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Combining Trust Graphs and Keystroke
Dynamics to Counter Fake Identities in Social

Networks
Francesco Buccafurri, Member, IEEE, Gianluca Lax, Member, IEEE, Denis Migdal, Lorenzo Musarella

and Christophe Rosenberger

Abstract—Fake identity in social networks is a phenomenon that is strongly increasing, and it is used for discovering personal
information, identity theft, influencing people, spreading fake news, fraud, and so on. In this paper, we face this problem by introducing
the concept of certified social profiles and by propagating this property through a collaborative approach that exploits
keystroke-dynamic-recognition techniques to identify illegal access to certified profiles. We propose a decentralized approach to
compute the trust level of a social profile, and we show the robustness of the proposal by analyzing the security of the trust mechanism
through experimental validation.

Index Terms—Social Networks, Trust, Fake Profiles, Keystroke Dynamics

F

1 INTRODUCTION

In daily life, all communications are taking rapidly the
direction of the digital and the virtual domain. In particular,
social networks and social media platforms represent huge
sources for information sharing where people can interact
with each other easily and in a fast way. At the same time,
online social networks are big catching areas for collecting
and spreading trash news and fake information as well
[19], [26]. Unfortunately, the awareness of users of the most
common cyber threats is not growing as quickly as risks
do. Indeed, the online community still has to be educated
concerning cyber threats [2]. For this reason, it is important
to improve the security of services, and trust represents a
fundamental property that users must look for when they
interact on social networks. Usually, fake news is shared
and forwarded mostly by fake profiles.

Social network profiles whose claimed identity does not
match the real user are certainly potential security threats
on the Web. This happens in two cases. The first case is that
of fake profiles, in which the attacker intentionally creates a
clone of a real-life identity profile of the victim, pretending
to be them in the interactions. The second case is that of
compromised profiles, in which an intruder, permanently
or temporarily, uses the real social profile of the victim
fraudulently. In both cases, the risk of anomalous behavior
with potential damage to the victim’s reputation, espionage,
or social engineering attacks toward people connected to the
victim is very high.
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The problem faced in this paper regards the fact that,
through fake profiles, attackers can entice users to give
up personal data, hijack them toward infected websites
and, once their email addresses are known, launch spear-
phishing campaigns. Several studies have been proposed
in the literature to counter this problem [9], [13], [21], [30],
mainly based on associating each social profile with a certain
degree of trust. All the existing proposals require a strong
analysis effort by the social network provider, which takes
into account all the behavioral and topological information
of the profiles.

Differently from these pioneer methods, we propose an
approach based on a collaborative trust mechanism that
may operate in a truly decentralized fashion, in which
trust is combined with behavioral biometric mechanisms to
counter profile compromising. The novelty of our proposal
is that the computation of the trust level is decentralized: in-
deed, it exploits only user interactions and does not require
any central authority for trust management or computation.

The underlying idea exploits the social structure of our
domain. The trust model is based on a robust implementa-
tion of the word-of-mouth approach. Robustness is obtained
by redundancy. In words, we follow the principle that if
a sufficient number of people trust the identity of a social
network profile, we can trust it as well. This way, we obtain
a graph of trust, because we propagate trust under the
basic assumption that a fake user (and then fake behavior)
is transitively excluded. We base our assumption on the
consideration that, when the real-life identity is known,
sanctions are facilitated in case of misbehavior (e.g., victims
could sue users who certified the perpetrator), thus misbe-
havior is prevented.

Trust is obtained through redundant trust chains in
which any node plays a role similar to an intermediate
certifier in a certification chain until a certified profile (i.e., a
trust anchor) is reached. Our model requires the presence of
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some profiles certified by a Trusted Third Party. To identify
possible intrusions in a legitimate profile, the trust model
takes also into account the behavioral biometric traits of
users that they record and verify in a peer-to-peer fashion.
Importantly, no biometrics are stored by the social network
provider. In other words, the word-of-mouth mechanism
propagates the information that the current behavior of a
given node is not compliant with that of the initial safe
state, thus reducing the trust of the community towards that
node. Keystroke dynamics is used as a behavioral biometric
modality, which is very easy to collect on web pages (e.g.,
by using JavaScript code) and allows a simple and low-cost
solution to verify the identity of a user [29], [38]. We can
summarize the contribution of this paper as follows:

• We propose a theoretical framework based on a resilient
trust graph model that enables the computation of a
trust degree with respect to a social network participant
in a decentralized way.

• Such framework is then implemented and several ex-
periments are carried out with real datasets to validate
the system performance and resilience, comparing such
results with other proposals as well.

• The proposal exploits the behavioral biometric feature
of the user, in terms of keystroke dynamics, to identify
possible intrusion with respect to a legitimate profile
and to measure its trustworthiness.

• We provide the security analysis, validating the robust-
ness of our approach.

The structure of the paper is the following. In Section 2, we
contextualize our proposal in the state of the art. Then, in
Section 3 we provide a general overview of our approach,
while in Section 4 we introduce the biometric features and
the behavioral biometric modality used in our approach.
Section 5 describes how our trust model works and it
provides the theoretical support for the trust mechanism.
In Section 6 we present a decentralized way to compute the
trust level and in Section 7 we describe the system functions
that a social network platform needs to implement our
approach. In Section 8 we test our approach and show how
security properties are fulfilled. Then, Section 9 includes
details about datasets and implementation issues related to
our approach. Finally, in Section 10 we draw our conclusions
and discuss future work.

2 RELATED WORK

In online social networks, the detection of fake profiles
is becoming every day more and more important because
there are many threats (such as scamming, trolling, phish-
ing, Sybil attacks, and social bots) that need to be faced [33],
[39].

In this scenario, it can be helpful to create a model
that includes the dynamic computation of a trust degree
for each user. Trust is becoming a fundamental element of
a successful social network [36], and it derives from the
“social capital”, which is based on the density of interactions
among people.

The concept of trust applied to the digital domain has
been introduced through PGP (Pretty Good Privacy). The
original intent of PGP was to provide a “cryptographic tool
for the masses”. Its main purpose was to encrypt e-mail

messages using public or conventional key encryption. For
this reason, PGP does not adopt the traditional hierarchical
trust architecture but chooses the “web of trust” approach,
in which the users sign each other’s public keys. Thus, a
network of public keys is progressively originated, with
links formed by signatures. This way, there is no need for
a central authority [1]. Although the first instance of PGP
allowed determining the maximum length of the certifica-
tion chain through the CERT_DEPTH parameter, researchers
have not shown much interest in seeking new solutions for
trust propagation because it can be quite difficult to use
it properly in real applications [1], [20]. In particular, only
in recent years, this aspect has been investigated by [7], in
which authors propose a blockchain-based solution.

A survey of trust in social networks [36] introduces
three categories of trust models: (i) graph-based models,
which consider only how members are related to each other
and do not consider the real interaction between them; (ii)
interaction-based models, which consider only interaction in
the community and ignore the social network structure; (iii)
hybrid models, which try to consider both the aspects to
compute the social trust.

One of the most crucial points of this research area
is, surely, how trust propagates in the network. For this
purpose, the small world theorem and the social network
analysis techniques have been explored. In particular, the
authors of [30] enhanced the STrust model by proposing
an association-based trust propagation model that considers
two types of interactions: active and passive. STrust model is
computed as a combination of the popularity trust and the
engagement trust as STrust(u) = ↵PopTrust(u) + (1 �
↵)EngTrust, which are defined in [30]. The paper [21] pro-
poses an approach to select the most trusted path between
two nodes of a social network by merging seven criteria,
such as profile similarity, topological similarity, Dunbar’s
theorem, and other measures related to social network anal-
ysis. The authors specify that their approach allows them
to consider longer trust propagation paths than others. A
model based on the uniform trust propagation called SN-
GDM (Social Network-based Group Decision Making) is
presented in [43]. In particular, the authors propose the
two concepts of Trust Score (TS) and Knowledge Degree (KD),
which are combined to define a social trust value that
does not lose any trust information during its propagation.
Their model requires the intervention of Trusted Third Parts
(TTPs) for the validation of results.

A decentralized and privacy-preserving online social
network is presented in [10]. Here, the authors propose
Safebook, a system that provides registered users with data
storage and data management functions relying on trust
relationships that are part of social networks in real life.

Recently, the use of machine learning has been proposed
for detecting fake profiles. In [42], a dynamic Convolutional
Neural Network (CNN) is built for fake profile classification
that provides better results in terms of accuracy and loss
than other commonly used learning algorithms. Another
machine-learning-based classifier to detect bots in online
social networks is proposed in [37] to counter Sybil attacks.

Our approach is also related to the concept of informa-
tion diffusion in online social networks, in the sense that
the roots influence the trust values of other nodes in the
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network following the rules of information flow [32]. Most
of these works study how information flows in online social
networks and propose strategies to maximize this diffusion
by identifying strategic nodes for information propagation.
The aim of our paper is somehow orthogonal to these
studies and may exploit these solutions to improve trust
propagation through the social network.

Furthermore, our approach leverages biometric data,
which is a practice not new for social network applications
[8], even though there are few papers in this area. In
particular, most of the papers focus on user authentication
using biometric data to enhance its security. Some papers
in the literature considered soft biometrics with possible
applications to social networks [14]. Most of the works
consider gender recognition by analyzing the type of images
posted or the keystroke dynamics [15], [40]. To the best of
our knowledge, no work considers keystroke dynamics as a
solution to enhance trust in social networks.

Several works exploit biometrics to implement continu-
ous authentication schemes [12], [28], [41]. In high-security
environments, the typical session-level authentication can
be exposed to session hijacking, in which an attacker targets
a post-authenticated session. In those contexts, continuous
and real-time verification of user identity may become
mandatory, and a lot of research effort has been devoted
to the use of biometrics as a means to achieve this objective.

However, the goal of these strategies is very far away
from ours. In detail, our approach does not aim at proposing
a strategy to continuously verify that an active login session
is controlled by the right user. Instead, our approach exploits
biometric data as feedback to our trust model to measure the
trustworthiness of an online profile.

From the literature review described earlier, it appears
that the objective pursued by our paper is new. Therefore,
to the best of our knowledge, there is no approach that
can be (analytically or experimentally) fully compared with
our proposal. In Section 9.3.2, we provide a comparative
evaluation between our method and that proposed in [30]
from the perspective of resilience against slandering attacks.

The rough original idea at the basis of this paper has
been initially presented in [4]. However, there is a sig-
nificant difference between the two papers. In particular,
being [4] the report of early-stage research, the theoretical
framework was not complete, and the proof of theorems
was not included. No distributed implementation of trust
computation and certification infrastructure was provided,
as well as the concept of certificate was not presented. More-
over, there was not any security analysis. In addition, the
experimental validation of the proposal carried out in the
old version is very preliminary, because it only considered
one small synthetic dataset (i.e., 2,500 nodes) with very few
experiments instead of five real, heterogeneous, and bigger
datasets. We extend the experiments through a comparative
analysis of our method with respect to the literature and
by considering (experimentally) an attack to demonstrate
the robustness of our approach. We improve the part of the
paper including biometrics and, finally, we add the spatial
and temporal complexity analysis of all the functionalities
of our proposal.

3 OVERVIEW OF THE APPROACH

In this section, we provide a general overview of how our
solution works.

First, we highlight that our proposal is applied to online
social networks and that it works by employing trust chains
built among users. In particular, each chain starts from a
root node, which is a social profile certified by a Trusted
Third Party (TTP). To build a root profile, a user has to
register with the social network via TTP, by executing an
identification process proving their real-life identity. This
could be achieved by using a public digital identity system.
In addition, in this phase, TTP gathers the biometric (behav-
ioral) parameters of the user to create a model that will be
exploited in future interactions with the user to adapt the
trust level and verify whether the account is still under the
user’s control. Indeed, in the negative case, the certificate
associated with that profile will be revoked.

At the initial state of our protocol, the list of certified
profiles coincides with the set of roots. At this point, new
profiles could be certified by root nodes via certificate gen-
eration. When a new profile reaches a given trust level, it will
be considered certified and it will play an active role in trust
propagation.

We model the social network as a directed graph G =
hN,Ei, where N = Nc

S
Nnc is the union between the set of

certified profiles Nc and the set of non-certified profiles Nnc,
and E is the set of edges representing the friendship among
these peers. We use the notion of directed graphs because
they handle the case of symmetric friendship (as happens in
Facebook) simply by including two edges in both directions.
For example, if we want to represent a Facebook friendship
between i and j, then we set the edges Ei,j and Ej,i.

Any node of the social network (both certified and non-
certified) may directly recognize some of its direct contacts.
The basic idea is that a node recognizes only those nodes
for which past real-life interactions occurred, allowing the
node to conclude, also by using external knowledge, that
the claimed identity is real (this situation typically happens
for a significant portion of social network contacts). When
a safe interaction happens (for instance, at the first message
exchange allowing the recognition of the interlocutor) the
profile acts as a recognizer and builds a biometric model
of the recognizing node. This way, a subsequent intrusion
can be detected. Furthermore, we remark that only a node
already recognized can play the role of the recognizer. The
underlying rationale is that the misbehavior of a user is
directly connected to their anonymity in the social network.
In other words, by making the recognizing process fully
accounted and traced (and related to a real-life identity),
we can increase the trust in recognized identities, provided
that transitively, the process leads to root nodes.

Since we cannot give an absolute value to the above
principle, we have to increase the level of trust by requiring
redundancy in the recognizing process, thus making more
improbable the conjunct misbehavior of identified recog-
nizers. The level of redundancy sets the level of trust. The
biometric model built by any participant, allows us to detect
possible profile compromising, thus including in the trust
also the expectation that an initially identified profile is still
under the exclusive control of the legitimate owner. It is
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worth noting that, in principle, the biometric model could
be learned by exploiting multiple channels (social network
interactions, chats, shared editing, and so on).

