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Abstract 
This Thesis focuses on the development of advanced solutions for 

electromagnetic recovery and synthesis problems relevant for Magnetic 

Resonance Imaging (MRI). 

Two open issues in MRI are: 1) the exploitation of this imaging modality 

to theoretically quantify physical, chemical, or physiological property to be 

useful for different biomedical application, f.i. therapeutic treatments and 

diagnosis; 2) the necessity to obtain high resolution images, minimizing any 

kind of artifacts that may appear due to the high field level employed during an 

MRI scan. As far as the first issue is concerned, a possibility is the use of the 

radiofrequency (RF) field collected inside the MRI scanner to non-invasively 

retrieve the in-vivo electrical properties of biological tissues, that is the so-called 

MRI-based Electrical Properties Tomography. On the other hand, an essential 

parameter that can improve to enhance the image quality is the homogeneity 

of the RF field, referred as RF shimming.  

Results presented in this Thesis concern new physics-assisted approaches 

developed for both MRI-EPT and RF shimming. In this respect, we present 

novel learning-based methodologies for MRI-EPT, and, on the other hand, a 

new RF shimming procedure that addresses the underlying issue as a field 

shaping problem. Unlike most of the learning approaches that adopt neural 

networks as “black-boxes”, the proposed learning-based strategies, take into 

account the physics of the problem provided by the computation of the 

gradient. As far as the shimming procedure, it is further optimized with the 

development of an auxiliary model for the convenient selection of the 

parameter to be employed in the shaping optimization.  

Notably, there is a meaningful relation between the two activities. In fact, 

if the RF field,  measured inside an MRI scanner, leads to acquire quantitative 

information about the model, the knowledge of the model is an essential factor 

for the shaping strategy to ensure a field which is as homogeneous as possible. 

Both proposed methods have several innovations respect to the state of 

the art and allow computational advantages compared to standard methods 

usually employed. 



Finally, both activities are validated through numerical experiments, 

tested against 2D simulated human brain phantom. 
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1 A general introduction  
In this Chapter a general introduction to biomedical imaging is given. 

Among the numerous imaging systems, the focus is on magnetic resonance 

imaging and on the main challenges related to this imaging modality: 

Quantitative imaging and radio frequency (RF) Shimming. 

 
1.1 Biomedical imaging 

Biomedical imaging makes it possible the characterization of the intricate 

structures and dynamic interacting biological processes that are hidden deep 

inside the human body. 

The basic aim in bioimaging technologies is to obtain biological 

multidimensional information within two (x, y) or three (x, y, z) morphological 

dimensions. An additional dimension can be the time (t), that can be introduced 

for a time-related developmental process or event.  

Numerous specialized imaging systems utilising various signals, some of 

them belongs to the so-called electromagnetic spectrum. Many imaging 

techniques utilize the entire energy spectrum. Magnetic resonance imaging 

(MRI), X-ray computed tomography (CT), nuclear medicine like Positron 

Emission Tomography/Computed (PET/CT), ultrasound, and light-based 

techniques [endoscopy and optical coherence tomography (OCT)] are 

examples of clinical modalities [1], [2].  

The substantial difference between the techniques is the type of signal 

that characterizes them and so the physics instrumentation which allows the 

images to be captured. For instance, X-ray for CT, ultrasound for echography, 

Gamma-ray for nuclear imaging and radiofrequency field for MRI. The 

radiations can be ionizing and non-ionizing. Ionizing radiation can penetrate 

the human body and the radiation energy can be absorbed in tissue. This has 

the potential to cause harmful effects to people, especially at high levels of 

exposure. The last one is a form of radiation with less energy than ionizing one. 

Unlike ionizing radiation, non-ionizing radiation does not cause damages to 

living tissues.  
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MRI is one of the most considered bioimaging techniques, as it creates 

accurate images of the body zone under test without the use of ionizing 

radiation. Indeed, it is possible to determine morphological characteristics of 

several regions, such as their volume and form, from a structural MRI scan. 

These measurements can help identify new imaging biomarkers of illnesses and 

allow for a better understanding of how the organs or tissues change as a result 

of various circumstances (such as pathological and environmental). 

 

1.2 Magnetic resonance imaging 
MRI is an investigation tool used for image acquisition in a medical 

setting. This imaging modality, unlike X-ray diagnostics, uses non-ionizing 

radiation that falls within the radio frequency range and is not harmful [2], [3].  

In particular, the frequencies used in the resonance machines range from 64 

MHz up to about 300MHz.  

An MRI scan follows some fundamental steps, which can be schematized 

as follows. A static magnetic field 𝐵𝐵0, produced by a large electromagnet, acts 

on the nuclei of the hydrogen atoms, which align their magnetic moment 

parallel to the line of force of the magnet, as happens to the iron filings when 

it is subjected to a magnet. Subsequently, a radiofrequency (RF) pulse 𝐵𝐵1 

modifies the orientation of the nuclei which, when the pulse ceases, reorient 

themselves according to the axis of the magnetic field. By doing so they 

resonate, that is, they emit a very weak signal called resonance signal. Captured 

by radio receivers, converted into digital impulses and processed by the 

computer, it allows to obtain an image whose gray scale corresponds to the 

different intensities of the resonance signal.  

The images obtained through MRI are different from those captured 

with other imaging methods because they allow us to discriminate between the 

various tissues on the basis of their biochemical composition, they allow to 

have an excellent contrast even of the soft tissues, without exposing the patient 

to ionizing radiation. In addition, an MRI exam can give us three-dimensional 

images (x, y, z) on three different planes (axial, sagittal and coronal) with very 

high resolutions in the order of 1 mm. The disadvantages of this type of 

imaging lie in having very long acquisition times and high susceptibility to 
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patient motions inside the scanner [2], [3]. Furthermore, the MRI scanner needs 

complicated instruments that can be affected by noise, increasing costs, and 

requiring the presence of a very careful stuff. The reader can refer to Chapter 

2 for more details. 

 
1.3 Open issues in MRI: Quantitative imaging and RF 

Shimming 
A full diagnosis may be based upon information from several different 

imaging modalities, which can be correlative or additive in terms of their 

information content. Radiological imaging uses non- or minimally invasive 

techniques to identify, track, and treat human disease. The process of acquiring 

images, identifying abnormalities by the radiologist, and making a diagnosis or 

treating the patient hasn't much changed in radiology. Despite technological 

advancements, the introduction of imaging modalities such as MRI and 

computed tomography (CT), this same paradigm continues to exist [3]. This 

qualitative imaging-only strategy, meanwhile, leaves a lot of MRI-accessible 

data on the table; the dimensions and volumes of an imaged object or region, 

as well as the separation between structures of interest, are the quantitative 

parameters most frequently employed in clinical practice. Given that, many 

scientists think that MRI can be optimally exploited without ruling out 

quantitative analysis, indeed theoretically it can be used to quantify practically 

any physical, chemical, or physiological attribute. By using the sensitivity of 

MRI to these tissue properties, it is possible to generate quantitative maps 

instead of a qualitative one, in which the intensity of each pixel corresponds to 

a measurement of one specific physical or physiological property. A pursued 

possibility is to exploit a magnetic resonance system to non-invasively 

determine the spatial distribution of the electrical properties of the imaged 

object, named electrical conductivity and dielectric permittivity, in the practice 

called MRI-based Electrical Properties Tomography (MRI-EPT) [4], [5]. With 

this practice, one can non-invasively images the conductivity and permittivity 

maps (simultaneously) in vivo from the radio frequency field signals obtained 

with MRI and cannot induce additional external energy other than the inherent 

RF fields.  
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Engineering has made considerable progress over the past few decades, 

which have improved the instrumentation used in all medical imaging 

techniques. The advancements must be directly related to the factors that a 

clinician considers crucial for a good diagnosis. The three most crucial factors 

are the spatial resolution, the signal-to-noise ratio (SNR), and the contrast-to-

noise ratio (CNR) [2]. When dealing with an MRI system the main challenge is 

to obtain high resolution images, minimizing any kind of artifacts that may 

appear. This issue is more evident the more the frequency increases 

(frequencies > =  7𝑇𝑇) because the electromagnetic wavelength in tissue is 

comparable to the dimensions of the imaged object.  

An essential parameter that influences the quality and resolution of MRI 

is the homogeneity of the amplitude of one of the polarizations of the RF Field 

𝐵𝐵1. Because of the non-homogeneity of the scenario, and of the several 

constraints at hand, the field usually obtained is far from the one required. This 

is especially the case for high and ultra-high field scanners (𝐵𝐵0 > 7𝑇𝑇), which 

involve a higher frequency of the RF Field [6] .  

In this scenario, the issue of levelling (or “shimming") the 𝐵𝐵1 field has 

received considerable importance. There are two macro categories of shimming 

techniques: passive shimming and active shimming. The first one commonly 

uses iron pieces or High-permittivity, low-conductivity materials (HPMs) as 

shims. On the other side, the active shimming uses small coils (or “shim-coils”). 

However, many shim-coils are necessary to obtain an accurate shimming with 

an increased magnet cost. 

High-permittivity materials placed between RF coils and the subject have 

been proposed as a method for varying the spatial distribution of the 𝐵𝐵1 field, 

independently of RF shimming or parallel transmission, to improve field 

homogeneity or enhance SNR in targeted regions. The use of HPMs in 

combination with RF coils has also been shown to reduce overall required input 

RF power in transmission and improve coil sensitivity at a variety of field 

strengths in reception, both in experiments and numerical simulations [6] . 

In the active techniques the 𝐵𝐵1 inhomogeneity can be addressed by using 

transmit arrays and applying RF shimming or parallel transmission techniques 

[7]. These techniques can be optimized to also reduce global Specific 
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Absorption Rate (SAR), since constructive interferences between the electric 

fields from multiple transmit coils can result in amplifications of local SAR 

difficult to predict (see Section 2.7) [8].  

 

1.4 Aim and content of this thesis 

The overall aim of the present Doctoral Thesis is to introduce new 

methodologies for 1) electromagnetic recovery of dielectric permittivity and 

electrical conductivity values of biological tissues via MRI and 2) shimming of 

the radiofrequency field inside a MRI scanner. 

Notably, the issue of recovering dielectric permittivity and electrical 

conductivity values (Electrical Properties, EPs) from given electric or magnetic 

intensities of an electromagnetic field is crucial in a wide range of applications, 

from civil engineering [9] to biomedical [10]. For example, in electromagnetic 

dosimetry and hyperthermia treatment planning, it is very important to quantify 

the induced specific absorption rate by a radiofrequency field. The problem is 

of course relevant for diagnosis because they are related to healthy state of the 

tissues, in particular the value of benign tissues compared to tumoral ones are 

significantly different [11], [12], [13]. Exploiting the MRI scanner's RF field 

measurement is one of the possible methods for EPT. Exploiting the MRI 

scanner's RF field measurement is one of the possible methods for EPT. Some 

of problem-solving strategies are based on the solution of an inverse scattering 

problem (ISP) [4].  

In order to address this issue, it is important to develop proper inversion 

strategies, able to tackle in a reliable way the underlying ISP. In this respect, the 

objective of this thesis is to develop novel inversion methods for the 

characterization of the dielectric properties of tissues via MRI-EPT, based on 

learning strategies which take advantage of the physical information to solve 

the ISP. These strategies have been optimized for the quantitative 

reconstruction of electromagnetic parameters of realistic brain tissues. 

On the other hand, the radio frequency shimming is relevant for the 

quality and resolution of MRI images. In this Thesis, the RF shimming is 
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addressed as field shaping and antenna array synthesis. This latter warranted 

attention in fields that were concerned with human health and safety, also in 

this case hyperthermia treatment planning as well as cellular 

telecommunications [16], satellite [17],  radar applications [18]. Treating the RF 

shimming as a synthesis problem, and in particular a field shaping problem, is 

a recent issue. The reason for this choice lies in the common nature of the two 

problems. In fact, one of the issues of interest in antenna synthesis problems, 

is the shaping of the field within a given region (named target region). In this 

case, one needs to develop a shaping strategy which can keep under control the 

field intensity outside the target region while ensuring some uniformity (or 

some given shape) of the field intensity into it. This represents one of the 

objectives to be achieved also in an MRI shimming. Indeed, there is the need 

to have a shaped field as homogeneous as possible in the areas of interest, while 

keeping the SAR value limited elsewhere. The starting point for the shimming 

procedure is the knowledge of the physical model, in terms morphological and 

electromagnetic properties. Then, the electromagnetic recovery of dielectric 

permittivity and electrical conductivity values of biological tissues via MRI 

(described in the first part of the Thesis) is also propaedeutic for MRI 

shimming (described in the second part of the Thesis). 

In this respect, in this thesis a new field shaping strategy is proposed for 

active RF shimming, which exploits a recent introduced shaping strategies 

known as multi target- Focusing via Constrained Optimization (mt-

FOCO)[23]. Moreover, this procedure has been further optimized through the 

development and the application of an auxiliary field model for the smart 

choice of the more useful fields interferences to be exploited in mt-FOCO. The 

proposed strategy is particularized and assessed for the case of realistic brain 

tissues.  

Needless to say, that the two objectives of this Thesis are closely linked 

to each other. Indeed, in first activity the basic idea is to use the RF field, that 

is collected inside the MRI scanner, to recover the morphological 

characteristics of the tissues (in a quantitative fashion), i.e. the brain model; in 

the second one, starting from the knowledge of the brain model, as it has been 
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recovered, the aim is to exploit a shaping procedure to make the RF field as 

homogeneous as possible (shimming) in order to improve the image's quality 

and resolution. The more accurate the model, the more accurate the field 

shimming will be. 

The Thesis is composed by 5 Chapters and tree Appendices, where some 

basics about inverse scattering problem, further aspects of neural networks  and 

more mathematical details about the auxiliary model in Chapter 4 are deepneed.  

In Chapter 2, a brief introduction on the principles and physical 

mechanisms underlying MRI and its applications is provided. MRI is an 

imaging modality that is considered safer than many other techniques, as X-

Ray for example because exploits non-ionizing radiation. It provides excellent 

soft tissues contrast map and for this reason it very useful for oncological, 

neurological imaging and so on. During an MRI scan, the patient is placed in a 

strong magnetic field. Briefly, the principle of MRI is to display the intensity of 

the emitted RF signal from nuclear spin relaxation in the tissue after a 

magnetization of the body and the application of RF pulses. 

In the First part (Chapter 3), the problem of retrieving the EPs starting 

from the measurements of the RF field collected inside a MRI scanner is 

addressed, in the following referred as MRI-EPT. In the Second part of the 

thesis (Chapter 4) the synthesis procedure for RF Shimming is presented, and 

the relative auxiliary model for shaping is detailed and applied to the shimming 

case. 

In the first part, the problem underlying EPT is treated as an inverse 

scattering problem (ISP)[4]. Generally, ISPs can be addressed using either 

physics-based recovery techniques or learning-based approaches [19]. Due of 

their iterative nature, the former models mostly used are typically 

computationally expensive. On the other hand, learning approaches provide a 

real-time solution, although incorporating domain knowledge is difficult. How 

to bridge the gap between physics-based approaches and machine-learning-

based techniques is an obvious topic for future research by the entire ISP 

community. In fact, for a variety of engineering and physical issues, researchers 
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have collected, over the course of several decades, a wealth of domain 

knowledge that has been utilised to develop approximative direct inversion 

models and efficient iterative solvers. To avoid employing learning-based 

approaches as a merely data-driven black-box solver, it is very important to 

address the issue of successfully integrating them with existing knowledge on 

underlying physics and classical recovery techniques[4,] [5], [19]. In this respect, 

in this thesis two different approaches able to address this issue are presented. 

Unlike most of the learning approaches that lack physical information provided 

by the forward model, we proposed and teste two physics-assisted learning 

techniques. Both techniques aim at making the EPs reconstruction process as 

reliable as possible, alleviating the problem of ‘local minima’ as well as by 

reducing the computational time need for all the process. And this makes the 

procedure useful in clinical application. The first proposed technique exploits 

the Supervised Descent Method (SDM) [20], [21], the second one instead is 

based on a cascade of multi-layer CNNs to perform the model update [21]. 

Both techniques can be seen under the same hat, and the common idea can be 

summarized as follows: “given a set of known ground truth contrast maps in terms of 

electrical properties of tissues and a known starting guess, the iterative procedures (whose 

architectures are obviously different) are trained to provide as output at each iteration an 

updated of the unknown tissues map”.  

In Chapter 3, after a brief introduction on the already assessed MRI-EPT 

procedures with a recall of the main principles underlying direct and integral 

methods, the two model-based learning strategies are presented and described. 

Then, the proposed procedures are tested in case of 2D realistic scenario 

mimicking a human head.  

In the Second part, the array antenna synthesis problem for RF 

Shimming is dealt with. In particular, the shimming problem is addressed as a 

field amplitude shaping, which consists in determining the optimal set of 

complex excitations of an arbitrary fixed-geometry arrays generating the desired 

field distribution. A crucial issue to be addressed in this antenna synthesis 

problems is that one needs to develop a shaping strategy which is able to keep 
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under control the field intensity outside the target region while ensuring some 

uniformity (or some given shape) of the field intensity into it.  

The ability to enforce a given behavior to the electromagnetic field 

distribution is one of the most non-trivial tasks, especially in case of complex 

heterogeneous medium. Many strategies have been presented in literature 

aimed at shaping a desired field amplitude. In the relevant paper of Woodward 

and Lawson [22], the far field shaping problem has been tackled by looking for 

a superposition of many patterns focused in properly chosen given points 

located in the region of interest (ROI). However, in [22] one cannot enforce 

any constraints outside the target area and the single focused patterns are simply 

added in phase without considering any possible phase shifts. 

A very recent paradigm is the convex procedure proposed in [23]  named 

multi target - Focusing via Constrained Optimization (mt-FOCO), by the 

LEMMA laboratory of the Università Mediterranea di Reggio Calabria. In this 

last procedure the far field shaping problem has been tackled by properly 

choosing given control points located in the ROI and by assuming the phase shifts 

between the fields at these point as auxiliary unknown variables of the problem.  

By taking advantage from mt-FOCO [23], [24], in the second part of the 

Thesis, a novel synthesis procedure for active radiofrequency shimming is 

proposed, able to take contemporaneously into account all constraints 

regarding polarization, homogeneity and strength of the 𝐵𝐵1 Field and to 

enforce SAR limits into the desired treated region. In particular, we proposed 

a simple auxiliary and physics inspired model [25], which allows a relatively 

simple physical understanding of convenient and non-convenient fields 

interferences to be exploited in the shaping problem, and hence a drastic 

reduction of the computational burden related to its solution via optimization 

procedure. 

In Chapter 4, after a brief introduction of mt-FOCO procedure, the 

proposed synthesis strategy and the simple auxiliary and physics inspired model 

for the field intensity shaping are presented and discussed in the case of RF 

Shimming. Finally, the proposed synthesis procedure is against a realistic head 

phantom.  
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Conclusions and recommendation for further developments are finally 

given in Chapter 5. 

  



 

 

 
2 Magnetic Resonant Imaging principles 
 

In this Chapter, basic principles of MRI image acquisition are presented. 

The content is mainly based on the book “Introduction to biomedical imaging” 

by Nadine Barrie Smith and Andrew Webb (2011) [2] , in which more technical 

details about MRI physics—that are outside the scope of this doctoral thesis—

can be found. 

 

2.1 Introduction to biomedical imaging 

Among the four major clinical imaging modalities, MRI is the one 

developed most recently. The first images were acquired in 1973 by Paul 

Lauterbur, who shared the Nobel Prize for Medicine in 2003 with Peter 

Mansfield for their shared contribution to the invention and development of 

MRI. Over 10 million MRI scans were prescribed ever year during the first 

decade of the 21st century, number of scans that have quadrupled today [26].   

MRI provides a spatial map of the hydrogen nuclei (water and lipid) in 

different tissues. The image intensity depends upon the number of protons in 

any spatial location, as well as physical properties of the tissue such as viscosity, 

stiffness and protein content.  

The main advantages of MRI are:  

 no ionizing radiation is required; 

 the images can be acquired in any two- or three-dimensional plane; 

 there is excellent soft-tissue contrast; 

 a spatial resolution of the order of 1 mm or less can be readily achieved; 

 images are produced with negligible penetration effects. 

Pathologies in all parts of the body can be diagnosed, with neurological, 

cardiological, hepatic, nephrological and musculoskeletal applications all being 

widely used in the clinic. In addition to anatomical information, MRI images 
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can be made sensitive to blood flow (angiography) and blood perfusion, water 

diffusion, and localized functional brain activation. 

Obviously, the use of a MRI system has also disadvantages, the main are:  

 MRI image acquisition is much slower than CT and ultrasound, and is 

comparable to PET: a typical clinical protocol might last 30–40 minutes 

with several different types of scans being run, each having a slightly 

different contrast, with each scan taking between five and ten minutes; 

 a significant percentage of patients are precluded from MRI scans due 

to metallic implants from previous surgeries; 

 systems are much more expensive than CT or ultrasound units.  

The imaging technology MRI is based on the physical phenomenon of 

nuclear magnetic resonance (NMR), which was in 1946 discovered by Bloch 

[27] and Purcell et al. [28]. The phenomenon discovered by Bloch and Purcell 

describe the interaction between hydrogen nuclei and an external static 

magnetic field 𝐵𝐵0. In particular, there are three essential phases that allow to 

create a MRI image. The first magnetization phase, involves using a static magnetic 

field 𝐵𝐵0 produced by a large magnet; the second stage, the resonance phase, 

involves using a radiofrequency magnetic field 𝐵𝐵1 produced by a special coils 

configuration; in the third and last stage, the relaxation phase, the radiofrequency 

field  𝐵𝐵1 is turning off and the signal is acquired.  

Then, the MRI system comprises three major hardware components: a 

superconducting magnet, a set of three magnetic field gradient coils, and a 

radiofrequency transmitter and receiver. The patient lies on a patient bed which 

slides into a very strong magnet, typically has a strength of 3 Tesla, 

approximately 60 000 times greater than the earth's magnetic field [2].   

The effect of placing the body in a strong magnetic field is covered in the 

following sections. 
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2.2 Effects of a strong magnetic field on protons in the body 

To better understand the mechanisms underlying the magnetic resonance 

method, it is necessary to consider the physical principles on which it is based. 

It is possible to produce an image only if at the atomic level, each atom is made 

up of an odd atomic number, because only these types of atoms can be 

associated the concept of spin on that the magnetic resonance is based. If the 

nucleus has this spin property, it is able to rotate around its internal axis of 

rotation. 

So that, this charged particle has a given value of angular momentum (P), 

it also has a magnetic moment (m), and therefore can be thought of as a very 

small bar magnet with a north and south pole, as shown in Figure 2.1. The 

phenomenon of quantization is familiar from basic physics and chemistry and 

means that certain physical parameters can take on only discrete values, rather 

than having a continuous range. Examples include electric charge, the energy 

of a photon, and quantum numbers of electrons[2] .   

Relevant to MRI, the magnitude of the angular momentum of the proton 

is quantized and has a single, fixed value. The magnitude of the proton’s 

magnetic moment is proportional to the magnitude of the angular momentum: 

 
(a)                                (b)                                (c) 

Figure 2.1: The internal rotation of a proton creates a magnetic moment, and so 
the proton acts as a magnet with north and south pole. (b) Without a magnetic field, 
the orientations of the magnetic moments are completely random. (c) In presence 
of a strong magnetic field the magnetic moments must align at an angle 𝜽𝜽 ≈
𝟓𝟓𝟓𝟓° with respect to the direction of 𝑩𝑩𝟎𝟎, Zeeman Effect. 
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�m|= γ|P�                                             (2.1) 

where γ is a constant called the gyromagnetic ratio, which has a value of 

267.54 MHz/Tesla for protons. 

Not all biological atoms possess the spin property; for instance, oxygen 

and carbon atoms cannot be used to create an MRI image. Instead, hydrogen, 

phosphorus, and sodium have this characteristic, making them suitable for use 

in magnetic resonance imaging. In particular, the water molecules (H2O), 

which account for 70% of the body mass, are used to capture the hydrogen 

signal for the MRI scan in the human body. As a result, the hydrogen atom's 

proton or nucleus plays a key role in producing the signal needed to create an 

image of the biological tissues [2].   

Without the static magnetic field 𝐵𝐵0 the net magnetization, i.e. the sum 

of all the individual magnetic moments in our bodies, is zero because each 

single spin will have its own orientation (Figure 2.1 (a)). When inside the MRI 

scanner an external static magnetic field 𝐵𝐵0  is applied to the body in the first 

phase of magnetization, the situation changes. Each magnetic moment, which 

can be seen as of the magnets with positive and negative poles, tends to follow 

the orientation of the field, assuming two possible configurations named: 

parallel and antiparallel configuration, only refer to the z-component of 𝑚𝑚, 

generating the so-called Zeeman Effect (see Figure 2.1 (c)). 

