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Abstract—We present a new approach to the problem of 

detecting element failures in any kind of array antenna. The 
proposed method requires only phaseless information on the 
generated field and reduces as much as possible the number of 
needed measurements by exploiting the Compressed Sensing (CS) 
theory. The solution procedure works regardless of whether the 
probes are located in the near-field or far-field region of the 
antenna under test, and it is the first and only CS-based technique 
able to perform the diagnostics by exploiting only phaseless 
measurements taken exclusively in the near-field zone. It also 
results simple and fast as it requires a single measurement surface 
and reduces, in most practical instances, to the solution of a convex 
programming problem. The given theory is supported by very 
many numerical experiments involving full-wave electromagnetic 
simulations of realistic arrays and considering both scalar and 
vector fields with different types of scanning surfaces and different 
noise levels. Both ON-OFF and phase faults are dealt with. An 
experimental validation on a fabricated array is also presented. 
 
Index Terms—Array antennas, compressed sensing, fault 
diagnosis. 

I. INTRODUCTION 

The increasingly high performance requirements for array 
antennas in current applications makes it necessary to monitor 
their radiating elements in a fast and effective fashion. For this 
reason, several methods have been devised to identify faulty 
elements by resorting to far-field (e.g., [1]–[11]) and near-field 
(e.g., [12]–[18]) measurements. 

Most of these techniques require the acquisition of both the 
amplitude and phase of the generated field (see, for instance, 
[1]–[6],[12]–[17]). This enables casting the diagnostics 
problem as a linear one, improving the accuracy and efficiency 
of the solution while also avoiding the adoption of two or more 
measurement surfaces. 

On the other hand, phase measurements can be inconvenient 
(or even unfeasible) in many cases, including environments 
with poor thermal stability [19] or applications where 
measurements must be taken by unmanned aerial vehicles [20].  
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Moreover, while measuring the field amplitude is relatively 
simple at all frequencies, phase acquisition can be difficult in 
high-frequency scenarios, e.g., applications involving 
millimeter and submillimeter waves [19]–[22]. 

Difficulties inherent to phase measurements led the authors 
in [10] and [11] to introduce two new approaches to detect ON-
OFF element failures of array antennas from amplitude-only 
far-field data. Notably, despite the nonlinearity of the 
underlying optimization problem induced by the adoption of 
phaseless measurements, these two techniques allowed for the 
exploitation of the compressive sensing theory developed in 
[23], considerably reducing the number of needed 
measurements with respect to usual approaches. In particular, 
the methods in [10] and [11] overcame, for the first time in the 
array fault diagnosis literature, the usual limitation of applying 
CS theory only if both amplitude and phase measurements of 
the radiated field are available. Furthermore, provided that the 
percentage of faulty elements is not so high, the two techniques 
cast the diagnostics as a convex programming (CP) problem 
guaranteeing the fast achievement of the optimal solution 
without relying to computationally expensive global 
optimization algorithms. 

Unfortunately, the approaches in [10] and [11] can only be 
applied when far-field measurements are available, and hence 
the near-field case is systematically addressed by exploiting 
amplitude and phase measurements (see, for instance, [12]–
[17]). This means that techniques allowing array diagnostics by 
exploiting only phaseless measurements taken exclusively in 
the near-field zone are still lacking1, the sole exceptions being 
the two methods presented in [8] and [18]. However, these two 
techniques have a computational burden much larger than that 
of the procedures developed in [10] and [11]. In fact, [8] and 
[18] relied on hybrid evolutionary algorithms and artificial 
neural networks (ANNs), respectively, which introduce the 
intrinsic computational complexity of global-optimization 
algorithms and the extra computational cost required for 
training ANNs. Moreover, [8] and [18] required a significantly 
larger number of measurements than those used in [10] and [11] 

 
1 Few contributions associated with phase retrieval (e.g., [24],[25]) can also be 
found but, unlike the method presented here, they exploit multiple measurement 
surfaces. 
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for data acquisition, with an inherent negative impact on the 
overall diagnostics time. 

To address this gap, in the following, we present an 
approach to the fault diagnosis of array antennas that exploits 
only (a reduced number of) phaseless measurements taken 
entirely in the near-field region. 

The proposed method represents the final generalization of 
the techniques developed in [10] and [11] for failure diagnosis 
using amplitude-only field measurements. In fact, while [11] 
extended the theory developed in [10] from 1-D ‘ideal’ arrays 
whose radiated field is given by the array factor to ‘realistic’ 
planar and conformal arrays, the present work extends the one 
in [11] by removing the limitation of needing measurements 
taken in the far-field zone.  

As a further innovation with respect to the technique in [11], 
the present approach is developed not only by exploiting the 
active element patterns (AEPs), but also by introducing a new 
fruitful formulation of the problem for the case where AEPs are 
not available. This is achieved by utilizing a matrix relationship 
between data and unknowns, which simplifies the process of 
diagnosing realistic arrays.  

Finally, while the technique in [11] works just on scalar 
fields and can only detect ON-OFF faults, the proposed 
approach can also be applied to vector fields (thus enabling the 
diagnostics of more complex arrays with nondominant field 
components) and can detect both ON-OFF and phase faults. 

Like its two predecessors proposed in [10] and [11], the new 
method is able to alleviate the ill-posedness of the problem by 
exploiting the CS theory and optimally solving it as a CP 
problem in most practical instances. Consequently, its 
computational burden is significantly lower than the one of the 
(only two) other available approaches able to solve the specific 
problem at hand (i.e., the techniques in [8] and [18] recalled 
above). Additionally, opposite to essentially all the approaches 
based on phaseless data (which need two different sets of 
measurements – see [26] for more details), the proposed method 
just requires a single measurement surface. 

In the following, the diagnostics approach is presented in 
Section II. Then, it is assessed both numerically (in Section III) 
and experimentally (in Section IV). Conclusions follow. 

II. THE DIAGNOSTIC PROCEDURE 

To present the new diagnostics technique, let us consider a 
completely arbitrary array under test (AUT) composed of 𝑁 
(possibly different) radiating elements spatially arranged into a 
layout having any shape and interelement distance. As long as 
all radiating elements are correctly working, the AUT will be 
denoted as “gold” AUT, while if 𝑆 of its elements are not 
correctly working, it will be denoted as “faulty” AUT. 

Moreover, let us consider a virtual array, denoted as the 
“differential” AUT, which is identical to the “gold” AUT but 
for the fact that its element excitations are equal to the 
difference between the “gold” and “faulty” AUT element 
excitations. 

Starting from the knowledge of the “gold” AUT, the 
approach is aimed at identifying the nonworking elements by 
exploiting only phaseless measurements of the “faulty” AUT’s 

field and at reducing the number of required measurements as 
much as possible by using CS theory. 

While the adopted solution procedure is applicable to the 
cases of both near-field and far-field measurements, in the 
following its presentation and assessment will be made by 
exclusively considering near-field measurements. In fact, this 
scenario is much more challenging than the one with far-field 
measurements, as the latter may lead to a Fourier representation 
of the field which allows the exploitation of CS theoretical 
results guaranteeing effectiveness [10]. 

