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In this study, a generative model and transfer learning powered system for classification of Scanning

Electron Microscope (SEM) images of defective nanofibers (D-NF) and non-defective nanofibers (ND-

NF) produced by electrospinning process is proposed. Specifically, a conditional-Generative Adversarial

Network (c-GAN) is developed to generate synthetic D-NF/ND-NF SEM images. A transfer learning-

oriented strategy is also proposed. First, a Convolutional Neural Network (CNN) is pre-trained on real

images. The transfer-learned CNN is trained on synthetic SEM images and validated on real ones,

reporting accuracy rate up to 95.31%. The achieved encouraging results endorse the use of the pro-

posed generative model in industrial applications as it could reduce the number of needed laboratory

electrospinning experiments that are costly and time consuming.
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1. Introduction

Electrospinning (ES) is one of the most versatile

and viable techniques due to its easiness and cost-

effectiveness, employed to generate polymeric ultra-

thin fibers with diameters in the nanoscale range,

known indeed as nanofibers (NF).1 In recent years,

electrospun NF have been gaining attention in dif-

ferent areas of nanotechnology including sensors,
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electronics, tissue engineering, drug delivery, filters,

wound dressing or functional garments.2 However,

NFs can be affected by structural anomalies (defects)

that appear as beaded structures along the electro-

spun network. Defective nanofibers (D-NF) prevent

the use of such materials in any nanotechnology ap-

plication. Hence, monitoring the quality of NF pro-

duced by the electrospinning process is of great im-

portance especially in the industrial manufacturing.

The Scanning Electron Microscope (SEM) is usually

employed to inspect the electrospun NF material.

This procedure requires a high time-effort from ex-

pert operators. Moreover, visual examination of SEM

images is not an effective method to distinguish non-

defective NF (ND-NF) from D-NF. Automatic clas-

sification systems would lead to a significant acceler-

ation of the production chain.

In recent years there has been an exceptional

use of Artificial Intelligence (AI) in many disciplines

(e.g, health care,3 sentiment analysis,4 image recog-

nition5). Several AI-based classification systems have

been developed for a wide variety of fundamental

applications, achieving impressive performance, sim-

ilar or even better than the human decision. The

application of AI in nanotechnology has been also

highly increasing over the recent years.6,7 Neverthe-

less, there is a limited numbers of studies concern-

ing AI for nanomaterials produced by electrospin-

ning. Some studies focused on the automatic de-

tection and localization of defects in SEM images.

Boracchi et al.8 proposed a sparse-based representa-

tion technique for anomaly detection in SEM images.

Carrera et al.9 developed a dictionary learning-based

framework of anomaly-free sub-patches to identify

defects in SEM images, reporting an Area Under

the ROC curve (AUROC) of 92.6%, over a dataset

of 45 NF SEM images (40 with anomalies and 5

anomaly-free), outperforming other sparse and sim-

ilarity based-methods.10,11 Napoletano et al.12 pro-

posed a region-based approach to recognize and pin-

point morphological anomalies in SEM images by

means of a Convolutional Neural Network (CNN)

and self-similarity techniques. The method outper-

formed Carrera et al.9 approach, achieving AUROC

of 97%, using the same SEM image dataset. Other

works, instead, focused on the automatic classifica-

tion of SEM images of D-NF and ND-NF. In this con-

text, there are few works in the current state-of-the-

art. Specifically, Ieracitano et al.13 developed a deep

CNN to classify raw SEM images of D-NF and ND-

NF, trained and tested over an experimental small

dataset of 160 images (85 D-NF and 75 ND-NF), re-

porting classification accuracy rate up to 80%; while,

in14 the authors proposed an optimized deep CNN

based on image preprocessing by means of Sobel fil-

tering, achieving average accuracy of 80.27±4.8%.

It is to be noted that one of the main drawbacks

of the above studies was the limited number of the

available SEM images. Indeed, a massive amount of

training samples is necessary to effectively train deep

learning (DL) models and avoid overfitting issues.

However, collecting new SEM images requires new

costly and time-consuming laboratory experiments.

So, the application of data augmentation techniques

would be of great help to address this problem.

Recently, augmentation strategies have been pro-

posed. In15 a hybrid unsupervised-supervised ma-

chine learning system was presented and a relatively

naive data augmentation technique was employed

by corrupting the features extracted from the pro-

posed Autoencoder (AE) with white Gaussian noise;

whereas, in16 the size of the dataset13 was increased

by means of common augmentation method (noise,

translations and rotations). However, standard aug-

mentation approaches are based on the use of the

same, slightly changed, images. Hence, motivated

by the need of new methodologies able to gener-

ate brand new SEM images to reduce the number

of costly experiments and resources, here, a Genera-

tive Adversarial Networks (GAN) and transfer learn-

ing based strategy is proposed. In particulr, GAN

have been widely used to create high quality realis-

tic images (i.e., synthetic samples) in several appli-

cations.17 In this study, in order to cope with the

issue of the limited size of the dataset and of la-

beled samples, a GAN-based approach is proposed

for synthetic SEM image generation. To the best of

our knowledge this is the first work that uses adver-

sarial networks to produce synthetic SEM images of

electrospun nanofibers.

A conditional-GAN (c-GAN) is developed to

capture real features from original data and generate

synthetic SEM images of D-NF and ND-NF. First, a

customised CNN is trained and tested on real data

(here referred to as pre-trained CNN ). Second, syn-

thetic samples are used as input to the pre-trained

CNN according to a transfer learning-oriented strat-

egy.18 Finally, in order to prove the effectiveness of
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the “fake” images generated by the proposed c-GAN,

the transfer-learned CNN is subsequently tested on

real samples. The major contributions of this paper

are summarized as follows:

• generation of realistic-looking SEM images

of defective and non-defective NF by means

of a c-GAN, thus reducing the need of costly

laboratory tests.