 

Figure 2.2: The energy difference between the two levels depends upon the value 
of 𝑩𝑩𝟎𝟎. More protons stand in the parallel ground energy state than in the higher 
energy anti-parallel state. 
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Respect to the energy, these two possible configurations correspond to two 

different energy levels. In particular, the antiparallel configuration will 

correspond to an energy level higher than the spins that will assume the parallel 

configuration. The energy difference between these two levels (see Figure 2.2) 

will depend on the intensity of the static magnetic field 𝐵𝐵0, the Planck constant 

(ℎ = 6.63 ∙  1034 𝐽𝐽 𝐷𝐷) and the gyromagnetic ratio 𝛾𝛾, with the formula: 

Δ𝐸𝐸 =
𝛾𝛾ℎ𝐵𝐵𝑜𝑜

2𝜋𝜋
                                              (2.2) 

Furthermore, the number of  protons that go in antiparallel configuration 

is always slightly lower than those oriented in parallel configuration. This is 

because the antiparallel configuration is the one with the highest energy and 

therefore the most unstable. 

 

This alignment, however, is never total (see Figure 2.3) and an angle of 

54.7°C with respect to the direction of 𝐵𝐵0 usually exists. In fact, such kind of 

interaction consists of a precession of each nuclear magnetic moment around 

𝐵𝐵0 at an angular frequency 𝜔𝜔0, which is known as the Larmor frequency. If 𝐵𝐵0 

is applied along the z direction (i.e., the head-feet direction), 𝜔𝜔0 is proportional 

to the strength of 𝐵𝐵0, that is 𝜔𝜔0  =  𝛾𝛾𝐵𝐵0. 

 

This is what happens from the microscopic point of view, considering 

the single spin. From the macroscopic point of view, it is necessary to introduce 

Figure 2.3: A proton in a magnetic field. (a) Using classical mechanics, the torque 
C acting on the magnetic moment, spinning about an internal axis, causes it to 
precess about the vertical axis. 
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a new quantity called magnetization vector M, given by the sum of all the single 

magnetic moments: 

𝑀𝑀 = �𝑚𝑚𝑖𝑖 = 𝑀𝑀𝑖𝑖𝐷𝐷𝑧𝑧
𝑖𝑖

                                      (2.3) 

The net magnetization has only a z-component, since the vector sum of 

the components on the x- and y axes is zero [2].  

 

2.3 Effects of a radiofrequency pulse on magnetization 
After the tissue has been magnetized through the static magnetic field 

𝐵𝐵0, the second phase of the MRI process occurs. To generate an MRI signal, 

and therefore an image, it is mandatory to alter the state of equilibrium and 

rotate the magnetization vector on the x-y plane (Figure 2.4). Therefore, in this 

phase the balance reached by the spins must change. It is necessary to induce 

some spins to pass from the parallel configuration, with lower energy, to the 

antiparallel one, with higher energy. In this regard, an electromagnetic pulse at 

radiofrequency 𝐵𝐵1 is applied perpendicular to the 𝐵𝐵0 field which provides the 

energy necessary for this transition to occur. The introduction of this field 

produces a torque which causes the net magnetization to rotate towards the x-

y plane. The frequency is chosen in such a way as to excite the spin transitions 

and misalign their rotation. The 𝐵𝐵1 field can exchange the energy of the system 

Figure 2.4: Application of an RF pulse about the x-axis rotates the magnetization 
from the z-direction towards the y-axis. When the RF pulse is switched off, the 
magnetization precesses around the z-axis at the Larmor frequency. 
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if and only if it has a frequency that is equal to the Larmor frequency (resonance 

phenomena). The spins are no longer aligned with the 𝐵𝐵0 field but rotate 

changing their position. As a result of 𝐵𝐵1, the z component of the 

magnetization vector decreases in favor of the growing component along x-y. 

This is also due to the fact that the the nuclei precess coherently because all of 

the single magnetic moment vectors are pointing in the same direction [2].  

The RF signal is very short, in the order of milliseconds. Let 𝐵𝐵1 be the 

pulse width (in Tesla) and 𝑡𝑡1 the duration (m-seconds), it is shown that the 

value of the rotation angle 𝜃𝜃 known as “tip angle”, is given by the relationship: 

θ = 𝛾𝛾𝐵𝐵1𝑡𝑡1                                                  (2.4) 

and ranging from 90° to 180°. 

Note that if 𝐵𝐵1 field is applied along the x-axis, the magnetic moment 

vector is rotated towards the y-axis and viceversa. Furthermore, if an applied 

pulse is able to give e 90°C torque (“90° pulse”) then the vector lies on the y 

direction, having the maximum for 𝑀𝑀𝑦𝑦. 

 

2.4  T1 and T2 relaxation times 

When the RF pulse is switched off, the spins tend to return to their 

equilibrium condition, i.e. they will tend to return to their initial state of 

alignment along the direction of the 𝐵𝐵0 field assumed during the magnetization 

phase. This rotation generates an electric signal oscillating at the Larmor 

frequency identified by a pair of conductive loops usually positioned on x-y 

plane, with an angle of 90°, close to the patient. Detection systems often 

eliminate these oscillations, leaving only the free induction decay (FID) signal, 

which decays exponentially to zero.  

During the first phase of magnetization, 𝑀𝑀𝑧𝑧, the z-component, equals 

𝑀𝑀0, and 𝑀𝑀𝑥𝑥 and 𝑀𝑀𝑦𝑦, the transverse components, are both equal to zero. 

Through the addition of energy to the system, the RF pulse produces a non-

equilibrium condition after which the system return to thermal equilibrium 
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when the pulse has been turned off, the last phase of relaxation. While the 

amplitude of the FID depends essentially on 𝐵𝐵0 (which explains why higher 

field MRI systems are so much desired), the duration depends on two relaxation 

times: 𝑇𝑇1-relaxation affects only z-magnetization, describes the speed at which 

the z component of the magnetization is recovered after the RF pulse and it is 

also named spin-lattice relaxation time constant; 𝑇𝑇2-relaxation affects only x- 

and y-magnetization, describes the return to equilibrium of the x and y 

components of M and is also called spin-spin relaxation time constant.  

The MR relaxation can be described mathematically by the following two 

pair of equations [2]: 

𝑀𝑀𝑧𝑧(𝑡𝑡) = 𝑀𝑀0𝑐𝑐𝑛𝑛𝐷𝐷𝑐𝑐 + (𝑀𝑀0 −𝑀𝑀0 cos𝑐𝑐) �1 − 𝐷𝐷−
1
𝑇𝑇1�                (2.5) 

𝑀𝑀𝑦𝑦(𝑡𝑡) = 𝑀𝑀0 𝐷𝐷𝐷𝐷𝑛𝑛𝑐𝑐 𝐷𝐷−
𝑡𝑡
𝑇𝑇2                                    (2.6) 

Different tissues have different values of 𝑇𝑇1, and anomaly tissues often 

change T1 relaxation time compared to healthy tissue. These differences can 

be also enhanced by introducing contrast into the MRI image. Value of 

𝑇𝑇1 depends on tissues but also on the strength of the magnetic field 𝐵𝐵0. The 

same happens for  𝑇𝑇2. There is no direct correlation between these two times, 

a long  𝑇𝑇1 does not necessarily mean a long  𝑇𝑇2, but  𝑇𝑇1 is always greater than 

 𝑇𝑇2. 

Up to now, the mechanism that gives rise to 𝑇𝑇2 relaxation assume that all 

protons precess at exactly the same frequency, but in practice molecular 

dynamics means that there is a small spread in the precessional frequencies. 

The inhomogeneities of 𝐵𝐵0 that cause a dephasing of the proton magnetic 

moments in the x-y plane after the pulse. The effects of local 𝐵𝐵0 field 

inhomogeneity is characterized by a relaxation time  𝑇𝑇2+ . The combined 

relaxation time is designated by  𝑇𝑇2∗, the value of which is given by: 

1
 𝑇𝑇2∗ 

=
1

 𝑇𝑇2+ 
+

1
 𝑇𝑇2 

                                         (2.7) 

This dephasing can be reduced using a particular MRI sequence (i.e., a 

set of subsequent RF pulses) called Spin Echo sequence, that consists in 
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applying a 90° pulse, followed by a variable delay 𝜏𝜏, a 180° pulse, followed by 

a variable delay an identical delay 𝜏𝜏, and then signal acquisition. The 90° pulse 

tips the magnetization onto the y-axis, where it decays with a time constant r. 

The effect of the 180° pulse is to "refocus" the magnetization such that at time 

r after the 180° pulse, the individual vectors add constructively and the signal 

reaches a peak [2].  

As far as the relation time 𝑇𝑇1  is concerned, the value is measured using 

an inversion recovery sequence, which consists of a 180°pulse, a variable delay 

𝜏𝜏, and a 90° pulse followed immediately by data acquisition. This sequence is 

repeated n-times, each time with a different value of the variable delay. The 

detected signal is: 

𝐷𝐷(𝜏𝜏𝑛𝑛) = 𝑀𝑀0 �1 − 2𝐷𝐷−
𝜏𝜏𝑛𝑛
𝑇𝑇1�                                   (2.8) 

Measuring the value of 𝑇𝑇2 requires the use of as pin-echo experiment 

where e a 90° pulse is applied, followed by a variable delay 𝜏𝜏, a 180° pulse, an 

identical delay 𝜏𝜏, and then signal acquisition. Only the effect of pure 𝑇𝑇2 

relaxation is left. This sequence is repeated n-times, each time with a different 

value of the variable delay. The detected signal is: 

𝐷𝐷(𝜏𝜏𝑛𝑛) = 𝑀𝑀0𝐷𝐷
−2𝜏𝜏𝑛𝑛𝑇𝑇2                                          (2.9) 

Therefore, measuring the relaxation times allows us to characterize each 

material and discover abnormalities in tissues. For example, in the brain, it is 

possible to distinguish WM and GM from their different relaxation times. In 

[29] by applying a magnetic field of 3.0 T (common values are from 1.5 T to 

3.0 T), average 𝑇𝑇1 values of 1331 and 832 ms from GM and WM and average 

𝑇𝑇2 of 80 and 110 ms, were obtained respectively. The simple proton density 

variations between tissues are usually within a few percent. Therefore, the 

difference in relaxation times is more often employed to reconstruct detailed 

brain MRI images [29].  

 

2.5 Imaging acquisition 
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The FID signal introduced in section 2.3 precesses freely after the RF 

pulse has been turned off. It is detected via electromagnetic induction and 

decays to a zero-equilibrium value. In this signal there is no spatial information, 

i.e. there is no way to distinguish between signals coming from protons located 

at different spatial positions within the body. Hence there is the need to 

introduce a spatial variation in the magnetic field across a sample, which results 

in a range of proton resonant frequencies, each dependent upon the position 

of the particular proton within the body. This is done by incorporating three 

separate ‘gradient coils’ in the MRI scanner design. These gradient coils are 

designed in such a way the spatial variation in magnetic field is linear with 

respect to spatial location, so that: 

𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝐺𝐺𝑧𝑧 ,
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝐺𝐺𝑥𝑥,
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝐺𝐺𝑦𝑦                   (2.10) 

where G represents the gradient measured in T/m. 

Then, the magnetic field on the z direction can be rewrite as follow: 

𝐵𝐵𝑧𝑧 = 𝐵𝐵0 + 𝜕𝜕𝐺𝐺𝑧𝑧                                      (2.11) 

and the precession frequencies (𝜔𝜔𝑧𝑧) of the protons,as a function of their 

position in z, are given by: 

𝜔𝜔𝑧𝑧0 = 𝛾𝛾𝐵𝐵𝑧𝑧 = 𝛾𝛾(𝐵𝐵0 + 𝜕𝜕𝐺𝐺𝑧𝑧)                      (2.12) 

The process of image formation based on the use of gradients to identify 

the spatial position of a measured MR signal was introduced in 1973 for the 

first time by Lauterbur. This technique consists of three separate steps named 

slice selection, phase-encoding and frequency-encoding [2]:  

1. Slice selection: the choice of the slice orientation is the initial step of 

an MRI scanning planning. MRI can acquire the image in three different 

orientations (see figure 2.5): coronal, axial or sagittal images, 

corresponding to slice-selection in the y-, z-, or x-directions. For 

example, if the magnetic field gradient 𝐺𝐺𝑧𝑧 is applied along the z 

direction with a specific frequency  𝜔𝜔𝑠𝑠 ±  ∆𝑤𝑤𝑠𝑠 such that the Larmor 

frequency is different in every axial slice, only protons within the axial 
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slice (with a precession frequency in that range) are enforced by the RF 

pulse, and so give a measurable MR signal.  

2. Phase encoding: chosen the direction of the slice selection, the 

remaining two directions are identified through phase encoding and 

frequency encoding. Assuming the z direction, then a gradient 𝐺𝐺𝑦𝑦 is 

applied along the y direction and the magnetic resonance moments at 

the same y position rotate with a frequency 𝜔𝜔𝑦𝑦  =  𝜔𝜔0  +  𝛾𝛾𝐺𝐺𝑦𝑦𝜕𝜕. After 

an interval 𝑡𝑡𝑦𝑦 , the moments at the same y position shown a spatially 

dependent phase shift given by 𝜙𝜙𝑦𝑦  =  (𝜔𝜔0  +  𝛾𝛾𝐺𝐺𝑦𝑦𝜕𝜕)  ·  𝑡𝑡𝑦𝑦. 

3. Frequency encoding: The x-dimension is encoded by applying a 

frequency-encoding gradient (𝐺𝐺𝑥𝑥) while the receiver is gated on and 

data are being acquired. During this time t, protons precess at a 

frequency given by 𝜔𝜔𝑥𝑥  =  𝜔𝜔0  +  𝛾𝛾𝐺𝐺𝑥𝑥𝜕𝜕 determined only by their x 

location. 

In order to form a 𝑁𝑁 × 𝑁𝑁 image, the sequence must be repeated 𝑁𝑁 times, 

each time with a different value of the phase encoding gradient. 

2.6 Imaging characteristics 

 
Figure 2.5: Image acquisition. Coronal (top), axial (middle) or sagittal (bottom) 
slices can be produced by turning on the y, z, or x gradients, respectively, while the 
RF pulse is being applied [2]. 
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As mentioned in the introduction to MRI, in all imaging modalities, there 

are trade-offs between image SNR, spatial resolution and CNR[2] . 

1. Signal to noise ratio: the SNR is an important quantity used to 

describe the performance of a MRI system, and is frequently used for 

image evaluation, measurement of contrast enhancement, pulse 

sequence and radiofrequency (RF) coil comparison, and quality 

assurance. Several methods to determine the SNR of MR images have 

been described. The most commonly used technique is based on the 

signal statistics in two separate ROIs from a single image: one in the 

tissue of interest to determine the signal intensity, and one in the image 

background to measure the noise intensity. The signal is proportional 

to the net magnetization, 𝑀𝑀0, which is directly proportional to the value 

of 𝐵𝐵0. the higher the 𝐵𝐵0, the larger the 𝑇𝑇1 value and the smaller the 

image intensity for a given value of 𝑇𝑇𝑅𝑅 . 

The SNR is inversely proportional to the slice thickness, since 

the number of protons is decreased using a thinner slice. In order to 

increase the SNR of an image, while maintaining the same spatial 

resolution, the imaging sequence can be repeated a number of times 

and the images added together. The MRI signal is coherent, but the 

noise is incoherent, and so the overall SNR increases by the square-root 

of the number of images: however, the data acquisition time is 

lengthened by a factor equal to the number of images. 

2. Spatial resolution: resolution is the ability of human eyes to 

distinguish one structure from other. In MRI the resolution is 

determined by the number of voxels in a specified Field Of View 

(FOW). The higher the image resolution, the better the small 

pathologies can be diagnosed. The spatial resolution in the three 

dimensions for most imaging sequences is simply defined by: (i) the 

slice thickness, (ii) the field-of-view in the phase-encoded dimension 

divided by the number of phase-encoding steps, and (iii) the field-of-

view in the frequency-encoded dimension divided by the number of 

acquired data points in that dimension. In this respect, there are two 
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resolution parameters used in MRI for the production of a 2D image 

i.e. basic resolution & phase resolution. SNR is inversely proportional 

to the basic resolution. In other words SNR is directly proportional to 

the voxel size, increasing the base resolution will reduce the voxel size 

therefore the SNR of the image will be reduce at the same time 

increasing the basic resolution will increase the image quality. 

Increasing the resolution more than the acceptable range will produce 

noisy or grainy image due to low SNR. 

 

3. Contrast to Noise Ratio: Factors which affect the SNR also 

contribute to the image CNR. Noise sources such as clutter and speckle 

reduce the image CNR, especially for small pathologies within tissue. 

 

2.7 SAR and safety considerations 
Any RF magnetic field has a corresponding RF electrical field that causes 

currents to flow through conductive tissues. The power deposition in tissue, 

can be calculated by the local and average specific absorption rate (SAR), 

expressed in Watts per kilogram. The SAR is a crucial safety factor in MRI. For 

both local and worldwide regions of interest, there are rigorous regulatory 

limitations on these values in terms of peak instantaneous and time-averaged 

values, setting according to the guidelines of the International Commission on 

Non-Ionizing Radiation Protection (ICNIRP) [30].  

The SAR can be calculated in term of electric field 𝐸𝐸 distributions by 

means of the following formula: 

𝐷𝐷𝑆𝑆𝑆𝑆 =
𝜎𝜎 |𝐸𝐸|2

2𝜌𝜌
                                       (2.13) 

where 𝜌𝜌 is the tissue mass density and 𝜎𝜎 the tissue conductivity [S/m]. 

The SAR is proportional to the square of the 𝐸𝐸 field multiplied by the time for 

which the 𝑆𝑆𝐹𝐹 field is applied. Therefore, very long sequences can result in 

considerable power deposition within the patient. However, every commercial 

MRI scanner has built-in software and hardware to estimate the SAR for each 

sequence run, and to adjust the imaging parameters in order to remain within 

regulatory safety limits. 
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Due to the complex dielectric interaction between the electrical field and 

the human anatomy, the SAR distribution is typically highly heterogeneous with 

the occurrences of possible hotspots[31] . SAR hotspots, or amplifications of 

the electric field, can form at transitions between tissues with a strong dielectric 

contrast. SAR is directly related to RF-induced heating. The consequences have 

increased concern about RF safety at high-field (HF), and RF safety is now a 

significant barrier to the use of high field MRI (HF-MRI) imaging, due to the 

need for lower flip angles and longer scan periods brought on by lower RF duty 

cycles, poorer multi-slice efficiency, and diminished contrast [32]. Furthermore, 

the absence of quantification of local SAR values on a subject-specific Eps 

imaging, may compromise the underlying improved SNR and image contrast 

associated with HF-MRI. A correct estimate of local SAR hot spots requires 

the knowledge of local tissue EPs values at the operating radiofrequency. 

Conductivity and permittivity distributions play a fundamental and crucial part 

in the SAR calculation that is performed during HF-MRI. Therefore, real-time 

and subject-specific EPs imaging is particularly desirable for SAR measurement 

and for the purpose of constraining tissue heating in the design of HF-MRI 

pulse sequences [31]. This is because of how important it is to avoid 

overheating the tissue. 

Most studies investigate the possibility to mitigate the deposition of SAR 

as well as 𝐵𝐵1 inhomogeneity [6], [32]. Results in [32], has shown that 𝐵𝐵1 

shimming (both at 3T and 7T) can be used not only to improve the 

homogeneity of the RF field, but also to simultaneously push down the SAR 

levels. A similar procedure is presented in [6] where, the 𝐵𝐵1 inhomogeneity is 

addressed exploiting a convex optimization procedure, also able to ensure 

limits on SAR. More detailes will be given in the Chapter 4. 



 

 

3 Physics-assisted learning approaches for 
MRI-EPT  

This Chapter aims at outlining, discussing, and assessing new physics-

based learning approaches to retrieve the EPs of a realistic biological scenario. 

The techniques take advantage of fundamentals results. Differently from the 

common gradient-based approaches (i.e. CSI-EPT), the proposed techniques 

can reach the “best” solution in less time, exploiting all the advantages that 

learning approaches bring with them (i.e. speed, noise robustness and so on). 

Furthermore, the outcomes of both approaches are tied to the physical nature 

of the problem, which overcomes the black-box idea commonly used in 

learning strategies. Numerical examples concerning the two procedures against 

a realist 2D head phantom are detailed in the Section 3.9 of this Chapter1. 

 

3.1 Introduction  

Electrical conductivity and dielectric permittivity are electromagnetic 

properties which depend on the tissue structure and composition. Indeed, the 

electrical properties (EPs) of benign tissue compared to tumors are significantly 

different [33]. As a consequence, the EPs have the potential to become crucial 

biomarkers in diagnostic applications, e.g. characterization of brain tumors, 

pelvic tumors, breast cancer and ischemic stroke [11], [33], [34]. Additionally, 

the knowledge of the EPs allows for the calculation of the electromagnetic 

(EM) fields inside tissues and this is very useful in all those medical applications 

wherein it is crucial to determine the specific absorption rate induced by EM 

waves, e.g. radio frequency (RF) ablation and hyperthermia for cancer 

treatment [12], [13].  

In order to map the electrical characteristics of tissue in vivo, several 

different EP mapping methodologies are being investigated [4]. For instance, 

in electrical impedance tomography (EIT) [35], electrode mounting is used in 

order to detect currents that have been injected into the sample. Due to the ill-

 
1 Some contents of this Chapter have been published in references  and [8] [10] [11] [12] [13] 
[14]  of the Publications List of Sabrina Zumbo reported at the end of the Thesis 
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posed character of the inverse problem, this method has a low spatial 

resolution. However, it is cost-effective and produces a high resolution of time. 

In magnetic induced tomography (MIT) [36], an oscillating magnetic field is 

applied to an object in order to produce eddy currents within the object, and 

then the perturbed magnetic fields that result from the eddy currents are 

detected outside of the object. Nevertheless, it is plagued by the identical 

problems as EIT. MRI is used in magnetic resonance electrical impedance 

tomography [37] also known as MR-EIT, in order to detect the magnetic field 

that is created by the probing current. Although this results in a higher spatial 

resolution, the signal-to-noise ratio is low because there are restrictions placed 

on the amount of current injection. Hall effect imaging (HEI) [38] is a 

technique that reconstructs electrophysiological patterns by inducing currents 

through surface electrodes and detecting the acoustic wave that is emitted. This 

also has the potential to achieve high resolution images; however, all of the 

existing injection-based approaches might be susceptible to shielding artefacts 

caused by non-conductivity tissue. Magneto-acoustic tomography with 

magnetic induction (MAT-MI) [39] is able to get around the issue of shielding 

by generating acoustic signals with time-varying magnetic fields, and then 

detecting those signals using ultrasound measurements. However, techniques 

that use acoustic measurements are typically restricted to the area of the item 

that is accessible from the surface.  

Another possibility is the Magnetic resonance imaging based electrical 

properties tomography (MRI-EPT), that is a non-invasive imaging modality 

that allows to retrieve the spatial distribution of the conductivity and 

permittivity of living biological tissues exploiting a MRI scanner [4]. This 

technique can reach a spatial resolution of the order of a few millimeters, does 

not require electrode mounting, does not induce additional external energy 

other than the inherent RF fields. Furthermore, the RF fields can easily 

penetrate into most biological tissue.  

The possibility of extracting in MRI-EPT the electrical properties of 

tissues from measured field maps has been demonstrated in many studies. 

Firstly, Haacke in 1991 [40], suggested a non-invasive method for extracting 

the tissue electric characteristics from MRI data. However, the true application 
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of the method dates to 2003 with a work published by H. Wen [41] in which 

the EPs are reconstructed using local equations, through the knowledge of the 

transmitted 𝐵𝐵1+ field. However, such kind of methods have several limitations. 

First, a second order derivative using finite difference kernels is applied on the 

measured 𝐵𝐵1+ fields and causes inaccurate boundary reconstructions which 

make the method sensitive to noise. The 𝐵𝐵1+ mapping can be performed only 

at the resonance frequency, as a consequence, a dispersion relation to 

extrapolate information at the frequency of interest is required. In addition, the 

method requires the knowledge of the absolute transmit phase, which is not 

directly available, for this reason the so-called "transeive phase assumption" 

(TPA) is often introduced [42] .  

To circumvent the sensitivity to noise of derivative (local) approaches, 

integral approaches have been proposed [43], [44], [45]. Integral techniques 

may easily consider heterogeneous electrical property maps, such as tissue 

boundaries. However, these advantages come at the cost of a higher computing 

cost. Indeed, these methods involve the solution of a non-linear an ill-posed 

inverse scattering problem, which represents a non-trivial task [46], [47] and 

most of them are based on iterative techniques [46], [47]. Indeed, the 

minimization of the cost function underlying these latter methods is usually 

achieved by gradient descent method, where the first- or second-order 

derivatives of the cost function are computed at each iteration. Hence, for high 

dimensional inverse problems this procedure is significantly time and memory 

consuming. Moreover, iterative techniques can also suffer from the problem of 

‘local minima’ [48].  

To overcome the limits of both local and global methods, a possible 

solution can be found into the learning-based techniques [19].  In the last years, 

learning techniques have shown outstanding results on inverse issues, including 

ill-posed linear (and non-linear) inverse problems, thanks to the rapid progress 

in the field of artificial intelligence. These techniques aim at making the 

reconstruction process as reliable as possible, alleviating the problem of ‘local 

minima’ as well as by reducing the process elaboration [14]. They are very 

popular and widely used in several fields including biomedical imaging and 

diagnosis because they allow to overcome most of the issues related to the 
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clinical applicability. Indeed, training requires long time, but the inference is 

rather fast. However, most of learning-based approaches lack physical 

information from the forward model and require a large amount of training 

data to achieve accurate results.  