We remark that the proposed approach is not aimed at
defining a digital identity system, since only a level of trust
is obtained. In fact, when a user A recognizes a user B,
they are stating that B is not claiming a false identity, not
the veracity of all published information. The quantity and
quality of information needed by A to reach this conclusion
depends on the social context. Besides name and surname,
they may regard other information, such as age, job, and
friendships.

Furthermore, we highlight that this approach does not
recognize directly untrusted social profiles, but it aims to
provide a certain degree of positive trust that is tuned and
refined considering all the features, including biometrics,
which we will explain in the following so that we can
consider a social profile as certified. Clearly, if a certain
social profile is not certified because it has a low trust degree
or has no degree computed at all, it would represent an
implicit suggestion to the user that such a social profile
could convey dangers.

4 BIOMETRIC FEATURES

In this paper, we propose to use biometric features to
guarantee the previous security requirements. We focus in
this work on a behavioral biometric modality as it can be
easily collected in a transparent way [45]. Among existing
solutions, we can cite mouse dynamics [27], touchscreen in-
teractions [44], or keystroke dynamics [3]. The last technique
is a behavioral biometric modality consisting of analyzing
the user’s way of typing on a keyboard. This biometric
information can be computed easily on the Internet using
simple JavaScript code. Keystroke dynamics is a biometric
modality identified more than 40 years ago. We can cite
a pioneer work in 1980 with a study where seven secre-
taries were asked to type three different texts [16]. The
results were promising but lacked a sufficient number of
users involved in the database. Most research works in
keystroke dynamics assume a quasi-keyboard invariance or
intend to propose algorithms dealing with slight behavioral
modifications related to the keyboard type. In a previous
study [18], experimental results from data collected from 133
users when using 2 types of keyboard (laptop and desktop)
showed similar performance considering the keyboard used
for enrollment or verification steps. However, some papers
showed some performance differences when different key-
boards were used during enrollment and verification. We
can mention the following study [34] with 2 used keyboards
(laptop and desktop) even if collected data are only from
17 users. A more recent paper [24] involving data from 4
keyboards and 86 users can also be mentioned. We assume
in this work, as many in the literature, that the keyboard
has a low impact on feature extraction. The use of mobile
devices is not considered in this paper but many methods
exist to deal with this type of capture [11].

The capture process of keystroke dynamics is shown in
Figure 1. It consists in computing several features when
the keys are pressed and released (timestamp of the event,
code of the key, . . . ) provided by any Operating System

Fig. 1. Information captured in a keystroke dynamics system when
pressing C and O keys [17].

(OS). The feature extraction consists mainly in measuring
different latency and duration time between each key. Figure
1 shows an example where the user presses two keys on the
keyboard. The user presses "C" at T1, "O" at T2, and releases
"C" at T3 and "O" at T4. Note that the following relation
is always respected: T3 > T1 and T4 > T2 (we always
release a key after pressing it), while the following condition
may not always be respected: T2 > T3 (because, as in
our example, a user may press another key before releasing
the previous one). We can extract three latency values (T2-
T1, T4-T3, T2-T3) which we call PP (latency between two
pressures), RR (latency between two releases), RP (latency
between one release and one pressure) respectively, and
one type of duration (T3-T1 or T4-T2) which we call PR
(duration of a key press). The described process is repeated
for all the keys.

Keystroke dynamics can be used either with passwords
to enhance the security of user authentication or on free text.
For example, the keystroke dynamics of a user could be an-
alyzed while exchanging with another (e.g., through a social
network chat). Subsequently, we consider the different tim-
ing information between two-character sequences known as
digraphs. Digraphs are the latency times between two suc-
cessive keystrokes. The biometric template associated with
user z is composed of n digraphs Tz = {T 1

z , .., T
n
z }. The

considered digraphs could be associated with one language.
In this work (see Section 8.3), we considered 14 different
values (common ones in English). If we consider a higher
value of n, a few sentences will allow us to compute the
keystroke dynamics feature vector. Another solution is to
compute the distribution of latency values from the text
typed by a user as a behavioral signature.

First, we need to generate the reference biometric tem-
plate for each user by analyzing their keystroke dynamics
during a period of time when we assume only the legitimate
user interacts with the social network. To guarantee user pri-
vacy, we apply a biometric template protection scheme on
digraph data (see Algorithm 1). The BioHashing algorithm
[25] is applied to biometric templates that are represented
by real-valued vectors of fixed length (so the metric used to
evaluate the similarity between two biometric features is the
Euclidean distance). It generates binary templates of length
lower than or equal to the original length (here, the metric
DT used to evaluate the similarity between two transformed
templates is the Hamming distance). A complete review of
cancelable biometric systems has been reported by [31].

The reference template of user z is defined by B̃z =
{E[Bz],�[Bz]} where E[.] corresponds to the average value
of biometric templates of user z and �[.] the associated
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Algorithm 1 BioHashing
1: Inputs

2: T = (T1, . . . , Tn): biometric template,
3: Kz : secret seed
4: Output B = (B1, . . . , Bm): BioCode
5: Generation with the seed Kz of m pseudorandom vec-

tors V1, . . . , Vm of length n,
6: Orthogonalize vectors with the Gram-Schmidt algo-

rithm,
7: for i = 1, . . . ,m do compute xi =< T, Vi >.
8: Compute BioCode:

Bi =

⇢
0 if xi < ⌧
1 if xi � ⌧

where ⌧ is a given threshold, generally equal to 0.

standard deviation. To decide if a biometric template Bx

of size n belongs to user z, we need to compare it with the
reference template of user z denoted B̃z as follows [22]:

Score = 1� 1

n

nX

i=1

e�
|Bx�E[Bz ]|

�[Bz ] (1)

This score gives a confidence measure about how much
the user z is legitimate and will be used in the trust model
proposed in the next section.

As we will see in the rest of the paper, the biometric
system is used in such a way that the following security
properties are guaranteed:

• Confidentiality: the biometric data are not disclosed to
others.

• Non-reversibility: the biometric template is not enabled
to retrieve the biometric data.

• Discriminant: the biometrics discriminate users.
• Constant: the biometrics remain constant.
• Non-usurpation: a user is not able to forge/imitate the

biometric of another user.
• Not-costly: in terms of mem-

ory/time/ergonomics/money (no additional devices).

5 THE TRUST GRAPH

In this section, we give the theoretical framework underly-
ing our trust model works.

Throughout this section, consider given a directed graph
G = hN,Ei representing a social network and a redundancy
parameter t, i.e., a positive integer representing a level of
trust. Let TTP be a Trusted Third Party. Let denote by Nc

the set of certified nodes, i.e., the nodes whose identity is
assured and monitored by TTP. Given a node u 2 N , we
denote by �(u) the set of neighbors of u (i.e., adjacent
nodes). Moreover, we denote by R(u) ✓ �(u) the set of
nodes recognized by u.

Our trust model is based on the notion of recognition
done by a certain user (in this formal framework just a node)
towards other directly connected users. However, there is a
recursive requirement. If we establish that t is the minimum
number of recognitions that a user should receive to be
considered trusted, we require that such recognitions, to
be valid, must be done by trusted users (i.e., either users

who received at least t recognition or certified users, which
play the role of roots). This is formally encoded in the next
definition:

Definition 1. We say that a node u 2 N is t-recognized (in
A ✓ N ) if either: (i) u 2 Nc (i.e., is a certified node), or (ii)
there exist t other t-recognized nodes in A that recognize u.

When the set A of the definition above is not specified,
we intend that a node is t-recognized in N . From the above
definition, it immediately follows that nodes in Nc are t-
recognized for any t and in any set A.

We want now to understand how to characterize (and
then compute) the set of users who, thanks to the propaga-
tion mechanism enforced by the above recursive definition,
are trusted (with level t), when a set of roots Nc is fixed.

To do this, we first need to introduce the notion of t-closed
set. Informally, a t-closed set is a set of set of t-recognized
nodes that is closed with respect to the trust propagation
mechanism. More formally:

Definition 2. A set A ✓ N of t-recognized nodes in A is
said t-closed, if there is no u 2 N \ A that is t-recognized in
A too.

From the above definition, it immediately follows that
all certified nodes must belong to any t-closed set.

It is easy to see that the operator ✓ induces a partial
order over the set of t-closed sets, which is a lower semi-
lattice. We denote by N t ✓ 2N the set of non-empty t-closed
subsets of N . N t is then a lower semi-lattice according to ✓.
We denote by N t

b the bottom of N t.
In our model, the role of N t

b is central, because it includes
exactly all nodes that are t-recognized, but, due to subset
minimality, they do not form clusters whose recognizing
is only mutual. In other words, N t

b is the set of nodes for
which trust paths start from certified nodes. Therefore, N t

b
represents the set of trust nodes, as more formally stated in
the next definition.

Definition 3. Given a node u 2 N we say that u is t-trusted
(in N ) if u 2 N t

b . N t
b is also said the set of t-trusted nodes (in

N ).

It is now important to understand how to compute N t
b .

To do this, we provide an operational definition of N t
b ,

based on the fixpoint of a monotone operator ⇤t, called t-
recognizing operator. From this definition, it easily arises that
the trust of nodes in N t

b can be directly or indirectly linked
to (at least) t certified nodes.

Definition 4. Given t > 0, let denote by 2Nt ✓ 2N the set of
subsets A ✓ N such that, for each x 2 A, x is t-recognized
in A. We define the t-recognizing operator ⇤t : 2Nt ! 2Nt
as follows: (i) ⇤t(;) = Nc (ii) ⇤t(A) = {u 2 N | 9B ✓
A s. t. |B| � t ^ u 2

T
v2B R(v)}. It is easy to see that if A

is in 2Nt , then ⇤t(A) is in 2Nt too.

Now, we define the following sequence of sets: ⇤0
t =

⇤t(;); ⇤k
t = ⇤t(⇤

k�1
t ), for any k > 0.

Lemma 1. The operator ⇤t is monotone.

Proof. To prove the claim of the Lemma, we have to show
that given two subsets A and B of 2N such that A ✓ B, it
holds that ⇤t(A) ✓ ⇤t(B), for any t > 0. We proceed by
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contradiction by assuming that there exists x 2 ⇤t(A) such
that x /2 ⇤t(B). This means that x is not t-recognized in B.
But this is impossible because x is t-recognized in A (since
A 2 2Nt ) and A ✓ B.

Lemma 2. A set of nodes A 2 2Nt is t-closed if and only if
⇤t(A) ✓ A.

Proof. (only-if-part). Let x be belonging to ⇤t(A). Then, there
exist at least t nodes in A that recognize x. Therefore, if A is
t-closed (for hypothesis), then x 2 A too.
(if-part). Let x 2 ⇤t(A). Then, there exist at least t nodes in
A that recognize x. Since ⇤t(A) ✓ A, x 2 A too. Then A is
t-closed.

We are ready to state the following result, which gives
us an operational way to compute N t

b .

Theorem 1. The infinite application of the operator ⇤t, denoted
by ⇤1

t , is a fixpoint (i.e., ⇤t(⇤1
t ) = ⇤1

t ), it is the least fixpoint,
and this corresponds to the set of t-trusted nodes N t

b .

Proof. The proof of the first part of the theorem (i.e., the
existence of the least fixpoint) directly derives from Lemma
1 and the theory on fixpoints (i.e., Tarski’s theory).

Now, we have to prove that ⇤1
t = N t

b . First, we prove
that N t

b ✓ ⇤1
t . By Lemma 2, as N t

b is t-closed, ⇤t(N t
b) ✓ N t

b .
If ⇤t(N t

b) = N t
b , then it is a fixpoint and then it is the least

fixpoint ⇤1
t . Thus, N t

b = ⇤1
t , and the claim is proven. If

⇤t(N t
b) ⇢ N t

b , then, due to Lemma 1, ⇤t(⇤t(N t
b)) ✓ ⇤t(N t

b).
By Lemma 2, this implies that ⇤t(N t

b) is t-closed. But this is
not possible because ⇤t(N t

b) ⇢ N t
b and considering that N t

b
is the bottom of the lattice. This part of the proof is then
completed.

Now we have to prove that N t
b ✓ ⇤1

t . Since ⇤1
t is a

fixpoint, then ⇤t(⇤1
t ) = ⇤1

t . Therefore, by Lemma 2, ⇤1
t

is t-closed and this implies that N t
b ✓ ⇤1

t . The proof is then
concluded.

The above notion of t-trustworthiness embeds a lossless
propagation of trust in which the level of assurance of iden-
tity based on the recognition of users does not degrade if the
t redundancy property holds at every step of propagation.
In other words, the t-redundancy property is considered a
threshold to propagate the trust. The t-redundancy param-
eter implicitly represents the assumption that the multiple
identifications of a node u done by nodes in turn identified
with the same trust level, and so on, until t certified nodes
are reached, can be considered sufficient to trust the identity
of u. The approach applies the concept of trust chain used in
the context of digital certification to the domain of identity
management in social networks, with the aim to counter the
problem of fake identities. It is worth remarking that the
model cannot provide absolute guarantees but only a trust
level directly connected with the value t. The higher t, the
higher the trust in identities.

So far, the trust model assumes that once a user has
recognized another user, no revision of this information
must be done. This assumption would be valid only in
the absence of attacks that give the attacker access to the
user profile (even temporarily). So we assume a sort of
safe state regarding fraudulent accesses. In other words, the
trust model above prevents the risk of fake profiles and
fake identities but not from fraudulent access to legitimate

profiles.

To counter this further case, we introduce a biometric-
based reinforcement and combine it with the above trust-
chain mechanism, to decrease the trust in a given subject if
the biometric trait is not recognizable. Therefore, we can also
manage non-safe states. The full trust in our mechanism is
obtained by relying on the assumption that the disclosure
of trusted real-life identities prevents the misbehavior of
users in the trust mechanism itself, under the t-redundancy
assumption.