The solution procedure works regardless of whether the 
AEPs of the “gold” AUT are known, and can be used to detect 
both ON-OFF and phase faults. To show these additional 
qualities, in the following, the approach will be first presented 
by relying on the AEPs’ knowledge and respectively 
addressing, in subsections II.A and II.B, the detection of ON-
OFF faults and phase faults. Then, in subsection II. C, the case 
where the diagnostics cannot rely on the AEPs will be 
addressed. 

II.A. Detection of ON-OFF faults (by exploiting AEPs) 

A common issue occurring in large arrays is the complete 
break of one or more radiating elements. This is the case for 
“ON-OFF” faults, corresponding to a “faulty” AUT having a 
null excitation on 𝑆 of its elements. 

To solve the diagnostics problem in this scenario, let us 
denote with 𝑬ீ(𝒓) and 𝑬ி(𝒓) the vector fields generated by the 
“gold” and “faulty” AUTs, respectively, 𝒓 = [𝑥, 𝑦, 𝑧] being the 
vector spanning the observation space, i.e.,  

𝑬ீ(𝒓) =   𝐼
ீ𝝍(𝒓)

ே

ୀଵ

 (1.a) 

𝑬ி(𝒓) =   𝐼
ி𝝍(𝒓)

ே

ୀଵ

 (1.b) 

𝐼
ீ and 𝐼

ி are the excitation of the n-th element of the “gold” 
and “faulty” AUTs, respectively, while 𝝍 denotes the vector 
AEP of the n-th element, i.e., the field generated by the “gold” 
array when only the n-th element is excited (with 𝐼

ீ=1) and all 
the others are connected to matching loads [27]. 

Then, at any generic measurement point 𝒓 , the following 
relationship will hold true: 

|𝑬ி(𝒓)|ଶ − |𝑬ீ(𝒓)|ଶ = |∆𝑬(𝒓)|ଶ + 𝜶 (2.a) 

with: 
𝜶 = −2𝑅𝑒〈𝑬ீ(𝒓), ∆𝑬(𝒓)〉 (2.b) 

∆𝑬(𝒓𝒎) = 𝑬𝑮(𝒓𝒎) − 𝑬𝑭(𝒓𝒎) (2.c) 

∆𝑬(𝒓) =   ∆𝐼𝝍(𝒓)

ே

ୀଵ

 (2.d) 

       ∆𝐼 = 𝐼
ீ − 𝐼

ி       𝑛 = 1, … , 𝑁 (2.e) 

(2.d) and (2.e) denoting the field and excitations of the 
“differential” AUT, respectively. 

The goal of the diagnostics procedure is to retrieve ∆𝐼 =
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[∆𝐼ଵ,…, ∆𝐼ே] from the knowledge of the “gold” AUT and of 
|𝑬ி|ଶ in a measurement set composed of 𝑀 points 𝒓𝟏,…,𝒓𝑴 
located in the near-field zone and chosen, by recurring to only 
one surface, according to some convenient rule (see for instance 
in [28]-[31]). In fact, since the “gold” AUT is assumed to be 
known, determining ∆𝐼 is equivalent to identify 𝐼ଵ

ி ,…, 𝐼ே
ி  and 

hence to detect the faulty elements. 
The case of ON-OFF faults corresponds to 𝐼

ி = 0 for all the 
n values identifying the 𝑆 malfunctioning elements. Therefore, 
only 𝑆 elements of ∆𝐼 are different from zero and hence, 
provided that 𝑆 is much lower than 𝑁 (which is usually the 
case), the vector ∆𝐼 is sparse. This property suggests the 
adoption of CS as a powerful tool for the diagnosis. In 
particular, by using the subscripts 𝜇 and 𝜈 to distinguish the two 
components2 of the vector fields tangential to the measurement 
surface, the diagnostics can be performed by identifying ∆𝐼 as 
the solution of the following optimization problem: 

 

min
∆ூభ,…,∆ூಿ

ฮ∆𝐼ฮ
ଵ
 (3.a) 

subject to: 
 

ะ
ห𝐸ఓ

𝐹(𝒓𝒎)ห
2

− ห𝐸ఓ
𝐺(𝒓𝒎)ห

2
− 𝛼ఓ𝑚 − ห∆𝐸ఓ(𝒓𝒎)ห

2

ห𝐸ఓ
𝐺(𝒓𝒎)ห

2 ะ

ଶ

< 𝜀 (3.b) 

ብ
|𝐸ఔ

𝐹(𝒓𝒎)|2 − |𝐸ఔ
𝐺(𝒓𝒎)|2 − 𝛼ఔ𝑚 − |∆𝐸ఔ(𝒓𝒎)|2

|𝐸ఔ
𝐺(𝒓𝒎)|2

ብ
ଶ

< 𝜀 (3.c) 

with: 

𝛼𝜇 = −2𝑅𝑒〈𝐸𝜇
ீ(𝒓𝒎), ∆𝐸𝜇(𝒓𝒎)〉 (3.d) 

𝛼𝜈 = −2𝑅𝑒〈𝐸𝜈
ீ(𝒓𝒎), ∆𝐸𝜈(𝒓𝒎)〉 (3.e) 

The effectiveness of the formulation (3.a)–(3.e) is boosted by 
the condition 𝑆 ≪ 𝑁, which is the case in most actual 
applications (see, for instance, [10] and the references cited 
therein). In fact, this condition ensures that two crucial 
circumstances come into play, as detailed in the following. 

First, since the unknown is sparse, the CS framework can be 
profitably applied3. In fact, minimization (3.a) is aimed at 
enforcing the sparsity of the solution, while constraints (3.b) 
and (3.c) ensure the fulfillment of equation (2.a) with a 
tolerance equal to 𝜀 (which is a small, real and positive constant 
chosen by the user). 

Second, |∆𝑬(𝒓𝒎)|ଶ is small with respect to 𝜶𝒎 for 𝑚 =
1, … , 𝑀. This circumstance, which can be further consolidated 
by performing the measurements at those points where 𝑬ீ  has 
a larger intensity, entails that (3.b) and (3.c) basically act as 
‘quadratic’ constraints, and hence optimization (3) can be 
considered a CP problem. This brings decisive advantages in 
terms of both computational burden and optimality (unicity) of 
the solution, whose identification will be guaranteed even by 
using fast local-optimization procedures. 

By virtue of all the above, the approach keeps all the 
 
2 Depending on the chosen measurement set-up, 𝜇 and 𝜈 can be 𝑥 and 𝑦 (for 
planar scanning), 𝑧 and 𝜑 (for cylindrical scanning), or 𝜃 and 𝜑 (for spherical 
scanning). 

advantages of its predecessors [10] and [11] (i.e., the smart 
adoption of the ‘sparsity’ concept, the reduced computational 
burden supplied by the CP formulation, the requirement of only 
one measurement surface and of only phaseless field data) 
while simultaneously extending them to the important scenario 
where the measurements can be taken only in the near-field 
zone. 