Recently, some learning approaches have been proposed to deal with the 

inverse problem underlying MRI-EPT. The most popular approaches for 

image processing and reconstruction are based on convolutional neural 

networks (CNN)[49] For instance, in [50] a feedforward approach employing 

convolutional neural networks is used demonstrated that deep learning EPT 

(DL-EPT) is able to reconstruct EPs with a less level of noise respect to direct 

approaches. Another possible strategy is to consider a hybrid procedure 

applying DL-EPT to generate good initial guesses for existing ISP inversion 

models. In [51] a two-step approach is proposed, where Helmholtz-based 

reconstructions and DL-EPT are used as data-driven initializations for 3D CSI-

EPT, which imposes data consistency. 

In most previously mentioned approaches the net is considered as a 

merely “black-box”, lacking physical information provided by the forward 

model. For this reason, researchers in this field try to bridge the gap between 

learning approaches and the physics of the problem.  

In this framework, in this chapter, two different physics-assisted learning 

methods to face the ISP underlying the MRI-EPT are proposed and compared. 

The first procedure is based on supervised descent method (SDM) [20], [21] 

which updates the inverted models using the descent directions collected from 

the training stage and the physical information provided by forward modelling. 

The second one is an iterative data-driven procedure based on a cascade of 

convolutional neural networks (CNNs), wherein each CNN has as input both 

the current predicted solution and the physical information provided by the 

gradient calculation to return the next updated solution. Both methods are 

tested using 2D simulated data of a human head model. 
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3.2 Direct (local) methods for MRI-EPT 

The differential approaches are derived from the local form of Maxwell’s 

equations, by assuming a homogeneous medium and the absence of sources. 

In the MRI, since the sources generating the EM fields are located outside the 

body and since the permeability of biological tissue is assumed to be constant 

and equal to that of vacuum, the Maxwell’s equations n be rewrite in frequency 

domain as [54]  

−𝛻𝛻 ×  𝐻𝐻�𝐷𝐷�  +  𝜂𝜂�𝐷𝐷�𝐸𝐸�𝐷𝐷� =  0                               (3.1) 

𝛻𝛻 ×  𝐸𝐸�𝐷𝐷� +  𝜁𝜁�𝐷𝐷�𝐻𝐻�𝐷𝐷� =  0                               (3.2) 

Wherein 𝐸𝐸 and 𝐻𝐻 are respectively the complex electric and the magnetic 

field, 𝐷𝐷 the location of the field and: 

𝜁𝜁� 𝐷𝐷,𝜔𝜔� =  𝑗𝑗𝜔𝜔𝑗𝑗�𝐷𝐷,𝜔𝜔�                               (3.3) 

𝜂𝜂�𝐷𝐷,𝜔𝜔� = 𝜎𝜎�𝐷𝐷,𝜔𝜔� +  𝑗𝑗𝜔𝜔𝑗𝑗�𝐷𝐷,𝜔𝜔�                     (3.4) 

are respectively the impedance and the per-unit-length admittance of the 

medium. 

By omitting the spatial dependence and applying the divergence to the E-field 

equation:  

∇ ∙ ∇ × 𝐸𝐸 + 𝜁𝜁∇ ∙ 𝐻𝐻 = 0                          (3.5) 

Then, as the divergence of a curl is equal to zero, by substituting 𝐸𝐸  =
1
𝜂𝜂

(𝛻𝛻 ×  𝐻𝐻), in the E-field equation, the equation becomes: 

1
𝜂𝜂
∇ × �∇ × 𝐻𝐻� + 𝜁𝜁𝐻𝐻 = 0                               (3.6)  

As 𝐻𝐻 is divergence free, the curl can be write as follow: 

−
1
𝜂𝜂
∇2𝐻𝐻 + 𝜁𝜁𝐻𝐻 = 0                                             (3.7) 

Exploiting the constitutive relations [54]  and multiplying both members by 

−𝜇𝜇𝜂𝜂𝜇𝜇
𝜇𝜇

= 𝜇𝜇𝑘𝑘2

𝜇𝜇
, we finally obtain: 
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∇2𝐵𝐵 + 𝑘𝑘2𝐵𝐵 = 0                                          (3.8) 

where 𝑘𝑘2 = 𝑗𝑗𝑗𝑗𝜔𝜔2 − 𝑗𝑗𝑗𝑗𝜎𝜎𝜔𝜔 is related to the object properties, and 𝐵𝐵 =

𝑗𝑗0 𝐻𝐻 the complex magnetic induction. 

Taking the inner product of the vector 𝒊𝒊+ = 𝟏𝟏
𝟐𝟐

(𝒊𝒊𝒙𝒙 + 𝒋𝒋𝒊𝒊𝒚𝒚)  and Equation 

(3.8) gives the Helmholtz equation for the 𝐵𝐵1+ field: 

∇2𝐵𝐵1+ + 𝑘𝑘2𝐵𝐵1+ = 0                                        (3.9)  

Assuming 𝐵𝐵1+ is known, then the tissues properties can be derived from 

the following equation:  

∇2𝐵𝐵1+

𝐵𝐵1+
= −𝑘𝑘2                                             (3.10) 

More in detail, the permittivity and the conductivity will be respectively 

retrieved by means of [4]  

𝑗𝑗 = − 𝑆𝑆𝐷𝐷 �∇
2𝐵𝐵1+

𝐵𝐵1
+ �

1
𝜇𝜇𝜇𝜇2 ,    𝐷𝐷     𝜎𝜎 = 𝐼𝐼𝑚𝑚 �∇

2𝐵𝐵1+

𝐵𝐵1
+ �

1
𝜇𝜇𝜇𝜇

             (3.11)  

These methods have three fundamental limitations: first, the fact of 

assuming that the medium is homogeneous, but it is well known that this is not 

the case in an MRI system; second, the presence of second order derivatives, 

which make the method susceptible to noise; third, these method requires as 

input the complex scattered 𝐵𝐵1,𝑠𝑠
+ , hence the knowledge of the absolute transmit 

phase which is not directly available [4].   

An alternative to these methods, is the so-called First-order-

differentiation inversion [55], but even if this last method has a first order 

derivate and does not assume homogeneous the medium, it results more 

complex than the Helmholtz one. Another possibility is represented by the 

integral methods. 
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Transeive phase assumption 

 The complex 𝐵𝐵1,𝑠𝑠
+  necessitates the measurement of the 𝐵𝐵1,𝑠𝑠

+  field's magnitude 

and phase. Exploiting a variety of MRI pulse sequences [42], [56] the magnitude 

can be assessed. The 𝐵𝐵1+ phase, however, cannot be directly detected with MRI 

since the superposition of the transmit 𝐵𝐵1+ and receive 𝐵𝐵1− phase is intrinsically 

measured[42]. The combination of the two is referred to as the transceive phase 

𝜙𝜙+/− . To extract the 𝐵𝐵1+ phase from the transceive phase, the Transceive 

Phase Assumption (in the following TPA) is used. This assumption states that 

the quadrature 𝐵𝐵1+ phase and the reverse quadrature 𝐵𝐵1− phase are equal; 

consequently, the needed transmit phase is obtained by dividing the MRI 

measured transceive phase by a factor of two. The transceive phase consists of: 

𝜙𝜙+/− = 𝜙𝜙+ + 𝜙𝜙−                                  (3.12) 

Then, the complex field can be rewritten as: 

𝐵𝐵1+ = |𝐵𝐵1+ |𝐷𝐷𝜙𝜙+ = |𝐵𝐵1+ |𝐷𝐷𝑗𝑗𝜙𝜙+/−  𝐷𝐷−𝑗𝑗𝜙𝜙+                   (3.13) 

 

3.3 Integral (global) Methods for MRI-EPT 

The integral methods are based on the solution of an inverse scattering 

problem. From the scattering formalism in 2D scalar problem, as detailed in 

Appendix A, the scattered E-field can be written as function of the contrast 

source 𝑊𝑊, as follows: 

𝐸𝐸𝑠𝑠 = 𝑘𝑘𝑏𝑏2 � 𝐺𝐺�𝐷𝐷, 𝐷𝐷′,𝜔𝜔�
𝑟𝑟′∈𝐷𝐷

𝜒𝜒�𝐷𝐷,𝜔𝜔�𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡�𝐷𝐷′�𝑑𝑑𝑑𝑑         (3.14) 

In this equation 𝜒𝜒 is the contrast function which encodes the tissues properties. 

The total E-field can be written as the superposition of the background field (i.e. 

the incident field 𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖�𝐷𝐷� measured in absence of the scattered object) plus the 

scattered field (Eq. 3.21):  
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𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡�𝐷𝐷,𝜔𝜔� = 𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖�𝐷𝐷� + 𝑘𝑘𝑏𝑏2 � 𝐺𝐺�𝐷𝐷, 𝐷𝐷′)𝑊𝑊(𝐷𝐷′,𝜔𝜔�
𝑟𝑟′∈𝐷𝐷

𝑑𝑑𝑑𝑑     (3.15) 

As far as the magnetic field is concerned, the scattered B-field can be 

derived starting from the Maxwell’s equations, by considering a coil setup along 

the 𝜕𝜕 axis and an electric current being run through the coil along this axis, that 

is [4] [57] :  

�
𝐻𝐻𝑥𝑥𝑠𝑠
𝐻𝐻𝑦𝑦𝑠𝑠
� + −

1
𝜁𝜁𝑏𝑏
�
𝜕𝜕𝑦𝑦
−𝜕𝜕𝑥𝑥

�𝐸𝐸𝑠𝑠 = −�
𝐾𝐾𝑥𝑥𝑒𝑒𝑥𝑥𝑡𝑡

𝐾𝐾𝑦𝑦𝑒𝑒𝑥𝑥𝑡𝑡
�                           (3.16) 

Wherein,  𝜁𝜁𝑏𝑏 is the impedance of the background medium and 𝐾𝐾𝑒𝑒𝑥𝑥𝑡𝑡  is 

the external magnetic current flowing through the resonance coil. 

In absence of external magnetic sources, the equation becomes: 

�
𝐻𝐻𝑥𝑥𝑠𝑠
𝐻𝐻𝑦𝑦𝑠𝑠
� = − 1

𝜇𝜇𝑏𝑏
�
𝜕𝜕𝑦𝑦
−𝜕𝜕𝑥𝑥

�𝐸𝐸𝑠𝑠                                  (3.17)   

Knowing that the measured field in an MRI scanner is usually denoted 

as 𝐵𝐵1 and is a circular polarized field with the following form: 

𝐵𝐵1,𝑠𝑠
+ =

𝑗𝑗𝑏𝑏
2

(𝐻𝐻𝑥𝑥𝑠𝑠(𝐷𝐷) + 𝑗𝑗𝐻𝐻𝑦𝑦𝑠𝑠�𝐷𝐷�                                 (3.18) 

By substituting in Eq. 3.18 the Eq. 3.17 and 3.14, the integral equation 

for the scattered magnetic field is given by: 

𝐵𝐵1,𝑠𝑠
+ = −

𝑗𝑗𝑏𝑏𝑘𝑘𝑏𝑏2

2𝜁𝜁𝑏𝑏
(𝜕𝜕𝑦𝑦 − 𝑗𝑗𝜕𝜕𝑥𝑥)� 𝐺𝐺�𝐷𝐷, 𝐷𝐷′)𝑊𝑊(𝐷𝐷′,𝜔𝜔�

𝑟𝑟′∈Σ
𝑑𝑑𝑑𝑑    (3.19) 

The domain Σ is the domain in which the field is measured and in this 

particular case is equal to the contrast domain 𝒟𝒟.  

Eq. 3.14 and Eq. 3.19 define a problem that falls into the category of 

inverse scattering problems that are difficult to solve because for definition they 

are ill-posed and non-linear, as both the contrast source w and the contrast 

function 𝜒𝜒 are unknowns of the problem[46] [47] , [48]   
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From a mathematical point of view, starting from the Eq. 3.15 for the 

total E-field , multiplying both members by the contrast 𝜒𝜒 the state equation can 

be written in a compact fashion through the contrast function 𝑊𝑊 as follows: 

𝑊𝑊�𝐷𝐷,𝜔𝜔� = 𝜒𝜒�𝐷𝐷�𝐸𝐸,𝑖𝑖𝑛𝑛𝑖𝑖�𝐷𝐷� + 𝜒𝜒�𝐷𝐷�𝐺𝐺𝐷𝐷{W�𝐷𝐷′,𝜔𝜔�},   r ∈ 𝐷𝐷     (3.20) 

where 𝐺𝐺𝐷𝐷{⋅} is the Green function operator (or object operator), and can 

be expressed by the following equation: 

𝐺𝐺𝐷𝐷 ≡ 𝑘𝑘2 ∫ 𝐺𝐺�𝐷𝐷, 𝐷𝐷′)𝑊𝑊(𝐷𝐷′,𝜔𝜔�𝑟𝑟′∈𝐷𝐷 𝑑𝑑𝑑𝑑               (3.21)  

The same can be done for the data equation, that can be written as: 

𝐵𝐵1,s
+ (𝐷𝐷) = 𝐺𝐺𝑆𝑆�𝑊𝑊�𝐷𝐷′,𝜔𝜔��,         𝐷𝐷 ∈ Σ           (3.22) 

Where the operator is: 

𝐺𝐺𝑆𝑆 ≡ −
𝑗𝑗𝑏𝑏𝑘𝑘𝑏𝑏2

2𝜁𝜁𝑏𝑏
�𝜕𝜕𝑦𝑦 − 𝑗𝑗𝜕𝜕𝑥𝑥�� 𝐺𝐺�𝐷𝐷, 𝐷𝐷′)𝑊𝑊(𝐷𝐷′,𝜔𝜔�

𝑟𝑟′∈Σ
𝑑𝑑𝑑𝑑       (3.23) 

Generally, such kind of methods search the global minimum of a suitable 

functional which defines the discrepancy between the measured data and the 

predicted scattered field, that is: 

𝜓𝜓(𝜒𝜒) = �𝐵𝐵1,𝑠𝑠
+ − 𝐷𝐷(𝜒𝜒,𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖)�

2
                         (3.24) 

wherein 𝐷𝐷 is the nonlinear inverse scattering operator. Gradient-based 

deterministic approaches are commonly used (such as steepest descent, 

conjugate gradient, Gauss–Newton methods [4] ), to iteratively minimize the 

objective function in. In particular, in every iteration, the update contrast 

process is performed according to:  

𝜒𝜒𝑘𝑘+1 = 𝜒𝜒𝑘𝑘 + 𝑐𝑐𝑘𝑘∇𝑘𝑘                                  (3.25) 

where 𝑘𝑘 and 𝑘𝑘 + 1 denote the kth and the (𝑘𝑘 + 1)𝑡𝑡ℎ iteration, 

respectively, ∇𝑘𝑘 is the descent direction of the iterative procedure and 𝑐𝑐𝑘𝑘 is a 

scalar factor to be evaluated at each iteration that guarantees the maximum 

decrease of the functional along the considered direction. A critical 

disadvantage of these local methods is that they may cause the optimization to 

become trapped in local minima[48] Moreover, they involve the computation 
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at each iterative of the descent direction, which is both time and memory 

consuming. 

One of the most used iterative methods is the Contrast Source Inversion 

(CSI) method. More details about this procedure will be given in the following 

section. 

 

3.4 MRI-EPT via Contrast Sorce Inversion  

Contrast source inversion (CSI)-EPT is a reconstruction technique that 

uses a global integral approach rather than a local differential approach to get 

beyond the assumption of locally homogenous media. Because the integrals 

have a smoothing effect, the approach is more consistent close to tissue 

boundaries and is less noise-sensitive as a result [43], [44], [45].  

From a mathematical point of view, recalling results presented in the 

previous Section, EPs mapping via MRI data can be described, in a compact 

fashion, by the pair of equations 3.20 and 3.22. 

Starting from this assumption, let us define relative residual 𝐷𝐷 of the state 

equation as: 

𝐷𝐷(𝑤𝑤,𝜒𝜒) = 𝜒𝜒𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖 −𝑊𝑊 + 𝜒𝜒𝐺𝐺𝐷𝐷{𝑊𝑊}                             (3.26) 

The same can be done for the data equation, where if 𝑊𝑊 approximates the 

contrast source, then the residual will be: 

𝜌𝜌(𝑤𝑤,𝜒𝜒) = 𝐵𝐵1,s
+ �𝐷𝐷� − 𝐺𝐺𝑆𝑆{𝑊𝑊}                                   (3.27) 

the 𝐵𝐵1,s
+  is the scattered field obtained via measurements and 𝐺𝐺𝑆𝑆{𝑊𝑊} is 

the estimated modeled data. In practice, 𝐵𝐵1,s
+  is obtained by subtracting the 

background field from the total 𝐵𝐵1+field. 

To solve this set of nonlinear equations, the CSI method o minimise the 

following cost functional 𝐹𝐹uses an algorithm based on gradient descent.  

𝐹𝐹(𝑤𝑤,𝜒𝜒) =
||𝐷𝐷||2

||𝜒𝜒𝐸𝐸𝑖𝑖𝑛𝑛𝑖𝑖||2
+

�|𝜌𝜌|�
2

||𝐵𝐵1,s
+ ||2

                          (3.28) 
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Briefly, let 𝑤𝑤𝑛𝑛−1 and 𝜒𝜒𝑛𝑛−1 be the known initial guess, then the CSI 

procedure updates the contrast source by the Eq. 3.29 as follow: 

𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛−1 + 𝑐𝑐𝑛𝑛∇W𝑛𝑛                                   (3.29) 

Where 𝑐𝑐𝑛𝑛 is the step length and ∇W𝑛𝑛 is the descent direction, the 

gradient which has to be computed at each iteration.  

Like other EPT reconstruction methods[42] [58] , also CSI-EPT requires 

as input the complex scattered 𝐵𝐵1,𝑠𝑠
+  and the incident electric and magnetic fields, 

i.e. the RF fields of the transmit coil when there is no load inside, i.e., when the 

transmit coil is empty (see Section 3.3).  

Substituting the Eq. 3.13 in 3.28 we can obtain the new cost functional 

to minimize in CSI-EPT routine. 

 

 

3.5 Learning-based techniques for ISP 

Nowadays, learning-based methods are becoming an increasingly 

important tool for solving inverse problems because they allow to speed up the 

iterative procedure [19] . According to paper [19], all these methods can be 

enclosed in three macro categories: 

1. Direct Learning Approach: These methods, also known as Single 

Feedforward Approaches, essentially work as a “black box” [50],  [51].  The 

CNNs are directly applied to retrieve the unknown parameters. 

2. Learning-Assisted Objective-Function Approach: These methods can be seen 

as a good trade-off between the objective-function2 and learning-based 

approaches [51], [52]. Indeed, the traditional objective function 

approach is used to solves ISPs but neural networks are introduced to 

learn some parameters of the iterative procedure. The supervised descent 

method (SDM) is an example. Another example is the two step 

 
2 The objective-function approaches, also known as model-based approaches, fully exploit the 
forward model f and recovers an estimate of x from y by solving a minimization problem; the 
learning-based approaches also known as data-driven approach, solves inverse problems by 
processing large datasets, without considering the forward model 
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approaches proposed in [51] wherein the retrieved EPs map, in output 

from a black-box CNN, is fed to a CSI algorithm in order to impose 

data consistency. 

3. Physics-Assisted Learning Approach: The third category of approaches uses 

neural networks to solve inverse problem by incorporating domain 

physical knowledge and its mathematical formulation as input or in the 

net internal architecture. The most used is the U-net architecture [59] 

[60] [61].  

Beyond the aforementioned classification, in recent years various 

techniques for solving ISPs have been proposed, each of which is characterized 

by a specific network architecture. To mention a few, multilayer perceptron 

(MLP), convolutional neural network (CNN), recurrent neural network (RNN), 

generative adversarial network (GAN), long-short term memory network 

(LSTM) and many other variants [60], [61].  

The most popular for image processing and reconstruction are CNN or 

in less measure the MLP. While they are the most common, these network 

architectures are not the only ones. In fact, the recursive process underlying the 

integral methods can be emulated through particular (RNN).  In [62] , a 

"Recurrent Inference Machines" (RIM) model is proposed, in which an inverse 

transformation is learned by means a recurrent networks. When the 

architecture of a neural network is defined, be it a CNN or an RNN or 

whatever, it does not possess any kind of knowledge. Any procedure based on 

neural networks consists of two separated phases: training phase and testing phase. 

Training a neural network means finding the best configuration of weights that 

maximize the accuracy of the learning model. Once the best training solution 

is found, then the trained network is tested on unseen input data that was not 

directly included in the training data to check if the network has actually learned 

its task. Another possible classification can be made taking into account the 

type of approach used to train the neural network. The two main approaches 

are [61].   

 Supervised training: The idea is to produce a dataset composed by the 

ground truth images X and the corresponding measurements Y, which 
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can be achieved by simulating the forward solver on data. Thus, it is 

possible to train a network to learn an inverse mapping, i.e., a network 

which exploits the measurements Y as input to reconstruct the image 

X. However, they are susceptible to changes in or uncertainty 

surrounding the forward operator. Such supervised algorithms often 

yield excellent results.  

 Unsupervised training: unlike the previous case, here there is no dataset 

with a correspondence between X and Y. During the learning phase, 

an unsupervised network tries to mimic the data it's given and uses the 

error in its mimicked output to correct itself (i.e. correct its weights & 

biases). Without the need for human intervention, these algorithms 

reveal hidden patterns or data clusters. It is ideal for exploratory data 

analysis, cross-selling strategies, consumer segmentation, and picture 

identification due to its capacity to identify similarities and differences 

in information but they are more computational expensive, requiring a 

large dataset for training and long time to converge. Conversely 

supervised approaches, require initial human interaction to accurately 

classify the data. However, these labelled datasets enable supervised 

algorithms to avoid computational complexity since they do not 

require a huge training set to generate the desired results, and the 

results are much more reliable. 

The machine learning process uses different data sets in creating 

algorithms. Training data is the dataset used to train the model. It teaches an 

algorithm to extract relevant aspects of the outcome. Frequently, this is the first 

dataset used to teach an algorithm how to employ various attributes, aspects, 

and technological advancements to get the desired result. 

 

In the following the performance of two physics-assisted learning 

methods are proposed and compared. The common idea behind the proposed 

approaches (see paragraphs 3.6 and 3.7) is the following:  
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“Given a set of known ground truth EPs maps and a known starting guess, the 

iterative procedure is trained to provide at each iteration as output an updated unknown 

𝜒𝜒𝑘𝑘+1 in such a way to minimize the distance from the initial updated guess and the known 

ground truth EPs maps”. In summary, the training procedure can be schematized 

as in Figure 3.1.  

 

The former is based on SDM. it learns the descent directions of the cost 

function in an offline training process from a variety of samples and then 

applies these latter to on-line update the reconstructed solution. On the other 

hand, the latter method involves at each iteration a CNN which updates the 

reconstructed solution and whose inputs are the current predicted solution and 

the physical information provided by the gradient direction. Note that, unlike 

most of the learning techniques proposed in literature, the above learning 

strategies take into account the physics of the problem in order to improve the 

generalization ability of the estimation procedure. Both procedures can also be 

classified as supervised procedures. 

 

 

 

 

Figure 3.1: Block scheme reporting the basic idea underlying the proposed 
physics-assisted learning procedures. 



3.6-MRI-EPT via Supervised Descent Method 

 

39 

3.6 MRI-EPT via Supervised Descent Method 

In this section the learning approach based on the supervised descent, to 

retrieve the EPs of the biological tissues from simulated MRI data, introduced 

and described. The approach is able to circumvent the computation of the 

descent directions by learning during an offline procedure a common descent 

direction by different training models. Then, the learning strategy updates 

(online) the inverted models by using the descent directions learned both from 

the training phase and the physical information provided by forward model 

[51], [53].   

More in details, in SDM based MR-EPT, the inputs of the training 

procedure are 𝑋𝑋𝑡𝑡, which is a N-row matrix containing the N training models 

(i.e. the ground truth EPs maps), and 𝐵𝐵𝑡𝑡, which is the N-row matrix containing 

the corresponding simulated data. The common descent direction 𝐷𝐷𝑘𝑘 is 

obtained by minimizing the following cost functional at each iteration [51], [53]:  

‖𝛥𝛥𝛸𝛸𝑘𝑘 − 𝛥𝛥𝐵𝐵𝑘𝑘𝐷𝐷𝑘𝑘‖𝐹𝐹2                                        (3.30)  

wherein ‖ ∙ ‖𝐹𝐹2  denotes the Frobenius norm, and 

𝛥𝛥𝑋𝑋𝑘𝑘 = 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑘𝑘                                          (3.31) 

𝛥𝛥𝐵𝐵𝑘𝑘 = 𝐵𝐵𝑘𝑘 − 𝐵𝐵𝑡𝑡                                          (3.32) 

𝑋𝑋𝑡𝑡 is a N-row matrix containing N ground truth EPs maps, and 𝐵𝐵𝑡𝑡, is the 

corresponding simulated complex data matrix. 𝑋𝑋𝑘𝑘 and 𝐵𝐵𝑘𝑘 are the N-row 

matrices whose elements are respectively the EPs maps retrieved at the kth 

iteration and the corresponding simulated magnetic field data. Note that, in 

order to address the ill-posedness of the problem at hand, a Tikhonov 

regularization is considered wherein the regularization parameter is chosen as 

the maximum singular value of the matrix 𝛥𝛥𝐵𝐵𝑘𝑘. Then, the descent direction 𝐷𝐷𝑘𝑘 

can be compute with the following: 

𝐷𝐷𝑘𝑘 = 𝑑𝑑𝑘𝑘 (Λ2 + α2I)−1Λ𝑘𝑘𝑇𝑇𝑈𝑈𝑘𝑘𝑇𝑇𝛥𝛥𝑋𝑋𝑘𝑘                            (3.33) 
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Where 𝛥𝛥𝐵𝐵𝑘𝑘 = 𝑈𝑈𝑘𝑘𝑇𝑇Λ𝑘𝑘 
𝑇𝑇 𝑑𝑑𝑘𝑘𝑇𝑇 and α is  damping factor applied to increase the 

stability of the solving procedure.  