But, if the operating user is not the legitimate one, then
the above assumption fails. Thus, the identity of those users
whose trust is based on paths involving the attacked profile
should be not fully trusted. In other words, to take into
account this aspect, we have to enable a gradual level of
trust, from 0 to 1 (while before the trust was basically
either 0 or 1), and use an ✏-approximation approach to
trust identities. The first step is to modify the notion of t-
recognized. Obviously, we keep the redundancy parameter
t in the new definition, but we introduce the possibility that
a user is not fully identified in a given moment, due to the
fact that the biometric support is giving a warning rate. We
require that nodes in Nc (i.e., certified nodes) lose their state
if the biometric support gives a warning rate. Thus, we can
assume that certified nodes are not attacked.

Given a node u, we define the set R✏(u) (where 0  ✏ 
1) as the set of pairs hv, br(v)i such that v 2 R(u) (i.e., v is a
node recognized by u in the safe state) and 1�✏  br(v)  1
is the current biometric rate (i.e., the score computed earlier
normalized from 0 to 1), provided that it is higher than a
given threshold 0 < 1 � ✏  1 under which v must be
currently considered not recognized. Obviously, when ✏ = 0
we fall in the safe state. We say that nodes in R✏(u) are ✏-
recognized by u. At this point, we are ready to extend the
notion of t-recognized to a non-safe state.

Definition 5. We say that a node u 2 N is ht, ✏, ri-recognized
(in N ) if either: (1) u 2 Nc (i.e., is a certified node), or (2)
there exists a set B of ht, ✏, ri-recognized nodes such that both
(i) u /2 B, (ii) |B| � t, (iii) u 2 R✏(v), for each v 2 B, (iv)
1� ✏  r  1, and (iv)

P
v2R br(v)

|B| � r.

It is easy to see that a node is t-recognized, according
to Definition 1, if and only if it is ht, 0, 1i-recognized. The
intended meaning of Definition 5 is to take into account
warnings triggered by the biometric support (through the
parameter ✏), and, at the same time, to require by means
of the parameter r that a possible fault of trust introduced
by ✏ can be partially recovered by fortifying redundancy
to reduce approximation. In words, if we can trust fewer
nodes because we are not sure they are not attacked we
need a larger set of witnesses to reach a safe conclusion
anyway. This means that r modulates the level of assurance
of trust, so that the higher r, the higher the trust in the
identity of ht, ✏, ri-recognized nodes. Actually, to talk about
trust we have to avoid a mutual self-sustained cluster of
ht, ✏, ri-recognized nodes, so we have to proceed as in the
safe state above by requiring the minimality condition. For
brevity, we do not give all detail, but it is rather clear that
definitions of N t

b and, consequently, of t-trustworthiness of
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a node, can be easily extended to the non-safe case, on the
basis of Definition 5. We reach thus the definition of N ht,✏,ri

b
as the bottom of the semi-lattice of subsets of ht, ✏, ri-closed
nodes of N . Therefore, a node is ht, ✏, ri-trusted if belongs
to the set N ht,✏,ri

b . Also the definition of recognizing operator
can be trivially extended so obtaining the operator ⇤ht,✏,ri in
such a way that N ht,✏,ri

b coincides with the fixpoint ⇤1
ht,✏,ri

of such operator.

6 DECENTRALIZED TRUST COMPUTATION

We present here a decentralized way to compute the trust
level that does not require any central authority for trust
management. Obviously, standard TTPs, such as certifica-
tion authorities are required to certify root profiles, but
they are not involved in the propagation trust mechanism.
First, we assume the collaborative behavior of participants
in the network. This assumption is reasonable because every
participant can benefit from the trust system so constructed.

We propose a distributed algorithm for trust computa-
tion, in which each node sends, upon query, a proof that it
is t-recognized, where t is the chosen trust level. In the scope
of this paper, we choose the proof to be a certificate graph,
a generalization of certificate chains, in which each node is
certified t times.

We assume that each node owns its pair of asymmetric
cryptographic keys and that the private key is kept secret.
The public key is used also as the user’s identifier.

Now, we define the (recursive) structure of a certificate.
We have two kinds of certificates:

• intermediate certificates: containing the certified node
public key and the certifier public key;

• final certificates: containing explicitly the certified node
identity (e.g., URL) and public key, and the certifier’s
public key.

These certificates prove that the certifier node trusts the
certified node (we highlight that only the certifier node is
able to issue such certificates because they are signed). Inter-
mediate certificates enable the certified node to certify other
nodes without revealing its real identity in the certificate
graph, and the final certificates enable the certified node to
prove that it is t-confirmed by sending a certificate graph
and its final certificates.

Specifically, a user’s certificate is composed of:
1) issuer: this field contains the public key of the generator

of the certificate;
2) target: this is the public key of the user to be certified;
3) profile: this field is obtained as url � r, where url is

the URL of the social network profile of the target, r
is a randomly generated bit string, and � denotes the
exclusive OR operator;

4) key, an optional field containing r (i.e., the value gen-
erated above). If this attribute is missing, then this
certification is said intermediate certificate; otherwise, it
is said final certificate;

5) certifier: this field may contain a (possibly empty) set
of intermediate certificates of the users who previously
have certified the issuer. If this field is empty, then the
issuer should be a root node certifier and this target
user is said root node.

6) expiration date: this field may contain the date until the
certificate can be considered valid.

7) value: this field contains a value between 0 and 1; it is
0 when the certificate is revoked (for any reason), it is
equal to 1 when the trust in the certificate is maximum,
and a value between o and 1 in all the other cases.

Furthermore, the certificate is signed by the issuer’s
private key to guarantee information integrity.

In practice, when a user u wants to be t-recognized,
u asks their social friends u1, . . . , ut for a final certificate.
In this example, we assume that u1, . . . , ut are already t-
recognized.

Now, each friend ui of u signs and issues a certificate ci
with all fields filled-in (i.e., containing also the random r).
At the end of this step, u has got t final certificates: if all
of them are valid, then u becomes t-recognized as well. At
this point, u can propagate the trust to another friend v, by
issuing and signing a new certificate of v, in which the field
certifier is composed of the certificates c⇤i with 1  i  t,
where c⇤i is obtained from ci by erasing the field key.

Concerning the validation of certificates, we have two
cases.

An intermediate certificate is valid if:
• it is signed by the issuer’s private key (i.e., the signature

is valid);
• the issuer is a root node certifier (if the field certifier is

empty); the field certifier contains at least t (recursively)
valid certificates (otherwise);

A final certificate is valid if, in addition to the above
conditions, it holds also that the value of the field profile �
the value of the field key is equal to the URL of the social-
network profile of the user being certified.

As introduced by Definition 5, our model takes into
account also the possibility that the level of trust of a
specific user can be gradually reduced if the biometric
recognition is not full. Therefore, it may happen that an
already t-recognized user’s account becomes potentially
compromised. In this case, the associated level of trust
decreases. Furthermore, since our model is based on the con-
cept of collaboration and propagation, when a certified user
is compromised also all the paths involving the attacked
profile should take into consideration this information and
decrease the overall level of trust. According to Definition 5,
the trust level t does not act just as an on-off switch, but it can
assume values between [0, 1], so that if one node has been
compromised, then the overall computation of each trust
level in which that node is involved dynamically changes.

In particular, if we set t = 10 to be considered t-
recognized and we consider an ideal world in which every
peer has a t_level = 1, we can state that if ten people
sign a certificate directed to a given user, then it would be
sufficient for this user to become t-recognized. Otherwise,
in a real-world scenario, it would happen that more people
would be needed to reach the same trust level because some
participants could have a t_level  1.
Optimization.

Our method may suffer in terms of storage size because
duplicate certificates are saved in the chain of certificates.
For this reason, we provide an optimized version of our
approach in which the certificate graph does not contain
duplicate certificates.
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Observe that when a node receives a (trust) certificate,
the corresponding intermediate certificate is added to the
set of intermediate certificates and the final certificate to
the set of final certificates. The other certificates included in
the received certificate graph are added to a third internal
structure, consisting of a mapping in which each element
key is the pair (certified public key, certifier public key), thus
ensuring the uniqueness of each certificate. When issuing a
new certificate, the node sends the status of the certificate
along with the certificate itself.

The resulting certificate graph is represented by a multi-
map structure whose index is the certified public key. For
each index, the number of certificates and the certificates
are verified. Then, starting from the final certificates, the
absence of loops is ensured by a depth-first search. If a
visited node already belongs to the current path, then a loop
is detected.

7 SYSTEM FUNCTIONS

In this section, we provide the basic functions of our trust
model, which would be the basis for any social network
platform implementing our approach.

• Root registration: this function is used by a node to
become a root node.

• Set Biometric Model: it is invoked whenever two users
establish a contact in the social network in the set-
up phase. It is also invoked by the Root registration
function to allow the social network provider to keep
the biometric model of the root node.

• Trust: this function is invoked whenever a node wants
to sign a certificate to another participant of the net-
work;

• Verify trust: this operation is invoked whenever a node
wants to verify that a given participant belongs to the
set of certified nodes;

• Revoke: it is invoked whenever a participant wants to
revoke a past certificate previously given to a certain
node. This can happen for any reason.

We describe such functions and their complexity over
time and space w.r.t. the number of nodes n and the trust
level t.
Root Registration.

This operation involves a Trusted Third Party (TTP) and
a social network profile that claims to become a root node.
In particular, the TTP receives the request from a social
profile and it starts an authentication process to demonstrate
the association between the real-life identity and the social
network profile. This process could use a public digital
identity system. After being authenticated, the social profile
becomes a root node, representing the first node of a new
trust chain.

The complexity of this operation is constant over time
and space.
Set Biometric Model.

This function is invoked every time it is necessary to
model the biometric behavior of a social profile. In partic-
ular, the process of capturing keystroke dynamics consists
of extracting different features, such as the time interval
between pressing and releasing two characters on the key-
board, the code of the key, etc.

The complexity of this operation is constant over time
and space.
Trust.

This operation can be carried out after a real-life inter-
action between the two users and it can be invoked only
by those peers that have already been t-recognized and/or
by root nodes. Such an operation is used to trust another
profile by means of a signed certificate. In detail, it accepts
a certificate as input and it can be invoked by every node
belonging to the set of certified profiles Nc. In particular, two
different certificates are signed: an intermediate certificate,
which does not contain any identity-related information,
and a final certificate, which contains also the certified user’s
identity.

The complexity of this operation is constant over time
and space.
Verify trust.

It is called whenever a node wants to check the value of
trust associated with a given social profile. In particular, the
function accepts a social profile and a required trust level
t and returns whether the social profile can be considered
trusted or not.

To carry on the operation, the social profile being verified
has to reveal its final certificates so that the node can check
the validity of the certificate chain.

In Figure 2, we show an architecture in which node A be-
comes t-recognized by nodes C and B, with t = 2. Note that
intermediate certificates do not include the identity-related
information about the destination of such certificates, while
final certificates contain the URI of the destination node
because intermediates are used by a certified node to give
trust in other peers, while finals are used in this verification
process, where it is necessary to reveal the link between
the certificate and the corresponding social identity. We can
conclude that this phase succeeds when the sum of values
included in final certificates is greater than or equal to the
trust level t set by the user.

As for the spatial complexity, we note that the size of
the certificate chain associated with each t-recognized social
profile is

Pd
i=1 t

i, where d is the hop number between the
social profile taken into consideration and the root nodes.
Considering the example in Figure 2, d is equal to 2 because
the social profile A to be verified is linked to the three
root nodes D,E, F via the following paths: A ! C ! F ,
A ! C ! D, A ! B ! D, and A ! C ! E. Thus,
the spatial complexity can be approximated to td, which
is polynomial thanks to the small-world phenomenon and
the six-degree separation law [5]. In particular, in social
networks, the average degree of separation between two
peers is found to be 3.43 [6]. Following the same reasoning
seen for the spatial complexity, we obtain that the time
complexity is td.
Revoke.

This task represents an important function of our so-
lution. As is the case in most certification infrastructures,
a certificate-revocation-list approach is used. The list of
revoked certificates is maintained by the same TTP intro-
duced in the root selection phase. This method is invoked
every time we require that a certificate previously signed
that is still valid (the scheduled expiration date has not
come yet) is no longer considered trusted. Each entry of
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the certificate revocation list is associated with the identifier
of the certificate and a timestamp. The node that invokes
this function has to sign the certificate revocation to prevent
malicious requests. Following the same idea of trust propa-
gation, every time a certificate is found to be revoked, child
branches of such certificate are no longer considered valid.
Our model provides for two different ways: (1) an explicit
revocation, for which any standard solution (e.g., the TLS
approach) can be adopted to revoke the certificate before
the expiration date, and (2) an implicit solution, denoted by
setting the value associated with the certificate equal to zero.

Both time and spatial complexities are constant since this
function does not involve either t or n.

As a final observation of this section, we highlight that
our tree-like certification process might apparently represent
an infeasible source of exponential growth. For example,
whenever a certificate is revoked, all branches that are
generated from that certificate are cut off and considered
revoked as well. However, the real-life structure of online
social networks (i.e., the small diameter and path lengths
due to the small-world principle) makes this risk not effec-
tive.

8 SECURITY ANALYSIS

In this section, we discuss the security requirements pre-
sented earlier and explain how we provide these security
properties and how our model prevents reputation attacks.
We start by defining the threat model adopted in our ap-
proach. We focus our attention on the robustness of the
trust mechanism, by assuming that the biometric system is
secure.

The adversary is any user of the social network. We al-
low collusion among users, by assuming that the maximum
number of colluding adversaries is less than the fixed trust
level t.

Specifically, the adversary can perform the following
attacks against the trust mechanism:

• Sybil attack: The adversary tries to generate multiple
fake identities to jeopardize the system.