II.B. Detection of phase faults (by exploiting AEPs) 

In addition to ON-OFF faults, it is not unlikely that an 
incorrect value of the phase of the excitation coefficients is also 
produced. This kind of failure, which will henceforth be 
referred to as a “phase” fault, can be caused by many factors, 
such as faults in the beam-forming network and the adoption of 
digital phase shifters [8]. 

Interestingly, to detect possible phase faults, one just needs 
to adapt the diagnostics procedure presented in subsection II. A 
by modifying (3.a) as: 

min
∆ூభ,…,∆ூಿ

ቄฮ𝑅𝑒𝑎𝑙൫∆𝐼൯ฮ
ଵ

+ ฮ𝐼𝑚𝑎𝑔൫∆𝐼൯ฮ
ଵ

ቅ (4) 

and adding to (3.b) and (3.c) the following constraint: 

|∆𝐼|ଶ − 2𝑅𝑒𝑎𝑙{𝐼
ீ∆𝐼

∗} ≤ 0,       𝑛 = 1, … , 𝑁 (5) 

In fact, all the properties and capabilities of problem 
formulation (3) still hold true, but the new objective function 
enforces the sparsity of both the real and imaginary parts of the 
“differential” AUT excitations. 

As far as the additional constraint (5) is concerned, it is 
worth noting that it corresponds to enforce |𝐼

ி|ଶ ≤ |𝐼
ீ|ଶ for 

𝑛 = 1, … , 𝑁. This inequality, which represents a convex set in 
terms of the unknowns, further improves the algorithm 
convergence by effectively reducing the research space. 

As will be shown in Section III, the adoption of (4) and (5) 
allows for accurately detecting even low phase errors and 
retrieving the exact complex value of the AUT’s excitations. 

II.C. Experimentally-oriented procedure not recurring to AEPs 

If AEPs are not available or cannot be evaluated due to a 
simultaneous excitation of all the array elements (as occurs, for 
instance, in slotted waveguide arrays and reflectarrays), the two 
formulations presented in subsections II.A and II.B cannot be 
used in a straightforward fashion. To overcome this issue, a 
third formulation of the proposed approach is introduced in the 
following. 

To this end, let us first consider the general linear equation 
adopted in [14] to express the relationship among the AUT 
elements’ excitations (say x ∈ 𝐶ே) and the voltage measured on 
the observation domain (say y ∈ 𝐶ெ): 

A x = y (6) 

where the matrix A takes into account both the electric-field 

3 It can reasonably be expected that the incoherence property demonstrated in 
[10] keeps verified as long as the measurements placement assures a low spatial 
correlation among data [13]. 
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radiation pattern of the 𝑛-th radiating element of the AUT, say 
𝒇(𝜃, 𝜑), as well as the effective height of the measuring probe, 

say 𝒉(𝜃, 𝜑)4. In particular, A  ∈ 𝐶ெ×ே is a matrix whose 

(𝑚, 𝑛)-th element is equal to 𝑒𝑥𝑝൫−𝑗𝛽𝑟,൯/

൫4𝜋𝑟,൯𝒇൫𝜃,, 𝜑,൯ ∙ 𝒉൫𝜃′,, 𝜑′,൯, where 𝑟, 
denotes the distance between the 𝑚-th measurement point and 
the 𝑛-th element of the AUT, while 𝜃, and 𝜑, are the 
elevation and azimuth angles between the 𝑚-th measurement 
point and the 𝑛-th element position in a reference system 
centered on the 𝑛-th array radiating element5. For the sake of 
clarity, the defined variables as well as 𝜃′, and 𝜑′, are 
depicted in Fig. 1. 

Then, to extend the method presented in subsection II.A to 
the case where the AEPs are not available, one just needs to 
reconsider (2) by expressing the fields generated by the “gold” 
and “faulty” AUTs as dictated by (6). Therefore, by using the 
superscripts G and F to distinguish the excitations and fields 
relative to the “gold” and the “faulty” AUTs, respectively, and 
performing the square amplitude of the following relation, 

y = yୋ − ∆y (7) 

where yୋ and ∆y are derived from (6), one obtains: 

z = zୋ + ∆z − ቂA xୋቃ ∘ ቂA ∆xቃ
∗

− ቂA ∆xቃ ∘ ቂA xୋቃ
∗

 (8.a) 

where ∗ denotes the complex conjugate, ∘ denotes the 
Hadamard product between vectors, and 

𝑧 = y ∘ y∗
 (8.b) 

zୋ = yୋ ∘ yୋ∗
 (8.c) 

∆z = ቂA ∆xቃ ∘ ቂA ∆xቃ
∗

= ∆y ∘ ∆y∗ (8.d) 

∆x = xୋ − x (8.e) 

Finally, the optimization problem is recast as follows: 

min
∆௫భ,…,∆௫ಿ

ฮ∆xฮ
ଵ
 (9.a) 

subject to: 

ቛz𝐆 + ∆z − ቂA x𝐆ቃ ∘ ቂA ∆xቃ
∗

− ቂA ∆xቃ ∘ ቂA x𝐆ቃ
∗

− z𝐅ቛ
ଶ

< 𝜀 (9.b) 

Notably, formula (9) retains the advantages of optimization 
problem (3), including the possible reduction to a CP problem 
as well as its applicability to vector fields. Furthermore, 
similarly to (3), it can be easily extended to the case of phase 
faults by applying the rules reported in subsection II.B. 

The actual performance of this solution procedure will be 
analyzed in Section IV through an experimental validation 
performed on a fabricated AUT by measuring y and yୋ inside 

an anechoic chamber. 

 
4 The measurement surface is in the near-field region of the overall array and, 
at the same time, in the far-field region of the single array elements. 

III. NUMERICAL ASSESSMENT 

In this Section, we present the outcomes of an extensive set 
of numerical experiments devoted to assessing the proposed 
diagnostic procedure. All test cases deal with realistic arrays 
whose generated field and AEPs have been computed 
exclusively by using full-wave electromagnetic simulations 
made through the CST Studio Suite software [32], and resort to 
M values much lower than the Nyquist one. 

The excitation coefficients of the “gold” AUT has been set 
equal to 1 and, by virtue of the reasoning reported in Section II, 
only the field samples whose normalized square amplitude was 
larger than -25 dB have been taken into account as possible 
measurement points.  

 

 
Fig. 1. Reference systems and variables involved in the diagnostics 
procedure of Sect. II.C.  
 

All experiments have been performed by using only 
phaseless near-field measurements in cases of both noiseless 
and noisy data, and different types of measurement surfaces 
have been considered. The outcomes have been quantitatively 
evaluated by using the normalized mean square error (NMSE) 
definition in [11], i.e.,  

𝑁𝑀𝑆𝐸 =
ฮ∆𝐼 − ∆𝐼ฮ

ଶ

ଶ

ฮ∆𝐼ฮ
ଶ

ଶ  (8) 

∆𝐼 and ∆𝐼 denote the vectors of the actual and retrieved 
“differential” AUT excitations, respectively. 

