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A B S T R A C T   

The static analysis of steel frames with uncertain semi-rigid connections is addressed. The effects of connection 
flexibility are incorporated into the frame model by means of rotational springs at the end nodes of beams. 
Assuming an idealized linear-elastic behaviour, the initial stiffness of rotational springs is expressed in terms of 
the so-called fixity factor which is considered uncertain to take into account the large scatter of connection 
stiffness and capacity, evidenced by experimental measures. Specifically, the fixity factors are modelled as in
terval variables whose bounds are consistent with the limits assigned by Eurocode 3 for different types of steel 
semi-rigid connections. Within the framework of the so-called Improved Interval Analysis via Extra Unitary Interval, 
a novel interval matrix stiffness method is developed by incorporating the interval fixity factors into the classical 
deterministic formulation. The lower bound and upper bound of the interval structural response are estimated by 
applying a sensitivity-based procedure. A single-storey frame and a five-storey frame with uncertain semi-rigid 
beam-to-column connections are analyzed to validate the proposed approach as well as to investigate the in
fluence of the uncertain connection stiffness on structural behaviour.   

1. Introduction 

It is now widely recognized that connection design plays a crucial 
role in the prediction of the behaviour of frame structures. To simplify 
the analysis and design, connections are commonly idealized as 
perfectly rigid or ideally hinged. However, numerous experimental in
vestigations [1] have shown that the actual behaviour ranges between 
these extreme cases so that semi-rigid or partially restrained connections 
are more realistic idealizations (see e.g., [2]). Current building codes for 
steel structures such as Eurocode 3 (EC3) [3] take into account the 
flexibility of connections. 

The inherently nonlinear flexural behaviour of semi-rigid connec
tions is described by the moment-rotation curve, which can be deter
mined using analytical, empirical, experimental, mechanical, numerical, 
and information-based models [4]. The effects of connection flexibility 
are commonly incorporated into structural analysis by means of rota
tional springs at the end nodes of beams. In the context of a simplified 
linear-elastic analysis, such springs are characterized by their initial 
rotational stiffness, which can be conveniently expressed in terms of the 
so-called fixity factors (see e.g., [5,6]), whose values range between 

0 and 1, corresponding to the ideally pinned and rigid connection, 
respectively. Corrective matrices whose entries depend on dimension
less parameters e.g., the fixity factors, are often used to modify the 
classical stiffness matrix of the beam element with fixed ends (see e.g., 
[7,8]). Flexible connections affect the distribution of internal forces in 
the members of a frame structure [9]. The influence of semi-rigid con
nections on the design, analysis, and reliability of frame structures has 
been extensively studied in the literature (see e.g., [9–14]). 

Experimental tests often show a large scatter of stiffness and capacity 
measures, even for the same type of connection. Indeed, the behaviour 
of connections is affected by several sources of uncertainty such as the 
weld quality, inaccuracies, or errors in the manufacturing process, etc. 
Therefore, a non-deterministic characterization of flexible joints is 
needed to obtain accurate predictions of the structural response. 

Several studies in the literature have investigated the influence of 
uncertain properties of semi-rigid connections on the overall behaviour 
of frames using the classical probabilistic model (see e.g., [15–21]). As 
observed in Ref. [22], the common scenario is such that the structural 
design has to be completed before the types of connections are specified, 
and sometimes even before the steel fabricator has been appointed. This 

* Corresponding author. 
E-mail addresses: federica.genovese@unirc.it (F. Genovese), alba.sofi@unirc.it (A. Sofi).  

Contents lists available at ScienceDirect 

Advances in Engineering Software 

journal homepage: www.elsevier.com/locate/advengsoft 

https://doi.org/10.1016/j.advengsoft.2024.103629 
Received 28 December 2023; Received in revised form 15 March 2024; Accepted 20 March 2024   

mailto:federica.genovese@unirc.it
mailto:alba.sofi@unirc.it
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2024.103629
https://doi.org/10.1016/j.advengsoft.2024.103629
https://doi.org/10.1016/j.advengsoft.2024.103629
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2024.103629&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Advances in Engineering Software 192 (2024) 103629

2

implies that the traditional probabilistic model may not be the most 
suitable choice to describe the scatter of the stiffness of semi-rigid 
connections. Indeed, in practical situations, available data may not be 
sufficient to provide an accurate probabilistic characterization of the 
uncertain parameters. Conversely, non-probabilistic approaches (see e. 
g., [23–26]), such as the interval model [27] or fuzzy sets theory [28], 
allow the designer to describe the uncertain properties of partially 
restrained connections relying on poor or vague information. 