• Slandering: The adversary tries to fraudulently reduce
the trust of a victim user.

• Self Promotion: The adversary tries to fraudulently in-
crease their trust.

• Whitewashing: The adversary tries to fraudulently erase
the reduction of trust.

• Social engineering: The adversary tries to compromise
the trust mechanism by using social engineering attacks
against other users.

Collusion and Sybil attacks are strongly mitigated because,
as highlighted in the theoretical model, every participant
must be certified to propagate trust and every certification
chain must lead back to a root node. Slandering attacks
are prevented, since it is impossible to defame someone
because our model provides, by construction, only trust
certificates and there is no way to vilify another participant.
Furthermore, the solution we propose makes it impossible
for a peer to self-promote because there is the need for the
collaboration of the community to reach a certain trust level.
The resilience of our approach against this type of attack is
studied in Section 9.3.2.

Whitewashing attacks are mitigated because if a partici-
pant creates a new account to start with a new reputation,
they will lose their certificates and it is necessary to execute
the whole process of our algorithm to reach a certain trust
level.

Our approach is robust against social engineering attacks
because of the reinforcement given by adding biometric
features to the model, which enable continuous authentica-
tion for every participant. Indeed, even if an attacker gains
full access to the victim’s social profile, our approach will
discover the attack thanks to the continuous authentication
provided by the biometric features.

Apart from the resistance to the previous attacks, we
highlight that our solution achieves the following security
properties.

Integrity is ensured because the attributes of certificates
are signed by the issuer’s private key. For the same reason,
Accountability is provided as well. Availability is reached
because certificates are computed once and then they are
stored so that the computation of the t-recognized nodes is
possible also in the case in which nodes are for any reason
unavailable.

Anonymity is achieved in pseudonymous form because
our model uses intermediate certificates to propagate trust.
In these certificates, the real identity of the actors involved
in the process is not revealed. The list of revoked certificates
is stored and maintained by the TTP which is in charge also
to carrying on the root registration step.

9 EXPERIMENTS

In this section, we validate our proposal. First, we present
the dataset used and discuss how biometrics is managed.
Then, we analyze the results of the experiments we carried
out.

9.1 Datasets
For the validation of the proposal, we used five
real-life datasets downloaded from the repository
http://networkrepository.com/ [35]. Each dataset
provides a list of edges between two nodes, which represent
that the two nodes are friends.

In the Facebook section of this repository, several
datasets are provided, each sampling a certain portion of
the network, with different characteristics and properties.
Among them, we selected five different data sources so that
we can cover heterogeneous and different contexts.

In Table 1, we report the characteristics of our datasets,
where |N | is the number of nodes, |E| is the number of
edges, dmax is the maximum degree of a node in the given
dataset, and davg is the average degree of the nodes. By ana-
lyzing such values, we can say that D1 and D2 are the most
connected datasets because they have high degrees and they
have many edges. D3 and D4 have the highest number of
nodes but fewer edges and lower degrees, meaning that they
are less connected and more scattered. Instead, D5 is the
trade-off.

As for the biometric part, we used a biometric bench-
mark database composed of keystroke dynamics [23]. It
is composed of a biometric template from 110 individuals
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Fig. 2. Example of certificates with trust level = 2

TABLE 1
Dataset characteristics.

|N | |E| dmax davg

D1 24k 1M 3k 96
D2 36k 2M 5k 87
D3 64k 1M 2K 39
D4 63k 817k 1k 25
D5 42k 1M 4k 65

typing on two desktop keyboards (a French keyboard for
users in France and a Norwegian keyboard for users in
Norway) i.e. AZERTY and QWERTY (this is not a classi-
cal QWERTY keyboard, however, we do not use specific
Norwegian keys), respectively. An entry is composed of
the typing of 5 passwords. Several studies tested that no
significant difference between a laptop and a USB keyboard
exists [17]. For this dataset, we considered 14 digraphs:
latency of ‘ca’, ‘ic’, ‘ed’, ‘he’, ‘pe’, ‘te’, ‘ch’, ‘li’, ‘ri’, ‘ll’, ‘on’,
‘er’, ‘es’ and ‘st’. The size of the biometric template is 14. As
an entry contains several times each digraph, the template
is computed as the mean latency of each 14 digraphs. The
reference template is computed by merging several entries
(here 14 entries).

9.2 Managing biometrics

For managing biometrics features, we used the dataset
described in the previous section and generated legitimate
scores by comparing the reference template with templates
from the same user. In our attack model, we simulated
impostors by replacing the reference template of the victim
user with templates coming from other users.

Since the social network graphs we have derived from
edge lists contain way more users than the keystroke dy-
namics dataset, we cannot associate a unique keystroke
dynamic with each social network user. User biometrics
behavior is thus simulated by randomly picking, for each
social network user, a user from the keystroke dynamics
datasets. Attacks are simulated by using different keystroke
dynamics from the keystroke dynamic dataset. For the
BioHashing verification, a different random secret is used
for each account and each of its certifiers, and the secret
is assumed known by the attacker if the account has been
attacked. It is worth noting that the modality can be easily
collected by any website, in particular phishing websites.
To limit such attacks, Keystroke Dynamics Anonymisation
Schemes could be used.

The performances of such systems could be improved
using other modalities (s.a. the mouse), that need to enable
continuous authentication to not be vulnerable to some at-
tacks, (e.g., lunchtime attacks). The usage of soft biometrics
could improve authentication performances and also verify
the consistency with the claimed profile (gender, age, ...)
and template update techniques could also be implemented
to improve the overall system performances as the users’
biometrics behavior changes over time.

Biometrics can be used to automatically revoke cer-
tifications. However, such revocation could be manually
performed by the certifier in response to a flag raised by the
biometrics algorithm. This enables the certifier to perform
complementary verification before choosing to revoke the
certification.

9.3 Experimental results
To validate our proposal, we implemented a simulator in
Python 3.11 and ran the experiments on a PC with 16GB
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of RAM and an i7 Intel processor running Ubuntu as the
operating system.

Datasets are formatted as edge lists, which is a particular
data structure used to represent a graph as a list of its
edges. For example, if between nodes a and b there exists
a connection (an edge), then in the edge list we will find a
row containing the pair (a, b).

Thus, we read the edge lists in such a way that we
can deduce all the information about nodes and their re-
lationships. After this operation, we proceed by selecting
root nodes. We could have implemented many different
algorithms for this selection (for instance, we could have
used different centrality measures to select the best nodes).
Anyway, we decided to select randomly roots among all the
nodes since it would be fairer and more representative of
a real situation. In fact, if we had chosen the best nodes
by following some measure of centrality, the results would
have been somewhat biased and far from a realistic scenario.
The only constraint we require in the root nodes selection
step is that a node, to be chosen, should have a number
of relationships at least equal to t_level indicated in the
simulation.

Since we used t_levels that are in the order of magni-
tude of ten, we can conclude that this condition is acceptable
because most real social profiles easily reach ten friendships.
Otherwise, there would have been chosen some root nodes
unable to propagate the trust in the network, acting as a
bottleneck.

We remark that experiments do not involve the com-
putation of biometric features, as experiments are devoted
to validating the trust-based approach. As it is clear from
the definition of the model, the biometric component may
just change the number of equivalent profiles needed to
trust a given profile. Therefore, it can be viewed as an
orthogonal component. On the other hand, the effectiveness
of biometric-based mechanisms considered in this paper has
been shown in the literature.

9.3.1 System performance
In the first experiment, we want to study the performance
of our approach when no attack is performed and when
participants are always collaborative in trusting a friend
node. A relevant value we measure is the coverage that could
be reached by running our algorithm in the network. Since
we use five datasets with different properties, we expect that
some differences will be mirrored in the results. Specifically,
the more the network is dense and connected, the higher we
expect the coverage will be.

We carry out our experiments by varying the following
parameters:

• t_level;
• number_of_roots.
In particular, we use t_level = {3, 6, 8, 10} and

number_of_roots = {0.1%, 1%, 2%, 5%, 10%} (these per-
centages are calculated with respect to the total number of
nodes of the given dataset). We run every combination of
these two parameters fifty times and we average the results
to avoid outlier cases.

In Tables 2, 3, 4, 5, and 6, we report the coverage results
of these simulations for each dataset.

As expected, the more connected the datasets, the higher
the coverage rates. It is interesting to underline that, in three
out of five, the coverage reached is quite relevant with only
0.5% of roots chosen (D1, D2, and D5) and only in those
two datasets less connected (D3 and D4) this little number
of roots is not able to reach a significant number of nodes. By
analyzing those two datasets, we see that the average degree
of a node is quite low (39 and 25, resp.). This means that
every node has, on average, only thirty-nine and twenty-
five friends.

We remark that these results have been obtained by
running only one cycle of the trust operation (i.e., every
node asks to be certificated only once). In a real context,
instead, a participant can ask many times a friend to be
recognized, so, in this sense, we can conclude that our
experiment underestimates the real potential coverage.

TABLE 2
Coverage rate in D1 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

95,9 90 83,9 72,3

roots = 1% 96,5 91,7 86,7 80,5
roots = 2% 96,9 92,6 89 85,1
roots = 5% 97,2 93,5 90,8 88,1
roots = 10% 97,5 94,5 92,1 89,9

TABLE 3
Coverage rate in D2 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

95,5 87,5 80,2 71,6

roots = 1% 96 90 84,7 77,3
roots = 2% 96,2 91,29 87,2 82,6
roots = 5% 96,5 93,5 89,19 85,5
roots = 10% 97 94,5 90,6 87,7

TABLE 4
Coverage rate in D3 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

69,9 44,4 6,6 4,6

roots = 1% 70,5 47 35,2 23,7
roots = 2% 71 49,4 38,9 29,6
roots = 5% 72 52 43,4 36,7
roots = 10% 73,5 55,1 47 41

TABLE 5
Coverage rate in D4 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

70,1 44,7 8,9 5,7

roots = 1% 71,2 47,1 34,4 20,2
roots = 2% 72 49,3 38,2 29,9
roots = 5% 73 52,4 43,5 36,4
roots = 10% 74,5 55,7 47,8 41,8
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TABLE 6
Coverage rate in D5 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

93,1 82,8 75,1 64,4

roots = 1% 93,8 84,3 77,4 68,9
roots = 2% 94,3 86 79,7 72,7
roots = 5% 94,9 87,9 83,2 77,8
roots = 10% 95,4 89,5 85,6 81,4

9.3.2 Resilience of the system
In this section, we study the resilience of our proposal to
the slandering attack (described in Section 8). Under this
attack, a certain amount of root nodes become malicious
and do not play anymore a collaborative and positive role
in the propagation of the trust. To better evaluate the results
of this experiment, we compare the performance of our
proposal with that of [30] (presented in Section 2, where
the parameter ↵ = 1 because the used datasets allow us
to identify positive and negative interactions. Specifically,
under attack, malicious nodes propagate negative interac-
tions. Under attack, we randomly picked 30% of the roots
as malicious nodes. As evaluation metrics, we use coverage
loss defined as 1� T̂a

T̂
, where T̂a is the average trust of nodes

under attack and T̂ is the average trust of nodes when no
attack is carried out.

We varied the same values as the first experiment
(t_level and number_of_roots) and, in Table 7, we report
the percentage of coverage loss when varying the per-
centage of root nodes (0.5, 1, 2, 5, 10) and, for the sake of
presentation, we averaged the results. In Table 8, we report
the percentage of coverage loss measured for the Strust
model [30] with the same experiment setup.

From the analysis of these experiments, we see that a
slandering attack carried out by the 30% of root nodes slightly
reduces the performance of our proposal (on average, about 7%).
Comparing these results with that of [30], we can conclude that
our approach contrasts slandering attacks.

TABLE 7
Trust loss measured for our proposal (in percentage)

t = 3 t = 6 t = 8 t = 10

D1 0,64 0,96 9,09 12,08
D2 0,71 1,37 1,69 13,88
D3 1,92 3,07 12,56 21,30
D4 2,04 4,32 10,48 16,40
D5 0,80 1,10 2,21 22,30

TABLE 8
Trust loss measured for Strust [30] (in percentage).

t = 3 t = 6 t = 8 t = 10

D1 29,41 26,52 32,40 33,64
D2 31,22 35,36 36,80 37,72
D3 9,98 18,36 18,67 22,74
D4 13,04 13,98 22,73 27,53
D5 35,49 39,84 40,01 41,92

10 CONCLUSION AND PERSPECTIVES

Trusting identities in social networks is an important chal-
lenge in the literature. The approach we designed for this
purpose exploits a collaboration among social network users
and a keystroke-dynamics-based technique. In our proposal,
each user shares with the other users the information about
the neighborhoods. This information is propagated among
the network in a trusted way. We provide the theoretical
characterization of the proposed approach and its validation
by experiments carried out on real-life data. The experi-
ment results show that trusted information reaches most
of the nodes (depending on some system parameters). The
novelty of our proposal is to distribute, in a decentralized
fashion, over the social network itself, the trust mechanism.
Moreover, we embed in the trust mechanism behavioral
biometric features, to better support the maintenance of
trust values and then isolate possible attacked profiles. We
remark that the paper addresses the biometric component
of the model in a concrete and definite way, by identifying
which type of biometric data is suitable to our purpose,
and by defining how the biometric component affects the
trust values. Therefore, we argued the effectiveness of the
trust mechanism is the most meaningful aspect to assess.
Regarding this aspect, it is worth noting that the exchanging
of messages from a social network user to another profile,
in principle, is a reason for characterizing that profile as
trusted provided that at least one of the two profiles is real.
This makes recursive the problem and that needs further
research. As a future work, we plan to implement the model
in a homemade online social network and experiment it in a
real-life setting, possibly in a research project reaching large
communities and involving industrial partners. This will
allow us to collect real biometric data for proof of concept
validation.
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Combining Trust Graphs and Keystroke
Dynamics to Counter Fake Identities in Social

Networks
Francesco Buccafurri, Member, IEEE, Gianluca Lax, Member, IEEE, Denis Migdal, Lorenzo Musarella

and Christophe Rosenberger

Abstract—Fake identity in social networks is a phenomenon that is strongly increasing, and it is used for discovering personal
information, identity theft, influencing people, spreading fake news, fraud, and so on. In this paper, we face this problem by introducing
the concept of certified social profiles and by propagating this property through a collaborative approach that exploits
keystroke-dynamic-recognition techniques to identify illegal access to certified profiles. We propose a decentralized approach to
compute the trust level of a social profile, and we show the robustness of the proposal by analyzing the security of the trust mechanism
through experimental validation.