• development of a transfer learning-oriented

classification system (i.e., transfer-learned

CNN ) based on synthetic high-quality im-

ages.

• development of a system with a high poten-

tial for industrial deployment in nanotech-

nology applications.

The rest of this work is organized as follows.

Section 2 introduces the electrospinning process, the

dataset description and the proposed methodology,

including: the development of the c-GAN for syn-

thetic-SEM image generation, the transfer learning-

oriented classification system and performance met-

rics. Section 3 reports the classification performance.

Section 4 discusses the achieved results, while Section

5 concludes the paper.

2. Materials and Methodology

The proposed framework comprises the following

processing stages: (i) electrospinning process and

generation of SEM images dataset; (ii) generation

of synthetic-SEM images of electrospun nanofibers

by means of the proposed c-GAN; (iii) pre-training

of a custom CNN on real-SEM images (pre-trained

CNN ); (iv) transfer learning and SEM images clas-

sification (transfer-learned CNN ).

2.1. Electrospinning process

The electrospinning process is one of the most ef-

ficient techniques to produce fibers with micro-or-

nano-diameters.19 A common electrospinning appa-

ratus consists of a high voltage power supply, a spin-

neret, a volumetric pump and a collector, as reported

in Fig. 1a. A polymer solution is contained in a

syringe and fed via a spinneret using a volumetric

pump at a constant flow rate. A pendant droplet is

extruded from the spinneret. A high voltage power

supply is applied to generate an electric field between

the needle tip of the syringe and the collector. At a

particular voltage the electrostatic force overcomes

the surface tension of the polymer solution and the

droplet deforms into a Taylor cone, from which a

fluid jet is further extruded towards the collector.

During the excursion of the jet from the needle tip

to the collector, the solvent evaporates, and narrow

solid fibers (with micro or nanodiameter) are de-

posited on the grounded collector surface with ran-

dom orientation.

Power Supply

Volumetric

pump
Spinneret

Nanofiber

formation

Polymeric solution

Collector

(a)

(b) (c)

Figure 1: (a) Electrospinning apparatus. (b) Exam-

ple of defective nanofibers SEM image. (c) Example

of non-defective nanofibers SEM image.

2.1.1. Applications of Electrospun Nanofibers

Electrospun nanofibers are used in several real-world

applications, such as biomedical, environment and

energy storage fields. For example, in the biomedi-

cal field, mechanical and biodegradable properties of

nanomaterials are exploited to repair or regenerate

damaged tissues or organs.20 NFs are are also em-

ployed in drug delivery applications since they are

able to maintain the integrity and bioactivity of the

therapeutic agent.21 In the environmental field, NFs

are used as advanced filters for the removal of pollu-

tants such as toxic ions and organic molecules from

both polluted air and wastewater.22 Finally, in the

energy field, NFs can be employed for the develop-

ment of electrodes for rechargeable solar cells batter-

ies, supercapacitors, and fuel cells, since they have

very good conductivities and structural stability.22
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2.1.2. Anomalies in Nanofibers

Nanofibers are often characterized by the formation

of undesired defects known as beads. Electrospun

beaded nanofibers are caused by the instability of

the polymeric jet solution. Electrospinning parame-

ters (such as concentration of the solution, surface

tension, electric potential, flow rate, tip-to-collector

distance) can influence the production of NFs, lead-

ing to the possible presence of anomalies.23 For ex-

ample, at concentrations too low, electrospray oc-

curs instead of electrospinning, causing the forma-

tion of beads of spherical shape. As concentration

increases, the bead modifies its shape from spherical

to a spindle-like one. Increasing the applied voltage

promotes a shrinking of the fiber diameter up to the

formation of anomalies.24 The flow rate of the poly-

mer is a parameter that defines the transfer rate of

the material. If the forward speed is too fast it in-

duces the formation of defects.25 Finally, too near or

too far distance from the tip-collector is a cause of

beads production.26

Fig. 1b shows an example of bead formation dur-

ing electrospinning (i.e., defective nanofibers, D-NF);

while Fig. 1c an example of anomaly-free nanofiber

(i.e, non-defective nanofibers, ND-NF).

2.1.3. Dataset description

The experimental activities were carried out at the

Materials for Environmental and Energy Sustainabil-

ity Laboratory, University “Mediterranea” of Reggio

Calabria (Italy). The Polyvinylacetate (PVAc) was

used as polymer and Ethanol (EtOH) as solvent.

The morphology of the electrospun nanofibers were

then investigated using the Phenom Pro-X Scanning

Electron Microscope (SEM) and the Fibermetric an-

alyzer to observe the NFs structure and the possi-

ble presence of undesired defects (i.e., beads). Dur-

ing the experiments the four main control electro-

spinning parameters, namely, concentration (c1), ap-

plied voltage (c2), flow rate (c3) and tip-to-collector

distance (TCD, c4), have been changed in the well-

known working ranges (c1 [10;25] %wt; c2 [10;17.5]

kV ; c3 [100;300] µL/min; c4 [10-15] cm). Seventeen

electrospinning experiments were conducted. In par-

ticular, the set-up of each experiment is reported in

Table 1. Each sample of the electrospun nanofibers

was analyzed through the SEM and 47 representative

areas were selected by an expert operator. Overall,

a dataset of 17 x 47=799 SEM images sized 128 x

128 was generated, according the procedure reported

in.13 However, the proposed c-GAN was not able to

model 128 x 128 images, possibly due to the limited

number of samples together with a high complexity

of the images. Hence, in this study, each image was

further divided into four patches sized 64 x 64 for

an overall set of about 3200 SEM images (799 x 4 =

3196). This allowed to provide a massive amount of

data required to train the proposed c-GAN.