The section is organized as follows. 
First, in subsection III.A, ON-OFF faults are dealt with on 

both 1-D and 2-D AUTs by studying the Rate of Success of 
Excitations Recovery (RSER) and considering both cases of 
scalar and vector fields. The measurement surface was set as a 

5 𝒇(𝜃, 𝜑) can be directly measured during the experiments, and 𝒉(𝜃, 𝜑) can 
also be simulated or analytically defined. 
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hemisphere in order to avoid losses of information due to its 
truncation. 

Then, in subsection III.B, ON-OFF faults are again 
considered for 2-D AUTs and vector fields but, this time, using 
a planar measurement surface. 

Finally, in subsection III.C, phase faults are dealt with by 
considering both cases of constant and random phase 
perturbations. A comparison with the method in [18] (which is 
the only recent technique able to address the diagnostics by 
using, as the present approach, only phaseless near-field 
measurements) is also included. 

 

 
(a)  

 
(b) 

Fig. 2. 1-D AUT: CST design [subplot(a)]; measurement points (red 
dots) and array elements location (black dots) [subplot(b)]. 

III.A. RSER evaluation in the case of ON-OFF faults for both 
linear and planar AUTs 

To accurately evaluate the ultimate capabilities of the 
proposed approach, the RSER has been determined by running 
the diagnostic procedure for the detection of ON-OFF faults in 
different noisy scenarios for very many values of 𝑆 and 𝑀. In 
particular, for each value of 𝑆, we considered multiple different 
𝑀/𝑆 instances and, for every single case, we repeated the 
diagnostics 500 times by randomly changing the location of 
both the faulty elements and the measurement samples. Then, 
to generate the RSER plots, only the experiments leading to an 
NMSE lower than a very small threshold have been considered 
successful.  

Coming to details, both linear and planar arrays have been 
considered as AUTs. In both cases, to mitigate the effect of 
truncation errors [31], a hemispheric scanning surface has been 
exploited for three different distances 𝐷 from the AUT, namely, 
𝐷 = 𝑑 ∗ 𝐿௬ , with 𝑑 = [0.5; 1; 1.5] and 𝐿௬  being the 

overall (maximum) size of the AUT. For this kind of scanning 
surface, the tangential components of the field are 𝐸ఏ  and 𝐸ఝ. 

The 1-D AUT is shown in Fig. 2(a). It has 𝐿௬ =5.44 

( denoting the wavelength) and it is composed of 13 equally-
spaced patch antennas working at 2.45 GHz and built as 
reported in [27]. The 𝑀 phaseless near-field measurements 
were randomly chosen among the 24 independent samples [33] 
of 𝐸ఏ (which was the dominant component) on a semicircle in 
front of the antenna [see Fig. 2(b)].  

The achieved RSER as a function of the ratio 𝑀/𝑆 is shown 
in Fig. 3 for S=1 and S=2. As it can be seen, 𝑀 = 4𝑆 and 𝑀 =
5𝑆 ensure, respectively, RSER>80% for 𝑑 = [1; 1.5] and 𝑑 =
0.5. Equivalent results (which are not shown for the sake of 
brevity) have been achieved for S=3. 

The improvement in the RSER experienced as D increases, 
which will emerge again in the next presented test cases, agrees 
with the fact that the farther the measurement probes the better 
the fulfillment of the conditions enabling the CS theory.  

 

 
(a) 

 
(b) 

Fig. 3. Diagnosis of the AUT shown in Fig. 2(a): RSER performance 
achieved for 𝑆 = 1 [subplot(a)] and 𝑆 = 2 [subplot(b)] considering 
different values of the ratio 𝑀/𝑆 and different AUT-probe distances.  
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The RSER analysis has been repeated by corrupting the data 
with white Gaussian noise leading to signal-to-noise ratios 
(SNRs) respectively equal to 30 dB and 25 dB. The outcomes, 
which are reported in Fig. 4 for 𝐷 = 𝐿௬ and 𝑆 = 2, show a 
good agreement with the same kind of analysis performed in 
[10] where, however, only far-field measurements were used. 
 

 
 

Fig. 4. Fault diagnosis of the 1-D AUT shown in Fig. 2(a): RSER 
performance for 𝑆 = 2 and 𝐷 = 𝐿௬ in the presence of noise with 
SNR=30 dB and SNR=25 dB as compared to the noiseless results 
shown in Fig. 3(b). 

 
A further set of experiments has been performed by 

considering the 2-D AUT shown in Fig. 5(a). It is a 5𝜆 × 2.5𝜆 
planar array composed of 25 WR-90 waveguides working at 10 
GHz and built as reported in [11]. 

The phaseless near-field measurements have been randomly 
chosen amongst the 200 independent samples [33] on a 
hemisphere designed as dictated by [34] and depicted in Fig. 
5(b). In this case, since both the tangential field components 𝐸ఏ  
and 𝐸ఝ have a significant intensity, the array diagnostics has 
been performed by simultaneously exploiting both components 
(leading to the results depicted in Fig. 6) as well as by resorting 
to one component at a time (generating the outcomes shown in 
Fig. 7)6. As it can be seen, in the first case, using 4𝑆 
measurement points allows achieving: 
 RSER≈90% regardless of the probe-AUT distance and the 

number of faults; 
 RSER≈100% for S>1 and 𝐷 ≥ 𝐿௬.  

These outcomes confirm the effectiveness of the proposed 
procedure7. Furthermore, high diagnostics performances have 
been achieved even in the case where only one component of 
the field is exploited. In fact, as shown in Fig. 7, 𝑀 = 6𝑆 
ensures RSER>95% if only 𝐸ఝ is exploited as well as 
RSER>80% if just 𝐸ఏ  is used. 
 
6 Both field components can be measured at the same points of the 
scanning surface, which has the double advantage of reducing the 
probe’s movement and doubling the amount of data. In fact, in this 
case the actual number of data (denoted by 𝑀 from now on) results 

twice the number of measurement points (denoted by 𝑀 from now on). 

Finally, some of the experiments relative to Fig. 6 have been 
repeated in the presence of noise. The outcomes are 
summarized in Fig. 8 and demonstrate that faults can also be 
detected by experiencing an acceptable reduction in the RSER, 
i.e., 10% (for SNR=30 dB) and 20% (for SNR=25 dB). 

As a final set of numerical experiments, the diagnostic 
technique has been assessed on a much larger array. Hence, a 
planar AUT composed of 121 elements has been considered 
(keeping the same radiating elements, interelement spacing, and 
operating frequency as the ones considered in the previous test 
case). The distance 𝐷 of the hemispherical scanning surface 
was modified according to the actual size of the larger AUT, 
and the measurement points were randomly selected among the 
independent sampling points (which turn out to be equal to 968 
due to the rules in [33]). 

 

 
(a) 

 

 
(b) 

Fig. 5. 2-D AUT: CST design [subplot(a)]; measurement points 
location (red dots) and array elements location (green dots) 
[subplot(b)]. 