Index Terms—Social Networks, Trust, Fake Profiles, Keystroke Dynamics

F

1 INTRODUCTION

In daily life, all communications are taking rapidly the
direction of the digital and the virtual domain. In particular,
social networks and social media platforms represent huge
sources for information sharing where people can interact
with each other easily and in a fast way. At the same time,
online social networks are big catching areas for collecting
and spreading trash news and fake information as well
[19], [26]. Unfortunately, the awareness of users of the most
common cyber threats is not growing as quickly as risks
do. Indeed, the online community still has to be educated
concerning cyber threats [2]. For this reason, it is important
to improve the security of services, and trust represents a
fundamental property that users must look for when they
interact on social networks. Usually, fake news is shared
and forwarded mostly by fake profiles.

Social network profiles whose claimed identity does not
match the real user are certainly potential security threats
on the Web. This happens in two cases. The first case is that
of fake profiles, in which the attacker intentionally creates a
clone of a real-life identity profile of the victim, pretending
to be them in the interactions. The second case is that of
compromised profiles, in which an intruder, permanently
or temporarily, uses the real social profile of the victim
fraudulently. In both cases, the risk of anomalous behavior
with potential damage to the victim’s reputation, espionage,
or social engineering attacks toward people connected to the
victim is very high.
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The problem faced in this paper regards the fact that,
through fake profiles, attackers can entice users to give
up personal data, hijack them toward infected websites
and, once their email addresses are known, launch spear-
phishing campaigns. Several studies have been proposed
in the literature to counter this problem [9], [13], [21], [30],
mainly based on associating each social profile with a certain
degree of trust. All the existing proposals require a strong
analysis effort by the social network provider, which takes
into account all the behavioral and topological information
of the profiles.

Differently from these pioneer methods, we propose an
approach based on a collaborative trust mechanism that
may operate in a truly decentralized fashion, in which
trust is combined with behavioral biometric mechanisms to
counter profile compromising. The novelty of our proposal
is that the computation of the trust level is decentralized: in-
deed, it exploits only user interactions and does not require
any central authority for trust management or computation.

The underlying idea exploits the social structure of our
domain. The trust model is based on a robust implementa-
tion of the word-of-mouth approach. Robustness is obtained
by redundancy. In words, we follow the principle that if
a sufficient number of people trust the identity of a social
network profile, we can trust it as well. This way, we obtain
a graph of trust, because we propagate trust under the
basic assumption that a fake user (and then fake behavior)
is transitively excluded. We base our assumption on the
consideration that, when the real-life identity is known,
sanctions are facilitated in case of misbehavior (e.g., victims
could sue users who certified the perpetrator), thus misbe-
havior is prevented.

Trust is obtained through redundant trust chains in
which any node plays a role similar to an intermediate
certifier in a certification chain until a certified profile (i.e., a
trust anchor) is reached. Our model requires the presence of
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some profiles certified by a Trusted Third Party. To identify
possible intrusions in a legitimate profile, the trust model
takes also into account the behavioral biometric traits of
users that they record and verify in a peer-to-peer fashion.
Importantly, no biometrics are stored by the social network
provider. In other words, the word-of-mouth mechanism
propagates the information that the current behavior of a
given node is not compliant with that of the initial safe
state, thus reducing the trust of the community towards that
node. Keystroke dynamics is used as a behavioral biometric
modality, which is very easy to collect on web pages (e.g.,
by using JavaScript code) and allows a simple and low-cost
solution to verify the identity of a user [29], [38]. We can
summarize the contribution of this paper as follows:

• We propose a theoretical framework based on a resilient
trust graph model that enables the computation of a
trust degree with respect to a social network participant
in a decentralized way.

• Such framework is then implemented and several ex-
periments are carried out with real datasets to validate
the system performance and resilience, comparing such
results with other proposals as well.

• The proposal exploits the behavioral biometric feature
of the user, in terms of keystroke dynamics, to identify
possible intrusion with respect to a legitimate profile
and to measure its trustworthiness.

• We provide the security analysis, validating the robust-
ness of our approach.

The structure of the paper is the following. In Section 2, we
contextualize our proposal in the state of the art. Then, in
Section 3 we provide a general overview of our approach,
while in Section 4 we introduce the biometric features and
the behavioral biometric modality used in our approach.
Section 5 describes how our trust model works and it
provides the theoretical support for the trust mechanism.
In Section 6 we present a decentralized way to compute the
trust level and in Section 7 we describe the system functions
that a social network platform needs to implement our
approach. In Section 8 we test our approach and show how
security properties are fulfilled. Then, Section 9 includes
details about datasets and implementation issues related to
our approach. Finally, in Section 10 we draw our conclusions
and discuss future work.

2 RELATED WORK

In online social networks, the detection of fake profiles
is becoming every day more and more important because
there are many threats (such as scamming, trolling, phish-
ing, Sybil attacks, and social bots) that need to be faced [33],
[39].

In this scenario, it can be helpful to create a model
that includes the dynamic computation of a trust degree
for each user. Trust is becoming a fundamental element of
a successful social network [36], and it derives from the
“social capital”, which is based on the density of interactions
among people.

The concept of trust applied to the digital domain has
been introduced through PGP (Pretty Good Privacy). The
original intent of PGP was to provide a “cryptographic tool
for the masses”. Its main purpose was to encrypt e-mail

messages using public or conventional key encryption. For
this reason, PGP does not adopt the traditional hierarchical
trust architecture but chooses the “web of trust” approach,
in which the users sign each other’s public keys. Thus, a
network of public keys is progressively originated, with
links formed by signatures. This way, there is no need for
a central authority [1]. Although the first instance of PGP
allowed determining the maximum length of the certifica-
tion chain through the CERT_DEPTH parameter, researchers
have not shown much interest in seeking new solutions for
trust propagation because it can be quite difficult to use
it properly in real applications [1], [20]. In particular, only
in recent years, this aspect has been investigated by [7], in
which authors propose a blockchain-based solution.

A survey of trust in social networks [36] introduces
three categories of trust models: (i) graph-based models,
which consider only how members are related to each other
and do not consider the real interaction between them; (ii)
interaction-based models, which consider only interaction in
the community and ignore the social network structure; (iii)
hybrid models, which try to consider both the aspects to
compute the social trust.

One of the most crucial points of this research area
is, surely, how trust propagates in the network. For this
purpose, the small world theorem and the social network
analysis techniques have been explored. In particular, the
authors of [30] enhanced the STrust model by proposing
an association-based trust propagation model that considers
two types of interactions: active and passive. STrust model is
computed as a combination of the popularity trust and the
engagement trust as STrust(u) = ↵PopTrust(u) + (1 �
↵)EngTrust, which are defined in [30]. The paper [21] pro-
poses an approach to select the most trusted path between
two nodes of a social network by merging seven criteria,
such as profile similarity, topological similarity, Dunbar’s
theorem, and other measures related to social network anal-
ysis. The authors specify that their approach allows them
to consider longer trust propagation paths than others. A
model based on the uniform trust propagation called SN-
GDM (Social Network-based Group Decision Making) is
presented in [43]. In particular, the authors propose the
two concepts of Trust Score (TS) and Knowledge Degree (KD),
which are combined to define a social trust value that
does not lose any trust information during its propagation.
Their model requires the intervention of Trusted Third Parts
(TTPs) for the validation of results.

A decentralized and privacy-preserving online social
network is presented in [10]. Here, the authors propose
Safebook, a system that provides registered users with data
storage and data management functions relying on trust
relationships that are part of social networks in real life.

Recently, the use of machine learning has been proposed
for detecting fake profiles. In [42], a dynamic Convolutional
Neural Network (CNN) is built for fake profile classification
that provides better results in terms of accuracy and loss
than other commonly used learning algorithms. Another
machine-learning-based classifier to detect bots in online
social networks is proposed in [37] to counter Sybil attacks.

Our approach is also related to the concept of informa-
tion diffusion in online social networks, in the sense that
the roots influence the trust values of other nodes in the
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network following the rules of information flow [32]. Most
of these works study how information flows in online social
networks and propose strategies to maximize this diffusion
by identifying strategic nodes for information propagation.
The aim of our paper is somehow orthogonal to these
studies and may exploit these solutions to improve trust
propagation through the social network.

Furthermore, our approach leverages biometric data,
which is a practice not new for social network applications
[8], even though there are few papers in this area. In
particular, most of the papers focus on user authentication
using biometric data to enhance its security. Some papers
in the literature considered soft biometrics with possible
applications to social networks [14]. Most of the works
consider gender recognition by analyzing the type of images
posted or the keystroke dynamics [15], [40]. To the best of
our knowledge, no work considers keystroke dynamics as a
solution to enhance trust in social networks.

Several works exploit biometrics to implement continu-
ous authentication schemes [12], [28], [41]. In high-security
environments, the typical session-level authentication can
be exposed to session hijacking, in which an attacker targets
a post-authenticated session. In those contexts, continuous
and real-time verification of user identity may become
mandatory, and a lot of research effort has been devoted
to the use of biometrics as a means to achieve this objective.

However, the goal of these strategies is very far away
from ours. In detail, our approach does not aim at proposing
a strategy to continuously verify that an active login session
is controlled by the right user. Instead, our approach exploits
biometric data as feedback to our trust model to measure the
trustworthiness of an online profile.

From the literature review described earlier, it appears
that the objective pursued by our paper is new. Therefore,
to the best of our knowledge, there is no approach that
can be (analytically or experimentally) fully compared with
our proposal. In Section 9.3.2, we provide a comparative
evaluation between our method and that proposed in [30]
from the perspective of resilience against slandering attacks.

The rough original idea at the basis of this paper has
been initially presented in [4]. However, there is a sig-
nificant difference between the two papers. In particular,
being [4] the report of early-stage research, the theoretical
framework was not complete, and the proof of theorems
was not included. No distributed implementation of trust
computation and certification infrastructure was provided,
as well as the concept of certificate was not presented. More-
over, there was not any security analysis. In addition, the
experimental validation of the proposal carried out in the
old version is very preliminary, because it only considered
one small synthetic dataset (i.e., 2,500 nodes) with very few
experiments instead of five real, heterogeneous, and bigger
datasets. We extend the experiments through a comparative
analysis of our method with respect to the literature and
by considering (experimentally) an attack to demonstrate
the robustness of our approach. We improve the part of the
paper including biometrics and, finally, we add the spatial
and temporal complexity analysis of all the functionalities
of our proposal.

3 OVERVIEW OF THE APPROACH

In this section, we provide a general overview of how our
solution works.

First, we highlight that our proposal is applied to online
social networks and that it works by employing trust chains
built among users. In particular, each chain starts from a
root node, which is a social profile certified by a Trusted
Third Party (TTP). To build a root profile, a user has to
register with the social network via TTP, by executing an
identification process proving their real-life identity. This
could be achieved by using a public digital identity system.
In addition, in this phase, TTP gathers the biometric (behav-
ioral) parameters of the user to create a model that will be
exploited in future interactions with the user to adapt the
trust level and verify whether the account is still under the
user’s control. Indeed, in the negative case, the certificate
associated with that profile will be revoked.

At the initial state of our protocol, the list of certified
profiles coincides with the set of roots. At this point, new
profiles could be certified by root nodes via certificate gen-
eration. When a new profile reaches a given trust level, it will
be considered certified and it will play an active role in trust
propagation.

We model the social network as a directed graph G =
hN,Ei, where N = Nc

S
Nnc is the union between the set of

certified profiles Nc and the set of non-certified profiles Nnc,
and E is the set of edges representing the friendship among
these peers. We use the notion of directed graphs because
they handle the case of symmetric friendship (as happens in
Facebook) simply by including two edges in both directions.
For example, if we want to represent a Facebook friendship
between i and j, then we set the edges Ei,j and Ej,i.

Any node of the social network (both certified and non-
certified) may directly recognize some of its direct contacts.
The basic idea is that a node recognizes only those nodes
for which past real-life interactions occurred, allowing the
node to conclude, also by using external knowledge, that
the claimed identity is real (this situation typically happens
for a significant portion of social network contacts). When
a safe interaction happens (for instance, at the first message
exchange allowing the recognition of the interlocutor) the
profile acts as a recognizer and builds a biometric model
of the recognizing node. This way, a subsequent intrusion
can be detected. Furthermore, we remark that only a node
already recognized can play the role of the recognizer. The
underlying rationale is that the misbehavior of a user is
directly connected to their anonymity in the social network.
In other words, by making the recognizing process fully
accounted and traced (and related to a real-life identity),
we can increase the trust in recognized identities, provided
that transitively, the process leads to root nodes.

Since we cannot give an absolute value to the above
principle, we have to increase the level of trust by requiring
redundancy in the recognizing process, thus making more
improbable the conjunct misbehavior of identified recog-
nizers. The level of redundancy sets the level of trust. The
biometric model built by any participant, allows us to detect
possible profile compromising, thus including in the trust
also the expectation that an initially identified profile is still
under the exclusive control of the legitimate owner. It is
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worth noting that, in principle, the biometric model could
be learned by exploiting multiple channels (social network
interactions, chats, shared editing, and so on).