2.1.4. Dataset preparation

The experimental dataset (here denoted to as DBall)

consisted of 3196 SEM images (∼3200): 1536 be-

longing to D-NF class, 1660 belonging to ND-NF

class. Since training generative networks requires

huge amounts of data, 80% of the SEM images

dataset was allocated for training the proposed c-

GAN. This subset, here denoted to as DB80%, con-

sisted of 2560 SEM images: 1230 D-NF and 1330 ND-

NF. DB80% is further randomly partitioned accord-

ing to a k-fold cross-validation (with k=10) approach

for developing the custom pre-trained CNN. Hence,

256 images (123 D-NF and 133 ND-NF) were itera-

tively used as test set and the remaining 2304 (1107

D-NF and 1197 ND-NF) as train set. The remaining

20% of data was used to test the transfer-learned

CNN. This subset is here denoted to as DB20% and

consisted of 640 SEM images: 308 D-NF and 332 ND-

NF. Table 2 reports the dataset details and classes

distribution.

Table 1: Setup of the experimental electrospinning

parameters.

#
Concentration

(c1) [%wt]
Voltage
(c2) [kV ]

Flow rate
(c3) [µL/min]

TCD
(c4) [cm]

1 10 15 100 10

2 15 10 100 10

3 15 13.5 100 10

4 15 15 100 10

5 15 15 200 10

6 15 15 300 10

7 15 15 100 12.5

8 15 15 100 13.5

9 15 15 100 15

10 18 15 100 15

11 20 10 100 10

12 20 11.5 100 10

13 20 13.5 100 10

14 20 15 100 10

15 20 16 100 10

16 20 17.5 100 10

17 25 15 100 10
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Table 2: Dataset and classes distribution of the real -

SEM images. Note that DB80% is used to train

the proposed c-GAN and pre-trained CNN ; while,

DB20% is used to test the proposed transfer-learned

CNN.
Class DBall DB80% DB20%

D-NF 1536 1230 308

ND-NF 1660 1330 332

Total 3196 2560 640

2.2. Generation of synthetic SEM
electrospun nanofibers’ images

2.2.1. Conditional Generative Adversarial
Network

A GAN consists of two separate neural networks

called generator (G) and discriminator (D), respec-

tively, trained adversarially. G is trained to gen-

erate synthetic samples and fool the discriminator;

whereas, D is trained to distinguish between real and

fake data. More specifically, the generator learns a

distribution pg over the data x by mapping a ran-

dom input noise distribution pz(z) to the data space

as G(z, θg), where θg are the parameters of the gen-

erative network; on the other hand, the discriminator

is defined as D(x, θd), where θd are the parameters

of the discriminatory network outputs a single scalar

D(x) and refers to the probability that x belongs to

real data rather than generated by G. It is to be

noted that the generator and the discriminator are

trained simultaneously, according to the two-player

min-max game logic and value function V(G, D):

min
G

max
D

V (D,G) =

Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z)))]

(1)

D is trained in order to maximize the probability to

assign the correct label (i.e., real or synthetic) while

G is trained to minimize log(1 −D(G(z))). Further

details on this procedure are reported in.27

A conditional generative adversarial network is

an extension of a standard GAN where both gener-

ator and discriminator are conditioned on an addi-

tional information y, i.e., the class label.28 In partic-

ular, the label y feeds the generator in order to pro-

duce samples corresponding to the class y; and feeds

the discriminator to improve the real data recog-

nition. The objective loss function for conditional-

GAN is similar to eq. 2:

min
G

max
D

V (D,G) =

Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))]
(2)

2.2.2. Proposed conditional-GAN architecture

The proposed c-GAN, including the specific architec-

tures of the generator and discriminator, are depicted

in Fig. 2(a) and 2(b), respectively, and are based on

CNNs,29 while Table 3 reports the architecture de-

tails in tabular format.

Generator G. The random noise vector (sized 1

x 100) is firstly projected and reshaped into 4 x 4

x 512 arrays. The categorical label is integrated by

passing it through an embedding layer that maps it

into a single vector, later passed through a fully con-

nected layer. In this study, the output is reshaped

into a unique feature map 4 x 4. This is to match

the 4 x 4 x 512 activations of the first layer. Indeed,

the new 4 x 4 map is concatenated to the existing

512, resulting in a 4 x 4 x 513 input matrix. The lat-

ter is further up-sampled to 64 x 64 (i.e., size of the

real D-NF/ND-NF SEM images) by means of a series

of transposed convolution layers (tconv) followed by

batch normalization and ReLU layers. In this study,

the generator includes 4 transposed convolution lay-

ers (tconvi, with i = 1, .., 4) with filter size 5 x 5,

stride of 1 for tconv1, stride of 2 for tconv2,3,4, and

a number of filters that decreases in each layer.