 
The achieved results are reported in Fig. 9. Notably, when 

jointly processing 𝐸ఏ  and 𝐸ఝ, using 4𝑆 measurement points 
ensures RSER≈100%. An equivalent performance (not shown 
here for the sake of brevity) has been achieved by exploiting 
only one component of the field and 6𝑆 measurement points.  

7 All results shown throughout Section III must be evaluated by taking 
into account the fact that, according to the CS theory (see also [11]), 
4S is the minimum number of real-valued measurements required for 
the correct retrieval of a S-sparse signal. 
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(a) 

 
(b)

 
         (c) 

Fig. 6. Outcomes of the diagnosis of the AUT of Fig. 5(a) by using 
both 𝐸ఏ and 𝐸ఝ for 𝑆 = [1; 2; 3; 4] and different AUT-probe distances, 
i.e., 𝐷 = 0.5𝐿௬  [subplot(a)], 𝐷 = 𝐿௬ [subplot(b)], and 𝐷 =

1.5𝐿௬  [subplot(c)]. 𝑀 denotes the number of measurement points. 

 
(a) 

 
(b) 

Fig. 7. Fault diagnosis of the AUT of Fig. 5(a): RSER as a function of 
the ratio 𝑀/𝑆 for 𝑆 = [1; 2; 3; 4] and 𝐷 = 𝐿௬ achieved by using 
only 𝐸ఏ [subplot(a)] and by using only 𝐸ఝ [subplot(b)]. 

 
These outcomes corroborate the effectiveness of the 

proposed procedure in detecting ON-OFF faults for large 
AUTs. In particular, despite the new array is approximately 5 
times larger (in terms of number of elements) than the previous 
one, the proposed technique resulted still able to detect the 
faults by exploiting a reduced amount of data. 

To evaluate the impact on the diagnosis of the distance 
between the measurement surface and the AUT, the RSERs 
achieved for different probe–AUT distances are superimposed 
in figures 10 and 11 for the smallest and largest AUTs, 
respectively. Notably, using 4S measurement points allows 
achieving RSER≈100% in all experiments involving the 121-
elements array whatever the D value, as well as in all 
experiments dealing with the 25-elements array provided that 
𝐷 ≥ 𝐿௬ . Besides confirming the capability to detect the 
failures even at a measurement distance as close as half as the 
AUT size, these results reveal that, on the 121-elements array, 
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the proposed approach worked even better than what it did for 
the 25-elements array.  

 

 
Fig. 8. Fault diagnosis of the 25-elements planar AUT shown in Fig. 
5(a) by processing 𝑀 square amplitude samples of both 𝐸ఏ and 𝐸ఝ. 
RSER performance for 𝑆 = 2 and 𝐷 = 𝐿௬ in presence of noisy 
with SNR=30 dB [circular maker] and SNR=25 dB [triangular 
marker]. The continuous line represents the RSER of the 
corresponding noiseless case shown in Fig. 6(b). 

 
 

III.B. ON-OFF failure detection for a 2-D AUT using a different 
kind of measurement surface 

It is common practice to address the fault diagnosis problem 
by considering planar scanning surfaces in front of the AUT 
[12]–[14],[16]–[18]. In this respect, we tested the proposed 
approach in the case of ON-OFF faults (i.e., by setting the 
excitations of 𝑆 elements to zero) on both the planar waveguide 
arrays described in the previous subsection. 

Coming to details, as far as the 25-elements AUT is 
concerned, we first performed the diagnostics of 𝑆 = 3 faults 

by considering 𝑀 = 6 amplitude-only near-field measurement 
points randomly chosen among 325 samples uniformly 
distributed on a planar surface as large as 6𝜆 × 3.5𝜆 and placed 
5𝜆 from the AUT. Then, we repeated the experiment two more 
times by using noisy data with SNR=30 dB and SNR=25 dB, 

exploiting 𝑀 = 9 near-field phaseless measurement points. The 
achieved results are shown in Fig. 12 and, again, prove the 
effectiveness and accuracy of the diagnostic approach even if 
noise is present in the data and truncation errors occur due to 
the type of scanning surface. The above statement is 
corroborated by the NMSE associated with each numerical test, 
i.e.: 1.5x10-9 for the noiseless case (revealing a perfect fault 
detection), 0.027 when SNR=30 dB, and 0.050 when SNR=25 
dB. 

The same kind of analysis was carried out for the 121-
elements AUT. In this case, the planar scanning surface, 6𝜆 ×
3.5𝜆 large and placed 5𝜆 from the AUT, was uniformly 
sampled into 325 points. Among these, to perform the accurate 

detection of 𝑆 = 3 faults, 𝑀 = 15 points were randomly 
selected for both the noiseless case and the noisy case with 

SNR=35 dB, and 𝑀 = 18 points were randomly selected for 
the noisy case with SNR=30 dB. Conversely, when 𝑆 = 5 faults 

were present, the accurate faults detection required 𝑀 = 20 for 
both the noiseless case and the noisy case with SNR=35 dB, and 

𝑀 = 25 for the noisy case with SNR=30 dB. Fig. 13 shows the 
faults retrieval in the cases of S=3 [subplot (a)] and S=5 [subplot 
(b)]. The amplitude of the retrieved excitations is quite high in 
correspondence with the actual faults, thus allowing their 
detection with good accuracy. In fact, for S=3, we obtained a 
perfect detection of the faults (i.e., NMSE=2.5x10-10) in the 
noiseless case, and a very good performance also in the 
presence of noise (i.e., NMSE=0.078 for SNR=35 dB, 
NMSE=0.16 for SNR=30 dB). Similarly, for S=5, we obtained 
a perfect reconstruction of the faults (i.e., NMSE=2.4x10-11) in 
the noiseless case, and a very good performance also in the 
noisy case (i.e., NMSE=0.075 for SNR=35 dB, NMSE=0.16 for 
SNR=30 dB). 

 

III.C. Phase fault detection and comparison with [18] 

The detection of phase faults is addressed in this subsection. 
As stated above, only one recent approach was able to solve this 
problem by exploiting only near-field phaseless measurements, 
i.e., the technique in [18]. 

To compare the proposed approach with such a technique, 
we considered the same AUT as the one in [18] and the same 
faults, i.e., a 2.9𝜆 × 2.4𝜆 planar array composed of 𝑁 = 25 
dipoles with 𝑆 = 3 𝜋-phase faults. Furthermore, we kept the 
measurement surface and the AUT-probes distance unchanged 
with respect to [18], i.e., a 3𝜆 × 3𝜆 planar surface placed 0.9𝜆 
from the AUT. Finally, as in [18], we corrupted the data with 
white Gaussian noise leading to an SNR=20 dB. 

The phase of the reconstructed excitations following the 
procedure in Section II.B and adopting 𝑀 = 90 phaseless near-
field data is shown in Fig. 14(a). As it can be seen, the faults 
have been correctly identified (NMSE=0.0043). Therefore, the 
proposed approach resulted able to correctly detect the same 
antenna failures as in [18] while reducing the number of 
required measurements by approximately 90%. In particular, 
our technique required only 90 measurements to achieve the 
same diagnostic performance that in [18] required 961 
measurements. 