We remark that the proposed approach is not aimed at
defining a digital identity system, since only a level of trust
is obtained. In fact, when a user A recognizes a user B,
they are stating that B is not claiming a false identity, not
the veracity of all published information. The quantity and
quality of information needed by A to reach this conclusion
depends on the social context. Besides name and surname,
they may regard other information, such as age, job, and
friendships.

Furthermore, we highlight that this approach does not
recognize directly untrusted social profiles, but it aims to
provide a certain degree of positive trust that is tuned and
refined considering all the features, including biometrics,
which we will explain in the following so that we can
consider a social profile as certified. Clearly, if a certain
social profile is not certified because it has a low trust degree
or has no degree computed at all, it would represent an
implicit suggestion to the user that such a social profile
could convey dangers.

4 BIOMETRIC FEATURES

In this paper, we propose to use biometric features to
guarantee the previous security requirements. We focus in
this work on a behavioral biometric modality as it can be
easily collected in a transparent way [45]. Among existing
solutions, we can cite mouse dynamics [27], touchscreen in-
teractions [44], or keystroke dynamics [3]. The last technique
is a behavioral biometric modality consisting of analyzing
the user’s way of typing on a keyboard. This biometric
information can be computed easily on the Internet using
simple JavaScript code. Keystroke dynamics is a biometric
modality identified more than 40 years ago. We can cite
a pioneer work in 1980 with a study where seven secre-
taries were asked to type three different texts [16]. The
results were promising but lacked a sufficient number of
users involved in the database. Most research works in
keystroke dynamics assume a quasi-keyboard invariance or
intend to propose algorithms dealing with slight behavioral
modifications related to the keyboard type. In a previous
study [18], experimental results from data collected from 133
users when using 2 types of keyboard (laptop and desktop)
showed similar performance considering the keyboard used
for enrollment or verification steps. However, some papers
showed some performance differences when different key-
boards were used during enrollment and verification. We
can mention the following study [34] with 2 used keyboards
(laptop and desktop) even if collected data are only from
17 users. A more recent paper [24] involving data from 4
keyboards and 86 users can also be mentioned. We assume
in this work, as many in the literature, that the keyboard
has a low impact on feature extraction. The use of mobile
devices is not considered in this paper but many methods
exist to deal with this type of capture [11].

The capture process of keystroke dynamics is shown in
Figure 1. It consists in computing several features when
the keys are pressed and released (timestamp of the event,
code of the key, . . . ) provided by any Operating System

Fig. 1. Information captured in a keystroke dynamics system when
pressing C and O keys [17].

(OS). The feature extraction consists mainly in measuring
different latency and duration time between each key. Figure
1 shows an example where the user presses two keys on the
keyboard. The user presses "C" at T1, "O" at T2, and releases
"C" at T3 and "O" at T4. Note that the following relation
is always respected: T3 > T1 and T4 > T2 (we always
release a key after pressing it), while the following condition
may not always be respected: T2 > T3 (because, as in
our example, a user may press another key before releasing
the previous one). We can extract three latency values (T2-
T1, T4-T3, T2-T3) which we call PP (latency between two
pressures), RR (latency between two releases), RP (latency
between one release and one pressure) respectively, and
one type of duration (T3-T1 or T4-T2) which we call PR
(duration of a key press). The described process is repeated
for all the keys.

Keystroke dynamics can be used either with passwords
to enhance the security of user authentication or on free text.
For example, the keystroke dynamics of a user could be an-
alyzed while exchanging with another (e.g., through a social
network chat). Subsequently, we consider the different tim-
ing information between two-character sequences known as
digraphs. Digraphs are the latency times between two suc-
cessive keystrokes. The biometric template associated with
user z is composed of n digraphs Tz = {T 1

z , .., T
n
z }. The

considered digraphs could be associated with one language.
In this work (see Section 8.3), we considered 14 different
values (common ones in English). If we consider a higher
value of n, a few sentences will allow us to compute the
keystroke dynamics feature vector. Another solution is to
compute the distribution of latency values from the text
typed by a user as a behavioral signature.

First, we need to generate the reference biometric tem-
plate for each user by analyzing their keystroke dynamics
during a period of time when we assume only the legitimate
user interacts with the social network. To guarantee user pri-
vacy, we apply a biometric template protection scheme on
digraph data (see Algorithm 1). The BioHashing algorithm
[25] is applied to biometric templates that are represented
by real-valued vectors of fixed length (so the metric used to
evaluate the similarity between two biometric features is the
Euclidean distance). It generates binary templates of length
lower than or equal to the original length (here, the metric
DT used to evaluate the similarity between two transformed
templates is the Hamming distance). A complete review of
cancelable biometric systems has been reported by [31].

The reference template of user z is defined by B̃z =
{E[Bz],�[Bz]} where E[.] corresponds to the average value
of biometric templates of user z and �[.] the associated
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Algorithm 1 BioHashing
1: Inputs

2: T = (T1, . . . , Tn): biometric template,
3: Kz : secret seed
4: Output B = (B1, . . . , Bm): BioCode
5: Generation with the seed Kz of m pseudorandom vec-

tors V1, . . . , Vm of length n,
6: Orthogonalize vectors with the Gram-Schmidt algo-

rithm,
7: for i = 1, . . . ,m do compute xi =< T, Vi >.
8: Compute BioCode:

Bi =

⇢
0 if xi < ⌧
1 if xi � ⌧

where ⌧ is a given threshold, generally equal to 0.

standard deviation. To decide if a biometric template Bx

of size n belongs to user z, we need to compare it with the
reference template of user z denoted B̃z as follows [22]:

Score = 1� 1

n

nX

i=1

e�
|Bx�E[Bz ]|

�[Bz ] (1)

This score gives a confidence measure about how much
the user z is legitimate and will be used in the trust model
proposed in the next section.

As we will see in the rest of the paper, the biometric
system is used in such a way that the following security
properties are guaranteed:

• Confidentiality: the biometric data are not disclosed to
others.

• Non-reversibility: the biometric template is not enabled
to retrieve the biometric data.

• Discriminant: the biometrics discriminate users.
• Constant: the biometrics remain constant.
• Non-usurpation: a user is not able to forge/imitate the

biometric of another user.
• Not-costly: in terms of mem-

ory/time/ergonomics/money (no additional devices).

5 THE TRUST GRAPH

In this section, we give the theoretical framework underly-
ing our trust model works.

Throughout this section, consider given a directed graph
G = hN,Ei representing a social network and a redundancy
parameter t, i.e., a positive integer representing a level of
trust. Let TTP be a Trusted Third Party. Let denote by Nc

the set of certified nodes, i.e., the nodes whose identity is
assured and monitored by TTP. Given a node u 2 N , we
denote by �(u) the set of neighbors of u (i.e., adjacent
nodes). Moreover, we denote by R(u) ✓ �(u) the set of
nodes recognized by u.

Our trust model is based on the notion of recognition
done by a certain user (in this formal framework just a node)
towards other directly connected users. However, there is a
recursive requirement. If we establish that t is the minimum
number of recognitions that a user should receive to be
considered trusted, we require that such recognitions, to
be valid, must be done by trusted users (i.e., either users

who received at least t recognition or certified users, which
play the role of roots). This is formally encoded in the next
definition:

Definition 1. We say that a node u 2 N is t-recognized (in
A ✓ N ) if either: (i) u 2 Nc (i.e., is a certified node), or (ii)
there exist t other t-recognized nodes in A that recognize u.

When the set A of the definition above is not specified,
we intend that a node is t-recognized in N . From the above
definition, it immediately follows that nodes in Nc are t-
recognized for any t and in any set A.

We want now to understand how to characterize (and
then compute) the set of users who, thanks to the propaga-
tion mechanism enforced by the above recursive definition,
are trusted (with level t), when a set of roots Nc is fixed.

To do this, we first need to introduce the notion of t-closed
set. Informally, a t-closed set is a set of set of t-recognized
nodes that is closed with respect to the trust propagation
mechanism. More formally:

Definition 2. A set A ✓ N of t-recognized nodes in A is
said t-closed, if there is no u 2 N \ A that is t-recognized in
A too.

From the above definition, it immediately follows that
all certified nodes must belong to any t-closed set.

It is easy to see that the operator ✓ induces a partial
order over the set of t-closed sets, which is a lower semi-
lattice. We denote by N t ✓ 2N the set of non-empty t-closed
subsets of N . N t is then a lower semi-lattice according to ✓.
We denote by N t

b the bottom of N t.
In our model, the role of N t

b is central, because it includes
exactly all nodes that are t-recognized, but, due to subset
minimality, they do not form clusters whose recognizing
is only mutual. In other words, N t

b is the set of nodes for
which trust paths start from certified nodes. Therefore, N t

b
represents the set of trust nodes, as more formally stated in
the next definition.

Definition 3. Given a node u 2 N we say that u is t-trusted
(in N ) if u 2 N t

b . N t
b is also said the set of t-trusted nodes (in

N ).

It is now important to understand how to compute N t
b .

To do this, we provide an operational definition of N t
b ,

based on the fixpoint of a monotone operator ⇤t, called t-
recognizing operator. From this definition, it easily arises that
the trust of nodes in N t

b can be directly or indirectly linked
to (at least) t certified nodes.

Definition 4. Given t > 0, let denote by 2Nt ✓ 2N the set of
subsets A ✓ N such that, for each x 2 A, x is t-recognized
in A. We define the t-recognizing operator ⇤t : 2Nt ! 2Nt
as follows: (i) ⇤t(;) = Nc (ii) ⇤t(A) = {u 2 N | 9B ✓
A s. t. |B| � t ^ u 2

T
v2B R(v)}. It is easy to see that if A

is in 2Nt , then ⇤t(A) is in 2Nt too.

Now, we define the following sequence of sets: ⇤0
t =

⇤t(;); ⇤k
t = ⇤t(⇤

k�1
t ), for any k > 0.

Lemma 1. The operator ⇤t is monotone.

Proof. To prove the claim of the Lemma, we have to show
that given two subsets A and B of 2N such that A ✓ B, it
holds that ⇤t(A) ✓ ⇤t(B), for any t > 0. We proceed by
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contradiction by assuming that there exists x 2 ⇤t(A) such
that x /2 ⇤t(B). This means that x is not t-recognized in B.
But this is impossible because x is t-recognized in A (since
A 2 2Nt ) and A ✓ B.

Lemma 2. A set of nodes A 2 2Nt is t-closed if and only if
⇤t(A) ✓ A.

Proof. (only-if-part). Let x be belonging to ⇤t(A). Then, there
exist at least t nodes in A that recognize x. Therefore, if A is
t-closed (for hypothesis), then x 2 A too.
(if-part). Let x 2 ⇤t(A). Then, there exist at least t nodes in
A that recognize x. Since ⇤t(A) ✓ A, x 2 A too. Then A is
t-closed.

We are ready to state the following result, which gives
us an operational way to compute N t

b .

Theorem 1. The infinite application of the operator ⇤t, denoted
by ⇤1

t , is a fixpoint (i.e., ⇤t(⇤1
t ) = ⇤1

t ), it is the least fixpoint,
and this corresponds to the set of t-trusted nodes N t

b .

Proof. The proof of the first part of the theorem (i.e., the
existence of the least fixpoint) directly derives from Lemma
1 and the theory on fixpoints (i.e., Tarski’s theory).

Now, we have to prove that ⇤1
t = N t

b . First, we prove
that N t

b ✓ ⇤1
t . By Lemma 2, as N t

b is t-closed, ⇤t(N t
b) ✓ N t

b .
If ⇤t(N t

b) = N t
b , then it is a fixpoint and then it is the least

fixpoint ⇤1
t . Thus, N t

b = ⇤1
t , and the claim is proven. If

⇤t(N t
b) ⇢ N t

b , then, due to Lemma 1, ⇤t(⇤t(N t
b)) ✓ ⇤t(N t

b).
By Lemma 2, this implies that ⇤t(N t

b) is t-closed. But this is
not possible because ⇤t(N t

b) ⇢ N t
b and considering that N t

b
is the bottom of the lattice. This part of the proof is then
completed.

Now we have to prove that N t
b ✓ ⇤1

t . Since ⇤1
t is a

fixpoint, then ⇤t(⇤1
t ) = ⇤1

t . Therefore, by Lemma 2, ⇤1
t

is t-closed and this implies that N t
b ✓ ⇤1

t . The proof is then
concluded.

The above notion of t-trustworthiness embeds a lossless
propagation of trust in which the level of assurance of iden-
tity based on the recognition of users does not degrade if the
t redundancy property holds at every step of propagation.
In other words, the t-redundancy property is considered a
threshold to propagate the trust. The t-redundancy param-
eter implicitly represents the assumption that the multiple
identifications of a node u done by nodes in turn identified
with the same trust level, and so on, until t certified nodes
are reached, can be considered sufficient to trust the identity
of u. The approach applies the concept of trust chain used in
the context of digital certification to the domain of identity
management in social networks, with the aim to counter the
problem of fake identities. It is worth remarking that the
model cannot provide absolute guarantees but only a trust
level directly connected with the value t. The higher t, the
higher the trust in identities.

So far, the trust model assumes that once a user has
recognized another user, no revision of this information
must be done. This assumption would be valid only in
the absence of attacks that give the attacker access to the
user profile (even temporarily). So we assume a sort of
safe state regarding fraudulent accesses. In other words, the
trust model above prevents the risk of fake profiles and
fake identities but not from fraudulent access to legitimate

profiles.

To counter this further case, we introduce a biometric-
based reinforcement and combine it with the above trust-
chain mechanism, to decrease the trust in a given subject if
the biometric trait is not recognizable. Therefore, we can also
manage non-safe states. The full trust in our mechanism is
obtained by relying on the assumption that the disclosure
of trusted real-life identities prevents the misbehavior of
users in the trust mechanism itself, under the t-redundancy
assumption.