Discriminator (D). The discriminator takes as

input the generated SEM image obtained from G

and a real one, with the aim to infer if the gener-

ated SEM image is real or not. Both images have

the same dimension that in this study is 64 x 64. As

in the generator, the class label is passed through

an embedding and reshape layer. The output is re-

shaped into a single 64 × 64 activation map and

concatenated with the input image, resulting in a

64 x 64 x 2 input matrix. D consists of a series of

convolution layers (conv) with batch normalization

and leaky ReLU layers (Fig. 2(b)). In this study, the

discriminator includes 5 convolutional layers (convi,

with i = 1, .., 5) with 64, 128, 256, 512 and 1 filters,

respectively. conv1−4, have filters 5 x 5 and stride 2,
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while conv5 has filter 4 x 4 and stride 1.

It is worth mentioning that the topology of the

proposed c-GAN was selected following the DCGAN

architecture reported in Radford et al.30 and ac-

cording to a trial-and-error approach. Indeed, Ta-

ble 4 reports different architectures developed by

changing the number of filters and processing layers:

c-GAN1, c-GAN2, c-GAN3. The generative models

were trained for about 400 epochs and learning rate

of 10−3. Note that the c-GAN with the lowest Fréchet

inception distance (FID) score31 (i.e., c-GAN3) was

selected as the best model. Furthermore, for a com-

parative analysis, different bunches of realistic look-

ing (i.e., synthetic) SEM images are generated by

c-GAN3 (here merely denoted as c-GAN). In partic-

ular, in this study, three sets of synthetic data (DBs)

of size 500, 1600, 3196 (i.e., same size of the real

SEM images dataset) have been produced and used

to train the proposed transfer-learned CNN. In addi-

tion, for fair comparisons, the same class distribution

of the real dataset was reproduced, i.e., 48% of data

was generated as D-NF and 52% as ND-NF. Details

are reported in Table 5.

2.3. Transfer learning powered CNN
for SEM images classification

Transfer learning refers to the procedure by which

the knowledge (i.e., features) learned by an already

trained network is exploited to improve the learning

of a new set of data.32A pre-trained custom CNN,

developed to classify real D-NF/ND-NF SEM im-

ages achieved by electrospinning experiments, is em-

ployed.

Table 3: Setup of the proposed c-GAN.
Generator Activations Discriminator Activations

Input
(Noise)

100
Input

(Image)
64x64x1

Project and reshape 4x4x512
Embed and reshape

(Label)
64x64x1

Embed and reshape
(Label)

4x4x1 Concatenation 64x64x2

Concatenation 4x4x513
Convolution

filters= 5x5, stride=2
32x32x64

Transposted Convolution
filters= 5x5, stride=2

8x8x256 Batch Norm + Leaky ReLU 32x32x64

Batch Norm + ReLU 8x8x256
Convolution

filters= 5x5, stride=2
16x16x128

Transposted Convolution
filters= 5x5, stride=2

16x16x128 Batch Norm + Leaky ReLU 16x16x128

Batch Norm + ReLU 16x16x128
Convolution

filters= 5x5, stride=2
8x8x256

Transposted Convolution
filters= 5x5, stride=2

32x32x64 Batch Norm + Leaky ReLU 8x8x256

Batch Norm + ReLU 32x32x64
Convolution

filters= 5x5, stride=2
4x4x512

Transposted Convolution
filters= 5x5, stride=2

64x64x1 Batch Norm + Leaky ReLU 4x4x512

Tanh function 64x64x1
Convolution

filters= 4x4, stride=2
1x1x1

2.3.1. pre-trained CNN

The proposed pre-trained CNN is reported in Fig.

3(a). It is composed of a series of conv, ReLU, max-

pooling (mpool) layers and ends with a standard ar-

tificial neural network (ANN) for classification pur-

poses. The CNN has two conv layers with 64 and 96

filters of size 4 x 4, stride of 2 and padding of 1, result-

ing in 64 features maps of size 32 x 32 and 96 features

maps of size 8 x 8, respectively. After applying ReLU

activation function, the extracted features maps are

downsampled by means of a max pooling operation

achieving maps size on 16 x 16, 4 x 4. All max pooling

layers have filters sized 2 x 2 with a stride of 2. Fi-

nally, the extracted feature maps are reshaped into 1-

dimensional vector 1 x D (with D = 1536) and input

to a 1-hidden layer NN of 1000 neurons and a soft-

max output layer to perform the 2-way discrimina-

tion task: D-NF vs. ND-NF. The Adaptive Moment

(ADAM) optimization technique is used for training

the network for a number of epochs=250 with the fol-

lowing training parameters: β1= 0.9; β2=0.999 (with

β1,2 exponential decay rates); learning rate α=10−3.

The network was implemented in Matlab R2021b

on a workstation with Intel(R) Core(TM) i7-8700K

CPU @ 3.70GHz, one NVIDIA GeForce RTX 2080

Ti GPU and 64 GB RAM. Note that the network

was trained and tested using only real -SEM images.

In particular, the DB80% was employed. The k-fold

cross-validation technique (with k=10) was applied,

for an overall training time of about 30 min. Hence,

256 images (123 D-NF and 133 ND-NF) were itera-

tively used as test set and the remaining 2304 (1107

D-NF and 1197 ND-NF) as train set. The model cor-

responding to the best performance was used as pre-

trained CNN.

2.3.2. transfer-learned CNN

The pre-trained CNN is used as a starting point to

validate the synthetic SEM images generated by the

c-GAN. In this study, the features from the early lay-

ers of the pre-trained CNN were kept fixed, in other

words, transferred to the new model; while the last

layers, namely, fully connected and classification lay-

ers, were re-trained (i.e., the weights are discarded

and then trained again). The transfer-learned CNN

model is trained on 3196 (1536 D-NF, 1660 ND-

NF) synthetic SEM images (i.e., same size of the

real dataset) to perform the binary D-NF vs. ND-NF
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Discriminator

synthetic
SEM images

Generator

real
SEM images 

Label
D-NF/ND-NF

Noise

real or
synthetic

SEM images?

