

than longer wavelengths (Lapini et al., 2020). Potentially, the information from the upper canopy could allow the 

discrimination between forest and non-forest areas.  Referring to forest applications, recently, Nicolau et al. (2021) 

assessed the potential of S1 time-series for  land use/ land cover (LULC) purposes in tropical forests, while 

Numbisi et al. (2019) utilized S1 time series  to discriminate agroforests environments in a heterogeneous 

savannah-forest transition zone. On the other hand, Lapini et al. (2020) assessed the multi-frequency  approach for 

Mediterranean forest classification, discriminating forest from non-forest areas and broadleaved from coniferous 

forests, using data from different SAR sensors (X-, C- and L-band). These authors concluded that the L-band is 

better for the first purpose, but C-band and X-band performed better for distinguishing coniferous and broadleaves. 

The utility of SAR signal in forest vegetation discrimination can be also explicated by its particular sensitivity to 

the forest stand height (Deutscher et al., 2013; W. Li et al., 2020; Perko et al., 2011; Siqueira, 2019).  The simple 

SAR backscatter is indirectly and empirically related to the forest stand height since its value increases with a high 
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presence of canopy scattering elements, proportional to forest height (vertical distribution) and canopy density, as 

a function of wavelength and polarization. Moreover, there is a geometric relationship between the SAR signal 

and the heights of the objects on the Earthôs surface, estimable through SAR interferometry (InSAR) models 

(Siqueira, 2019). The InSAR technique exploits the phase information of the radar signal to obtain information 

about the topography and height of the Earthôs surfaces (Ferretti et al., 2007; Ghosh et al., 2020). The S1 

constellation observes the same scene at two different times, applying the repeat-pass InSAR. The amount of 

temporal phase decorrelation occurring between two passes is one of the models used to estimate the forest stand 

height. The temporal decorrelation is assumed to be higher the greater the height of the canopy due to a more 

significant presence of small scatter elements (Siqueira, 2019). The interferometric coherence can represent the 

temporal phase decorrelation: the higher is the time phase decorrelation, the lower is the resulting coherence. 

Several authors (Deutscher et al., 2013; Ghosh et al., 2020; Perko et al., 2011; Siqueira, 2019) applied empirical  

models to estimate the forest stand height from the  interferometric coherence measure, with levels of  accuracy 

that can vary greatly depending on various  factors. For this reason, in this study, the coherence relationship with 

the forest stand height was exploited to discriminate the presence of standing forest concerning the other 

surrounding LULC classes. 

Considering the research experiences mentioned above, the combined use of both optical and SAR data would 

further improve the identification of forest  cover, as confirmed by several authors (Ienco et al., 2019; Morin et 

al., 2019; A Polychronaki et al., 2014; Spracklen & Spracklen, 2021; W. Zhang et al., 2019).  Spracklen and 

Spracklen (2021) used S1 and S2 timeseries to distinguish natural and plantation forests in a  tropical monsoon 

climate zone, concluding that the  different sensitivity of these two sensors makes them  complementary in 

analyzing the investigated vegetation surface. In particular, while the SAR backscatter depends on the vegetationôs 

physical properties, the optical signal is correlated to the biochemical state of vegetation. Several studies use 

combined data S1 and S2 data for vegetation cover purposes. Ienco et al. (2019) proposed a Convolutional Neural 

Network (CNN) architecture, combining S1 and S2 time-series  for LULC mapping in tropical regions, obtaining 

satisfactory results. Zhang et al. (2019) used the differences in temporal signatures between vegetation cover types,  

combining three temporal information of S1 and S2,  for distinguishing woody canopy from the herbaceous  

canopy in savanna ecosystems using the Support  Vector Machines (SVM) classifier. Morin et al. (2019) combined 

the use of S1, S2 and ALOSPALSAR data to estimate forest structure parameters  and the aboveground biomass 

in maritime pine plantations. In Mediterranean environment, besides the  literature concerning the single use of 

optical sensors  (e.g. Aragones et al., 2019; Aubard et al., 2019; Modica et al., 2016; Praticò et al., 2021), there 

seems to be a  lack of studies exploiting the SAR (Lapini et al., 2020)  and its integration with optical imagery for 

LULC  classification. Polychronaki et al. (2014), integrated  the Système Pour lôObservation de la Terre (SPOT)  

optical data with the European Remote Sensing (ERS)  C-band VV for LULC object-based classification  affected 

by a fire in a Mediterranean landscape. They observed that the use of SAR backscatter improved the accuracy, 

reducing the commission errors related to forest land cover class and the misclassification between forest and shrub 

classes in shadowed areas.  Chust et al. (2004) assessed the performances of combining ERS and SPOT images 

for Mediterranean LULC discrimination, resulting in a slight improvement of the obtained accuracy. 