Finally, to test the proposed approach in a more challenging 
scenario, we repeated the experiment by considering random 
(and smaller) phase faults (which are not dealt with in [18]). 
The achieved results are shown Fig. 14(b), where again, one can 
notice that the faults have been detected in an accurate fashion 
(NMSE=0.0036). 
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(a) 

 
(b) 

 
(c) 

Fig. 9. Outcomes of the diagnosis of the 121-elements planar AUT by 
using both 𝐸ఏ and 𝐸ఝ for 𝑆 = [4; 8; 12; 16] and different AUT-probe 
distances: 𝐷 = 0.5𝐿௬  [subplot(a)]; 𝐷 = 𝐿௬  [subplot(b)]; 𝐷 =

1.5𝐿௬  [subplot(c)]. 𝑀 denotes the number of measurement points. 

 
(a) 

 
(b) 

Fig. 10. Fault diagnosis of the 25-elements AUT shown in Fig. 5(a) 

using both 𝐸ఏ and 𝐸ఝ: RSER as a function of 𝑀/𝑆 (𝑀 denoting the 
number of measurement points) for 𝑑 = [0.5; 1; 1.5] and different 
number of faults, i.e., 𝑆 = 3 [subplot (a)] and 𝑆 = 4 [subplot (b)]. 
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(a) 

 
(b) 

Fig. 11. Fault diagnosis of the 121-elements planar AUT by using both 

𝐸ఏ and 𝐸ఝ: RSER as a function of 𝑀/𝑆 (𝑀 denoting the number of 
measurement points) for 𝐷 = [0.5; 1; 1.5] ∗ 𝐿௬ and different 
number of faults, i.e., 𝑆 = 4 [subplot (a)] and 𝑆 = 16 [subplot (b)]. 
 
 
 
 
 

 
Fig. 12. Diagnostics of S=3 ON-OFF faults on the AUT shown in Fig. 
5(a) by using both 𝐸௫ and 𝐸௬ and a planar scanning surface: amplitude 

of the “differential” AUT excitations retrieved for 𝑀 = 6 and 𝑀 = 9, 
respectively, in case of noiseless data and noisy data (𝑀 denoting the 
number of measurement points). 
 

  
(a) 

 
(b) 

Fig. 13. Diagnostics of ON-OFF faults on a 121-elements planar AUT 
by using both 𝐸௫ and 𝐸௬ taken on a planar scanning surface. Subplot 
(a): amplitude of the “differential” AUT excitations retrieved for 𝑆 =

3 by exploiting 𝑀 = 15 near-field phaseless measurement points in 
case of noiseless data and noisy data with SNR=35 dB, and 𝑀 = 18 
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near-field phaseless measurement points in case of noisy data with 
SNR=30 dB. Subplot (b): amplitude of the “differential” AUT 
excitations retrieved for 𝑆 = 5 by exploiting 𝑀 = 20 near-field 
phaseless measurement points in case of noiseless data and noisy data 
with SNR=35 dB, 𝑀 = 25 near-field phaseless measurement points in 
case of noisy data with SNR=30 dB.  
 

 
(a) 

 
(b) 

 

Fig. 14. Diagnostics of S=3 phase-faults on a planar array of dipoles: 
comparison with [18]. Phase of the “differential” AUT excitations 
retrieved by using 𝑀 = 90 noisy (SNR=20 dB) phaseless data in two 
different cases: uniform 𝜋 phase faults [subplot(a)]; random phase 
faults [subplot(b)].  

 

IV. EXPERIMENTAL VALIDATION 

In the following, we present an experimental validation of 
the proposed approach. This was done by using the antenna 
developed in [14] as AUT, which is also shown in Fig. 15. In 
particular, the AUT is a slotted waveguide array with a length 
of 12𝜆 and is composed of 𝑁 = 14 radiating elements. The 
operating frequency is 10 GHz. 

In [14], the near-field of this AUT was measured in an 
anechoic chamber to perform the diagnostics of 𝑆 = 2 failures 
realized by covering the 3rd and 11th slots with a conductive 
material. In particular, 41×41 𝜆/2-spaced measurements were 
taken on a planar surface placed 40 cm away from the AUT by 
using a rectangular waveguide as the measuring probe. 

 
 

 
 

Fig. 15. Photo of the slotted-waveguide array into the anechoic 
chamber at University of Calabria. The rectangular waveguide used as 
measuring probe is also visible at the bottom. 
 

     
Fig. 16. Near-field amplitude of the AUT shown in Fig. 15 in the 
presence of 𝑆 = 2 failures, i.e., 3rd and 11th non-radiating elements, as 
measured inside anechoic chamber through two different sampling 
strategies: uniform sampling (𝑀 = 21, magenta squares); random 
sampling (𝑀 = 24, blue dots). 
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        (a) 

 
        (b) 

Fig. 17. Experimental assessment of the diagnostics procedure for the 
AUT shown in Fig. 15: amplitudes of the “differential” AUT 
excitations retrieved by using, respectively, 𝑀 = 21 uniformly-
distributed phaseless samples [subplot (a)] and 𝑀 = 24 randomly-
distributed phaseless samples [subplot (b)]. 
 
 

Notably, while amplitude and phase measurements were 
used in [14], the diagnostics experiment was repeated here by 
measuring, inside the anechoic chamber, only the amplitude of 
the near field. 

In detail, we applied the procedure described in subsection 
II.C to perform the diagnostics in two different cases, i.e., by 
exploiting 𝑀 = 21 uniformly distributed near-field phaseless 
samples and 𝑀 = 24 randomly distributed near-field phaseless 
samples. 

The near-field amplitude measured in the two cases along 
the central line of the acquisition domain is shown in Fig. 16, 
while the corresponding diagnostic outcomes are reported in 
Fig. 17. As it can be seen, even if the number of exploited 
measurements is much lower than the number of degrees of 
freedom of the square-amplitude field generated by the AUT 
(which results approximately to 49), the two faults have been 
correctly detected in both cases. This circumstance confirms the 
actual effectiveness of the proposed technique in real-world 
applications. 

V. CONCLUSIONS 

A new and effective approach to the fault diagnosis of array 
antennas has been presented, assessed, and experimentally 
validated. The technique exploits amplitude-only near-field 
data and makes no restrictions on the array structure. 