64

64

64

64

Generator Discriminator

Figure 2: (a) The architecture of the proposed conditional-GAN. (b) Architecture of the generator and discrim-

inator.

Table 4: Different conditional-GAN configurations. Note that c-GAN3 refers to the c-GAN employed in this

study.

Generator c-GAN1 c-GAN2 c-GAN3 Discriminator c-GAN1 c-GAN2 c-GAN3

Input

(Noise)
100 100 100

Input

(Image)
64x64x1 64x64x1 64x64x1

Project and reshape 16x16x128 8x8x256 4x4x512
Embed and reshape

(Label)
64x64x1 64x64x1 64x64x1

Embed and reshape

(Label)
16x16x1 8x8x1 4x4x1 Concatenation 64x64x2 64x64x2 64x64x2

Concatenation 16x16x129 8x8x257 4x4x513
Convolution

filters= 5x5, stride=2
32x32x64 32x32x64 32x32x64

Transposted Convolution

filters= 5x5, stride=2
32x32x64 16x16x128 8x8x256 Batch Norm + Leaky ReLU 32x32x64 32x32x64 32x32x64

Batch Norm + ReLU 32x32x64 16x16x128 8x8x256
Convolution

filters= 5x5, stride=2
16x16x128 16x16x128 16x16x128

Transposted Convolution

filters= 5x5, stride=2
64x64x1 32x32x64 16x16x128 Batch Norm + Leaky ReLU - 16x16x128 16x16x128

Batch Norm + ReLU - 32x32x64 16x16x128
Convolution

filters= 5x5, stride=2
- 8x8x256 8x8x256

Transposted Convolution

filters= 5x5, stride=2
- 64x64x1 32x32x64 Batch Norm + Leaky ReLU - 8x8x256 8x8x256

Batch Norm + ReLU - - 32x32x64
Convolution

filters= 5x5, stride=2
- - 4x4x512

Transposted Convolution

filters= 5x5, stride=2
- - 64x64x1 Batch Norm + Leaky ReLU - - 4x4x512

Tanh function 64x64x1 64x64x1 64x64x1
Convolution

filters= 4x4, stride=2
1x1x1 1x1x1 1x1x1

classification for about 300 epochs using the ADAM

optimization technique. Finally, the transfer-learned

CNN is tested on new real -SEM images that were

not used for training the proposed c-GAN and pre-

trained CNN (i.e., DB20%, Table 2).
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Figure 3: (a) The architecture of the pre-trained CNN and (b) the transfer learning approach.

2.4. Classification metrics

The performance of the proposed CNN were es-

timated by means of standard classification met-

rics, i.e., specificity (Sp), sensitivity (Ss), positive

predicted value (PPV ), negative predicted value

(NPV ), F1-score (FS), accuracy (Acc)), which are

defined as: Sp = TN
TN+FP ; Ss = TP

TP+FN ; PPV =
TP

TP+FP ; NPV = TN
TN+FN ; FS = 2∗TP

2∗TP+FP+FN ;

Acc = TP+TN
TP+TN+FP+FN .

with TP (true positive) number of D-NF images clas-

sified as D-NF; TN (true negative) number of ND-NF

images classified as ND-NF; FP (false positive) num-

ber of ND-NF images detected as D-NF and vice-

versa, FN (false negative) number of D-NF images

detected as ND-NF.33

Table 5: Synthetic data distribution of the three sets

of synthetic datasets (DBs) of size 500, 1600, 3196

produced by the proposed c-GAN.

Class DBs1 DBs2 DBs3

D-NF 240 768 1536

ND-NF 260 832 1660

Total 500 1600 3196

2.5. Synthetic SEM image analysis

Frechet Inception Distance (FID). FID mea-

sures the distance between the synthetic images and

the real ones, using the the activations from the last

pooling layer of the inception v3 model.31 The FID

score is calculated as follows:

FID = ||µ1–µ2||2 + Tr(C1 + C2–2(C1C2)
1/2) (3)

where, µ1 and µ2 represent the feature-wise av-

erage of the real and synthetic vectors, respectively;

C1 and C2 refer to the covariance matrices of the

real and synthetic features arrays; Tr is the trace lin-

ear algebra operation. Low FID scores denote better

quality of generated images, vice-versa, higher values

denote lower quality of generated images.

Probability Density Function (PDF). Let I be

an image with P pixels and intensity values ranged

between 0 and M − 1 (where M is the highest num-

ber of intensity levels), the histogram of I is defined

as hist(i) = p(i), where i denotes the intensity level,

whereas, p(i) is the number of pixels at the corre-

sponding intensity level.34 Hence, the PDF is calcu-

lated by means of the normalized histogram as fol-

lows: PDF (i) = p(i)/P .