Chatziantoniou et al. (2017) evaluated the combined use of Sentinel-1 and Sentinel-2 data for a  regional-scale 

Mediterranean wetlands classification,  and they concluded that SAR data did not significantly  improve 

classification accuracy. Some other authors focused on Mediterranean crop detection (Campos-Taberner et al., 
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2017; Lobo et al., 1996; Villa et al., 2015). Considering this, more studies should be carried out to explore the 

potential of integrating multispectral and SAR sensors on mapping heterogeneous Mediterranean ecosystems and 

to investigate how the single information contributes to the obtained accuracy. This work aimed to develop a 

supervised classification procedure by integrating S1 and S2 data for forest cover mapping in a Mediterranean area 

of southern Portugal. The obtained results are essential to fulfilling the main research framework in which this 

work was conducted, based on applying remote sensing methodologies to analyze and monitor wildfiresô effects 

in Mediterranean forest ecosystems. The first analysis on this study area was carried out to develop an unsupervised 

classification of the burned areas and  based only on SAR S1 data and reported in De Luca et al. (2021a), while 

the combined use of SAR S1 and  optical S2 data allowed to map the spatial distribution  of burn severity (De 

Luca, Silva, Oom, et al., 2021). 

The initial goal was to create a binary map to distinguish the forest cover from other LULC classes (pastures/ 

shrubs, urban, agricultural, etc.). Afterward, we decided to implement this workflow further by subdividing the 

forest ecosystems into three forests LULC classes better representing the territory: Eucalyptus, Pine, and native 

broadleaf forest (Quercus suber, Q.  ilex, etc.). In the same way, the main surrounding noforest LULC classes were 

classified individually (pastures/ shrubs, bare soil, urban and agricultural). For this purpose, we provided an 

original and open workflow (i.  e., implemented using diverse open-source software and freely available upon a 

reasonable request to the authors) based on an advanced coupling of SAR (S1) and multispectral (S2) time-series 

imagery. In particular, the time-series of SAR S1 backscatter (both VH and VV polarizations) and two derived 

indices, radar vegetation index (RVI) and radar forest degradation index (RFDI), were combined to the time-series 

of the optical S2 bands and three derived VIs: NDVI, NDRE, and  NBR. In order to optimize the classification 

procedure, the coherence measure coming from InSAR analysis of different pairs of dates in July 2018 was also 

added as additional information, as well as the optical-based biophysical variables fraction of green vegetation 

cover (fCOVER), the fraction of absorbed photosynthetically active radiation (fAPAR), and the leaf area index 

(LAI) calculated for the same month. The well-known Random Forests (RF) machine learning algorithm (Breiman, 

2001) was applied for classification through the use of open-source and Python-based libraries (The Python 

Language Reference, 2022). One of the main problems in applying machine learning classification algorithms is 

choosing the optimal values of the modelôs hyperparameters. In this direction, another original contribution of this 

study was to provide an open workflow in which a thorough grid search approach automatically sets the optimal 

hyperparameters. The feature importance was performed during the RF classification process to evaluate each 

input variableôs contribution to the final mapping performance. 

2.1. Study area 

The study area (Figure 2.1) extends over the Serra de Monchique Mountain range located in the southern region 

of Portugal, Algarve (37Á 18ᾳN; 08Á 30ᾳW). Part of the study area is a Special Area of Conservation (SAC) falling 

within the European Natura 2000 network (Natura 2000 Site Code: PTCON0037). The territory is characterized 

by the typical heterogeneous and fragmented Mediterranean mountain landscape. The forest cover was mainly 

composed of Eucalyptus plantations (Eucalyptus globulus, Labill. 1800), mixed Mediterranean indigenous 

deciduous forests (Quercus suber L., Quercus ilex L., and other secondary Mediterranean native species), and 

coniferous plantations, composed by Pinus pinea L. or Pinus pinaster Aiton. A part of the autochthonous oak 

forest cover can be associated with the typical semi-natural landscape of the Iberian Peninsula (dehesa and 
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montado): woodlands and agro-forestry systems used for cork harvesting and grazing. A large part of the territory 

was covered by non-forest LULC classes represented by heathlands, sclerophyllous shrublands, pastures, bare soil, 

general uncultivated lands (e.g., derived from harvested forest plantations, agricultural and urban lands) (Sistema 

Nacional de Informação Geogrãfica, SNIG, 2021). 

 

Figure 2.1. Location of the study area in Portugal (left). Overview of the study area (right) using the Google Earth image as a basemap; 

the wildfire's perimeter that occurred in August 2018 is overlaid in light blue. 

2.2. Materials and methods 

The implemented procedure (Figure 2) was carried out using different free and open-source software solutions, 

starting from download to the classification output and testing and exploiting their interoperability. Most of the 

Sentinel images were unavailable on the official Copernicus Open Access Hub platform due to the Long-Term 

Access policy adopted by the ESA (Copernicus Long Term Archive Access, 2021).  Therefore, we adopted other 

alternative ways to speed up the data download phase. The S1 images were downloaded using the Alaska Satellite 

Facility (ASF) interface (ASF, 2022), while the Google Earth  Engine (GEE) Python API (Google Earth Engine  

Guides, 2022) was employed to pre-process and then download the S2 dataset. The data pre-processing for S1 was 

carried out using the Sentinel-1 Toolboxes implemented in the SNAP v.8.0.3 open-source software (ESA SNAP 

Homepage, 2022) provided by ESA. The classification algorithms were processed using the modules integrated 

into the Scikit-learn Python library (Pedregosa et al., 2011). 




































































































































































































































































































