Once, the common descent direction is computed, the EPs maps at the 

(𝑘𝑘 + 1)𝑡𝑡ℎ iteration are upda ted by means the following equation: 

𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 +  𝛥𝛥𝐵𝐵𝑘𝑘𝐷𝐷𝑘𝑘                                  (3.34) 

The training process stops when both model and data misfit is lower than 

10-3  [51] [53]   

After the training stage, a set of matrices 𝐷𝐷1, … . ,𝐷𝐷𝑛𝑛, where n is the 

number of iterations, are saved for online imaging. They can be considered as 

known descent directions. In the prediction stage, the updating process of the 

unknown parameters can be done according to Eq. 3.34.  

The initial guess 𝑋𝑋0 , should be the same in the training and testing 

phases. The online process stops when the data misfit is lower than a threshold, 

set equal to 10-3. 

In summary, the main steps involved in the training procedure are 

reported in Figure 3.2. Note that, in the online prediction stage, the set of 𝐷𝐷𝑘𝑘 

are used at each iteration for updating the model through evaluation (Eq. 3.34). 

It is important to note that this second stage involves all the above steps, except 

for step 3, which is the most time and memory consuming.  

Furthermore, since there is no information on the contrast profiles in the 

testing phase, the stopping rule will obviously only relate to the data misfit. 
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The considered training dataset and the obtained results will be present 

in the Section 3.8. 

3.7 Unrolled optimization via physics-assisted CNN for 
MRI-EPT 
In this paragraph a novel physics-assisted DL method to solve the 

inverse scattering problem underlying the EPT (starting from data acquired by 

a MRI scanner) is presented and discussed. We will refer later as 3,CNNs-EPT.  

As the standard gradient-based methods, the proposed 3,CNNs-EPT 

computes at each iteration k the gradient descent direction ∇𝑘𝑘, and then 

updates the contrast profile by using a CNN (see Figure 3.3(a)).   

The gradient descent direction can be defined as: 

∇𝑘𝑘=
𝐸𝐸𝑧𝑧,𝑘𝑘
∗ 𝐺𝐺𝑠𝑠+�𝐺𝐺𝑠𝑠�𝐸𝐸𝑧𝑧,𝑘𝑘𝜒𝜒𝑘𝑘� − �𝐵𝐵1+ − 𝐵𝐵1,𝑖𝑖𝑛𝑛𝑖𝑖

+ ��

�𝐵𝐵1+ − 𝐵𝐵1,𝑖𝑖𝑛𝑛𝑖𝑖
+ �

2                      (3.35) 

     
Figure 3.2: Main steps involved for the training of the SDM procedure. 
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Wherein (∙)∗ denotes the conjugate operator, (∙)+denotes the adjoint 

operator, 𝐸𝐸𝑧𝑧,𝑘𝑘 is the total electric field, 𝐵𝐵1+ is the total magnetic field (i.e. in the 

training stage, the field simulated in a two-dimensional forward simulation, 

starting from the knowledge of the ground truth, 𝜒𝜒𝑡𝑡𝑟𝑟𝑡𝑡𝑒𝑒 ), 𝐺𝐺𝑠𝑠  is the magnetic 

radiation operator, defined as in section 3.2-3.3. 

From a mathematical point of view, rather than using the Eq. (3.34) the 

update 𝜒𝜒𝑘𝑘+1 is performed by combining physical information delivered 

through the gradient ∇𝑘𝑘 with an image processing step, according to the 

following relation [59] : 

𝜒𝜒𝑘𝑘+1 = 𝑁𝑁𝜃𝜃𝑘𝑘(∇𝑘𝑘,𝜒𝜒𝑘𝑘)                                      (3.36) 

wherein the functions 𝑁𝑁𝜃𝜃𝑘𝑘 identifies at each iteration the kth CNN, that 

maps measurements ∇𝑘𝑘 to the contrast 𝜒𝜒𝑘𝑘 and the learned parameters 𝜃𝜃𝑘𝑘 (e.g., 

neural network weights). 

Note that, the network architecture is the same among different 

iterations, while the network parameters are learned and therefore different in 

testing phase for each iteration. In particular, the CNN learns an update of the 

contrast 𝜒𝜒𝑘𝑘+1 by minimizing a loss function function (half-mean-squared-

error) between the predicted updated contrast 𝜒𝜒𝑘𝑘+1 and the ground-truth 𝜒𝜒𝑡𝑡. 

The architecture of the proposed 3,CNNs-EPT is described in Figure 

3.3(b). As the logic underlying the so-called U-net, it is characterized by two 

inputs on two different pipelines and one output. In fact, the network, starting 

from the complex contrast 𝜒𝜒𝑘𝑘 and the complex gradient ∇𝑘𝑘 (i.e. the inputs), 

can be able to retrieve the unknown contrast 𝜒𝜒𝑘𝑘+1. The inputs and output 

complexity is managed ny menas of two channels. The contracting path, in the 

left side, is a down-sampling process, consisting of repeated applications of 

convolutions, batch normalization (BN), and activation function (ReLU). In 

this phase, to maximize the features extracted in the layer before, the number 

of channels between layers is increased. The expansive path is an up-sampling 

process, where a transpose convolution replaces the process in contracting path 
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to restore the original dimension.  Contrary to the previous phase, the number 

of channels is reduced since the collected features must be combined to create 

an output image. 

As for the other traditional neural networks, there is not a guideline for 

the choice of hyperparameters, not even for the choice of the sequence to be 

adopted in the definition of the layers (see Appendix B for additional 

information). However, there are some reasonable considerations that can be 

made in order to best address the issue at hand. The size of the filters is related 

to the spatial dimension of the input that a particular layer receives, while the 

number of filters used (therefore of feature maps generated) can be seen as a 

    
                                                             (a) 
 
                 

 
                                                           (b) 
 
 
 Figure 3.3: Block scheme reporting the main steps for training/testing the physics-

assisted CNN procedure (a); CNN architecture (b). 
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degree of freedom that the user can exploit to steal more information. Another 

factor to consider is the concept of “deep”, that means the depth of the 

network, i.e. the number of layers that compose it. Usually, in case of complex 

scenario and hard inverse problem, a single convolutional layer is not able to 

provide good performance, even by greatly increasing the number of filters. To 

cope with this issue the design of the proposed CNN architecture involves 

three convolutional (and corresponding transpose convolutional) layers. While 

the network architecture is the same through the iterations, the filters size 

becomes smaller and smaller (an 8x8 filter is considered for the first iteration, 

a 6x6 filter for the second and a 4x4 filter for the last one). This choice allows 

to obtain at the first iteration a ‘coarse’ image of the investigated scenario and 

then to go into detail by increasing the number of details collected in the 

following iterations.  

Needless to say, all the hyperparameters of the implemented network 

that have been discussed so far and which will be detailed even later, are the 

outcome of several experiments and relative evaluations that influenced their 

selection (e.g. varying the learning rate, the number of epochs, the batch size, 

the number and the size of filters and so on ). For the sake of brevity, therefore, 

only the best results are reported in this Thesis. Furthermore, the structure of 

the network, as described above, is not the only one of the conceivable 

configurations. Indeed, the major goal of the Thesis is to present the idea 

underlying the method, not the network itself.  

Specifically, the network structure is kept relatively small because a 

compact structure is required to reduce the amount of memory required. 

Moreover, due to memory restrictions, we were only able to train one pair of 

samples at a time, for this reason in training we have chosen batch size BS=2.  

The training is performed with Adam for 10, 20 and 30 epochs for the 

first, second and third iteration respectively. As far as the learning rate, we have 

considered a starting value of 5 ∙  10−2 for the first iteration and then, 

decreasing by an order of magnitude with iterations. The results for the 

simulated data will be discussed in Section 3.9. 

 

3.8 Numerical Experiments 
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Simulated data 

In this paragraph the employed datasets and the idea behind the 

implementation of the two proposed methods are presented. Note that, for 

both the procedures, all computations, training and evaluation, have been 

trained using a home-made code developed in MATLAB environment, on a 

workstation equipped with two Intel(R) Xeon(R) CPU E5-2687W v3(3.10 

GHz) processors. 

Methods described in paragraphs 3.8 and 3.9 have been tested to retrieve 

EPs of a realistic human brain, starting from the corresponding scattered field 

𝐵𝐵1,𝑠𝑠
+ . We chose to train the algorithms with a supervised learning using 

simulated data, hence a meaningful data set is crucial for a successful training. 

The head phantoms adopted for the simulations have been obtained by 

exploiting the 3D morphological information gathered from a high-resolution 

voxel-based anthropomorphic phantom[63] , and by defining the EPs 

according to measurements collected from IT’IS foundation dataset [64].   

A total of 120 brain models have been created by changing conductivity 

and permittivity values of the original 3D brain model and by including 

 
                          (a)                                                      (b)        

                                       
                                                      (c) 

Figure 3.4: Initial 3D head model (a); different 2D slices obtained from the 3D 
model belonging to the training/testing dataset (b); The birdcage structure, 
schematized as a circular antenna array located around the head (c) 
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geometrical transformations, such as rotation [see figure 3.4(b)]. In particular, 

the conductivity and permittivity of the white and gray matter and CSF 

(Cerebrospinal Fluid) were changed in a range between 5% and 20%, with 

respect to the ones in [64] Starting from the above 3D models, 2700 2D training 

models, discretized with 120x120 number of cells, have been built by 

considering 27 slices for each brain model.  

 

Two different training and testing datasets were considered for the 

3,CNNs-EPT. The first training dataset includes 100 healthy head models (with 

the properties previously detailed, for a total of 2700 different slices); the 

second one includes the same healthy models but with additional 10 models 

with tumor-like anomalies. These additional head models are different from 

each other, also for both positions and EPs of the tumor. Hereafter we call 

these two training datasets 𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛,ℎ   and 𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛,𝑛𝑛𝑜𝑜ℎ respectively (where h 

stands for healthy and noh for not-only healthy profiles). 

The 3,CNNs-EPT was tested considering an healthy dataset (including 

20 head models) and a not-healthy dataset having the same head models but 

with a superimposed  anomaly. Again, hereafter we call these two testing 

datasets 𝐷𝐷𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡,ℎ   and 𝐷𝐷𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡,𝑛𝑛ℎ. Furthermore, other tests were then conducted 

considering different cases of tumors. 

Simulation setup  

As the current work is a theoretical evaluation of the performance of the 

proposed method, in the following a 2D configuration has been considered 

without RF shield.  For SDM-based procedure a known distribution of the 

phase of 𝐵𝐵1,𝑠𝑠
+  has been assumed. Instead, for the CNN-based procedure tests 

have been performed with two different phase assumptions: 

• Case (A), a known distribution of the phase of 𝐵𝐵1+ has been 

assumed; 

• Case (B), an approximated distribution of the phase of 𝐵𝐵1+, has 

been assumed for a more realistic case to be considered (see 
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paragraph 3.2). This last case to see the impact of the transceive 

phase assumption on permittivity/conductivity reconstructions. 

 The data have been simulated by using a full wave forward simulator 

based on the method of moments. The birdcage structure has been 

schematized as a circular antenna array located around the head (see Figure 

3.4(c)), with radius 𝐷𝐷 = 0.37 𝑚𝑚, in accordance with the realistic size of 

common birdcage coil adopted in clinic[51].  The number of antennas has been 

set equal to 16 and modelled as line sources evenly spaced on the circumference 

of radius r.  

The training phase for SDM stops when the desired threshold is reached 

(see paragraph 3.6). In the following, 9 iterations have been needed for SDM. 

As far as the CNN-based iterative procedure, 3 iterations have been considered 

because no further improvement was observed in the reconstructed 

conductivity/permittivity maps (see paragraph 3.7). 

The initial model 𝑋𝑋𝑜𝑜 for the iterative reconstruction procedure, both for 

the training and testing stage, has been modeled as a homogeneous head with 

EPs set equal to average value of the ones of the brain tissues, i.e. σ≈0.56 S/m 

and ε≈45. 

The accuracy of the retrieved EPs has been appraised through the 

normalized mean square error (NMSE): 

𝑁𝑁𝑀𝑀𝐷𝐷𝐸𝐸 =
‖𝜒𝜒 − 𝜒𝜒�‖2

‖𝜒𝜒‖2
                                   (3.37) 

where 𝜒𝜒 is the actual complex permittivity/conductivity of the profile 

and 𝜒𝜒� is the estimated one. 

Furthermore, the accuracy of the most relevant tissues in a brain (i.e. 

WM, GM, CSF and tumor-like anomaly, when it is present) has been assessed 

through the mean absolute percentage error (MAPE): 

𝑀𝑀𝑆𝑆𝑀𝑀𝐸𝐸 =
1
n
�

|𝜒𝜒𝑡𝑡 − 𝜒𝜒𝑡𝑡� |
|𝜒𝜒𝑡𝑡|

                                  (3.38) 
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where 𝜒𝜒𝑡𝑡 is the actual complex permittivity/conductivity of the tissue 

and 𝜒𝜒� is the estimated one. This parameter provides a global estimate of the 

tissues reconstruction quality across all head models. 

Moreover, in both cases to estimate in a systematic and quantitative way 

the retrieved EP maps, an extensive numerical analysis was carried out and 

reported in Subsections 3.9.1-3.9.3. 

3.9 Results and discussion 
In this Section, we report some numerical examples concerning the two 

procedures described in Section 3.6-3.7. In particular, at first, we provide a 

comparison between the two procedures, then a comprehensive analysis of 

several case studies obtained by 3,CNNs-EPT is next presented. 

3.9.1 Physics-assisted learning approaches: A comparison 

Figures 3.5 and 3.6 show some preliminary testing results in case of 

noiseless data for both procedures. The case of a contrast profile 

(conductivity/permittivity) belonging to the training dataset is depicted in 

Figure 3.5 (a), with the retrieved EP maps in Figure 3.5 (b),(c). Instead, Figure 

3.6 (a) shows the same EP profiles (conductivity/permittivity) but with inside 

an anomaly that the network has never seen during the training. The retrieved 

conductivity/permittivity maps are depicted in Figure 3.6 (b),(c). The chosen 

slice (and the relative profile whose it belongs) has similar anatomical structure 

(without anatomical deformations) but different electromagnetic properties 

with respect to the training samples. Note that these results have been obtained 

training procedures only with healthy profiles.  

To give a qualitative impression of the reconstructions, the errors of the 

different reconstruction methods, the absolute error maps for EP 

reconstructions is also reported in figures.  

These results show that in some cases the proposed approaches are able 

to estimate the EPs of the tissues with high accuracy, especially in case of 

known profiles or known anatomical structures. On the other hand, when the 

profiles have different anatomical structure or are very different from the 

training samples (i.e with some anomalies inside), the NMSE increases, 
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especially with the SDM-based approach. Yet, this is anyway low and the 

retrieved EPs maps in both cases can be used as convenient starting guess for 

                                        
                                    (a)                        (b)                          (c) 

Figure 3.5: Reconstructed EP maps (conductivity and permittivity) of a healthy brain 
model, top. Ground-truth (a). Retrieved profiles by means the procedures in Section 
3.8 – 3.9; with SDM (NMSE=0.0002) (b), with iterative CNN (0.037) (c). The absolute 
error maps for EP reconstructions (b),(c) on the bottom. 
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a standard iterative inversion procedure (for instance CSI-EPT) thus reducing 

the related computational time[51].  

As a final comment, the computational time required for the reported 

numerical results is approximately 39 minutes for the training stage (that is 

  
                               (a)                     (b)                         (c) 

Figure 3.6: Reconstructed EP maps (conductivity and permittivity) of a brain model 
with a tumor-like anomaly, top. Ground-truth (a). Retrieved profiles by means the 
procedures in Section 3.8 – 3.9; with SDM (NMSE=0.0002) (b), with iterative CNN 
(0.037) (c). The absolute error maps for EP reconstructions (b),(c) in the bottom. 
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performed only once, for a total of 17 iterations) and 6 minutes for the single 

slice of the testing stage, in case of the SDM procedure. For what concerns the 

3,CNNs-EPT the training takes about 2 hours per iteration, while the single 

slice is retrieved in about ten seconds. 

Evident from this comparison is one of the issues experienced when 

applying such a kind of procedures. Learning methods, indeed, are a great way 

to improve the retrieval process underlying MRI-EPT. However, the biggest 

issue is the generalization ability, as shown in the following results. Indeed, 

when the test sample differs significantly from to the training set, the 

reconstruction may be less accurate. In order to improve the ability of the 

SDM-based approach in Section 3.6, as a future work a larger and more 

heterogeneous datasets are planned to be adopted in the training stage. 

However, this can imply the disadvantage of increasing the computation cost 

and time required in the training stage. Moreover, improved results can be also 

reached by adopting a regularization technique to solve problem 3.33 different 

from Tikhonov one. 

3.9.2 3,CNNs-EPT: Case study (A): A known distribution of the 
phase of 𝑩𝑩𝟏𝟏

+ 

Figures 3.7-3.8 show EPs reconstructions for each iteration at 3 T, both 

for noiseless and noisy simulated 𝐵𝐵1,𝑡𝑡
+  data of a healthy slice belonging to 

𝐷𝐷𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡,ℎ (i.e. a testing dataset with only healthy head models). Results have been 

obtained training the 3,CNNs-EPT with 𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛,ℎ (i.e. the training dataset with 

only healthy head models). In particular, in case of noisy data, a white Gaussian 

noise with a SNR=18 dB has been superimposed on the real and imaginary part 

of the total field.  Results with and without noise, show good conductivity and 

permittivity reconstructions, also at tissues boundaries. However, adding noise 

results in a blurred effect as it is visible from the conductivity as well as 

permittivity maps. 



Chapter-3, Physics-assisted learning approaches for MRI-EPT 
 

52 

Figures 3.9-3.10 show EPs reconstructions for each iteration at 3 T, both 

for noiseless and noisy (SNR=18 dB) simulated 𝐵𝐵1,𝑡𝑡
+  data of the same slice in 

Figures 3.7-3.8, but with a tumor-like anomaly in the upper part of the brain 

(belonging to 𝐷𝐷𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡,𝑛𝑛ℎ.). Interestingly, the network is able to infer the presence 

of the anomaly, even if the networks has processed only healthy profiles. The 

good performances are also confirmed from a quantitative point of view. 

Indeed, the NMSEs are equal to 0.07 and 0.09 at the first iteration and 0.04 and 

0.07 at the third iterations respectively for the cases shown in Figures 3.7-3.8. 

 
(a )                       (b)                     (c)                    (d) 

Figure 3.7 Reconstructions (of conductivity and permittivity) in case of known 𝑩𝑩𝟏𝟏,𝒕𝒕
+  

phase noiseless. Ground-truth (a), Retrieved EPs maps for each iteration for a slice of a 
healthy brain model (b)-(d) top; error maps (Reconstructed – Ground-truth) (b)-(d)  
bottom  
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Instead  as regards the cases shown in Figures 3.9-3.10, the NMSEs are equal 

to 0.09 and 0.11 at the first iteration and 0.06 and 0.1 at the third iterations 

respectively.  

However, the reconstruction accuracy of the lesion is lower compared to 

the other tissues. Indeed, the conductivity is underestimated. Conversely the 

permittivity map shows overestimated permittivity values 

                    (a)                               (b)                     (c)                      (d) 

Figure 3.8 Reconstructions (of conductivity and permittivity) in case of known 𝑩𝑩𝟏𝟏,𝒕𝒕
+  

phase and noisy data. Ground-truth (a), Retrieved EPs maps for each iteration for a slice 
of a brain model with tumor-like anomaly (b)-(d) top; error maps (Reconstructed – 
Ground-truth) bottom (b)-(d). 
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Reconstructions with noisy data confirm the network's ability to detect 

an anomaly but some details are lost within the brain. Therefore, as the previous 

cases, adding noise results in a blurred effect as it is visible from both the 

conductivity and permittivity maps. These sentences are also confirmed by the 

quantitative analysis conducted on the reconstructed EPs maps reported in 

Table 1.  

 
                        (a)                         (b)                      (c)                       (d) 

Figure 3.9: Reconstructions (of conductivity and permittivity) in case of known 𝑩𝑩𝟏𝟏,𝒕𝒕
+  

phase noiseless. Ground-truth (a), Retrieved EPs maps for each iteration for a slice of a 
brain model with tumor-like anomaly (b)-(d) top; error maps (Reconstructed – Ground-
truth) (b)-(d) bottom.  
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The quantitative analysis was carried out on the single tissues, revealing 

the mean and standard deviation (std) respect to the true reference values (GT). 

Table 1 reports, indeed, the mean and std values for the slices in Figure 3.7-3.8 

(a) and in Figure 3.9-3.10 (b). Even with some variations, it becomes evident 

that the reconstructed values are near to the real ones (GT, marked in red in 

Table 1). In particular, these results show that, as the iterations increase, the 

reconstructed values are closer to the GT, and also the standard deviation tends 

to decrease. 

 
                      (a)                         (b)                        (c)                        (d) 

Figure 3.10: Reconstructions (of conductivity and permittivity) in case of known 𝑩𝑩𝟏𝟏,𝒕𝒕
+  

phase with noise 18 dB. Ground-truth (a), Retrieved EPs maps for each iteration for 
a slice of a brain model with tumor-like anomaly (b)-(d) top; error maps 
(Reconstructed – Ground-truth) (b)-(d) bottom. 
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The loss of some details, more evident in the case with noise, emerges in 

the figures through the blur effect and translates into a slight deviation from 

the true reference values in terms of the parameters collected in Table 1. 

Obviously, since the reconstructed profiles are completely unknown to 

the network, this is something expected. 

 

 

 
                                                          (a) 
 

 
                                                          (b) 

Table 1: Mean and standard deviation of retrieved EPs maps, for a slice of a healthy 
brain model (a) with tumor-like anomaly (b). The values have been retrieved for all 
the iterations, considering the cases with and without noise on 𝑩𝑩𝟏𝟏𝒕𝒕+ data. 
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Table 1, confirms that he reconstruction accuracy of the tumor is lower 

compared to the other tissues. In absence of noise on data, a possibility to 

improve the reconstructions is to consider the output of the 3,CNNs-EPT as 

initial guess for a standard resolution method, f.i. CSI-EPT. The example is 

reported in Figure 3.11. As it is clear from the figure, the combination of the 

two methods improves considerably the reconstruction accuracy of the tumor, 

as it is confirmed from values in Table 2. Reconstructions obtained with CSI-

EPT depend on the map provided as initialization guess. If a homogeneous 

initial guess is provided (Figure 3.11 (c)), smooth tissues reconstructions are 

obtained for a noiseless situation in about two hours (hundreds of iterations).  

 
                 (a)                        (b)                      (c)                     (d) 

Figure 3.11 Reconstructions (of conductivity and permittivity) in case of known 𝑩𝑩𝟏𝟏,𝒕𝒕
+  

phase noiseless, for a slice of a brain model with tumor-like anomaly. Ground-truth 
(a), Retrieved EPs maps with 3,CNNs-EPT (b), with CSI-EPT only (c) and 
combining 3,CNNs-EPT with CSI-EPT, top; error maps (Reconstructed – Ground-
truth) (b)-(d)  bottom.  
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The combined conductivity and permittivity values of the tumor are 

closer to the GT than in the case of 3,CNNs-EPT only (Figure 3.11 (b)), 

showing an advantage in using the output from the 3,CNNs-EPT as the 

initialization guess for CSI-EPT. Furthermore, by using the proposed method 

to provide an optimal initial guess for CSI-EPT, less iterations are needed, thus 

considerably reducing the CSI-EPT reconstruction time (about minutes for a 

single slice). 

However, in cases with noise, CSI-EPT does not give excellent results 

without proper a regularization. In such a case, a possible solution is reported 

in the next Subsection. 

 In Figure 3.12 the boxplots, with the average error trends evaluated 

through MAPE indicator, for the reconstruction of the main brain tissues are 

shown. Results have been obtained considering all the head models belonging 

to 𝐷𝐷𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡,𝑛𝑛ℎ (i.e. 20 head models for 27 slices each one) and they are related to 

the permittivity values, but a similar trend is also obtained in terms of 

conductivity. The figure shows the cases of noiseless and noisy data.  