t- distributed stochastic neighbor embedding (t-

SNE). It is a statistical method that operates a non-

linear dimensionality reduction with the aim of map-

ping high-dimensional data onto a low-dimensional

space of two or three dimensions. Specifically, t-sNE

maps each high-dimensional object onto a two- or

three-dimensional point so that similar objects are

projected into nearby points and dissimilar objects

are projected into distant points by converting the

euclidean distance between data points into joint

probabilities that account similarities.35 In this pa-

per, the dimensionality of the features extracted by

the CNN from both real and fake images was reduced
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by embedding the feature data in a bidimensional

space, by means of t-SNE algorithm. Data visualiza-

tion in the t-SNE projected space will help to infer if

features from real and fake images are projected into

relatively distant or close points, in other words, if

real and fake images appear distinguishable in the

t-SNE projected space.
3. Results

3.1. pre-trained CNN performance

Table 7 reports comparative classification perfor-

mance of different CNN configurations when the

real D-NF/ND-NF SEM images dataset is used as

train/test set. As can be noted, the lowest results

were achieved with CNN2 with an accuracy rate

up to 69.62±2.94%; while, the highest performance

was achieved with CNN5 with Sp of 88.21±4.52%,

Ss of 73.67±2.95 PPV of 85.59±4.84%, NPV of

78.40±1.42%, FS of 79.05±1.55% and accuracy rate

up to 81.22±1.66%.

3.2. Analysis of synthetic SEM images

Fig. 6a and 6b show examples of D-NF and ND-NF

images generated by the developed c-GAN. From

visual inspection, synthetic samples look similar to

images acquired from SEM analysis of electropun

nanofibers produced by electrospinning experiments.

In order to evaluate the quality of the synthetic im-

ages the FID and PDF were calculated. Table 6

reports a comparative analysis of FID, estimated

per class, by each generative network, over differ-

ent sets of synthetic data DBs1,DBs2,DBs3 (sized

500, 1600, 3196, respectively). As can be seen, the

proposed c-GAN3 (herein referred to as c-GAN)

achieved the lowest score (i.e., average FID=85.96),

using the same number of real images. Furthermore,

Fig. 9a reports the comparison between the PDF of

real D-NF SEM images and the PDF of synthetic

D-NF SEM images; vice-versa, Fig. 9b reports PDF

comparison of real and synthetic ND-NF images.

As can be observed, the proposed c-GAN was able

to generate D-NF/ND-NF SEM images with simi-

lar PDF as the original ones. Such result was also

confirmed by the t-SNE35 statistical method. Specif-

ically, the dimensionality of the feature space was

reduced by means of t-SNE by embedding the data

in a bidimensional space. Fig. 4 shows the results

of t-SNE application to the dataset of features ex-

tracted from real and synthetic images (generated by

the proposed c-GAN) representing nanofibers with

defects (a) and with no defects (b). Real data are

represented by red points whereas synthetic data are

represented by blue points. Fig. 4 shows that the

scatter plots of the two classes (real and synthetic)

look overlapped in the embedding space in this way

endorsing that non significant differences between

real and synthetic data could be detected. However,

t-SNE depends on perplexity, a parameter related

to the number of close neighbours of every single

point.36 Fig. 4 shows an example with perplexity

set at 30. Perplexity is defined as 2 to the power of

the Shannon entropy of the probability distribution

Pi induced by a variance σi assigned to a Gaus-

sian centered over a single high-dimensional point

xi. In order to assess whether the interpretation of

the achieved results was sensitive to perplexity, the

Loss and the distance between the centers of two

islands (clouds of nearby points in the scatter plot)

accounting for real and synthesized data were esti-

mated for varying values of perplexity. Perplexity

ranged between 5 and 50,36 with a step of 5. The

loss represents the Kullback-Leibler divergence be-

tween the joint distributions that model the input

data and the embedded data. The distance between

the centers of the two islands (real data vs synthetic

data) was introduced to quantify how much the two

islands are co-centered. The distance was on aver-

age 0.9 for DNF data and of 0.91 for NDNF data,

showing overall a decreasing trend as perplexity in-

creased, for perplexity values larger than 15 (Fig. 5).

Loss also showed a decreasing trend as perplexity

increased for perplexity values larger than 10, with

an average value of 1.79 for DNF data and of 1.78

for NDNF data (Fig. 5).
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Figure 4: t-SNE visualization of the features related

to real and synthetic images of NF with defects (a)

and with no defects (b).
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Figure 5: (Top) Trend of the t-SNE Loss (Kullback-

Leibler divergence between the joint distributions

that model the input data and the embedded data)

for different values of perplexity. (Bottom) Trend of

the distance between the centers of the two islands

(real data vs synthetic data). The blue line represents

the embedding of DNF data, the red line represents

the embedding of NDNF data.

In order to further compare the real and syn-

thetic images quantitatively, a texture analysis was

proposed. To this end, a statistical method of ex-

amining texture that considers the spatial relation-

ship of pixels known as the gray-level co-occurrence

matrix (GLCM) was adopted.37 GLCM character-

izes the texture of an image by computing how of-

ten pairs of pixels with specific values and in a

specific spatial relationship occur in an image. A

co-occurrence matrix GLCM was calculated for ev-

ery available image in the dataset of real and syn-

thetic images. Some measures were also calculated

from the co-occurrence GLCM matrices in order to

quantify the texture of the images, namely: con-

trast (measures the local variations in the gray-level

GLCMmatrix); correlation (measures the joint prob-

ability occurrence of pixel pairs); energy (provides

the sum of squared elements in the GLCM ma-

trix, represents the image uniformity or the angular

second moment.); homogeneity (measures the close-

ness of the distribution of elements in the GLCM

to the GLCM diagonal.) The texture of real and

synthetic images was compared in terms of the

aforementioned measures. For every measure, the

values estimated from the real images were com-

pared to those estimated from synthetic images by

means of the Wilcoxon ranksum test.38 The follow-

ing p values were calculated: contrast (p=6.2*10−6),

correlation (p=0.13), energy (p=0.04), homogeneity

(p=7.67*10−10); therefore all below the threshold

0.05, except the correlation, which means that real

and synthetic images exhibited no statistically sig-

nificant differences in terms of contrast, energy and

homogeneity of the GLCM matrices.