Some systematic comparisons of the proposed approach 
with other near-field techniques that use either phaseless or 
amplitude and phase measurements are summarized in Tab. I. 
In summary, the proposed approach has several advantages 
over other techniques, as follows: 
 it is one of the only three techniques (the other ones being [8] 

and [18]) able to perform the diagnostics by resorting only to 
phaseless near-field data, and it is the only one that has 
undergone experimental validation; 

 it accomplishes fault diagnostics by exploiting a reduced 
number of measurements. In particular, it achieves high 
RSER performances even by using 4S measurements which, 
in turn, by virtue of the CS theory, is the lowest admissible 
number of measurements if phaseless data are exploited. In 
fact, since that at least 2S complex-valued measurements are 
required to identify S faulty elements, and one complex-
valued measurement is equivalent to two real-valued 
measurements, at least 4S phaseless measurements are 
required to perform the exact recovery of an S-sparse signal 
(see [11] and the references cited therein); 

 it handles whatever kind of radiating elements, from dipoles 
(which are the most used, see [12],[13],[16]–[18]) to patches 
(as in [8] and [12]), waveguides, and slots, arranged in both 
linear and planar geometries; 

 as far as the size of the AUT is concerned, it compares well 
with other works, and it was applied to larger AUTs with 
respect to [8] and [18]; 

 it shows good performance in the presence of noise. 
As shown through an experimental validation and an 

extensive set of full-wave electromagnetic simulations, the 
presented diagnostics procedure results fast and effective in 
real-world applications and hence can be relevant to current 
high-performance arrays such as those designed, for instance, 
in [35]–[37].  

Due to the adoption of phaseless data, the presented 
technique is also strictly related to phase retrieval (PR). In fact, 
the circumstance that the diagnostic results achieved in the case 
of planar arrays are even better than those obtained for one-
dimensional arrays agrees with the fact that 2-D PR problems 
are usually easier to solve with respect to 1-D problems (due to 
the presence, in the latter case, of different complex fields all 
having the same square-amplitude distribution) [38]. 

 

REFERENCES 

[1] M. D. Migliore, “Array diagnosis from far-field data using the theory of 
random partial Fourier matrices,” IEEE Antennas Wireless Propag. Lett., 
vol. 12, pp. 745-748, 2013.  

[2] Y. Zhang and H. Zhao, “Failure diagnosis of a uniform linear array in the 
presence of mutual coupling,” IEEE Antennas Wireless Propag. Lett., vol. 
14, pp. 1010-1013, 2015. 

[3] B. Fuchs, L. Le Coq, and M. D. Migliore, “Fast antenna array diagnosis 
from a small number of far-field measurements,” IEEE Trans. Antennas 
Propag., vol. 64, n. 6, pp. 2227-2235, 2016. 



AP2212-2619.R1 
 

13 

[4] T. Ince and G. Ögücü, “Array failure diagnosis using nonconvex 
compressed sensing,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 
992-995, 2016. 

[5] W. Li, W. Deng, and M. D. Migliore, “A deterministic far-field sampling 
strategy for array diagnosis using sparse recovery,” IEEE Antennas 
Wireless Propag. Lett., vol. 17, n. 7, pp. 1261-1265, 2018. 

[6] M. Salucci, A. Gelmini, G. Oliveri, and A. Massa, “Planar array diagnosis 
by means of an advanced Bayesian compressive processing,” IEEE Trans. 
Antennas Propag., vol. 66, no. 11, pp. 5892-5906, 2018. 

[7] O. M. Bucci, A. Capozzoli, and G. D’Elia, “Diagnosis of array faults from 
far-field amplitude-only data,” IEEE Trans. Antennas Propag., vol. 48, no. 
5, pp. 647-652, 2000. 

[8] O. M. Bucci, A. Capozzoli, and G. D’Elia, “A method for the diagnosis of 
phase faults in array antennas from amplitude only field data,” IEEE 
Antennas Propag. Soc. Symp. & USNC/URSI Radio Sci. Meet. vol. 4, pp. 
2238-2241, 2000. 

[9] B. Fuchs and L. Le Coq, “Excitation retrieval of microwave linear arrays 
from phaseless far-field data,” IEEE Trans. Antennas Propag., vol. 63, n. 
2, pp. 748-754, 2015.  

[10] A. F. Morabito, R. Palmeri, and. T. Isernia, “A compressive-sensing-
inspired procedure for array antenna diagnostics by a small number of 
phaseless measurements,” IEEE Trans. Antennas Propag., vol. 64, n. 7, pp. 
3260-3265, 2016. 

[11] R. Palmeri, T. Isernia, and A. F. Morabito, “Diagnosis of planar arrays 
through phaseless measurements and sparsity promotion,” IEEE Antennas 
Wireless Propag. Lett., vol. 18, n. 6, pp. 1273-1277, 2019. 

[12] O. M. Bucci, M. D. Migliore, G. Panariello, and P. Sgambato, “Accurate 
diagnosis of conformal arrays from near-field data using the matrix 
method,” IEEE Trans. Antennas Propag., vol. 53, n. 3, pp. 1114-1120, 
2005. 

[13] M. D. Migliore, “A compressed sensing approach for array diagnosis from 
a small set of near-field measurements,” IEEE Trans. Antennas Propag., 
vol. 59, n. 6, pp. 2127-2133, 2011.  

[14] S. Costanzo, A. Borgia, G. Di Massa, D. Pinchera, and M. D. Migliore, 
“Radar array diagnosis from undersampled data using a compressed 
sensing/sparse recovery technique,” J. Electr. Comput. Eng., vol. 2013, 
Article ID 627410, 2013. 

[15] K. Konno, S. Asano, T. Umenai, and Q. Chen, “Diagnosis of array antennas 
using eigenmode currents and near-field data”, IEEE Trans. Antennas 
Propag., vol. 66, n. 11, pp. 5982-5989, 2018. 

[16] C. Xiong, G. Xiao, Y. Hou, and M. Hameed, “A compressed sensing-based 
element failure diagnosis method for phased array antenna during beam 
steering,” IEEE Antennas Wireless Propag. Lett., vol. 18, n. 9, pp. 1756-
1760, 2019. 

[17] Z. Lin, Y. Chen, X. Liu, R. Jiang, and B. Shen, “A bayesian compressive 
sensing-based planar array diagnosis approach from near-field 
measurements,” IEEE Antennas Wireless Propag. Lett., vol. 20, n. 2, pp. 
249-253, 2021. 

[18] X. Wang, K. Konno, and Q. Chen, “Diagnosis of array antennas based on 
phaseless near-field data using artificial neural network,” IEEE Trans. 
Antennas Propag., vol. 69, no. 7, pp. 3840-3848, 2021. 

[19] J. Laviada Martínez, A. Arboleya-Arboleya, Y. Álvarez-López, C. García-
González, and F. Las-Heras, “Phaseless antenna diagnostics based on off-
axis holography with synthetic reference wave,” IEEE Antennas Wireless 
Propag. Lett., vol. 13, pp. 43-46, 2014. 

[20] M. G. Fernández, Y. Á. López, and F. L. Andrés, “Antenna measurement 
and diagnostics processing techniques using unmanned aerial vehicles,” 
2019 13th Eur. Conf. Antennas Propag. (EuCAP), pp. 1-5, 2019. 

[21] G. Hislop, L. Li, and A. Hellicar, “Phase retrieval for millimeter and 
submillimeter-wave imaging,” IEEE Trans. Antennas Propag., vol. 57, n. 
1, pp. 286–289, 2009. 

[22] G. Junkin, T. Huang, and J. Bennett, “Holographic testing of terahertz 
antennas,” IEEE Trans. Antennas Propag., vol. 48, n. 3, pp. 409–417, 
2000. 