But, if the operating user is not the legitimate one, then
the above assumption fails. Thus, the identity of those users
whose trust is based on paths involving the attacked profile
should be not fully trusted. In other words, to take into
account this aspect, we have to enable a gradual level of
trust, from 0 to 1 (while before the trust was basically
either 0 or 1), and use an ✏-approximation approach to
trust identities. The first step is to modify the notion of t-
recognized. Obviously, we keep the redundancy parameter
t in the new definition, but we introduce the possibility that
a user is not fully identified in a given moment, due to the
fact that the biometric support is giving a warning rate. We
require that nodes in Nc (i.e., certified nodes) lose their state
if the biometric support gives a warning rate. Thus, we can
assume that certified nodes are not attacked.

Given a node u, we define the set R✏(u) (where 0  ✏ 
1) as the set of pairs hv, br(v)i such that v 2 R(u) (i.e., v is a
node recognized by u in the safe state) and 1�✏  br(v)  1
is the current biometric rate (i.e., the score computed earlier
normalized from 0 to 1), provided that it is higher than a
given threshold 0 < 1 � ✏  1 under which v must be
currently considered not recognized. Obviously, when ✏ = 0
we fall in the safe state. We say that nodes in R✏(u) are ✏-
recognized by u. At this point, we are ready to extend the
notion of t-recognized to a non-safe state.

Definition 5. We say that a node u 2 N is ht, ✏, ri-recognized
(in N ) if either: (1) u 2 Nc (i.e., is a certified node), or (2)
there exists a set B of ht, ✏, ri-recognized nodes such that both
(i) u /2 B, (ii) |B| � t, (iii) u 2 R✏(v), for each v 2 B, (iv)
1� ✏  r  1, and (iv)

P
v2R br(v)

|B| � r.

It is easy to see that a node is t-recognized, according
to Definition 1, if and only if it is ht, 0, 1i-recognized. The
intended meaning of Definition 5 is to take into account
warnings triggered by the biometric support (through the
parameter ✏), and, at the same time, to require by means
of the parameter r that a possible fault of trust introduced
by ✏ can be partially recovered by fortifying redundancy
to reduce approximation. In words, if we can trust fewer
nodes because we are not sure they are not attacked we
need a larger set of witnesses to reach a safe conclusion
anyway. This means that r modulates the level of assurance
of trust, so that the higher r, the higher the trust in the
identity of ht, ✏, ri-recognized nodes. Actually, to talk about
trust we have to avoid a mutual self-sustained cluster of
ht, ✏, ri-recognized nodes, so we have to proceed as in the
safe state above by requiring the minimality condition. For
brevity, we do not give all detail, but it is rather clear that
definitions of N t

b and, consequently, of t-trustworthiness of
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a node, can be easily extended to the non-safe case, on the
basis of Definition 5. We reach thus the definition of N ht,✏,ri

b
as the bottom of the semi-lattice of subsets of ht, ✏, ri-closed
nodes of N . Therefore, a node is ht, ✏, ri-trusted if belongs
to the set N ht,✏,ri

b . Also the definition of recognizing operator
can be trivially extended so obtaining the operator ⇤ht,✏,ri in
such a way that N ht,✏,ri

b coincides with the fixpoint ⇤1
ht,✏,ri

of such operator.

6 DECENTRALIZED TRUST COMPUTATION

We present here a decentralized way to compute the trust
level that does not require any central authority for trust
management. Obviously, standard TTPs, such as certifica-
tion authorities are required to certify root profiles, but
they are not involved in the propagation trust mechanism.
First, we assume the collaborative behavior of participants
in the network. This assumption is reasonable because every
participant can benefit from the trust system so constructed.

We propose a distributed algorithm for trust computa-
tion, in which each node sends, upon query, a proof that it
is t-recognized, where t is the chosen trust level. In the scope
of this paper, we choose the proof to be a certificate graph,
a generalization of certificate chains, in which each node is
certified t times.

We assume that each node owns its pair of asymmetric
cryptographic keys and that the private key is kept secret.
The public key is used also as the user’s identifier.

Now, we define the (recursive) structure of a certificate.
We have two kinds of certificates:

• intermediate certificates: containing the certified node
public key and the certifier public key;

• final certificates: containing explicitly the certified node
identity (e.g., URL) and public key, and the certifier’s
public key.

These certificates prove that the certifier node trusts the
certified node (we highlight that only the certifier node is
able to issue such certificates because they are signed). Inter-
mediate certificates enable the certified node to certify other
nodes without revealing its real identity in the certificate
graph, and the final certificates enable the certified node to
prove that it is t-confirmed by sending a certificate graph
and its final certificates.

Specifically, a user’s certificate is composed of:
1) issuer: this field contains the public key of the generator

of the certificate;
2) target: this is the public key of the user to be certified;
3) profile: this field is obtained as url � r, where url is

the URL of the social network profile of the target, r
is a randomly generated bit string, and � denotes the
exclusive OR operator;

4) key, an optional field containing r (i.e., the value gen-
erated above). If this attribute is missing, then this
certification is said intermediate certificate; otherwise, it
is said final certificate;

5) certifier: this field may contain a (possibly empty) set
of intermediate certificates of the users who previously
have certified the issuer. If this field is empty, then the
issuer should be a root node certifier and this target
user is said root node.

6) expiration date: this field may contain the date until the
certificate can be considered valid.

7) value: this field contains a value between 0 and 1; it is
0 when the certificate is revoked (for any reason), it is
equal to 1 when the trust in the certificate is maximum,
and a value between o and 1 in all the other cases.

Furthermore, the certificate is signed by the issuer’s
private key to guarantee information integrity.

In practice, when a user u wants to be t-recognized,
u asks their social friends u1, . . . , ut for a final certificate.
In this example, we assume that u1, . . . , ut are already t-
recognized.

Now, each friend ui of u signs and issues a certificate ci
with all fields filled-in (i.e., containing also the random r).
At the end of this step, u has got t final certificates: if all
of them are valid, then u becomes t-recognized as well. At
this point, u can propagate the trust to another friend v, by
issuing and signing a new certificate of v, in which the field
certifier is composed of the certificates c⇤i with 1  i  t,
where c⇤i is obtained from ci by erasing the field key.

Concerning the validation of certificates, we have two
cases.

An intermediate certificate is valid if:
• it is signed by the issuer’s private key (i.e., the signature

is valid);
• the issuer is a root node certifier (if the field certifier is

empty); the field certifier contains at least t (recursively)
valid certificates (otherwise);

A final certificate is valid if, in addition to the above
conditions, it holds also that the value of the field profile �
the value of the field key is equal to the URL of the social-
network profile of the user being certified.

As introduced by Definition 5, our model takes into
account also the possibility that the level of trust of a
specific user can be gradually reduced if the biometric
recognition is not full. Therefore, it may happen that an
already t-recognized user’s account becomes potentially
compromised. In this case, the associated level of trust
decreases. Furthermore, since our model is based on the con-
cept of collaboration and propagation, when a certified user
is compromised also all the paths involving the attacked
profile should take into consideration this information and
decrease the overall level of trust. According to Definition 5,
the trust level t does not act just as an on-off switch, but it can
assume values between [0, 1], so that if one node has been
compromised, then the overall computation of each trust
level in which that node is involved dynamically changes.

In particular, if we set t = 10 to be considered t-
recognized and we consider an ideal world in which every
peer has a t_level = 1, we can state that if ten people
sign a certificate directed to a given user, then it would be
sufficient for this user to become t-recognized. Otherwise,
in a real-world scenario, it would happen that more people
would be needed to reach the same trust level because some
participants could have a t_level  1.
Optimization.

Our method may suffer in terms of storage size because
duplicate certificates are saved in the chain of certificates.
For this reason, we provide an optimized version of our
approach in which the certificate graph does not contain
duplicate certificates.
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Observe that when a node receives a (trust) certificate,
the corresponding intermediate certificate is added to the
set of intermediate certificates and the final certificate to
the set of final certificates. The other certificates included in
the received certificate graph are added to a third internal
structure, consisting of a mapping in which each element
key is the pair (certified public key, certifier public key), thus
ensuring the uniqueness of each certificate. When issuing a
new certificate, the node sends the status of the certificate
along with the certificate itself.

The resulting certificate graph is represented by a multi-
map structure whose index is the certified public key. For
each index, the number of certificates and the certificates
are verified. Then, starting from the final certificates, the
absence of loops is ensured by a depth-first search. If a
visited node already belongs to the current path, then a loop
is detected.

7 SYSTEM FUNCTIONS

In this section, we provide the basic functions of our trust
model, which would be the basis for any social network
platform implementing our approach.

• Root registration: this function is used by a node to
become a root node.

• Set Biometric Model: it is invoked whenever two users
establish a contact in the social network in the set-
up phase. It is also invoked by the Root registration
function to allow the social network provider to keep
the biometric model of the root node.

• Trust: this function is invoked whenever a node wants
to sign a certificate to another participant of the net-
work;

• Verify trust: this operation is invoked whenever a node
wants to verify that a given participant belongs to the
set of certified nodes;

• Revoke: it is invoked whenever a participant wants to
revoke a past certificate previously given to a certain
node. This can happen for any reason.

We describe such functions and their complexity over
time and space w.r.t. the number of nodes n and the trust
level t.
Root Registration.

This operation involves a Trusted Third Party (TTP) and
a social network profile that claims to become a root node.
In particular, the TTP receives the request from a social
profile and it starts an authentication process to demonstrate
the association between the real-life identity and the social
network profile. This process could use a public digital
identity system. After being authenticated, the social profile
becomes a root node, representing the first node of a new
trust chain.

The complexity of this operation is constant over time
and space.
Set Biometric Model.

This function is invoked every time it is necessary to
model the biometric behavior of a social profile. In partic-
ular, the process of capturing keystroke dynamics consists
of extracting different features, such as the time interval
between pressing and releasing two characters on the key-
board, the code of the key, etc.

The complexity of this operation is constant over time
and space.
Trust.

This operation can be carried out after a real-life inter-
action between the two users and it can be invoked only
by those peers that have already been t-recognized and/or
by root nodes. Such an operation is used to trust another
profile by means of a signed certificate. In detail, it accepts
a certificate as input and it can be invoked by every node
belonging to the set of certified profiles Nc. In particular, two
different certificates are signed: an intermediate certificate,
which does not contain any identity-related information,
and a final certificate, which contains also the certified user’s
identity.

The complexity of this operation is constant over time
and space.
Verify trust.

It is called whenever a node wants to check the value of
trust associated with a given social profile. In particular, the
function accepts a social profile and a required trust level
t and returns whether the social profile can be considered
trusted or not.

To carry on the operation, the social profile being verified
has to reveal its final certificates so that the node can check
the validity of the certificate chain.

In Figure 2, we show an architecture in which node A be-
comes t-recognized by nodes C and B, with t = 2. Note that
intermediate certificates do not include the identity-related
information about the destination of such certificates, while
final certificates contain the URI of the destination node
because intermediates are used by a certified node to give
trust in other peers, while finals are used in this verification
process, where it is necessary to reveal the link between
the certificate and the corresponding social identity. We can
conclude that this phase succeeds when the sum of values
included in final certificates is greater than or equal to the
trust level t set by the user.

As for the spatial complexity, we note that the size of
the certificate chain associated with each t-recognized social
profile is

Pd
i=1 t

i, where d is the hop number between the
social profile taken into consideration and the root nodes.
Considering the example in Figure 2, d is equal to 2 because
the social profile A to be verified is linked to the three
root nodes D,E, F via the following paths: A ! C ! F ,
A ! C ! D, A ! B ! D, and A ! C ! E. Thus,
the spatial complexity can be approximated to td, which
is polynomial thanks to the small-world phenomenon and
the six-degree separation law [5]. In particular, in social
networks, the average degree of separation between two
peers is found to be 3.43 [6]. Following the same reasoning
seen for the spatial complexity, we obtain that the time
complexity is td.
Revoke.

This task represents an important function of our so-
lution. As is the case in most certification infrastructures,
a certificate-revocation-list approach is used. The list of
revoked certificates is maintained by the same TTP intro-
duced in the root selection phase. This method is invoked
every time we require that a certificate previously signed
that is still valid (the scheduled expiration date has not
come yet) is no longer considered trusted. Each entry of
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the certificate revocation list is associated with the identifier
of the certificate and a timestamp. The node that invokes
this function has to sign the certificate revocation to prevent
malicious requests. Following the same idea of trust propa-
gation, every time a certificate is found to be revoked, child
branches of such certificate are no longer considered valid.
Our model provides for two different ways: (1) an explicit
revocation, for which any standard solution (e.g., the TLS
approach) can be adopted to revoke the certificate before
the expiration date, and (2) an implicit solution, denoted by
setting the value associated with the certificate equal to zero.

Both time and spatial complexities are constant since this
function does not involve either t or n.

As a final observation of this section, we highlight that
our tree-like certification process might apparently represent
an infeasible source of exponential growth. For example,
whenever a certificate is revoked, all branches that are
generated from that certificate are cut off and considered
revoked as well. However, the real-life structure of online
social networks (i.e., the small diameter and path lengths
due to the small-world principle) makes this risk not effec-
tive.

8 SECURITY ANALYSIS

In this section, we discuss the security requirements pre-
sented earlier and explain how we provide these security
properties and how our model prevents reputation attacks.
We start by defining the threat model adopted in our ap-
proach. We focus our attention on the robustness of the
trust mechanism, by assuming that the biometric system is
secure.

The adversary is any user of the social network. We al-
low collusion among users, by assuming that the maximum
number of colluding adversaries is less than the fixed trust
level t.

Specifically, the adversary can perform the following
attacks against the trust mechanism:

• Sybil attack: The adversary tries to generate multiple
fake identities to jeopardize the system.

• Slandering: The adversary tries to fraudulently reduce
the trust of a victim user.