Table 6: Comparative analysis of FID, estimated per

class, by each generative network ( c-GAN1, c-GAN2,

c-GAN3).

Class FID-DBs1 FID-DBs2 FID-DBs3

c-GAN1 D-NF 291,36 266,83 252,49

ND-NF 300,7 305,9 303,72

average 296,03 286,36 278,10

c-GAN2 D-NF 184,92 146 121,59

ND-NF 191 171,18 155

average 188,1 158,72 138,41

c-GAN3 D-NF 203,01 117,35 83

ND-NF 203,35 129,31 89

average 203,18 123,33 85,96

3.3. transfer-learned CNN
performance

The CNN5 configuration, i.e., the trained CNN5

achieving the maximum accuracy across the differ-

ent k-fold runs, was used as pre-trained CNN to per-

form transfer learning. Note that the transfer-learned

CNN was trained only using synthetic images gener-

ated by the proposed c-GAN and tested on real im-

ages. Furthermore, the performance metrics were es-

timated with various number of training samples. In-

deed, the transfer-learned CNN was trained over the

three different sets of synthetic images (500, 1600,

3196) generated by the proposed c-GAN (Section

2.2.2). Table 8, reports comparative performance, in-

cluding computational cost. As can be seen, higher

classification performance was achieved by increasing

the number of the training samples to the detriment

of processing time. Indeed, accuracy was of 95.31%
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(a)

(b)

Figure 6: (a) Examples of synthetic D-NF SEM images. (b) Examples of synthetic ND-NF SEM images

with a computational cost of 124 s. More specifically,

Fig. 7 reports the confusion matrix with the num-

ber of FP, FN, TP, TN. Hence, the transfer learning

based configuration allowed to improve the classifica-

tion performance of about 10% when compared with

the pre-trained CNN, Table 9. This results was also

confirmed by the analysis of the Area Under the Re-

ceiver Operating Characteristic (ROC) curve (AU-

ROC), as reported in Fig. 8, with AUROC of 99.04%

and 91.04% for the transfer-learned CNN and pre-

trained CNN, respectively. In addition, classification

metrics have been estimated also shuffling real and

synthetic images since the beginning and compared

with the transfer-learned CNN. The mixed data were

used to train and test the customized CNN, reporting

accuracy rate up to 84.59%, as reported in Table 10.

This result confirms the usefulness of the proposed

transfer learning-oriented approach that allowed to

achieve higher performance (i.e., 95.31%).

Figure 7: Confusion matrix of the proposed transfer-

learned CNN.
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Figure 8: ROC curves and AUC values of the

pre-trained CNN and the proposed transfer-learned

CNN.

3.4. Comparison with the
state-of-the-art

To the best of our knowledge, there are few works

related to AI for processing SEM images of defec-

tive and non-defective NFs produced by electrospin-

ning process (Table 11). Some authors12,39 devel-

oped AI-based systems for detecting and localizing

defects; others,13,14 focused on the classification of

D-NF/ND-NF SEM images, while, there is a lim-

ited number of works that used augmentation strate-

gies for nanomaterial applications. Specifically, in15

in order to increase the cardinality of the dataset,

features extracted from patches (sized 64 x 64) by

a unsupervised processor (i.e., AE) were corrupted

by white Gaussian noise and used as input to a su-

pervised processor (i.e., MLP) achieving an accuracy

rate up to 92.5%. In16 common augmentation strate-

gies (noise, translations and rotations) were applied,

reporting accuracy rate up to 93.85%±1.65%. To the

best of our knowledge, this is the very first work that
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proposes a c-GAN for synthetic SEM image gener-

ation. Newly generated (synthetic) data were then

used in downstream tasks to reduce the need to per-

form expensive experiments to obtain sufficient data.

This was supported by the use of a transfer-learned

CNN, trained on synthetic images and validated on

real ones, achieving an accuracy rate of up to 95.31%

and AUROC up to 99.04%, thus outperforming dis-

crimination scores of other models that do not rely

on generative networks as reported in Table 11.
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Figure 9: (a) Comparison of the probability density

function of D-NF real -SEM images and D-NF syn-

thetic-SEM images. (b) Comparison of the probabil-

ity density function of ND-NF real -SEM images and

ND-NF synthetic-SEM images.

4. Discussion

The original contribution of the present work lies in

proposing a conditional generative adversarial net-

work to model electrospun nanofiber data. Newly

generated (synthetic) data were then used in down-

stream tasks to reduce the need to perform expensive

experiments to obtain sufficient data. To this end,

a transfer-learned CNN was proposed, achieving an

accuracy rate of up to 95.31%, thus outperforming

discrimination scores of other models that do not

rely on generative networks. It is to be noted that

a transfer learning-oriented approach is presented,

indeed, the knowledge learned to distinguish real D-

NF/ND-NF SEM images forms the basis of an im-

proved model that aims to classify D-NF/ND-NF im-

ages merely relying on totally new synthetic samples.