[23] E. J. Candès, J. K. Romberg, and T. Tao, “Robust uncertainty principles: 
exact signal reconstruction from highly incomplete frequency 
information,” IEEE Trans. Inf. Theory, vol. 52, n. 2, pp. 489-509, 2006. 

[24] R. G. Yaccarino, and Y. Rahmat-Samii, “Phaseless bi-polar planar near-
field measurements and diagnostics of array antennas,” IEEE Trans. 
Antennas Propag., vol. 47, no. 3, pp. 574-583, 1999. 

[25] Y. Álvarez, F. Las-Heras, and M. R. Pino, “Antenna diagnostics using 
phaseless NF information”, Automatika, vol. 53, n. 1, pp. 49-55, 2012. 

[26] A. F. Morabito, R. Palmeri, V. A. Morabito, A. R. Laganà, and T. Isernia, 
“Single-surface phaseless characterization of antennas via hierarchically 

ordered optimizations,” IEEE Trans. Antennas Propag., vol. 67, n. 1, pp. 
461-474, 2018. 

[27] A. F. Morabito, A. Di Carlo, L. Di Donato, T. Isernia, and G. Sorbello, 
“Extending spectral factorization to array pattern synthesis including 
sparseness, mutual coupling, and mounting-platform effects,” IEEE Trans. 
Antennas Propag., vol. 67, n. 7, pp. 4548-4559, 2019. 

[28] F. R. Varela, J. F. Álvarez, B. G. Iragüen, M. S. Castañer, and O. 
Breinbjerg, “Numerical and experimental investigation of phaseless 
spherical near-field antenna measurements,” IEEE Trans. Antennas 
Propag., vol. 69, no. 12, pp. 8830-8841, 2021. 

[29] J. Knapp, A. Paulus, and T. F. Eibert, “Reconstruction of squared field 
magnitudes and relative phases from magnitude-only near-field 
measurements,” IEEE Trans. Antennas Propag., vol. 67, n. 5, pp. 3397-
3409, 2019. 

[30] M. Salucci, M. D. Migliore, P. Rocca, A. Polo, and A. Massa, “Reliable 
antenna measurements in a near-field cylindrical setup with a sparsity 
promoting approach,” IEEE Trans. Antennas Propag.n, vol. 68, n. 5, pp. 
4143-4148, 2020. 

[31] A. C. Newell, “Error analysis techniques for planar near-field 
measurements,” IEEE Trans. Antennas Propag., vol. 36, no. 6, pp. 754-
768, 1988. 

[32] CST Studio Suite 3D EM simulation and analysis software (2022) 
[Software] https://www.3ds.com/products-services/simulia/products/cst-
studio-suite. 

[33] O. M. Bucci, C. Gennarelli, and C. Savarese, “Representation of 
electromagnetic fields over arbitrary surfaces by a finite and nonredundant 
number of samples,” IEEE Trans. Antennas Propag., vol. 46, no. 3, 351-
359, 1998. 

[34] R. Marques, C. Bouville, M. Ribardière, L. P. Santos, and K. Bouatouch, 
“Spherical Fibonacci point sets for illumination integrals,” Comput. Graph. 
Forum, vol. 32, no. 8, pp. 134-143, 2013. 

[35] O. M. Bucci, T. Isernia, A. F. Morabito, S. Perna, and D. Pinchera, 
“Aperiodic arrays for space applications: An effective strategy for the 
overall design,” 2009 3rd European Conference on Antennas and 
Propagation, Berlin, Germany, 2009, pp. 2031-2035. 

[36] O. Leonardi, M. G. Pavone, G. Sorbello, A. F. Morabito, and T. Isernia, 
“Compact single-layer circularly polarized antenna for short-range 
communication systems,” Microw. Opt. Technol. Lett., vol. 56, n. 8, pp. 
1843–1846, 2014. 

[37] R. Palmeri, M. T. Bevacqua, A. F. Morabito, and T. Isernia, “Design of 
artificial-material-based antennas using inverse scattering techniques,” 
IEEE Trans. Antennas Propag., vol. 66, n. 12, pp. 7076–7090, 2018. 

[38] R. Palmeri, G. M. Battaglia, A. F. Morabito and T. Isernia, “Reflector 
antennas characterization and diagnostics using a single set of far-field 
phaseless data and crosswords-like processing,” IEEE Trans. Antennas 
Propag., vol. 70, n. 9, pp. 8424-8439, 2022. 

 



AP2212-2619.R1 
 

14 

 

Reference 
Element 

type 
Array kind 

and size 
Noise on data 
(lower SNR) 

Maximum 
number of 

faults 

Number 
of data 

Scanning 
surface 

Kind of 
data 

[12] Bucci et 
al., IEEE TAP 
2005 

Dipole Planar: 16 x 64 35dB Not specified 59 x 129 
Planar grid 

Amplitude 
and phase Patch 

Planar (conformal): 
16 x 48 

Experimental Not specified 115 x 95 

[13] Migliore, 
IEEE TAP 
2011 

Short dipole 
Planar: 17 x 17 

35dB 
3 (2%) 25 

Planar grid 
Amplitude 
and phase Planar: 33 x 33 5 (0.5%) 36 

[15] Konno et 
al., IEEE TAP 
2018 

Uda Yagi Linear: 10 
Not specified 

2 (20%) 
Not 
specified 

Cylindrical 
Amplitude 
and phase  Loop Linear: 5 1 (20%) 

Not 
specified 

Uda Yagi Linear: 2 Experimental 1 (50%) 420 

[16] Xiong et 
al., IEEE 
AWPL 2019 

Isotropic Planar: 10 x 10 25dB 15 (10%) Up to 120 Not specified 
Amplitude 
and phase 

[17] Lin et al., 
IEEE AWPL 
2021 

Short dipole Planar: 33 x 33 20dB  108 (10%) Up to 3000 Planar disk 
Amplitude 
and phase 

[18] Wang et 
al, IEEE TAP 
2021 

Dipole Planar: 5 x 5 
20dB 3 961 Planar grid 

Amplitude-
only Loop Planar: 5 x 5 

[8] Bucci et al., 
APS/URSU 
Symposium 
2000 

Patch Planar: 4 x 4 50dB 3 (20%) 
Not 
specified 

Not specified 
Amplitude-
only 

This paper 

Patch Linear: 13  3 (22%) Up to 18 Hemispherical 
and planar 
grid Amplitude-

only 

WR-90 
waveguide 

Planar: 5 x 5 25dB 4 (16%) Up to 32 

Planar: 11 x 11 35dB 12 (10%) Up to 96 

Dipole [18] Planar: 5 x 5 [18] 20dB [18] 3 [18] 90 
Planar grid 
[18] 

Slot array Linear: 14 Experimental 2 (15%) 21 or 24 Planar grid 

 
Tab. 1. Comparison between the proposed diagnostics procedure and the state-of-the-art works dealing with the array faults detection through 
near-field data.  
 