 

Table 2: Mean and standard deviation of tumor for a slice of a brain model with 
tumor-like anomaly, in three cases: only the 3,CNNs-EPT, only CSI-EPT and 
combining 3,CNNs-EPT with CSI-EPT.  The values have been retrieved considering 
the cases without noise on  𝑩𝑩𝟏𝟏𝒕𝒕+ data. 
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The red line in the box represents the median MAPE. The two segments 

                                                            (a) 
 

                                                            (b) 

Figure 3.12: The boxplots showing the median MAPE (with the 25th-bottom edge 
and 75th -top edge percentiles), for WM, GM, CSF and tumor-like anomaly  
permittivity reconstructions across the head models in 𝑫𝑫𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒏𝒏𝒏𝒏., without noise 
(a) and with noisy 𝑩𝑩𝟏𝟏,𝒕𝒕

+   data (SNR=18 dB) (b). 
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that start from the box and extend upwards and downwards are called 

"whiskers" and define the expected range of values. The outliers (values 

different from the median one) are represented in the boxplot as isolated red 

crosses positioned above the whiskers of the distribution. 

As the boxplots show, the median at the third iteration is almost always kept 

around 10% for GM, WM and CSF in case (a), while the median MAPE of 

tumor permittivity ≈ 25%; with the addition of noise, case (b), there is a slight 

general increase. Moreover, the median values tend to decrease from one 

iteration to the other, for all the tissues, which confirms the effectiveness of 

the iterative procedure. 

 

3.9.3 3,CNNs-EPT: Case study (B): Approximated distribution of 
the phase of 𝑩𝑩𝟏𝟏

+ 
The same considerations of the previous shown cases can be extended 

in this section. Figures 3.13-14 show EPs reconstructions for each iteration at 

3T, both for noiseless and noisy approximated 𝐵𝐵1,𝑡𝑡
+  data of the pathological 

slice (belonging to 𝐷𝐷𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡,𝑛𝑛ℎ), also analysed in Section 3.9.2, but in case of TPA 

(see section 3.2). Results have been obtained training the 3,CNNs-EPT with 

the 𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛,ℎ. 
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The results show the 3,CNNs-EPT is able to accurately retrieve the EPs 

maps. Indeed, the NMSE are equal to 0.08 and 0.14 at the first iteration and 

0.06 and 0.1 at the third iteration, respectively. 

 

  

 
                      (a)                            (b)                      (c)                     (d) 
 

Figure 3.13: Reconstructions (of conductivity and permittivity) in case of TPA for 𝑩𝑩𝟏𝟏,𝒕𝒕
+  

noiseless. Ground-truth (a), Retrieved EPs maps for each iteration for a slice of a brain 
model with tumor-like anomaly (b)-(d) top; error maps (Reconstructed – Ground-truth) 
on the bottom (b)-(d). 
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An additional analysis on the single tissues was carried out also in case of 

TPA assumption. Table 2(a) reports the mean and std values of the retrieved 

EPs maps for the slices in Figures 3.13-3.14. Even with some variations, the 

reconstructed values are near to the real ones (i.e. the GTs, whose values are 

marked in red in Table). These values remain close to GT even for noisy cases. 

The network is able to discriminate between the different tissues, but among 

all, the CSF is the one that is reconstructed worst. 

 
                     (a)                          (b)                     (c)                    (d) 
 

Figure 3.14: Reconstructions (of conductivity and permittivity) in case of TPA for 
𝑩𝑩𝟏𝟏,𝒕𝒕
+  with noise 18 dB. Ground-truth (a), Retrieved EPs maps for each iteration for 

a slice of a brain model with anomaly (b)-(d) top; error maps (Reconstructed – 
Ground-truth) (b)-(d) bottom. 
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In Figure 3.15, the permittivity and conductivity reconstructions of 

different brain models, again in case of noisy 𝐵𝐵1,𝑡𝑡
+  data and TPA assumption, 

are shown demonstrating for all cases good reconstruction quality. These cases 

have been considered to test the procedure capability to detect also anomalies 

located in different region of the brain and characterized by different EPs (in 

the shown cases, 𝑗𝑗𝑟𝑟 = 54 𝑛𝑛𝐷𝐷 74) respect to previews shown cases. which is 

successful, but at most the variable EPs influence the overestimation of the 

tumor. Note that, the results shown so far have been obtained by training the 

3,CNNs-EPT with the healthy dataset. As it can be seen from the figure, the 

position and the Eps of the pathology do not affect the detection. 

 

 
                                                        (a) 
 

 
                                                            (b) 

Table 3. Mean and standard deviation of retrieved EPs maps, for a slice of a brain 
model with tumor-like anomaly, in TPA assumption. Retrieved values with and 
without noise on 𝑩𝑩𝟏𝟏𝒕𝒕+ data (a). A comparison between the retrieved values obtained 
by training the network with 𝑫𝑫𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏 and 𝑫𝑫𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒏𝒏,𝒏𝒏 (b) and considering noise on 
𝑩𝑩𝟏𝟏𝒕𝒕+ data. 
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Therefore, the common trend in results shows that, in cases of slices with 

anomaly, if there is noise on the data, the permittivity and conductivity of the 

tumor are in some cases over- and underestimated, respectively. One possibility 

to circumvent such an occurrence is to consider a different dataset to train the 

network (see section 3.8), which also includes head models with pathology. 

This allows the network to generalise these cases more effectively, as it is 

confirmed by the following results.  

In this respect, an example is reported in Figure 3.16. In noiseless cases, 

even when a healthy data set is used, the tumor is well estimated, Figure 3.16(b). 

                    (a)                        (b)                        (c)                      (d) 
 
 

Figure 3.15: Reconstructions (of conductivity and permittivity) in case of TPA for 
𝑩𝑩𝟏𝟏,𝒕𝒕
+  data with noise 18 dB. Ground-truth with tumor-like anomaly with the same 

EPs but in different position inside the brain(a-c), Retrieved EPs maps for each 
iteration for a slice of a brain model with anomaly (b)-(d) top; error maps 
(Reconstructed – Ground-truth) (b)-(d) bottom. 
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However, the situation worsens with noise, Figure 3.16 (c). a better situation is 

in Figure 3.16(d), which depicts the reconstruction generated by training the 

3,CNNs-EPT with the 𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛,𝑛𝑛𝑜𝑜ℎ. Evidently, the trend has been reversed; 

both conductivity and permittivity of tumor are no longer under- and 

overestimated, respectively. Note that, like all the other presented cases, the 

selected slice to be retrieved has different geometric and morphological 

features than the ones in training, this is also true for the tumor values. This 

trend is also confimed from values in Table 2(b), which show how the 

permittivity and conductivity values of the reconstructed tumor considering 

                     (a)                        (b)                      (c)                        (d) 

 
Figure 3.16: Reconstructions (of conductivity and permittivity) in case of TPA for 
𝐁𝐁𝟏𝟏,𝐭𝐭
+  data without and with noise (18 dB). Ground-truth with tumor-like anomaly 

(a); Retrieved EPs maps with 𝑫𝑫𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒏𝒏,𝒏𝒏 without (b) and with noise(c); Retrieved 
EPs maps with 𝑫𝑫𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊𝒏𝒏,𝒏𝒏𝒏𝒏 with noise (d) on top; error maps (Reconstructed – 
Ground-truth) (b)-(c)-(d), bottom. 
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𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛,𝑛𝑛𝑛𝑛ℎ are more in line with the reference ones (GT), compared to the 

same case obtained considering 𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛,ℎ . 

The quantitative analysis has been carried out also with the TPA. In 

Figure 3.17 the boxplots, with the average trends evaluated through MAPE 

indicator, for the reconstruction of the main brain tissues are shown. Results 

has been obtained considering the head models in 𝐷𝐷𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡,𝑛𝑛𝑜𝑜ℎ and they are 

related to permittivity values (similar trends are also obtained in terms of 

conductivity). The figure shows the worst case (b), i.e. considering corrupted 

data with 18 dB of noise. Better results are obviously obtained otherwise (a). 

The average error trends are also here confirmed, median MAPE decreases 

from one iteration to the other and the more challenging cases are the 

reconstructions with noise. In general, the introduction of a model error, i.e. a 

field phase approximation, does not affect the reconstructions. 

In summary, in this Chapter two physic-assisted learning strategies for 

MRI-EPT have been proposed and compered. The first based on a SDM 

methods, the second on a cascade of CNNS. These methods were tested on 

2D simulated human brain data. The presented results demonstrate the 

feasibility of this methodology to reconstruct conductivity and permittivity 

maps at 128MHz. In particular, best results have been obtained with the 

proposed 3,CNNs-EPT. It allows good quality permittivity and conductivity 

reconstructions for both noiseless and noisy cases in few seconds. Ultimately, 

this method allows computational advantages compared to standard contrast 

source inversion electrical properties tomography (CSI-EPT), i.e. faster 

reconstructions, which will be extremely relevant when moving to 3D 

reconstructions. 
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                                                              (a) 

 
                                                               (b) 

Figure 3.17: The boxplots showing the median MAPE (with the 25th-bottom edge 
and 75th -top edge percentiles), for WM, GM, CSF and tumor-like anomaly  
permittivity reconstructions across 𝑫𝑫𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒏𝒏𝒏𝒏, without noise (a) and with nosy 𝑩𝑩𝟏𝟏,𝒕𝒕

+   
data (SNR=18 dB) (b). 
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4 Optimized MRI RF-Shimming via field 
amplitude shaping 

This Chapter aims at outlining, discussing, and assessing a new physics-

based procedure for RF Shimming via field intensity shaping. The general 

concept that led to the writing of these findings was the development of a multi 

control points-based shaping procedure for the specific case of RF shimming 

in an MRI system. Initially, we addressed the problem applying and extended a 

shaping approach already published in [23]. Unfortunately, this proved to be 

computationally expensive in several circumstances, therefore an physic based 

model to optimize it was investigated. As a result, the developed auxiliary model 

drastically reduces the recurring possibilities in the enumeration procedure. The 

analysis of the auxiliary model and numerical results in the challenging case of 

RF shimming against different 2D head phantoms are detailed in the Section 

4.33. 

4.1 Introduction 
One of the main challenges to be address in MRI is the RF shimming, 

which consists in ensuring a significant homogeneity of the transmit magnetic 

field in the anatomical region to be imaged, while ensuring the SAR limits in 

the other body regions [71]. This need arises especially in HF-MRI (especially 

at high and ultra-high fields) because the high field frequency causes 

fluctuations in the magnetic field and an increase in SAR, which lead to image 

degradation (i.e image artifacts [73] ). Therefore, the more homogeneous the 

field, the better the quality and resolution. 

Several strategies have been developed in order to simultaneously 

improve 𝐵𝐵1+ homogeneity and also to reduce the SAR level. However, most of 

them do not consider the complex excitation currents related to the RF coil [7]. 

Generally, these techniques fall in two macro categories: passive and active 

shimming techniques.  

 
3 Some contents of this Chapter have been published in references [3] [5] [6] [9] and [15]  of 
the Publications List of Sabrina Zumbo reported at the end of the Thesis. 
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The first category commonly uses specific materials as shims, such as 

iron pieces or high-permittivity, low-conductivity materials. Indeed, High-

permittivity materials (HPMs) placed between RF coils and the subject have 

been proposed as a method for varying the spatial distribution of the 𝐵𝐵1+ field, 

independent of RF shimming or parallel transmission, to improve field 

homogeneity or enhance SNR in targeted regions [74], [77], [78].   

For instance, in [74]  a method to evaluate the effect of integrated high-

permittivity materials (HPMs) on the 𝐵𝐵1+ homogeneity and global SAR is 

proposed. Furthermore, the use of HPMs in combination with RF coils has 

also been shown to reduce overall required input RF power in transmission and 

improve coil sensitivity at a variety of field strengths in reception, both in 

experiments and numerical simulations [74]. In [79] the dielectric shimming is 

formulated as an electromagnetic scattering problem using integral equations.  

On the other side, the active shimming uses small coils (or shim-coils). 

However, many shim-coils are necessary to obtain an accurate shimming with 

an increased magnet cost. In the active shimming techniques, the  𝐵𝐵1+ 

inhomogeneity can be addressed by using transmit arrays and applying RF 

shimming or parallel transmission techniques [7]. These techniques can be 

optimized to also reduce global Specific Absorption Rate (SAR), since 

constructive interferences between the electric fields from multiple transmit 

coils can result in undesired hot-spots.  

In this Thesis, a novel active RF shimming approach is introduced by 

employing a completely new perspective. Specifically, the proposed approach 

relies on the paradigm of field intensity shaping. Indeed, this paradigm can be 

employed to ensure a uniform radiofrequency (RF) field 𝐵𝐵1+ and, thus, adequate 

image resolution and accuracy. Indeed, field intensity shaping consists in 

generating a field intensity distribution with some desired characteristics in a 

specific ROI, such as f.i. intensity, uniformity, sidelobes levels. This problem, , 

is relevant not only in MRI shimming but also in a wide range of applications, 

including antenna synthesis for radar and communications [65], [66] energy 

replenishment [67], [68] through-the-wall imaging [69] and biomedical 
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applications [70], [71] . As far as these latter are concerned, field intensity 

shaping plays a key role in hyperthermia treatment planning, wherein one aims 

to increase the temperature inside a tumor by means of a proper antenna array 

applicator, while keeping under control the heating in the surrounding healthy 

tissues [70].   

In this respect, in this Thesis, by tacking advantage from the procedures 

in [6] and inspired to mt-FOCO [23,] the proposed strategy for RF shimming 

via field intensity shaping, exploits different control points located in the ROI 

and is able to take contemporaneously into account all constraints regarding 

polarization, strength of the 𝐵𝐵1+  Field and SAR. The convexity of the proposed 

procedure, closely linked to the phase shift between the various field patterns, 

ensures to achieve the global minimum of the problem and, hence, an accurate, 

repeatable, and optimal solution of the shimming problem. In this respect, the 

phase shifts between the fields at specific control points are assumed as 

auxiliary unknown variables of the problem. However, since the optimal phase 

shifts are not a priori known, one has to determine it by exploring the set of 

possible phase shifts using enumerative or global optimizations. As a 

consequence, the computational burden grows rapidly if the number of control 

points increases, and this circumstance may prevent the use of this paradigm in 

a number of actual applications.  

To cope with issue, a simple auxiliary and physics inspired model for the 

induced total field is proposed for shaping the field intensity. The model allows 

a relatively simple physical understanding of convenient and non-convenient 

fields interferences to be exploited in the shaping problem, and hence a drastic 

reduction of the computational burden related to its solution via optimization 

procedure. In particular, it allows to obtain in an easy fashion convenient field 

distributions within the ROI that one can fit to address the shaping problem. 

Also, in those cases where stringent shaping constraints are present, the use of 

the auxiliary model allows a significant resize of the set of possible phase shifts 

to be considered with respect to [23], [24].  
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In the following sections, the findings will be provided. First, we briefly 

summarize the basic underlying mt-FOCO. Then, the new active shimming 

procedure based on mt-FOCO is introduced. Moreover, the proposed auxiliary 

model for the induced total field is described and analyzed in a homogeneous 

medium. Finally, the overall proposed procedure is tested against a 2D realistic 

head phantom. 

4.2 Multi target-Focusing via Constrained Optimization  

In order to provide a basis for the approach proposed in this Chapter, it 

is useful to recall rationale underlying mt-FOCO [23].   

Let us assume known the geometry as well as the electromagnetic 

properties of the bidimensional scenario under test 𝐷𝐷 (i.e. relative permittivity 

𝜖𝜖𝑟𝑟(𝐷𝐷) and electric conductivity 𝜎𝜎(𝐷𝐷)), wherein the ROI is embedded. 

Moreover, let us consider 𝑁𝑁 elementary monochromatic electric sources 

surrounding 𝐷𝐷.  

With reference to scheme in Figure 4.1 and indicating with 𝐷𝐷 a generic 

point of 𝐷𝐷, the overall electric and magnetic field can be expressed as[48]  

𝐵𝐵�𝐷𝐷, 𝐼𝐼𝑛𝑛� = �𝐼𝐼𝑛𝑛

𝑁𝑁

1

𝜆𝜆𝑛𝑛�𝐷𝐷�                                (4.1 𝐷𝐷) 

𝐸𝐸�𝐷𝐷, 𝐼𝐼𝑛𝑛� = �𝐼𝐼𝑛𝑛

𝑁𝑁

1

𝐷𝐷𝑛𝑛�𝐷𝐷�                                 (4.1 𝜆𝜆) 

wherein (𝐷𝐷𝑛𝑛, 𝜆𝜆𝑛𝑛) are the total electric and magnetic fields induced by the 

unitary excited n-th antenna when all the other antennas are off, while 𝐼𝐼𝑛𝑛 are 

the complex excitation coefficients of the signals feeding the antenna array. 

Without loss of generality, let us assume that one of the electromagnetic 

field components is dominant above the other ones or the optimal/desired 

polarization of the electromagnetic field distribution is a priori known.  

Then, the optimization shaping problem can be formulated as follows:  
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“Determine the optimal set of complex excitations coefficients 𝐼𝐼𝑛𝑛 such to produce the 

desired behavior of the amplitude of the dominant field component in the ROI, while enforcing 

some constraints in other regions of D”.  

To be more specific, one usually aims at maximizing the amplitude of the 

field as well as ensuring its uniformity in the ROI. This is the case of microwave 

hyperthermia or MRI shimming. Instead, SAR limits or other kind of upper 

bounds are usually enforced in the whole 𝐷𝐷 or in 𝐷𝐷\𝑆𝑆𝑅𝑅𝐼𝐼. Unfortunately, these 

requirements usually involve the solution of a non-convex problem. As such, 

by using local as well as global optimization procedures (because of the 

involved computation burden for large N) the global optimality of the solution 

cannot be ensured.  

In order to circumvent such a problem, according to multi control points-

based approaches [23], [24] the problem can be formulated as follows:  

𝑚𝑚𝐷𝐷𝜕𝜕
𝐼𝐼𝑛𝑛

� �𝑆𝑆𝐷𝐷�𝐹𝐹�𝐷𝐷𝑡𝑡𝑘𝑘 , 𝐼𝐼𝑛𝑛��
2

+ 𝐼𝐼𝑚𝑚�𝐹𝐹�𝐷𝐷𝑡𝑡𝑘𝑘 , 𝐼𝐼𝑛𝑛��
2
�

𝐿𝐿

𝑘𝑘=0

          (4.2) 

subject to: 

�𝐹𝐹�𝐷𝐷𝑡𝑡𝑖𝑖 , 𝐼𝐼𝑛𝑛�� = |𝐹𝐹|𝑖𝑖            𝑤𝑤𝐷𝐷𝑡𝑡ℎ 𝐷𝐷 = 1, … , 𝐿𝐿   (4.2 𝐷𝐷) 

                                                  
 
Figure 4.1: Sketch of the scenario under test. The ROI, enlighten by a green 
background, contains the control points indicated by the black stars. N elementary 
monochromatic electric sources indicated by grey circles surround the investigation 
domain D. 
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�𝐹𝐹�𝐷𝐷, 𝐼𝐼𝑛𝑛��
2
≤ 𝑈𝑈𝐵𝐵�𝐷𝐷�                            (4.2 𝜆𝜆) 

wherein 𝐷𝐷 ∉ 𝑆𝑆𝑅𝑅𝐼𝐼 or 𝐷𝐷 ∈ 𝐷𝐷 depending on the application at hand; 

𝐷𝐷𝑡𝑡𝑖𝑖  (i =  1, … , L) are L controls points belonging to the ROI; 𝐹𝐹 is the 

dominant/desired polarization of the electric or magnetic field depending on 

the application at hand; while |𝐹𝐹|𝑖𝑖 is the desired value for the field amplitude 

at the i-th control point. In case of uniformity requirement, |𝐹𝐹|𝑖𝑖 = �𝐹𝐹�𝐷𝐷𝑡𝑡0��, 

being 𝐷𝐷𝑡𝑡0 the reference point. Finally, 𝑆𝑆𝐷𝐷 and 𝐼𝐼𝑚𝑚 are the real and the imaginary 

parts of the corresponding argument, respectively.  

The objective function (4.2) ensures the maximization of the field 

amplitude in the ROI, while constraints (4.2 a) and (4.2 b) are able to ensure 

the uniformity in the ROI and keep under control its amplitude in other 

regions, respectively. In this respect, 𝑈𝑈𝐵𝐵(𝐷𝐷) refers to the field upper bound, 

which takes on different values depending on the problem to be solved. Note 

that, depending on the application at hand, the cost function can be eventually 

replaced by other functions, for instance the minimum ripple of the square 

amplitude of 𝐹𝐹 [81].  

According to multi control points-based approaches, in order to circumvent 

its non-convexity, the problem (4.2) can be simplified as follows [23] : 

𝑚𝑚𝐷𝐷𝜕𝜕
𝐼𝐼𝑛𝑛

𝑆𝑆𝐷𝐷 �𝐹𝐹 �𝐷𝐷𝑡𝑡0 , 𝐼𝐼𝑛𝑛��                              (4.3) 

subject to: 

𝐼𝐼𝑚𝑚�𝐹𝐹�𝐷𝐷𝑡𝑡0 , 𝐼𝐼𝑛𝑛�� = 0                                   (4.3 𝐷𝐷) 

𝑆𝑆𝐷𝐷�𝐹𝐹�𝐷𝐷𝑡𝑡𝑖𝑖 , 𝐼𝐼𝑛𝑛�� = |𝐹𝐹|𝑖𝑖𝑐𝑐𝑛𝑛𝐷𝐷∆𝜙𝜙𝑖𝑖                     (4.3 𝜆𝜆) 

𝐼𝐼𝑚𝑚�𝐹𝐹�𝐷𝐷𝑡𝑡𝑖𝑖 , 𝐼𝐼𝑛𝑛�� = |𝐹𝐹|𝑖𝑖sin∆𝜙𝜙𝑖𝑖                     (4.3 𝑐𝑐) 

�𝐹𝐹�𝐷𝐷, 𝐼𝐼𝑛𝑛��
2
≤ 𝑈𝑈𝐵𝐵�𝐷𝐷�                          (4.3 𝑑𝑑) 
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wherein ∆𝜙𝜙𝑖𝑖 ∈ [0,2𝜋𝜋[ are the auxiliary variables indicating the phase 

shifts between the field in 𝐷𝐷𝑡𝑡0 and 𝐷𝐷𝑡𝑡𝑖𝑖 . In the above problem, the field in 𝐷𝐷𝑡𝑡0 is 

assumed real by simply changing the overall phase reference. Then, the 

objective function becomes linear. Moreover, the constraints (4.2 a) have been 

conveniently turned into (4.3 b) and (4.3 c).  

For any fixed instance of ∆𝜙𝜙𝑖𝑖 values, problem (4.3) recasts the shaping 

problem as the maximization of a linear function in a convex set, which 

corresponds to a convex programming (CP) problem [23] . Then, the globally 

optimal solution of the overall optimization problem can be a posteriori 

determined by looking into the values of the cost function or other suitable 

performance indicators depending on the application at hand. Notably, when 

all the different possible combinations for ∆𝜙𝜙𝑖𝑖 are explored, one is able to 

guarantee the global optimality of the final array excitations[23], [24].  

In the following section, the multi control points paradigm for field intensity 

shaping is tailored for the more challenging case of MRI shimming. In 

particular, the RF shimming is set up for the first time by exploiting one or 

more control points located in the ROI and by taking contemporaneously into 

account the constraints regarding SAR levels and polarization purity. 

4.3 RF shimming via mt-FOCO 
Let us consider a birdcage coil made up of 𝑁𝑁 conductors, each of which 

is fed by a different current 𝐼𝐼𝑛𝑛 (with 𝑛𝑛 =  1, . . . ,𝑁𝑁), then the optimization 

problem can be formulated as follows:  

“Determine the optimal set of complex excitations coefficients 𝐼𝐼𝑛𝑛 such to produce the uniform 

and maximum  𝐵𝐵1+ field in the ROI, while ensuring polarization purity and SAR limits 

in the overall D”. 