Such strategy allowed not only to improve the clas-

sification performance but also to demonstrate that

synthetic images, generated by the proposed c-GAN,

had similar properties of real samples. This was also

confirmed by the comparative analysis of the prob-

ability density functions (shown in Fig. 9a and 9b)

and FID score (Table 6). However, the proposed ap-

proach has some limitations. First, the proposed c-

GAN was not able to reproduce the original full-size

SEM image sized 128 x 128. This was possibly due to

the limited size D-NF and ND-NF samples used to

train the generative model. Second, the original im-

age sized 128 x 128 was divided into four sub-images,

each manually annotated as D-NF and DN-NF. As a

consequence, the procedure was initially dependent

on an expert operator. In addition, the quality of

anomalous and normal images generated by the c-

GAN have been estimated by means of the FID score.

In particular, FID values of 83 and 89 were achieved

for D-NF and ND-NF class. Indeed, from a visual

inspection analysis, it was noted that some synthetic

SEM images generated as ND-NF included small de-

fects (and vice-versa) instead. This was possibly due

to the fact that the system was not able to recog-

nize and reproduce such defects and, as consequence,

some images labelled as ND-NF were generated with

small anomalies. In addition, some electrospinning

experiments produced nanofibers with large diam-

eters which could mimic the presence of defective,

confusing the network, as a consequence, some syn-

thetic images were labeled as D-NF.

5. Conclusion

In this study, a generative adversarial-based ap-

proach is proposed to generate synthetic SEM im-

ages of nanofibers produced by electrospinning pro-

cess, with the ultimate aim of avoiding the costly

laboratory experiments. In particular, a conditional-

GAN was developed to produce SEM images of de-

fective and non-defective nanofibers, allowing the re-

construction of high fidelity SEM images. To the best

of our knowledge, this is the first work that employs

adversarial networks for the generation of realistic-

looking SEM images. Furthermore, transfer learning

strategy was also applied by means of a pre-trained

CNN in order to transfer the extracted “knowledge”

(i.e., weights) of the CNN processing modules, from

real -SEM images, to the new network, here referred
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Table 7: Setup of different CNN configurations and comparative classification performance

Model conv1+ReLU mpool1 conv2+ReLU mpool2 HL1 HL2 Specificity [%] Sensitivity [%] PPV [%] NPV [%] F-Score [%] Accuracy [%]

CNN1 Filters=8@4x4, s=2 2x2, s=2 - - 100 - 79.35±6.83 61.50±9.49 73.99±4.51 69.37±3.72 66.57±5.44 70.78±2.81

CNN2 Filters=8@4x4, s=2 2x2, s=2 - - 100 50 75.22±13.82 63.60±12.98 72.33±7.69 69.88±4.50 66.30±5.30 69.62±2.94

CNN3 Filters=8@4x4, s=2 2x2, s=2 Filters=16@4x4, s=2 2x2, s=2 30 - 87.77±2.39 67.94±3.64 85.06±2.85 75.21±2.13 75.88±2.76 79.28±2.12

CNN4 Filters=8@4x4, s=2 2x2, s=2 Filters=16@4x4, s=2 2x2, s=2 30 10 87.24±2.64 70.09±3.58 83.67±2.67 75.98±2.00 76.21±2.13 79.00±1.61

CNN5 Filters=64@4x4, s=2 2x2, s=2 Filters=96@4x4, s=2 2x2, s=2 1000 - 88.21±4.52 73.67±2.95 85.59±4.84 78.40±1.42 79.05±1.55 81.22±1.66

CNN6 Filters=64@4x4, s=2 2x2, s=2 Filters=96@4x4, s=2 2x2, s=2 1000 50 87.54±5.58 73.15±7.52 84.98±4.36 78.24±4.08 78.25±3.44 80.62±2.28

Table 8: Comparative analysis of the proposed transfer-learned CNN in terms of performance and computational

cost with various number of training samples. Results in the table refer to the test set (real images). Comparative

results of the proposed pre-trained CNN and transfer-learned CNN

Training samples Specificity [%] Sensitivity [%] PPV [%] NPV [%] F-Score [%] Accuracy [%] Time Cost [s]

DBs1 (500 synthetic images) 96.08% 89.61% 95.50% 90.88% 92.46% 92.97% 22.92

DBs2 (1600 synthetic images) 95.78% 92.53% 95.32% 93.26% 93.90% 94.22% 58.18

DBs3 (3196 synthetic images) 96.39% 94.16% 96.03% 94.67% 95.08% 95.31% 124.11

Table 9: Comparative results of the proposed pre-trained CNN and transfer-learned CNN

Model Specificity [%] Sensitivity [%] PPV [%] NPV [%] F-Score [%] Accuracy [%]

pre-trained CNN 97.59% 70.78% 96.46% 78.26% 81.65% 84.69%

transfer-learned CNN 96.39% 94.16% 96.03% 94.67% 95.08% 95.31%

to as transfer-learned CNN. This procedure will re-

duce the computational effort of the successive train-

ing step, as most of the features representing the

problem have already been extracted. Overall, the

achieved promising results of the proposed genera-

tive system would allow, in principle, for applications

in the industrial deployment in nanotechnology sce-

nario. Indeed, the possibility to generate synthetic

D-NF and ND-NF SEM would augment the dataset

needed to train an automatic anomaly detection sys-

tem, avoiding to run additional costly electrospin-

ning experiments and improving the monitoring of

nanomaterials in the production chain. In the fu-

ture, we intend to carry out new electrospinning ex-

periments using different polymeric solutions in or-

der to further increase the cardinality of the orig-

inal dataset. Furthermore, modern neural network

structures (e.g., transformers) as well as more robust

generative models and advanced supervised machine

learning/classification algorithms such as neural dy-

namic classification algorithm,41,42 dynamic ensem-

ble learning algorithm,43 and finite element machine

for fast learning,44 will be explored in an attempt to

improve the detection performance.
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