• Self Promotion: The adversary tries to fraudulently in-
crease their trust.

• Whitewashing: The adversary tries to fraudulently erase
the reduction of trust.

• Social engineering: The adversary tries to compromise
the trust mechanism by using social engineering attacks
against other users.

Collusion and Sybil attacks are strongly mitigated because,
as highlighted in the theoretical model, every participant
must be certified to propagate trust and every certification
chain must lead back to a root node. Slandering attacks
are prevented, since it is impossible to defame someone
because our model provides, by construction, only trust
certificates and there is no way to vilify another participant.
Furthermore, the solution we propose makes it impossible
for a peer to self-promote because there is the need for the
collaboration of the community to reach a certain trust level.
The resilience of our approach against this type of attack is
studied in Section 9.3.2.

Whitewashing attacks are mitigated because if a partici-
pant creates a new account to start with a new reputation,
they will lose their certificates and it is necessary to execute
the whole process of our algorithm to reach a certain trust
level.

Our approach is robust against social engineering attacks
because of the reinforcement given by adding biometric
features to the model, which enable continuous authentica-
tion for every participant. Indeed, even if an attacker gains
full access to the victim’s social profile, our approach will
discover the attack thanks to the continuous authentication
provided by the biometric features.

Apart from the resistance to the previous attacks, we
highlight that our solution achieves the following security
properties.

Integrity is ensured because the attributes of certificates
are signed by the issuer’s private key. For the same reason,
Accountability is provided as well. Availability is reached
because certificates are computed once and then they are
stored so that the computation of the t-recognized nodes is
possible also in the case in which nodes are for any reason
unavailable.

Anonymity is achieved in pseudonymous form because
our model uses intermediate certificates to propagate trust.
In these certificates, the real identity of the actors involved
in the process is not revealed. The list of revoked certificates
is stored and maintained by the TTP which is in charge also
to carrying on the root registration step.

9 EXPERIMENTS

In this section, we validate our proposal. First, we present
the dataset used and discuss how biometrics is managed.
Then, we analyze the results of the experiments we carried
out.

9.1 Datasets
For the validation of the proposal, we used five
real-life datasets downloaded from the repository
http://networkrepository.com/ [35]. Each dataset
provides a list of edges between two nodes, which represent
that the two nodes are friends.

In the Facebook section of this repository, several
datasets are provided, each sampling a certain portion of
the network, with different characteristics and properties.
Among them, we selected five different data sources so that
we can cover heterogeneous and different contexts.

In Table 1, we report the characteristics of our datasets,
where |N | is the number of nodes, |E| is the number of
edges, dmax is the maximum degree of a node in the given
dataset, and davg is the average degree of the nodes. By ana-
lyzing such values, we can say that D1 and D2 are the most
connected datasets because they have high degrees and they
have many edges. D3 and D4 have the highest number of
nodes but fewer edges and lower degrees, meaning that they
are less connected and more scattered. Instead, D5 is the
trade-off.

As for the biometric part, we used a biometric bench-
mark database composed of keystroke dynamics [23]. It
is composed of a biometric template from 110 individuals
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Fig. 2. Example of certificates with trust level = 2

TABLE 1
Dataset characteristics.

|N | |E| dmax davg

D1 24k 1M 3k 96
D2 36k 2M 5k 87
D3 64k 1M 2K 39
D4 63k 817k 1k 25
D5 42k 1M 4k 65

typing on two desktop keyboards (a French keyboard for
users in France and a Norwegian keyboard for users in
Norway) i.e. AZERTY and QWERTY (this is not a classi-
cal QWERTY keyboard, however, we do not use specific
Norwegian keys), respectively. An entry is composed of
the typing of 5 passwords. Several studies tested that no
significant difference between a laptop and a USB keyboard
exists [17]. For this dataset, we considered 14 digraphs:
latency of ‘ca’, ‘ic’, ‘ed’, ‘he’, ‘pe’, ‘te’, ‘ch’, ‘li’, ‘ri’, ‘ll’, ‘on’,
‘er’, ‘es’ and ‘st’. The size of the biometric template is 14. As
an entry contains several times each digraph, the template
is computed as the mean latency of each 14 digraphs. The
reference template is computed by merging several entries
(here 14 entries).

9.2 Managing biometrics

For managing biometrics features, we used the dataset
described in the previous section and generated legitimate
scores by comparing the reference template with templates
from the same user. In our attack model, we simulated
impostors by replacing the reference template of the victim
user with templates coming from other users.

Since the social network graphs we have derived from
edge lists contain way more users than the keystroke dy-
namics dataset, we cannot associate a unique keystroke
dynamic with each social network user. User biometrics
behavior is thus simulated by randomly picking, for each
social network user, a user from the keystroke dynamics
datasets. Attacks are simulated by using different keystroke
dynamics from the keystroke dynamic dataset. For the
BioHashing verification, a different random secret is used
for each account and each of its certifiers, and the secret
is assumed known by the attacker if the account has been
attacked. It is worth noting that the modality can be easily
collected by any website, in particular phishing websites.
To limit such attacks, Keystroke Dynamics Anonymisation
Schemes could be used.

The performances of such systems could be improved
using other modalities (s.a. the mouse), that need to enable
continuous authentication to not be vulnerable to some at-
tacks, (e.g., lunchtime attacks). The usage of soft biometrics
could improve authentication performances and also verify
the consistency with the claimed profile (gender, age, ...)
and template update techniques could also be implemented
to improve the overall system performances as the users’
biometrics behavior changes over time.

Biometrics can be used to automatically revoke cer-
tifications. However, such revocation could be manually
performed by the certifier in response to a flag raised by the
biometrics algorithm. This enables the certifier to perform
complementary verification before choosing to revoke the
certification.

9.3 Experimental results
To validate our proposal, we implemented a simulator in
Python 3.11 and ran the experiments on a PC with 16GB
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of RAM and an i7 Intel processor running Ubuntu as the
operating system.

Datasets are formatted as edge lists, which is a particular
data structure used to represent a graph as a list of its
edges. For example, if between nodes a and b there exists
a connection (an edge), then in the edge list we will find a
row containing the pair (a, b).

Thus, we read the edge lists in such a way that we
can deduce all the information about nodes and their re-
lationships. After this operation, we proceed by selecting
root nodes. We could have implemented many different
algorithms for this selection (for instance, we could have
used different centrality measures to select the best nodes).
Anyway, we decided to select randomly roots among all the
nodes since it would be fairer and more representative of
a real situation. In fact, if we had chosen the best nodes
by following some measure of centrality, the results would
have been somewhat biased and far from a realistic scenario.
The only constraint we require in the root nodes selection
step is that a node, to be chosen, should have a number
of relationships at least equal to t_level indicated in the
simulation.

Since we used t_levels that are in the order of magni-
tude of ten, we can conclude that this condition is acceptable
because most real social profiles easily reach ten friendships.
Otherwise, there would have been chosen some root nodes
unable to propagate the trust in the network, acting as a
bottleneck.

We remark that experiments do not involve the com-
putation of biometric features, as experiments are devoted
to validating the trust-based approach. As it is clear from
the definition of the model, the biometric component may
just change the number of equivalent profiles needed to
trust a given profile. Therefore, it can be viewed as an
orthogonal component. On the other hand, the effectiveness
of biometric-based mechanisms considered in this paper has
been shown in the literature.

9.3.1 System performance
In the first experiment, we want to study the performance
of our approach when no attack is performed and when
participants are always collaborative in trusting a friend
node. A relevant value we measure is the coverage that could
be reached by running our algorithm in the network. Since
we use five datasets with different properties, we expect that
some differences will be mirrored in the results. Specifically,
the more the network is dense and connected, the higher we
expect the coverage will be.

We carry out our experiments by varying the following
parameters:

• t_level;
• number_of_roots.
In particular, we use t_level = {3, 6, 8, 10} and

number_of_roots = {0.1%, 1%, 2%, 5%, 10%} (these per-
centages are calculated with respect to the total number of
nodes of the given dataset). We run every combination of
these two parameters fifty times and we average the results
to avoid outlier cases.

In Tables 2, 3, 4, 5, and 6, we report the coverage results
of these simulations for each dataset.

As expected, the more connected the datasets, the higher
the coverage rates. It is interesting to underline that, in three
out of five, the coverage reached is quite relevant with only
0.5% of roots chosen (D1, D2, and D5) and only in those
two datasets less connected (D3 and D4) this little number
of roots is not able to reach a significant number of nodes. By
analyzing those two datasets, we see that the average degree
of a node is quite low (39 and 25, resp.). This means that
every node has, on average, only thirty-nine and twenty-
five friends.

We remark that these results have been obtained by
running only one cycle of the trust operation (i.e., every
node asks to be certificated only once). In a real context,
instead, a participant can ask many times a friend to be
recognized, so, in this sense, we can conclude that our
experiment underestimates the real potential coverage.

TABLE 2
Coverage rate in D1 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

95,9 90 83,9 72,3

roots = 1% 96,5 91,7 86,7 80,5
roots = 2% 96,9 92,6 89 85,1
roots = 5% 97,2 93,5 90,8 88,1
roots = 10% 97,5 94,5 92,1 89,9

TABLE 3
Coverage rate in D2 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

95,5 87,5 80,2 71,6

roots = 1% 96 90 84,7 77,3
roots = 2% 96,2 91,29 87,2 82,6
roots = 5% 96,5 93,5 89,19 85,5
roots = 10% 97 94,5 90,6 87,7

TABLE 4
Coverage rate in D3 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

69,9 44,4 6,6 4,6

roots = 1% 70,5 47 35,2 23,7
roots = 2% 71 49,4 38,9 29,6
roots = 5% 72 52 43,4 36,7
roots = 10% 73,5 55,1 47 41

TABLE 5
Coverage rate in D4 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

70,1 44,7 8,9 5,7

roots = 1% 71,2 47,1 34,4 20,2
roots = 2% 72 49,3 38,2 29,9
roots = 5% 73 52,4 43,5 36,4
roots = 10% 74,5 55,7 47,8 41,8
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TABLE 6
Coverage rate in D5 vs. t_level and number of roots.

t = 3 t = 6 t = 8 t = 10

roots =
0.5%

93,1 82,8 75,1 64,4

roots = 1% 93,8 84,3 77,4 68,9
roots = 2% 94,3 86 79,7 72,7
roots = 5% 94,9 87,9 83,2 77,8
roots = 10% 95,4 89,5 85,6 81,4

9.3.2 Resilience of the system
In this section, we study the resilience of our proposal to
the slandering attack (described in Section 8). Under this
attack, a certain amount of root nodes become malicious
and do not play anymore a collaborative and positive role
in the propagation of the trust. To better evaluate the results
of this experiment, we compare the performance of our
proposal with that of [30] (presented in Section 2, where
the parameter ↵ = 1 because the used datasets allow us
to identify positive and negative interactions. Specifically,
under attack, malicious nodes propagate negative interac-
tions. Under attack, we randomly picked 30% of the roots
as malicious nodes. As evaluation metrics, we use coverage
loss defined as 1� T̂a

T̂
, where T̂a is the average trust of nodes

under attack and T̂ is the average trust of nodes when no
attack is carried out.

We varied the same values as the first experiment
(t_level and number_of_roots) and, in Table 7, we report
the percentage of coverage loss when varying the per-
centage of root nodes (0.5, 1, 2, 5, 10) and, for the sake of
presentation, we averaged the results. In Table 8, we report
the percentage of coverage loss measured for the Strust
model [30] with the same experiment setup.

From the analysis of these experiments, we see that a
slandering attack carried out by the 30% of root nodes slightly
reduces the performance of our proposal (on average, about 7%).
Comparing these results with that of [30], we can conclude that
our approach contrasts slandering attacks.

TABLE 7
Trust loss measured for our proposal (in percentage)

t = 3 t = 6 t = 8 t = 10

D1 0,64 0,96 9,09 12,08
D2 0,71 1,37 1,69 13,88
D3 1,92 3,07 12,56 21,30
D4 2,04 4,32 10,48 16,40
D5 0,80 1,10 2,21 22,30

TABLE 8
Trust loss measured for Strust [30] (in percentage).

t = 3 t = 6 t = 8 t = 10

D1 29,41 26,52 32,40 33,64
D2 31,22 35,36 36,80 37,72
D3 9,98 18,36 18,67 22,74
D4 13,04 13,98 22,73 27,53
D5 35,49 39,84 40,01 41,92

10 CONCLUSION AND PERSPECTIVES

Trusting identities in social networks is an important chal-
lenge in the literature. The approach we designed for this
purpose exploits a collaboration among social network users
and a keystroke-dynamics-based technique. In our proposal,
each user shares with the other users the information about
the neighborhoods. This information is propagated among
the network in a trusted way. We provide the theoretical
characterization of the proposed approach and its validation
by experiments carried out on real-life data. The experi-
ment results show that trusted information reaches most
of the nodes (depending on some system parameters). The
novelty of our proposal is to distribute, in a decentralized
fashion, over the social network itself, the trust mechanism.
Moreover, we embed in the trust mechanism behavioral
biometric features, to better support the maintenance of
trust values and then isolate possible attacked profiles. We
remark that the paper addresses the biometric component
of the model in a concrete and definite way, by identifying
which type of biometric data is suitable to our purpose,
and by defining how the biometric component affects the
trust values. Therefore, we argued the effectiveness of the
trust mechanism is the most meaningful aspect to assess.
Regarding this aspect, it is worth noting that the exchanging
of messages from a social network user to another profile,
in principle, is a reason for characterizing that profile as
trusted provided that at least one of the two profiles is real.
This makes recursive the problem and that needs further
research. As a future work, we plan to implement the model
in a homemade online social network and experiment it in a
real-life setting, possibly in a research project reaching large
communities and involving industrial partners. This will
allow us to collect real biometric data for proof of concept
validation.
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