From a mathematical point of view, by exploiting the rationale of 

problem (4.3), reformulating the whole problem in terms of the magnetic field, 

the RF shimming problem can be cast as follows:  
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𝑚𝑚𝐷𝐷𝜕𝜕
𝐼𝐼𝑛𝑛

𝑆𝑆𝐷𝐷�𝐵𝐵1+�𝐷𝐷𝑡𝑡𝑛𝑛 , 𝐼𝐼𝑛𝑛��                                         (4.4) 

subject to 

𝐼𝐼𝑚𝑚�𝐵𝐵1+�𝐷𝐷𝑡𝑡0 , 𝐼𝐼𝑛𝑛�� = 0                                        (4.4 𝐷𝐷) 

𝑆𝑆𝐷𝐷�𝐵𝐵1+�𝐷𝐷𝑡𝑡𝑖𝑖 , 𝐼𝐼𝑛𝑛�� = 𝑆𝑆𝐷𝐷�𝐵𝐵1+�𝐷𝐷𝑡𝑡0 , 𝐼𝐼𝑛𝑛�� ∗ 𝑐𝑐𝑛𝑛𝐷𝐷∆𝜙𝜙𝑖𝑖               (4.4 𝜆𝜆) 

𝐼𝐼𝑚𝑚�𝐵𝐵1+�𝐷𝐷𝑡𝑡𝑖𝑖 , 𝐼𝐼𝑛𝑛�� = 𝑆𝑆𝐷𝐷�𝐵𝐵1+�𝐷𝐷𝑡𝑡0 , 𝐼𝐼𝑛𝑛�� ∗ 𝐷𝐷𝐷𝐷𝑛𝑛∆𝜙𝜙𝑖𝑖              (4.4 𝑐𝑐) 

𝐷𝐷𝑆𝑆𝑆𝑆�𝐷𝐷, 𝐼𝐼𝑛𝑛� ≤ 3.2
𝑊𝑊
𝑘𝑘𝑘𝑘

     𝐷𝐷 ∈ 𝐷𝐷                                      (4.4 𝑑𝑑) 

�𝐵𝐵1−�𝐷𝐷, 𝐼𝐼𝑛𝑛��
2
≤

1
3
�𝐵𝐵1,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖

+�𝐷𝐷, 𝐼𝐼𝑛𝑛��
2

        𝐷𝐷 ∈ 𝐷𝐷          (4.4 𝐷𝐷) 

�𝐵𝐵1+�𝐷𝐷, 𝐼𝐼𝑛𝑛��
2
≤ �𝐵𝐵1 𝑑𝑑𝑒𝑒𝑠𝑠

+�
2

      𝐷𝐷 ∈ Σ                    (4.4 𝑓𝑓) 

 

wherein 𝐷𝐷𝑆𝑆𝑆𝑆 = 𝜎𝜎�𝑟𝑟�
𝜌𝜌�𝑟𝑟�

�𝐸𝐸�𝐷𝐷��
2

, 𝜌𝜌 is the mass density of tissues, 𝐵𝐵1+ is the 

right hand circular polarization of the magnetic field, 𝐵𝐵1− is the undesired left 

hand polarization of the magnetic field, 𝐵𝐵1,𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖
+�𝐷𝐷, 𝐼𝐼𝑛𝑛� is the initial spatial 

distribution of 𝐵𝐵1+ and Σ is a certain region in D which does not contain the 

ROI.  

In problem 4.4, constraint (4.4 d) limits the SAR levels everywhere, 

according to the guideline dictated by international commission on non-

ionizing radiation protection [30]. Constraint (4.4 e) regards the field 

polarization, which is enforced to remain close enough to the desired right hand 

one. Finally, by means of constraint (4.4 f), the square amplitude of 𝐵𝐵1+ must 

be under a specific upper bound 𝐵𝐵1 𝑑𝑑𝑒𝑒𝑠𝑠
+, outside the chosen ROI. Note that 

in the following numerical examples, 𝐵𝐵1 𝑑𝑑𝑒𝑒𝑠𝑠
+ is set equal to 1/3 of the infinite 

norm of the amplitude of the initial 𝐵𝐵1+ in the ROI [6]  Finally, ∆𝜙𝜙𝑖𝑖 ∈ [0,2𝜋𝜋[ 

are auxiliary variables indicating the phase shifts between the field in 𝐷𝐷𝑡𝑡0 and 
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𝐷𝐷𝑡𝑡𝑖𝑖 . Note that whatever the values of the auxiliary variables ∆𝜙𝜙𝑖𝑖, constraints 

(4.4 a) and (4.4 b) allow to enforce equality of the field amplitude at the control 

points. 

For any fixed frequency and ∆𝜙𝜙𝑖𝑖 value, the MRI shimming problem (4.4) 

is recast as the maximization of a linear function in a convex set, which 

corresponds to a convex programming (CP) problem. Then, the globally 

optimal solution of the overall optimization problem can be a posteriori 

determined by exploring all the different possible combinations for ∆𝜙𝜙𝑖𝑖, 

solving then the corresponding CP problem and finally looking into the values 

of the cost function or other suitable performance indicators depending on the 

application at hand [23], [24], [81], [82]. Alternatively, in a more convenient 

fashion, a nested optimization procedure where the external global 

optimization acts on the field phase shifts whereas the internal convex 

optimization acts instead on excitations can be also exploited [81].   

If the optimal phase shifts were a priori known, just a single CP problem 

would have to be solved. Unfortunately, such an information is not generally 

available; hence, the computational complexity of the problem grows as the 

number control points increases. 

To cope with this issue, a simple and physics inspired model is proposed 

for the total induced field in order to understand convenient and non-

convenient fields interferences to be exploited in the shaping problem, thus 

avoiding the computational burden related to both global and enumerative 

optimization. In the following section, the concept underlying the proposed 

model method and the related mathematical formulation are described. 

 

4.4 An auxiliary model for field amplitude shaping 
 

In the convex procedure proposed in [22], the far field shaping problem 

has been tackled by looking for a superposition of many patterns focused in 

properly chosen given points located in the ROI. However, this procedure does 
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not provide any constraints outside the target area and the single focused 

patterns are simply added in phase without considering any possible phase 

shifts.  

Starting from the above, a possible solution for the shaping problem is 

considering an auxiliary field model wherein the shaping is tackled as the 

superposition of single patterns focused on a number control point 𝐷𝐷𝑡𝑡𝑖𝑖 , inside 

the ROI. Interestingly, the combinations of these single focused bricks involve 

additional degrees of freedom, which are missing in [22], i.e, the phases of the 

field in 𝐷𝐷𝑡𝑡𝑖𝑖 . These latter, and a proper choice of the control points, will allow to 

control to some extent the field intensity in the ROI.  

Let us consider a 2D homogeneous region of space. The field of interest 

in the neighborhood of the control point 𝐷𝐷𝑡𝑡𝑖𝑖 , denoted as 𝐹𝐹𝑖𝑖�𝐷𝐷�, can be 

expressed in a reference system centered on 𝐷𝐷𝑡𝑡𝑖𝑖 as a superposition of basic 

solutions as [46] : 

𝐹𝐹𝑖𝑖�𝐷𝐷� = � 𝐷𝐷ℓ𝐽𝐽ℓ�𝑘𝑘𝑚𝑚�𝐷𝐷 − 𝐷𝐷𝑡𝑡𝑖𝑖��
+∞

ℓ=−∞

𝐷𝐷𝑗𝑗ℓ∠(𝑟𝑟−𝑟𝑟𝑡𝑡𝑖𝑖)                             (4.5) 

where 𝐷𝐷ℓ is an amplitude coefficient, 𝐽𝐽ℓ(∙) is the Bessel function of order 

ℓ, 𝑘𝑘𝑚𝑚 is the wave number in the ROI and ∠(𝐷𝐷 − 𝐷𝐷𝑡𝑡𝑖𝑖) is the angle in polar 

coordinates with respect to 𝐷𝐷𝑡𝑡𝑖𝑖 , in a bidimensional system.  

Whenever such a field is focused in 𝐷𝐷𝑡𝑡𝑖𝑖 , the only term which survives is 

the one for ℓ = 0. As a consequence, in such a case 𝐹𝐹𝑖𝑖�𝐷𝐷� can be approximated, 

apart from the constant 𝐷𝐷0, by means of the zero order Bessel function 𝐽𝐽0, 

which is centered in the control point 𝐷𝐷𝑡𝑡𝑖𝑖 .  

Then, considering the desired shaped field as a superposition of fields 

focused in the different control points, and assuming that, the different focused 



4.4-An auxiliary model for field amplitude shaping 

 

79 

components have all the same amplitude 𝐷𝐷0 = 14. Then, the overall field can 

be approximated as: 

𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷� = 𝐽𝐽0�𝑘𝑘𝑚𝑚�𝐷𝐷 − 𝐷𝐷𝑡𝑡0�� + �𝐽𝐽0�𝑘𝑘𝑚𝑚�𝐷𝐷 − 𝐷𝐷𝑡𝑡𝑖𝑖��𝐷𝐷
𝑗𝑗𝜙𝜙𝑖𝑖

𝐿𝐿

𝑖𝑖=1

           (4.6) 

This is true apart from a single unessential constant. In this equation the 

𝜙𝜙𝑖𝑖 ∈ [0,2𝜋𝜋[ are auxiliary variables indicating the phase of the different Bessel 

functions addenda in the auxiliary model (4.5).  

Note that, in problem (4.4) the magnetic field 𝐵𝐵1+ in 𝐷𝐷𝑡𝑡0 is assumed real 

by simply changing the overall phase reference. Furthermore, the variables ∆𝜙𝜙𝑖𝑖 

are different from the variables 𝜙𝜙𝑖𝑖  in the auxiliary model (4.6). In fact, in model 

(4.6) the phase of 𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷𝑡𝑡0� can be different from zero, while in problem (4.4) 

the actual field 𝐵𝐵1+ is enforced to be real in 𝐷𝐷𝑡𝑡0 . Second, and more important, 

variables ∆𝜙𝜙𝑖𝑖 are the phase shifts amongst the total fields 𝐵𝐵1+ at the control 

points, while variables 𝜙𝜙𝑖𝑖 are the phase shifts amongst the different Bessel 

functions contributions. One can determine ∆𝜙𝜙𝑖𝑖 as 𝜙𝜙𝑖𝑖 − ∠𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷𝑡𝑡0 , {𝜙𝜙𝑖𝑖}�. 

The analysis of model (4.6) can allow a relatively simple physical 

understanding of convenient and non-convenient Bessel-field interferences 

determined from {𝜙𝜙𝑖𝑖} values. For example, in case of just two control points, 

a 𝜋𝜋 value of 𝜙𝜙1 would imply a null of the field 𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷� at midway, so that such 

a value and the neighbouring ones can be discarded if a uniform amplitude field 

is required within the ROI. This is of course true even if in expression (4.6) no 

other constraints are taken into account outside the ‘flat-top’ zone. In fact, 

values of 𝜙𝜙1 implying a null of the field 𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷� at midway certainly are not of 

interest and can be discarded in the solution of the relevant shaping problem. 

Interestingly, in the same two control points case and uniformity requirement, 

one can also analytically determine a value of 𝜙𝜙1 such that the auxiliary fields 

have the same amplitude at the external points and at midway. In case of 

 
4 By the sake of simplicity, we are herein reasoning on a ‘flat top’ kind of shaping. Differently 
weighted superpositions can be considered in other cases. 
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lossless media, such an optimal value is readily found as discussed in the 

Appendix C.  

Then, although the cases with three or more control points are more and 

more difficult to be analysed, model (4.6) can give very useful insights about 

possible field interferences when varying {𝜙𝜙𝑖𝑖} values, and hence useful 

guidelines for an optimal solution of the shaping problem, as discussed below.  

In fact, the auxiliary problem of determining the more convenient set of 

values for {𝜙𝜙𝑖𝑖} has a series of convenient characteristics as follow: 

1. Because of the simple analytical form (4.6), one can indagate in a very 

fast fashion many {𝜙𝜙𝑖𝑖} values combinations, without solving any 

optimization problem or other additional procedures. 

2. For the same reason, its repeated analysis also can possibly give 

suggestions on the selection of the control points 𝐷𝐷𝑡𝑡𝑖𝑖 ; 

3. Results arising from extensive investigation of model (4.6) by varying 

{𝜙𝜙𝑖𝑖} values (and eventually also the distances �𝐷𝐷 − 𝐷𝐷𝑡𝑡𝑖𝑖�) can be arranged 

into a Pareto like performance plot, giving back the more convenient 

ranges of the phase shifts combinations; 

4. These results have a wide range of validity and can be adopted to a large 

series of cases, sharing the same electrical distances amongst the control 

points, even when 𝑘𝑘𝑚𝑚 is an average value of the wavenumber in a non-

homogeneous scenario (see Results and Discussion Section). 

In summary, the auxiliary model (4.6) can be profitably exploited to 

identify convenient and non-convenient {𝜙𝜙𝑖𝑖} values. Once L control points are 

set in the ROI (step 1 in Figure 4.2), the performance parameters 

(𝑀𝑀𝑀𝑀1,𝑀𝑀𝑀𝑀2, …𝑀𝑀𝑀𝑀𝑛𝑛) are defined depending on the application at hand (step 2 in 

Figure 4.2). Possible choices are the ripple and the average value in the ROI, 
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but different choices are indeed possible. In order to explore all possible 𝜙𝜙𝑖𝑖 

values, M samples in [0,2π[ are set for each 𝜙𝜙𝑖𝑖 and ML−1 combinations are 

considered (step 3 in Figure 4.2). Then, 𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷� is evaluated by Equation (4.6) 

for each {𝜙𝜙𝑖𝑖} combination (step 4 in Figure 4.2) and, hence, those 

combinations corresponding to the worse performance are discarded. Also, the 

{𝜙𝜙𝑖𝑖} combinations which corresponds to the optimal values of the 

performance indicators 𝑀𝑀𝑀𝑀𝑛𝑛 are selected. To this end, it comes out to be 

convenient to report the indicators 𝑀𝑀𝑀𝑀𝑛𝑛 in a Pareto like performance plot (step 

5 in Figure 4.2). 

A scheme of the analysis procedure is resumed in the flowchart of Figure 

4.2. At the end of the procedure, the analysis of the Pareto-like performance 

 
                                                                                                                                                                                    

 
 

Figure 4.2 Schematic flowchart of the analysis procedure of the auxiliary model 
(4.6). 
 



Chapter-4, Optimized MRI RF-Shimming via field amplitude shaping 
 

82 

plot allows to easily identify the {𝜙𝜙𝑖𝑖} combinations to be discarded as well as 

the more convenient ones. For example, if performance parameters 𝑀𝑀𝑀𝑀𝑛𝑛 are 

defined in such a way that better performance are obtained when they assume 

low values, the low-left corner points correspond to the more convenient {𝜙𝜙𝑖𝑖} 

combinations (see f.i. the red box in Figure 4.2). 

As far as step 1 is concerned, it is important to note that the overall 

strategy amounts to find some appropriate interferences amongst different 

elementary bricks, herein given by Bessel functions. Hence, in order to have 

eventually significant interferences, the distance amongst two control points 

has to be such that the elementary bricks are not too small in the ROI, or at 

least along the line joining the two points. On the other hand, very small 

distances among the control points also do not have sense, as the control points 

would be redundant and this circumstance would just increase the 

computational burden, without adding useful information. As a rule of thumb 

deriving from an extensive numerical analysis, distances belonging to the 

interval [0.25,0.5]𝜆𝜆𝑏𝑏 are suggested. As a second possibly useful comment, note 

that within this interval, the simplicity of the proposed auxiliary model allows 

one also to understand what is the best location distance. In fact, one could 

select the distance implying a minimum RSD and a maximum field amplitude, 

according to the analysis resumed in Figure 4.2. Finally, an additional criterion 

for choosing the position of the control points is the need of covering in a 

possibly uniform fashion the region of interest. 

The analysis shown in the Figure 4.2, allows two effective possibilities 

for the solution of the relevant shaping problem. First, understanding the 

optimal field interferences also implies achieving convenient field distributions 

within the ROI. Then, in order to solve the actual problem of determining the 

complex excitations of the primary sources, one can simply minimize the misfit 

between the actual field distribution (4.1) and the reference target 

distribution(s) as determined from the above analysis. Notably, this is indeed a 

field synthesis problem which can be easily solved by the minimization of a 

quadratic functional.   
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Second, once one has gained awareness of convenient and non-

convenient interferences, one can take advantage of such a knowledge within a 

constrained power optimization framework. In particular, as it will be discussed 

in detail in the numerical analysis in Subsection 4.5, the outcomes of model 

(4.6) can play a pivotal role in multi control points-based approaches, as it allows 

time and memory saving in the overall optimization, without affecting the final 

performance. 

4.5 Analysis of the auxiliary field model  
In order to give a better insight into the auxiliary model (4.6), in this 

section a numerical analysis is reported in the simple case of homogeneous 

medium. In particular, the analysis procedure in Figure 4.2 is performed. As far 

as the check of the usefulness of this analysis in a relevant actual shaping 

problem is concerned, the reader is deferred to Section 4.6, wherein application 

to the challenging MRI shimming case is considered.  

In the following two subsections, a square domain of side 𝐿𝐿 = 0.76λ𝑏𝑏 is 

considered, discretized into 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 small cells, with 𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑦𝑦 = 80, where 

λ𝑏𝑏 is the wavelength in a homogenous medium with relative permittivity of 53 

and electrical conductivity 0.15. The working frequency is 128MHz. 

As expected, expression (4.6) tuns out to be exact for the case of a single 

control point, i.e. for the focusing problem. More interestingly, the Bessel 

function of zero order comes out to be quite accurate to approximate the spatial 

distribution of the focused field in a neighborhood of the control point even 

in the case of a non-homogeneous scenario. 

In the two subsections which follow the analysis of model (4.6) for the 

cases of two and four control points is discussed.  

Case study 1: two control points 

The scenario under test is depicted in Figure 4.3(a). The control points 

are located at a distance 𝑑𝑑 = 0.27𝜆𝜆𝑏𝑏. The midpoint is at (0,0) m. The ROI is 

represented by the yellow ellipse in Figure 4.3(a). 
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According to step 3 in Figure 4.2, M=20 values of  𝜙𝜙1 have been 

uniformly sampled in [0,2𝜋𝜋[. The spatial distributions of the auxiliary field 

intensity obtained by considering 11 values of 𝜙𝜙1 evenly spaced in [0,𝜋𝜋] are 

shown in Figure 4.3. The same results are obtained in case of 𝜙𝜙1 ∈ ]𝜋𝜋, 2𝜋𝜋[. 

Note that, by virtue of the simple analytical form of (4.6), its evaluation for 

different 𝜙𝜙1 values is immediate. As expected, when 𝜙𝜙1 approaches 𝜋𝜋 a 

disruptive interference arises between the two Bessel functions. Instead, for 

phase shifts near to 0 (or 2𝜋𝜋), a satisfactory tradeoff between amplitude and 

uniformity is obtained. Note that these results are also in agreement with the 

examples in Figure 4.3 of paper [24].  

In order to evaluate in a systematic way the optimal phase shift 𝜙𝜙1 able 

to both ensure a uniform and intense spatial distribution of the field intensity, 

we consider two quantitative synthetic performance indicators. In particular, 

we consider the average value of the field intensity 𝐹𝐹𝑡𝑡𝑎𝑎 and the relative standard 

deviation of the amplitude (RSD), defined as: 

𝑆𝑆𝐷𝐷𝐷𝐷 =
𝐷𝐷𝑡𝑡𝑑𝑑{|𝐹𝐹|}
𝑚𝑚𝐷𝐷𝐷𝐷𝑛𝑛{|𝐹𝐹|}                                      (4.7) 

being 𝐷𝐷𝑡𝑡𝑑𝑑{∙} and 𝑚𝑚𝐷𝐷𝐷𝐷𝑛𝑛{∙} respectively the standard deviation and the 

mean. Both indicators are evaluated within the ROI. Performance is easily 

evaluated in case of different distances between the control points. In 

particular, in Figures 4.3(m)-(o), we plot the RSD parameter versus the 

reciprocal of 𝐹𝐹𝑡𝑡𝑎𝑎 in case 𝑑𝑑 = 0.26λ𝑏𝑏, 𝑑𝑑 = 0.33λ𝑏𝑏 and 𝑑𝑑 = 0.4λ𝑏𝑏. Note that 

distances higher than 0.5λ𝑏𝑏 are not suitable as they do not allow an accurate 

control of the field intensity.  

According to the proposed procedure, 𝜙𝜙1 ∈ [0,𝜋𝜋/3] are the optimal 

phase shifts leading to an appropriate interference while the ones in proximity 

of 𝜋𝜋 can be discarded. Then, the corresponding field amplitude distributions 

(shown in Figure 4.3) are the ideal ones to be eventually considered within a 

field synthesis optimization procedure.  
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Case study 2: four control points 

The scenario under test is depicted in Figures 4.4(a). The control points 

are located at distances of about 𝑑𝑑02 = 0.42λ𝑏𝑏 and 𝑑𝑑13 = 0.32λ𝑏𝑏. Both 

midpoints are at (0,0) m, while the reference point is the one in (0,0.21λ𝑏𝑏). 

The ROI is represented by the yellow area in Figure 4.4(a).  

According to step 3 in Figure 4.2, in order to explore all the possible 

combinations of phase shifts, M=20 values for each 𝜙𝜙𝑖𝑖 have been uniformly 

sampled in the interval [0,2𝜋𝜋[. Then, the total number of possible 

combinations is 𝑀𝑀𝐿𝐿−1 = 8000.  

The RSD parameter versus the reciprocal of 𝐹𝐹𝑡𝑡𝑎𝑎 is plotted in Figure 

4.4(e). Each circle represents a pair of values (RSD, 1/𝐹𝐹𝑡𝑡𝑎𝑎) corresponding to 

one of the 8000 phase shifts combinations. As in case of two control points, 

convenient combinations exist which corresponds to the circles in the region 

close to the origin of the coordinates system. We consider the region such that 

𝑆𝑆𝐷𝐷𝐷𝐷 ≤ 0.15 and 1/𝐹𝐹𝑡𝑡𝑎𝑎 ≤ 3.8. Then, the number of convenient combinations 

to be eventually considered for the problem at hand is drastically reduced to 

216.  

A combination ensuring a good tradeoff is the combination (0,0,0) and 

the corresponding auxiliary field distribution is shown in Figure 4.4(b). Figure 

4.4(c) shows instead the auxiliary field distribution corresponding to a phase 

shifts combination giving a minimum RSD. Finally, Figure 4.4(d) shows the 

auxiliary field distribution corresponding to a phase shifts combination giving 

a maximum RSD. 
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In the following Section, the effectiveness of the convenient phase shifts 

 
                  (a)                                      (b)                                   (c) 

        
                 (d)                                      (e)                                    (f) 

  
                  (g)                                    (h)                                    (i) 

  
                   (j)                                     (k)                                     (l) 

 
                   (m)                                  (n)                                  (o) 
 
 
 

Figure 4.3: Analysis of the auxiliary field model. CASE STUDY 1. (a) Scenario 
under test. The ROI is the yellow area, while the control points are superimposed as 
black points at distance 𝒅𝒅 = 𝟎𝟎.𝟐𝟐𝟓𝟓𝝀𝝀𝒃𝒃. (b)-(l) Spatial amplitude distributions of the 
auxiliary field model for different values of phase shifts in [𝟎𝟎,𝝅𝝅] for 𝒅𝒅 = 𝟎𝟎.𝟐𝟐𝟓𝟓𝝀𝝀𝒃𝒃. 
RSD versus the reciprocal of 𝑭𝑭𝒕𝒕𝒂𝒂 for (m) 𝒅𝒅 = 𝟎𝟎.𝟐𝟐𝟓𝟓𝝀𝝀𝒃𝒃, (n) 𝒅𝒅 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝝀𝝀𝒃𝒃 and (o) 
𝒅𝒅 = 𝟎𝟎.𝟒𝟒𝝀𝝀𝒃𝒃. Each circle represents a pair of values (RSD, 𝟏𝟏/𝑭𝑭𝒕𝒕𝒂𝒂) corresponding to 
a given phase shift in the interval [𝟎𝟎,𝝅𝝅]. 
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suggested in case of two and four control points by the above analysis based 

on the auxiliary field model (4.6) are tested in the relevant case of MRI 

shimming.  

4.6 Application to MRI Shimming 

A transverse slice has been considered and enclosed within a square 

domain D, discretized as in Section 4.5. In the second phantom, the head has 

been instead modeled as a homogeneous medium with electrical properties set 

equal to the average value of the ones of the brain tissues, that is with relative 

permittivity of 53 and electrical conductivity 0.15. 

Figures 4.5(a)-(b) and 4.5(e)-(f) depict respectively the relative 

permittivity and the electrical conductivity distributions of both scenarios.  

 

 
(a)                                     (b)                                        (c) 

 
                                    (d)                                           (e) 

Figure 4.4: Analysis of the auxiliary field model. CASE STUDY 2. (a) Scenario under 
test. The ROI is the yellow area, while the control points are superimposed as black 
points at distances 𝐝𝐝𝟎𝟎𝟏𝟏 = 𝟎𝟎.𝟒𝟒𝟐𝟐𝟒𝟒𝐛𝐛 and 𝐝𝐝𝟐𝟐𝟑𝟑 = 𝟎𝟎.𝟑𝟑𝟐𝟐𝟒𝟒𝐛𝐛. (b) Spatial amplitude 
distribution of the auxiliary field model in case of good tradeoff between RSD and 
maximum auxiliary field intensity in the ROI. (c) Spatial amplitude distribution of the 
auxiliary field model in case of minimum RSD. (d) Spatial amplitude distribution of 
the auxiliary field model in case of maximum RSD. (e) RSD versus the reciprocal of 
𝐅𝐅𝐚𝐚𝐚𝐚. Each green circle represents a pair of values (RSD, 𝟏𝟏/𝐅𝐅𝐚𝐚𝐚𝐚) corresponding to a 
given combination of phase shifts. The red box delimits the region corresponding to 
the best tradeoff between minimum RSD and maximum 𝑭𝑭𝒕𝒕𝒂𝒂. 
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In order to simulate an MRI scanner, the birdcage structure has been 

schematized as a circular antenna array of radius 0.2𝑚𝑚, in accordance with the 

realistic size of common birdcage coil adopted in clinic and located around the 

head phantom with 16 antennas evenly spaced (see Figure 4.5(j)). Air has been 

assumed to be the background medium. For comparison, the coefficients 𝐼𝐼𝑛𝑛0 

corresponding to the standard design of the birdcage coil configuration have 

been considered. Finally, the considered Larmor frequency is 128 MHz, which 

corresponds to a static field 𝐵𝐵0 = 3𝑇𝑇.  

In Figures 4.5(c) and (d) and 4.5(g) and (h), the spatial distributions of 

the 𝐵𝐵1+ field and the SAR corresponding to the standard coil configuration are 

shown, respectively, for the two head phantoms, while in Figure 4.5(i) the 

magnitude and phase of the standard array excitation coefficients [𝐼𝐼𝑛𝑛0] are 

reported.  

As first step, a single control point located at (0, 0.029 m) has been 

considered and the corresponding focusing problem has been solved. In both 

cases, for the evaluation of the argument of the Bessel function in the field 

approximation (4.6), the average of both the relative permittivity and electrical 

conductivity have been considered, i.e. about 53 and 0.15, respectively. The 

amplitudes and phases of the Bessel function and the actual focused magnetic 

field are shown in Figure 4.6 for both head phantoms. As it can be seen, the 

spatial distribution of 𝐵𝐵1+ can be well approximated in the head support by the 

Bessel function of zero order, which means that consideration of just the first 

term of expansion (4.5) is suitable for understanding expected behaviors in 

term of {𝜙𝜙𝑖𝑖} (and hence {Δ𝜙𝜙𝑖𝑖}). Notably, the auxiliary model (4.6) can still be 

used notwithstanding the inhomogeneity of the scenario.  

Case study 1: two control points 

The control points have been located as in Figure 4.3(a) at 𝑑𝑑 = 0.27𝜆𝜆𝑚𝑚, 

where 𝜆𝜆𝑚𝑚 is the wavelength refers to the mean of the brain electrical properties. 

The chosen ROI is represented by the yellow ellipse in Figure 4.47(a) and .8(a), 

respectively for the homogeneous and realistic head phantoms.  
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In order to check the usefulness of the analysis reported in Section 4.5, 

all the M=20 values of the phase shift Δ𝜙𝜙1 have been considered in the solution 

of problem (4.4). In case of homogeneous head phantoms, the spatial 

distributions of the 𝐵𝐵1+ field corresponding to the first 11 Δ𝜙𝜙1 values are 

shown in Figures 4.7(b)-(l) and 4.8(b)-(l). According to Section 4.5, just a few 

∆𝜙𝜙1 values, evaluated as 𝜙𝜙1 − ∠𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷𝑡𝑡0 ,𝜙𝜙1�, allow to ensure both a uniform 

and maximum spatial distribution of the field intensity. 

To better handle the underlying trade-off, the RSD parameters versus the 

reciprocals of 𝐵𝐵𝑡𝑡𝑎𝑎, i.e. the average value of the 𝐵𝐵1+ intensity, are shown in 

Figures 4.7(m) and 8(m)5. Notably, the same qualitative behavior as in Figure 

4.3(m) is obtained. Then, the proposed off-line analysis of the auxiliary model 

can be assumed to effectively predict the convenient and the non-convenient 

field interferences, even if the biological scenario under test is significantly 

heterogeneous.  

As expected, this procedure gives significant advantages in terms of 

computational complexity, as just 4 CP problems need to be solved by 

exploiting the outcomes of the auxiliary model analysis, whereas the 

 
5 In such graphs, the last 11 explementary angles within ]𝜋𝜋, 2𝜋𝜋[ are also shown as they can 
have slightly different performance due to the heterogeneity of the scenario under test. 
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enumerative solution of problem (4.4) requires the solution of 20 CP problems. 

It is important to note that the time saving is anyway much larger than the 

approximatively one order of magnitude, from 20 to 4 CP problems. In fact, 

some of the original 20 optimization problems and specifically, those 

corresponding to the non-convenient Δ𝜙𝜙1 values are severely ill-conditioned, 

so that their solution can be very slow. Obviously, computational advantages 

are more and more pronounced as M and L increase (see next case) and in 3D 

geometry.   

Please note that the RSD of 𝐵𝐵1+ corresponding to the standard choice 

of the excitations (see [6] ) is 0.33, while by means of the proposed shimming  

(a)                            (b)                           (c)                            (d) 

               (e)                           (f)                            (g)                            (h) 

                
(i)                              (j) 

Figure 4.5: MRI shimming against 2D head phantoms.: relative permittivity (a),(e) 
and electrical conductivity (b),(f) maps. Spatial distributions of the amplitude of the 
magnetic field 𝑩𝑩𝟏𝟏

+ [T] (c),(g) and SAR [W/kg] (d),(h) corresponding to a standard 
coil configuration. Amplitude and phase (i) of the standard excitation coefficients. (j) 
Positions of the antennas of the circular array schematizing the birdcage coil. 
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procedure, the optimal phase shift can ensure an RSD much lower than 

0.1. This means that a more uniform 𝐵𝐵1+ field has been now obtained respect 

to the standard distribution. This final RSD is the same as the one obtained by 

performing an enumerative optimization (results in[5] of Publication List).  

  

               (a)                            (b)                             (c)                            (d) 
     

               (e)                           (f)                              (g)                            (h) 
 

               (i)                            (j)                              (k)                            (l) 
 

              (m)                           (n)                             (o)                           (p) 

Figure 4.6: MRI shimming against 2D head phantoms. (a)-(h) Homogeneous and (i)-
(p) realistic head phantoms. Amplitudes distributions of (a),(i) the Bessel function of 
zero order and (b),(j) the field focused via problem (5) in case of a single control point 
located in (0, 0.029 m). Corresponding cut views along (c),(k) x-axis at y=0.029 and 
(d),(l) y-axis at x=0 (zoomed in on the brain support). Phase distributions of (e),(m) 
the Bessel function of zero order and (f),(n) the field focused via problem (5). 
Corresponding cut views along (g),(o) x-axis at y=0.029 and (h),(p) y-axis at x=0 
(zoomed in on the brain support). The continuous lines correspond to the Bessel 
function of zero order, while the dashed lines correspond to the focused field. 
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The optimal phase shift for the considered choice of control points 

correspond to Δ𝜙𝜙1~0 (see Figures 4.7 and 8) as it also ensures the best field 

amplitude distribution. Figures 4.7(n) and 8(n) give the corresponding optimal 

amplitudes and phase of the complex excitations 𝐼𝐼𝑛𝑛 for both the homogenous 
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and the realistic head phantoms. Note that the procedure also allows a 

 
(a)                                   (b)                                    (c) 

 
(d)                                   (e)                                    (f) 

 
                  (g)                                      (h)                                    (i) 

 
                   (j)                                     (k)                                     (l) 

 
                    (m)                                      (n)                                  (o) 

Figure 4.7: MRI shimming against 2D head phantoms. CASE STUDY 1: 
Homogeneous head phantom. The ROI is the yellow area (a), while the control 
points are superimposed as black points. (b)-(l) Spatial amplitude distributions of the 
magnetic field 𝑩𝑩𝟏𝟏

+ [T] for different value of phase shifts in [𝟎𝟎,𝝅𝝅]. (m) RSD versus 
the reciprocal of 𝑩𝑩𝒕𝒕𝒂𝒂 [T]. Each circle represents a pair of values (RSD, 𝟏𝟏/𝑩𝑩𝒕𝒕𝒂𝒂) 
corresponding to a given phase shift. The different colors correspond to a value of 
𝚫𝚫𝝓𝝓𝟏𝟏. (n) Amplitude and phase of the optimal excitation coefficients and (o) SAR 
[W/kg] spatial distribution corresponding to the optimal 𝚫𝚫𝝓𝝓𝟏𝟏. 
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satisfactory control of SAR levels into the ROI, as shown in Figures 4.7(o) and 

 
(a)                                     (b)                                      (c) 

 
                  (d)                                        (e)                                      (f) 

 
                  (g)                                        (h)                                       (i) 

 
                 (j)                                          (k)                                       (l) 

 
                   (m)                                          (n)                                   (o) 

Figure 4.8: MRI shimming against 2D head phantoms. CASE STUDY 1: Realistic 
head phantom. The ROI is the yellow area (a), while the control points are 
superimposed as black points. (b)-(l) Spatial amplitude distributions of the magnetic 
field 𝑩𝑩𝟏𝟏

+ [T] for different value of phase shifts in [𝟎𝟎,𝝅𝝅]. (m) RSD versus the reciprocal 
of 𝑩𝑩𝒕𝒕𝒂𝒂 [T]. Each circle represents a pair of values (RSD, 𝟏𝟏/𝑩𝑩𝒕𝒕𝒂𝒂) corresponding to a 
given phase shift. The different colors correspond to a value of 𝚫𝚫𝝓𝝓𝟏𝟏. (n) Amplitude 
and phase of the optimal excitation coefficients and (o) SAR [W/kg] spatial distribution 
corresponding to the optimal 𝚫𝚫𝝓𝝓𝟏𝟏. 
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8(o).  

Case study 2: four control points 

The control points have been located as in Figure 4.4(a) at a distance of 

𝑑𝑑02 = 0.42λ𝑚𝑚 and 𝑑𝑑13 = 0.32λ𝑚𝑚 (see Figures 4.9(a) and 10(a)). Both 

midpoints are at (0,0) m. As a consequence, the already available analysis of 

subsection 4.5 can be applied. If all the possible combinations were considered 

for problem (4.4), with M=20 values for each 𝜙𝜙𝑖𝑖 , 8000 convex problems should 

be solved, which means a very expensive and time-consuming procedure. 

However, results in Subsection have shown that some combinations are not 

convenient for the application at hand. Then, in the following, we have 

considered only those combinations that ensure a good compromise between 

uniform spatial distribution and maximum of the field, that are the 216 

combinations in the region 𝑆𝑆𝐷𝐷𝐷𝐷 ≤ 0.15 and 1/𝐹𝐹𝑡𝑡𝑎𝑎 ≤ 3.8 in Figure 4.4(e).  
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The RSD parameters versus the reciprocals of 𝐵𝐵𝑡𝑡𝑎𝑎 is shown in Figures 

4.9(e) and 10(e). The optimal phase shift combinations are Δ𝜙𝜙1 = −0.18,

Δ𝜙𝜙2 = −0.18 and Δ𝜙𝜙3 = −0.18 and Δ𝜙𝜙1 = −0.263, Δ𝜙𝜙2 = 5.71 and 

    
(a)                                                    (b) 

        
                               (c)                                                      (d)          

 
                                (e)                                                        (f) 
            

Figure 4.9: MRI shimming against 2D head phantoms. CASE STUDY 2: 
Homogeneous head phantom. The ROI is the yellow area (a), while the control 
points are superimposed as black points. (b) Spatial amplitude distribution of the 
magnetic field 𝑩𝑩𝟏𝟏

+distributions [T] in case of good tradeoff between RSD and 
maximum field intensity in the ROI. (c) Spatial distribution of the field intensity 
distributions in case of minimum RSD. (d) SAR [W/kg] spatial distribution 
corresponding to (b). (e) RSD versus the reciprocal of 𝑩𝑩𝒕𝒕𝒂𝒂 [T]. Each green circle 
represents a pair of values (RSD, 𝟏𝟏/𝑩𝑩𝒕𝒕𝒂𝒂) corresponding to a given combination of 
phase shifts. (f) Amplitude and phase of the optimal excitation coefficients 
corresponding to (b). 
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Δ𝜙𝜙3 = −0.263 respectively for the homogeneous and realistic phantoms. 

Indeed, they ensure the best field distributions. The optimal field distributions 

are shown in Figures 4.9(b) and 10(b), while the ones corresponding to the 

minimum RSD are reported in Figures 4.9(c) and 10(c). Note that the RSD of 

𝐵𝐵1+ evaluated for the standard choice of excitations [20] is 0.34, while, by means 

of the proposed shimming procedure, the RSD is lower than 0.08. This final 

RSD is the same as to the one obtained by performing an enumerative 

optimization as in [24], so that also in this case the achieved time saving does 

not imply a worsening of performances.  

Figures 4.9(f) and 10(f) give the corresponding optimal amplitudes and 

phases of the complex excitations 𝐼𝐼𝑛𝑛 of the 𝑁𝑁 conductors, while the reached 

SAR levels into the brain are shown in Figures 4.9(d) and 10(d).  

The above results, and other cases not shown herein for the sake of 

brevity, demonstrate the feasibility and the accuracy of the proposed auxiliary 

model in predicting the field interferences within the ROI and the optimal 

phase shifts combinations to be used in the solution of the original problem 

(4.4). Moreover, the off-line analysis of the auxiliary model (4.6) has allowed to 

obtain the optimal 𝐼𝐼𝑛𝑛 without the solution of a very high number of CP 

problems and, thus, with a reduced computational burden related to the multi-

control points based approaches. As a matter of fact, in case of four control points 

 
 # CP problems Computational time 

L 2 4 2 4 

proposed 
approach 4 216 ~3 min ~5 h 

enumerative 
approach  20 8000 ~26 min ~570 h 

 

Table 4: Advantages in term of computational burder: number of CP problems to 
be solved and computational time. 
 



Chapter-4, Optimized MRI RF-Shimming via field amplitude shaping 
 

98 

we have a reduction factor of about 40 of the number of CP problems, resulting 

in an even larger factor in terms of overall computational time. In order to 

emphasize such reduction, two metrics are adopted and reported in Table 4, 

that are the numbers of involved CP problems and the computational time for 

         
                                  (a)                                                     (b) 

        
  (c)                                                       (d)   

         
                                 (e)                                                           (f) 

Figure 4.10: MRI shimming against 2D head phantoms. CASE STUDY 2: Realistic 
head phantom. The ROI is the yellow area (a), while the control points are 
superimposed as black points. (b) Spatial amplitude distribution of the magnetic field 
𝑩𝑩𝟏𝟏
+distributions [T] in case of good tradeoff between RSD and maximum field 

intensity in the ROI. (c) Spatial distribution of the field intensity distributions in case 
of minimum RSD. (d) SAR [W/kg] spatial distribution corresponding to (b). (e) 
RSD versus the reciprocal of 𝑩𝑩𝒕𝒕𝒂𝒂 [T]. Each green circle represents a pair of values 
(RSD, 𝟏𝟏/𝑩𝑩𝒕𝒕𝒂𝒂) corresponding to a given combination of phase shifts. (f) Amplitude 
and phase of the optimal excitation coefficients corresponding to (b). 
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the two cases wherein the proposed auxiliary model or the standard 

enumerative strategy in [23] [24] are adopted, respectively. 

In summary, the numerical analysis against a realistic head phantom has 

outlined that the proposed auxiliary model can be effective also in case of non-

homogenous medium. Moreover, consideration of a set of optimal phase shifts 

combinations based on the proposed auxiliary model, rather than selecting a 

unique optimal phase shift combination, has to be preferred especially in case 

of a number of control points higher than 2. In fact, such a choice allows to 

compensate possible small variations of the field distribution due to the 

heterogeneous scenario under test, and to better tailor the results to the 

application at hand. 

 

 



 

 



 

 

5 Conclusion and possible future 
development  

In this Thesis, new methodologies for electromagnetic recovery and 

synthesis problems applied to Magnetic Resonance Imaging have been 

presented.  

The issue of recovering EPs from a given electric or magnetic intensities 

of an electromagnetic field is crucial in many biomedical applications (i.e. 

dosimetry, hyperthermia treatment, diagnosis and so on). The most used 

strategies require the solution of an inverse scattering problem. To address such 

a kind of problem, it is important to develop proper inversion strategies, able 

to tackle in a reliable way the underlying inverse scattering problem. In this 

respect, in this thesis new inversion methods, based on learning strategies, for 

the characterization of the dielectric properties of tissues have been developed. 

On the other hand, the optimal synthesis of array antennas warranted 

attention in fields that were concerned with human health and safety, and also 

in RF Shimming. In this case, one needs to develop a shaping strategy which 

can ensure some uniformity of the field intensity within the anatomical region 

to be investigated, while keeping under control the SAR level. In this respect, 

a new field shaping strategy has been proposed for active RF shimming, which 

exploits some control points in the ROI and assume as degree of freedom the 

phase shifts among the field in such points. Moreover, this procedure has been 

further optimized through the development and the application of an auxiliary 

field model for the smart choice of the more useful fields interferences to be 

exploited in the shaping problem. 

More in detail, the contributions of the Thesis can be summarized as it 

follows. 

1) the problem of retrieving the EPs starting from the measurements of 

the RF field collected inside an MRI scanner has been treated as an inverse 

scattering problem (ISP). Generally, ISPs can be addressed using either physics-

based iterative techniques or learning-based approaches. The first category, 
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which is the mostly used, is typically computationally expensive due to its 

iterative nature. On the other hand, learning approaches provide a real-time 

solution, although incorporating domain knowledge is difficult. In this respect, 

in this thesis two different approaches able to address this issue have been 

presented. The first proposed technique exploits the Supervised Descent 

Method (SDM), the second one instead is based on a cascade of multi-layer 

CNNs to perform the model update. Unlike most of the learning approaches 

that lack physical information provided by the forward model, the proposed 

strategies can be classified as physics-assisted learning techniques. Both 

techniques aim at making the EPs reconstruction process as reliable as possible, 

alleviating the problem of ‘local minima’ as well as by reducing the 

computational time need for all the process. However, these methods could 

have issues with generalization, therefore the training datasets need to be 

carefully designed according to the task at hand. 

2) the array antenna synthesis problem for RF Shimming has been 

addressed as a field amplitude shaping, which consists in determining the 

optimal set of complex excitations of an arbitrary fixed-geometry arrays 

generating the desired field distribution. By taking advantage from ̀ mt-FOCO', 

in the Thesis, a novel synthesis procedure for active RF shimming has been 

proposed, able to take contemporaneously into account all constraints 

regarding polarization, homogeneity and strength of the B1 Field and to 

enforce SAR limits into the desired treated region. Furthermore, a simple 

auxiliary and physics inspired model, which allows a relatively simple physical 

understanding of convenient and non-convenient fields interferences to be 

exploited in the shaping problem, and hence a drastic reduction of the 

computational burden related to its solution via optimization procedure has 

been proposed. However, this model does not exploit all the available degrees 

of freedom, f.i. the amplitude differences between the Bessel beams. 

Both activities have been particularized and assessed for the case of a 

realistic 2D brain models. 

Moreover, they allow to devise a series of possible developments. 
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First, in order to improve the learning capabilities of the proposed 

3,CNNs-EPT, a larger training dataset with more heterogeneous data can be 

used. However, this could have the disadvantage of increasing the cost and time 

required in the training phase. A further step forward will be to validate the 

procedure in case of a 3D scenario and in case of realistic data. CNNs are not 

the only possible architecture that can be used to resolve ISPs. RNNs are other 

common structures often used. The real advantage of these kind of networks 

is that they have a memory state, which allows it to be used in iterative 

procedures. In this regard, a future work involves the use of an RNN that 

mimics the iterative process underlying the proposed 3,CNNs-EPT. 

As far as the second contributions, the physics inspired model, proposed 

in Chapter 4, allows to understand the possible spatial field distributions by 

analyzing the interferences between canonical solutions for the induced total 

field in the ROI, that are zero order Bessel functions. Such analysis allows to 

discard the non-convenient interferences depending on the application at hand. 

The usefulness of the proposed auxiliary model has been tested in the case of 

MRI shimming, but it also relevant in several applications. In fact, future work 

will be devoted at testing the procedure in applications, such as hyperthermia 

treatment planning and array synthesis for telecommunications, as well as to 

cases where the overall field intensity rather than the amplitude of a single 

component is of interest. Furthermore, the extension of the rationale 

underlying the proposed auxiliary model will be addressed in the more 

challenging 3D vectorial scenario, wherein its features would become even 

more attractive. Another possible investigation that needs attention is related 

to the fact that adopted multi control points-based approaches do not exploit 

all the available degrees of freedom, as they only consider different phase shifts 

but assume the same amplitudes among the single field patterns. In this respect, 

the idea of combining focused patterns by means of complex coefficients is in 

progress. This means that amplitude differences are also admitted in the linear 

combination. In such a way all the available degrees of freedom are exploited. 

This circumstance can play a key role for field intensity shaping, especially in 
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case of lossy and highly heterogeneous scenarios as the ones considered in the 

Thesis 

 



 

 

 

Appendix A 
This Appendix is aimed at giving some electromagnetic concepts and 

specially some basics about the inverse scattering problem and the related most 

difficult challenges. 

A.1 Inverse scattering problems: basics 
The electromagnetic scattering problem is a phenomenon that occurs when an 

electromagnetic field, propagating within a certain region of space, encounters 

obstacles generating a diffuse field [14] as we can see in Figure A.1: 

 

Therefore, the field radiated by the sources propagates in space, 

encounters obstacles and undergoes perturbations. The field that will be 

created in the region of investigation will therefore be given by the sum of two 

contributions, the first is an unperturbed field given by the superposition of the 

incident field present in the region of space in which we have no obstacles, the 

second is a field perturbed, which takes the name of field scattered, due to the 

presence of these obstacles. The scattered field will depend on the object itself 

which is its source. This is because when the incident field meets the obstacles 

it generates currents on them, called induced currents, which become sources of 

another field which is the scattered field, whose properties strictly depend on the 

electromagnetic characteristics of the scatterers.  

Figure A.1: Sketch of the scattering phenomenon 
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This electromagnetic scattering problem has two sub-problems, in fact 

an inverse problem  [14] presupposes the existence of another problem (which is 

called direct problem) to which the inverse problem is closely related. Therefore, 

it can be said that two problems are one the inverse of the other when the 

formulation of one necessarily involves the other. 

The direct problem, from a physical process, can be described as follows: 

given the model k and the effect y, trace the cause x; conversely the inverse problem 

consists in: assigning the cause x and the effect y, going back and calculating the model k. 

So, if you want to predict the effect of a known cause then you can say 

that you want to solve a direct problem. Conversely, going back to the cause 

from the knowledge of the effect, or determining the value of certain physical 

parameters of the cause, are defined as inverse problems. In principle, by 

sending known incident fields and by measuring the fields scattered by a generic 

obstacle(s) present in the region of interest (ROI), it is possible to obtain 

electromagnetic information and not on this obstacle. The purpose of the 

inverse problem is, in fact, to estimate the electromagnetic properties (electrical 

conductivity 𝜎𝜎, magnetic permeability µ and dielectric permittivity ɛ) of a 

complex material starting from the measurements of the scattered field by it. 

In the literature, the inverse problem is the most fascinated one because 

successful solution approaches to such kind of approaches can be helpful in 

very many different applications such as biomedical imaging, subsurface 

prospecting and non-destructive testing [9] [10] Furthermore, due to its non-

linearity and ill-posedness, it is very challenging, and a lot of work has been 

done from many researchers and scientists in developing more and more 

efficient numerical methods and computational techniques.  

The mathematical formulation of the inverse scattering problem is given 

in the Subsection which follows. 

A.2 Problem statement  
Let us consider the two-dimensional scalar (TM polarized fields) inverse 

scattering problem, with a bounded, simply connected, inhomogeneous object 

domain D in an unbounded homogeneous background medium (𝑗𝑗𝑏𝑏 ,𝜎𝜎𝑏𝑏 , 𝑗𝑗0). 

The investigated domain D, delimited by the Γ curve, embeds the transverse 
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section Σ of the scatterer under examination (𝑗𝑗𝑠𝑠,𝜎𝜎𝑠𝑠, 𝑗𝑗0). Let the z axis be the 

direction of invariance of the object(s). 

We refer to the so-called multi-view multi-static configuration where for 

each antenna that acts as a transmitter, all the others act as receivers, and all 

antennas alternately act as a transmitter.  

The equations governing the scattering phenomenon for the geometry at hand 

for the generic 𝐹𝐹-th incident field can be expressed in an integral form as it 

follows[8]    

  

𝑢𝑢𝑡𝑡𝑜𝑜𝑡𝑡�𝐷𝐷� =  𝑢𝑢𝑖𝑖𝑛𝑛𝑖𝑖�𝐷𝐷�  + 𝑘𝑘𝑏𝑏2 �𝐺𝐺�𝐷𝐷, 𝐷𝐷′ �𝑊𝑊�𝐷𝐷′�𝑑𝑑𝐷𝐷′ 
𝐷𝐷

≜ 

≜ 𝑢𝑢𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑆𝑆𝐷𝐷�𝑊𝑊�𝐷𝐷′��           con 𝐷𝐷 ∈ D (A. 1)              

 

𝑢𝑢𝑠𝑠� 𝐷𝐷� = 𝑢𝑢𝑡𝑡𝑜𝑜𝑡𝑡�𝐷𝐷� − 𝑢𝑢𝑖𝑖𝑛𝑛𝑖𝑖�𝐷𝐷� = 

=  𝑘𝑘𝑏𝑏2 ∫ 𝐺𝐺�𝐷𝐷, 𝐷𝐷′ �𝑊𝑊�𝐷𝐷′�𝑑𝑑𝐷𝐷′   ≜ 𝑆𝑆Γ𝐷𝐷 �𝑊𝑊�𝐷𝐷′��   con  𝐷𝐷 ∈ Γ (A. 2)     

where: 

 𝑢𝑢𝑠𝑠�𝐷𝐷� is the scattered electric field outside the ROI;  

 𝑢𝑢𝑡𝑡𝑜𝑜𝑡𝑡(𝐷𝐷)is the total electric field in the whole space sum of the incident 

field 𝑢𝑢𝑖𝑖𝑛𝑛𝑖𝑖 i.e. the field in the absence of the scatterer, and 𝑢𝑢𝑠𝑠 is the 

scattered field; 

 𝐺𝐺�𝐷𝐷, 𝐷𝐷′� is the electric current to electric field Green's function 

according to [58]  

 𝑆𝑆𝐷𝐷 e  𝑆𝑆Γ are two integral operator which allow to obtain the scattered 

electric field respectively in D and in Γ; 

 𝑘𝑘𝑏𝑏  =  𝜔𝜔�(𝑗𝑗𝑒𝑒𝑒𝑒𝑏𝑏 𝑗𝑗0)  is the background wave number. 

Note that similar equations can be derived for the magnetic case. 

Furthermore, 𝑊𝑊�𝐷𝐷′� = 𝜒𝜒(𝐷𝐷)𝑢𝑢𝑡𝑡𝑜𝑜𝑡𝑡(𝐷𝐷′) is the contrast source in which 

𝜒𝜒(𝐷𝐷) is the so-called contrast function, which is strictly related to the scatterer 

properties, at the angular frequency 𝜔𝜔 =  2𝜋𝜋𝑓𝑓, and is defined as: 
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χ(r) =  
𝑗𝑗𝑒𝑒𝑒𝑒𝑠𝑠(𝐷𝐷)
𝑗𝑗𝑒𝑒𝑒𝑒𝑏𝑏

− 1                                           (𝑆𝑆. 3) 

where the subscript "eq" indicates that we refer to equivalent complex 

permittivity (i.e. including conductivity losses). Expliciting these losses the 

equations will be the following form: 

χ(r) =    
𝜀𝜀�𝑟𝑟�−𝑗𝑗𝜎𝜎𝑠𝑠�𝑟𝑟�𝜔𝜔𝜀𝜀0

𝜀𝜀𝑏𝑏−
𝑗𝑗𝜎𝜎𝑏𝑏
𝜔𝜔𝜀𝜀0 

                                              (A.4)  

 The two equations are named state equation and data equation. 

The inverse problem, as it was formulated is ill-posed due to the 

properties of the radiation operator 𝑆𝑆Γ ; while the non-linearity is an intrinsic 

problem in the formulation of the problem, in particular it is inherent in the 

state equation, due to the fact that both the contrast function and the induced 

currents/total field are unknown of the problem. 

 

A.3 Ill-posedness and Non-linearity 
The mathematical nature of the direct and inverse problems is 

profoundly different: the direct problem has certain good properties that 

correspond to the definition of a well-posed and linear problem, while the inverse 

scattering problem is usually non-linear and ill-posed. These two completely 

opposite natures imply an analysis with different degrees of difficulty. 

Ill-posedness 

A problem is said to be well-posed according to Hadamard [47] if: 

 a solution exists; 

 the solution is unique; 

 the solution depends continuously on the data of the problem. 

If even one of the above conditions is violated, the problem is said to be 

ill-posed. It makes no sense to look for a solution of an ill-posed problem (as it 

stands). In fact, if a solution does not exist, it makes no sense to look for it, and 

if the retrieved solution is not unique, it cannot be considered reliable.  

Furthermore, in the direct problem, since sufficient information is 

provided to be able to a well-defined and stable procedure that leads to a single 
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solution of the problem, the crucial aspect lies in determining the solution in a 

computationally efficient way.  

On the other hand, in the inverse problem, it resides in the identification 

of methods capable of providing a solution of the problem which is, as in the 

previous case, stable, even if approximate. The most demanding condition, in 

fact, is the stability. In this regard, a further concept closely linked is the ill-

conditioning. A problem is said to be ill-conditioned when small variations on data 

can produce large variations in the solution of the problem. Because of the 

inherent instability, the solution of an ill-conditioned problem may not have a 

physical meaning in case of errors on data, that are simply unavoidable when a 

measurement process is in order. 

It is worth to note that whenever the problem is ill-posed and/or ill-

conditioned, one needs some regularization of the problem. Such a 

regularization occurs by funding a generalized solution to the problem that is 

usually defined as the optimum of some ad-hoc introduced cost functional. 

In a wide variety of application domains, one of the most important tasks 

is to identify problem-solving strategies that make it possible to properly 

address the issue at hand. 

The general approach for regularizing an ill-posed problem is to set an 

appropriate constraint on the solution. During the years authors have 

introduced several regularization techniques. The widely adopted are the 

techniques that aim to find the minimum energy solution [83] [84] those that 

aim at edges preserving and non-smooth solutions [85]  and those that exploit 

the concept of sparsity in signals [86]  

As far as the first category, a possible and widely adopted regularization 

techniques is the Tikhonov one [84] which introduces an additive term properly 

weighted to the functional to be minimized, which leads the procedure towards 

the minimum energy solution: 

𝜙𝜙(𝜕𝜕) = 𝜙𝜙(𝜕𝜕) + 𝑐𝑐|𝜕𝜕|2                                             (𝑆𝑆. 5) 

wherein 𝑐𝑐 is the regularization parameters or Tikhonov parameter. 

In case of iterative methods, such a regularization is performed at each 

iteration, and the most trivial task is the choice of the weights which depends 

on the strength of the regularization.  
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Most common, is also the adoption of the multiplicative regularization, 

in which the functional to be minimizing is regularized by means of a 

multiplicative factor, as follows: 

𝜙𝜙(𝜕𝜕) = 𝜙𝜙(𝜕𝜕)𝑀𝑀(𝜕𝜕)                                          (𝑆𝑆. 6) 

wherein 𝑀𝑀(𝜕𝜕) is calculated as the L2-norm total variation of the 

unknown contrast. 

Another possible regularization strategy is the regularization by 

compressive sensing (CS) [86] . The starting point of CS-based techniques is to 

consider that many physical signals are intrinsically or extrinsically sparse and 

can be represented by few nonzero expansion coefficients. In this respect, these 

techniques aim for an approximation solution 𝜕𝜕 of a linear system 𝜕𝜕 = 𝑆𝑆𝜕𝜕 with 

the fewest nonzero terms. If the acquisition technique (i.e., input/output 

transformation matrix A) meets working conditions, a high-dimensional signal 

can be obtained from a small set of measurements using deterministic/Bayesian 

search strategies. 

It is empirically shown that, according to the Compressive Sensing 

theory, the solution can be obtained by solving the following convex 

optimization problem: 

min‖𝜕𝜕‖𝑖𝑖1                     𝐷𝐷𝑢𝑢𝜆𝜆𝑗𝑗𝐷𝐷𝑐𝑐𝑡𝑡 𝑡𝑡𝑛𝑛            ‖𝜕𝜕 − 𝑆𝑆𝜕𝜕‖𝑖𝑖2                (𝑆𝑆. 7)   

In fact, if the vector 𝜕𝜕 is sufficiently sparse or has a certain number of 

zeros whose location is unknown, it is shown that for this particular situation, 

the minimization of the norm 𝑙𝑙1 is more suitable for the solution of an 

indeterminate system of equations. 

Due to the difficulty in tackling the ill-posedness and non-linearity of the 

inverse scattering problem different solution methods have been proposed in 

the literature. A common feature for any inversion approach is the requirement 

to be fast, to have a low computational burden and to provide reliable 

reconstructions with as minor as possible priori information on the physical or 

geometrical properties of the unknown scenario.  



A.3 Ill-posedness and Non-linearity 

 

111 

Non-linearity 

As far as the non-linearity of the inverse scattering problem, it is related 

to the dependence of 𝑊𝑊 or 𝑢𝑢𝑡𝑡𝑜𝑜𝑡𝑡 on the unknown contrast function 𝜒𝜒 [14] [46]  

A generalized solution of inverse scattering is usually solved by seeking the 

global minimum of a suitable functional which takes into account both state 

equation and data equation. As the initial problem is non-linear, the cost 

functional to be (globally) minimized is non-quadratic, so that it may have many 

local minima (Figure A.2) which are ‘false solutions’ of the problem [48]   

 

The more the problem differs from the linear one, the higher the 

possibility of incurring in a local minimum. A possible key to avoid the 

occurrence of false solutions is to have a sufficiently large ratio amongst the 

number of independent information and number of unknowns. Unfortunately, 

there are only a few degrees of freedom that can be exploited  [48] , hence the 

number of independent data is limited. 

In this respect, to quantify the Degree of Non-Linearity (DNL) it is 

reasonable to think in terms of the norm of the operator 𝜒𝜒𝑆𝑆𝐷𝐷 . In fact, if this 

norm is lower than 1, the inverse operator formally solving eq. (A.1) can be 

expanded into a Neumann series: 

 

)
Local minima

Global minimum

Figure A.2: Sketch of a non-quadratic cost functional 
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(1 − 𝑆𝑆𝐷𝐷𝜒𝜒)−1 = [𝐼𝐼 + 𝑆𝑆𝐷𝐷𝜒𝜒 + (𝑆𝑆𝐷𝐷𝜒𝜒)2 + ⋯+ (𝑆𝑆𝐷𝐷𝜒𝜒)𝑛𝑛+. . ]  (𝑆𝑆. 8) 

By evaluating the norm of 𝜒𝜒𝑆𝑆𝐷𝐷 one can also understand what series 

terms must to be adopted in order to achieve a given approximation accuracy. 

Moreover, one can understand that the overall DNL, and hence the complexity 

and difficulty of the inverse scattering problem at hand, increases with the norm 

of the operator 𝜒𝜒𝑆𝑆𝐷𝐷 .   

The solution methods proposed in literature tackling the non-linearity, 

can be grouped into three main classes: 

 non-linear optimization methods, through which the solution is obtained 

iteratively without any approximation [43] [44] [45]  and aims at 

retrieving both geometrical and electromagnetic properties of the 

targets; 

 qualitative methods, which do not identify the electromagnetic 

characteristics of the scatterer, but limit themselves to identifying its 

"support", therefore its position, shape and size [24] [72] ; 

 approximated methods, which solve the problem by adopting specific 

approximations in the mathematical model and are valid only under 

certain assumptions [47] . 

The choice of a method rather than another one depends strictly on the 

problem one must dealt with. In particular, it depends on the final goal (i.e. to 

detect a target into a homogeneous background, to retrieve the electromagnetic 

properties of an object and so on) and also from the information at hand 

(position, dimension and so on). 

 

Non-linear optimization methods 

They aim at retrieving the contrast function 𝜒𝜒 by directly solving the non-

linear equation A.1 (see Section A.2). Typically, such a task is pursued by means 

of optimization procedures, through the minimization of a cost functional. One 

possible solution is represented by global optimization approaches (i.e. contrast 

source inversion method[43] [44] [45] ), which can reach the global minimum 

of the cost functional but such kind of approach is not suitable in case of a very 
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large number of unknows, as usually occurs in medical imaging.  Another 

problem is related to the fact that the solution of these methods is closely linked 

to the choice of starting point for the procedure. Due to the non-linearity of 

the problem, the minimization procedure can be trapped in local minimum 

(which are the false solutions), and this would mean choosing a local solution 

that could be very far from the global one. This becomes more effective if the 

starting guess is located in a basin of attraction different from that in which the 

actual solution is found. 

These types of methods also fall into the category of quantitative 

methods because they aim to reconstruct the morphological and 

electromagnetic properties of the scatterer objects. 

Qualitative methods 

Qualitative methods, unlike the methods previously described, allow to 

retrieve only some parameters, such as the shape and location of possible 

unknown object and so they are useful in those applications in which one is 

not interested in the electromagnetic characteristics of the target. All the 

qualitative approaches have the advantage to solve an auxiliary linear 

optimization procedure and for this reason, they are more easy to implement 

and more computationally efficient compare to the quantitative ones. 

Furthermore, all ‘qualitative’ information gained by one of qualitative 

method can be exploited, in order to get a preliminary understanding of shape 

and/or of other characteristics. Such an understanding can be used to get a 

good starting point, or even to reduce the space of search for quantitative 

procedures. Examples of qualitative approaches are the Time reversal based 

methods[24], [72]  and the Linear Sampling Methods[87].  

Approximated methods 

This category includes all methods in which some approximations are 

adopted with the aim of reducing the degree of non-linearity of the problem. 

Among the methods of linearization by approximation, the Born method [47] 

is certainly one of the best known. The Born approximation, in particular of 

the first order, is applicable to objects whose dimension is sufficiently small 

respect to the wavelength λ and whose electrical properties are very similar to 
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those of hosted medium. From an analytical point of view, this means 

approximating the total internal field with the incident field, denying the 

presence of the scatterer. 

Objects with these characteristics are called "weak scatterers". The use of 

these kind of scatterers allows to turn the problem into a linear (but ill-posed) 

problem easier to solve. On the other hand, approximated methods can be 

applied only in some conditions and require strong a priori information of the 

investigated scenario. 



 

 

Appendix B 
This Appendix is aimed at giving some concepts and specially some 

basics about the artificial neural network. 

B.1 Artificial neural networks: basics 
Artificial neural networks are information-processing systems whose 

function is modelled like that of biological nervous systems. A neural network 

is composed of numerous basic processing units interconnected in various 

ways. Some of these units receive information from the environment, while 

others emit replies to the environment, and yet others communicate exclusively 

with other network units. The first group is classified as input units, the second 

as output units, and the third as hidden units [10]. Each of these units is 

designed to simulate a neuron or a group of neurons; hence, they are incorrectly 

classified as neurons within biological neural networks. In addition, each of 

these units conducts a relatively straightforward operation, consisting of 

activating itself if the overall quantity of signal it receives exceeds its activation 

threshold. If a unit becomes active, it produces a signal that travels over its 

associated units' communication channels [88] [89] Each connecting point then 

functions as a filter, changing the incoming signal into either an excitatory or 

an inhibitory signal. The connection points mimick the biological synapses 

from which they also derive their name. In fact, their primary function is to 

"weigh" the intensity of the transmitted signals, hence their designation as 

synaptic weights or, more generally, as lost synaptic weights.  

The scheme of a simple neural network is depicted in Figure B.1. As can 

be seen from the Figure C.1, each node can receive signals from several other 

nodes, each of which is weighted by the appropriate synaptic connection. 

McCulloch and Pitts were the first researchers to study such a kind of 

possibility, and the first who also proved that a group of these networked 

components is able of carrying out any general arithmetic and logical operation. 

When an external stimulus is applied to the input neurons of the neural 

network, the signals travel in parallel along the interconnections through the 

internal nodes to the output nodes, whose activation represents the response 

of the neural network. Additionally, each node only processes local 
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information, which means that it is only active in accordance with the data it 

gets through its input connections and is unaware of the operations carried out 

by other nodes to which  it does not connected. The layout of the connections 

and the values of the artificial synapses (weights) substantially control the 

behaviour and reaction of the network, while each node is supplied with 

auxiliary memory boxes. For this, the short-term memory of the network is 

defined as the momentary activation state of the network nodes in response to 

an incoming stimulus. The long-term memory of the network is represented by 

the synapse. It should also be noted that a neural network learns to provide the 

right responses based on the input it receives by changing the weight values in 

accordance with diffenent learning rules. Usually the learning phase of the 

network is gradual and requires a huge number of examples. 

Artificial neural networks are useful in many research fields and for 

several applications, including inverse problem [14] [19] The reason for their 

massive use can be found in the advantages that the use of these networks 

entails among them [88] [89] : 

• Robustness, which refers to a neural network's resistance to noise and 

ability to provide us the right response even when noise is added to the input. 

• Flexibility, because a neural network learns the unique qualities of an 

application domain via experience, it may be employed for a variety of tasks. 

• Generalization, the ability of a neural network trained on a small set 

of examples to respond appropriately to inputs that have never been seen 

before. 

 

 

B.2 Tunable network hyperparameters 
 

There are several parameters that come into play in training a neural 

network, among these the most important are[88] [89] : 

Objective function 
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In general, an artificial intelligence system transforms the input data into 

output data through an objective function F, regulated by a set of parameters 

θ: 

𝜕𝜕 = 𝐹𝐹(𝜕𝜕,𝜃𝜃)                                              (𝐵𝐵. 1) 

Learning consists in finding the optimal parameters 𝜃𝜃′ for which, by 

applying the objective function to a set of input values, the output data will be 

equal to those expected, net of a certain error 𝑗𝑗 

𝜕𝜕 + 𝑗𝑗 = 𝐹𝐹(𝜕𝜕,𝜃𝜃′)                                       (𝐵𝐵. 2) 

 

Epoch, batch size e iterations 

During the training phase, the patterns contained in the training dataset 

are provided, so that the model can adapt its parameters to find the optimal 

objective function. However, a single step is not enough to obtain an optimal 

result, but it is necessary to carry out several processing cycles of the dataset 

and adaptation of the parameters. 

Furthermore, due to the limits of memory and the computing power 

available for these processes, it is usually not possible to process the entire 

training set “one shot”. For this reason, there are some parameters that come 

into play in defining how the processing of the dataset must take place during 

the training phase. When the entire training set has been subjected to the 

model, then we have an epoch. The training phase usually ends after several 

epochs (tens of thousands can be needed). But not always, by increasing the 

epoch, the model improves.  

The training dataset may be too large to be processed all at once (think 

of a training set consisting of tens of thousands of images). Then you can divide 

the training set into uniform subgroups, called batches. 

The number of samples contained in each batch is called the batch size. 

Hence the iteration definition which corresponds to the number of batches 

needed to complete an epoch.  

If the batch size is too large, there could be a problem of running out of 

memory or a more pronounced tendency to overfitting. 
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Loss function 

The loss function (or cost function) is a function that evaluates the 

performance of a model. It represents a loss and therefore the goal of good 

learning is the minimization of the loss function: the lower the loss, the better 

the model (unless the model is overfitted, as we will see). 

The loss is calculated on the training and validation pattern datasets and 

therefore is limited to assessing how well the training is done with these. 

It is a numerical value that represents a sum of the errors made for each 

example of the training or validation set. 

Learning rate 

The learning rate is a hyperparameter that determines how much to 

change the model each time the model weights are updated in response to the 

predicted error. It can be difficult to choose the learning rate since a number 

that is too small could lead to a long training process, but a value that is too big 

could lead to learning a suboptimal set of weights too fast or to an unstable 

training process. 

Among all the network parameters to be tuned, the learning rate is the most 

crucial one.  

 

B.3 Convolutional neural network 

A convolutional neural network (CNN or ConvNet) is a network 

architecture for deep lerning (machine learning technique) [88] [89]  that learns 

directly from data, eliminating the need to manually extract features. CNNs 

have an optimal architecture to identify and learn the most representative 

features in given images and indeed, they are used in various application areas 

such as [49] : 

• Biomedical Imaging, CNNs are in fact able to analyse medical tests 

to visually detect the presence of tumor cells in the images. 

• Audio processing, CNNs are in fact able to detect keywords and this 

can be used in any device with a microphone in order to detect when a certain 

word is spoken. 
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• Detection of stop signs, autonomous driving uses CNNs to accurately 

detect the presence of a signal or other objects and make decisions based on 

the output. 

A CNN is a feed-forward neural network (see Figure C.1), inspired by 

the organization of the visual cortex. A CNN is a network made up of several 

layers and each of these is specialized in carrying out a certain task. The 

operation of a convolutional neural network in general is similar to that of other 

feed-forward networks in which there is an input layer, one or several hidden 

layers, which perform the calculations using the activation function (f.i. 

Rectified Linear Unit, RELU) and finally an output layer that performs the 

actual task. Like other standard artificial neural networks, CNNs are typically 

trained with back propagation and gradient descent. The first algorithm refers 

to the practice of iteratively calculating the gradient of the objective function 

with respect to the network’s weights by the chain rule. This gradient is 

calculated for one layer at a time, starting from the last layer and going back to 

 

Figure B.1: General scheme of an artificial neural network, reporting the 
interconnections among the nodes belonging to the different layers. 
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the first. Gradient descent is an optimization algorithm that allows identifying 

the weights that minimize the objective function. 

The novelty introduced by CNN with respect to other neural networks 

is the presence of convolutional levels. These levels play a key role in the CNN 

architecture, as they extract, through the use of special filters, the features of 

the images to be analysed. Then, a CNN, unlike normal feed-forward networks 

which work more on general image information, works based on salient 

features of the image itself. In general, depending on the employed filter, it is 

possible to detect various details on the source images, including the outlines 

of the figures, vertical or horizontal lines, and so forth. As a result, CNNs are 

able to process more accurate data than traditional feed-forward networks, 

which allows them to function more reliably. .Therefore, a CNN network can 

be seen as blocks chain, the order of which is represented as follows: 

Input->Conv->ReLU->Pool->Conv->ReLU->Pool->ReLU-

>Conv->ReLU->Pool->FullyConnected. 

The Input layer consists of a sequence of neurons able to receive 

information based on the data to be treated. This is followed by the 

Convolutional Level, which is the main level of the network. Convolution 

subjects the input images to a series of convolutional filters, each of which 

activates certain features from the images. The filters, that can be used, are 

more than one. The greater the number of filters applied the greater the 

complexity of the features that can be identified. Practically in the convolutional 

layer a filter (mask) is made to slide along the whole dimension of the inputs 

(slide over). Then the so-called Hadamard Product is executed where essentially 

the scalar product between the inputs and the various filters is executed. Finally, 

the subsampling follows, where the features of the previous layer are taken and 

combined in such a way to have more complex features. Padding is also 

important, as using a large number of convolutional layers risks losing the 

resizing of the image. To avoid this, it is needed to outline the image with one 

or more layers of zeros to preserve its size. Within the convolutional level, 

immediately after the subsampling phase, there is the Activation layer. In this 

layer, through an activation function (f.i. a linear activation function, ReLU,), 

the goal is to cancel the non-useful values. The ReLU function is the most 
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common and it allows to train more quickly and effectively by mapping the 

negative values to zero and keeping the positive values. This layer is crucial 

because only activated features are passed to the next layer. Finally, at the end 

of the Convolutional level, the image will be scanned piece by piece, obtaining 

a smaller matrix of values that represents "the characterized image". The 

Convolutional level is then followed by a Pooling layer, generally Max 

Pooling. This level allows to identify if the study feature is present in the 

previous level and makes the image coarser. In other words, the max pooling 

layer is a method for reducing the size of an image, dividing it into blocks and 

keeping only the one with the highest value. Doing so reduces the problem of 

overfitting and only the areas with greater activation are maintained. Another 

widely used layer is the Batch normalization layer. 

These regularization layers normalize the activation maps by subtracting 

the mean and dividing them by the standard deviation for each of the training 

batches. In addition to reducing overfitting, the use of batch normalization also 

speeds up the training and makes the network less dependent on the initial 

parameter initialization. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

 

Appendix C 
This Appendix is aimed at giving more mathematical details for the 

auxiliary model in Section 4.4. In this respect, one can analytically determine a 

value of 𝜙𝜙1 such that the auxiliary fields have the same amplitude at the external 

points and at midway, as it will briefly discussed in the following. 

Consider two control points 𝐷𝐷𝑡𝑡0 and 𝐷𝐷𝑡𝑡1  located at distance 𝑑𝑑 in a lossless 

and homogeneous ROI, characterized by a wave number 𝑘𝑘𝑚𝑚. Then, the 

auxiliary model (4.6) can be simplified as follows:  

 

𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷� = 𝐽𝐽0�𝑘𝑘𝑚𝑚�𝐷𝐷 − 𝐷𝐷𝑡𝑡0�� + 𝐽𝐽0�𝑘𝑘𝑚𝑚�𝐷𝐷 − 𝐷𝐷𝑡𝑡1��𝐷𝐷
𝑗𝑗𝜙𝜙1     (C.1) 

In such a simple case, one can analytically determine the values of 𝜙𝜙1 

such that the field amplitudes are the same at 𝐷𝐷𝑡𝑡0 , 𝐷𝐷𝑡𝑡1 and at midway. Indeed, 

by evaluating the amplitudes of 𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷� at these points, that are: 

 

�𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷𝑡𝑡0�� = �1 + 𝐽𝐽0(𝑘𝑘𝑚𝑚𝑑𝑑)𝐷𝐷𝑗𝑗𝜙𝜙1�                     (C.2.a) 

�𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥�𝐷𝐷𝑡𝑡1�� = �𝐽𝐽0(𝑘𝑘𝑚𝑚𝑑𝑑) + 𝐷𝐷𝑗𝑗𝜙𝜙1�                   (C.2.b) 

�𝐹𝐹𝑡𝑡𝑡𝑡𝑥𝑥 �
𝑟𝑟𝑡𝑡1+𝑟𝑟𝑡𝑡2

2
�� = �𝐽𝐽0 �

𝑘𝑘𝑚𝑚𝑑𝑑
2
� + 𝐽𝐽0 �

𝑘𝑘𝑚𝑚𝑑𝑑
2
� 𝐷𝐷𝑗𝑗𝜙𝜙1�          (C.2.c) 

and by imposing the three right hand members to be equal to each other, 

one can derive for the case of a lossless medium the 𝜙𝜙1 values such to obtain 

a uniform field in the ROI, i.e.: 

 

𝜙𝜙1 = arccos �
1+[𝐽𝐽0(𝑘𝑘𝑚𝑚𝑑𝑑)]2−2�𝐽𝐽0�

𝑘𝑘𝑚𝑚𝑑𝑑
2 ��

2

2�𝐽𝐽0�
𝑘𝑘𝑚𝑚𝑑𝑑
2 ��

2
−2𝐽𝐽0(𝑘𝑘𝑚𝑚𝑑𝑑)

�                (C.3) 
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