Over the last decade, the analysis of frame structures with uncertain 
semi-rigid connections based on non-probabilistic uncertainty models 
has attracted increasing research interest (see e.g., [22,29-32]). Tan
garamvong et al. [29] developed a mathematical programming 
approach for obtaining the extreme responses of frames with semi-rigid 
connections characterized by an interval moment-rotation relationship. 
De Luca di Roseto et al. [22] presented a new performance-based fuzzy 
design procedure for steel moment-resisting frames where the 
non-deterministic behaviour of the connections has been taken into 
account by modelling their fixity factors as fuzzy variables with a 
triangular membership function. Pham et al. [30] developed a fuzzy 
finite element approach for the static analysis of functionally graded 
material (FGM) frame structures involving fuzzy semi-rigid connections 
and system parameters. The fuzzy static displacement responses were 
determined by a methodology based on the α-level optimization 
approach and first-order Taylor’s approximation. This approach was 
extended to the fuzzy free vibration analysis of FGM frame structures by 
formulating a novel FGM structural member with semi-rigid connections 
based on the Timoshenko beam theory [31]. More recently, Pham and 
Truong [32] developed a novel method for the fuzzy analysis of 
nonlinear inelastic semi-rigid steel frames which is able to capture the 
variation of the load-carrying capacity due to fuzziness in the structural 
properties and applied loads. 

Despite the above-mentioned progress in the application of fuzzy sets 
theory, much research effort is still needed to assess the effectiveness of 
non-probabilistic approaches in capturing the non-deterministic 
behaviour of semi-rigid frame structures. To enhance the application 
of non-deterministic approaches in the design practice, special attention 
should be devoted to the development of efficient uncertainty propa
gation strategies which rely on suitable extensions of classical structural 
analysis methods. In this context, the present study addresses the static 
analysis of steel frames with semi-rigid connections modelled as rota
tional springs, characterized by a linear-elastic behaviour with uncertain 
stiffness. Under the reasonable assumption that available data are 
limited, the interval model of uncertainty is adopted. Specifically, the 
uncertain stiffness of the generic rotational spring, expressed in terms of 
the associated fixity factor, is modelled as an interval variable within the 
framework of the Improved Interval Analysis via Extra Unitary Interval (IIA 
via EUI) [33]. The uncertain stiffness of the partially restrained con
nections is incorporated into the classical matrix stiffness method by 
interval extension [27]. The interval stiffness matrix and nodal force 
vector of the beam-type element are defined as explicit functions of the 
interval fixity factors. The lower bound (LB) and upper bound (UB) of the 
response are evaluated by applying a sensitivity-based procedure (see e. 
g., [34–38]). As a first step, this procedure involves the study of the sign 
of response sensitivities to predict the monotonic increasing or 
decreasing behaviour within a small range around the nominal values of 
the uncertain parameters. Based on the outcomes of this preliminary 
study, one can identify the combinations of the endpoints of the interval 
parameters, which yield accurate estimates of response bounds provided 
that the behaviour is monotonic over the assigned range of parameter 
values. Then, response bounds can be efficiently evaluated by per
forming only two deterministic analyses, one for each of the two sets of 
endpoints of the interval parameters determined by sensitivity analysis. 

Single-bay one-storey and five-storey frames with uncertain semi- 
rigid beam-to-column connections are selected as case studies. The ac
curacy of the presented procedure is assessed by comparison with a 
time-consuming combinatorial procedure, known as vertex method [39], 

which yields the exact bounds of the response for monotonic problems. 
The rest of the paper is organized as follows: in Section 2, the model 

of semi-rigid connections with interval stiffness is defined; Section 3 is 
devoted to the formulation of a novel interval matrix stiffness method 
for the static analysis of frames with partially restrained connections; in 
Section 4, a sensitivity-based procedure for the evaluation of the bounds 
of the interval response is developed; in Section 5, numerical results are 
presented and discussed; and some conclusions are drawn in Section 6. 

2. Uncertain semi-rigid connections 

2.1. Semi-rigid connections 

Frame structures are conventionally analyzed assuming an ideal 
model of the connections, i.e. ideally pinned or perfectly rigid connec
tions. However, it is widely recognized that the actual behaviour of the 
connections is semi-rigid. Neglecting the effects of axial and shear de
formations compared to flexural ones, the rotational behaviour of con
nections can be described by their moment-rotation relationship M − φr, 
which relates the bending moment transmitted by the connection, M, to 
the relative rotation, φr, experienced by the connection due to its flex
ibility. Typical moment-rotation curves for a variety of commonly used 
semi-rigid connections are shown in Fig. 1. 

Semi-rigid or partially restrained connections are usually incorpo
rated into the design of frame structures by considering rotational 
springs ideally placed between beams and columns or at the base of 
columns (see Fig. 2). 

Assuming a linearized model i.e., considering the first branch of the 
actual nonlinear moment-rotation curve (see Fig. 1), the j − th semi-rigid 
connection (j = 1, 2) of the h − th beam element (see Fig. 2) of a frame 
structure is characterized by a constant stiffness (the initial stiffness) k(h)

j 

such that the relationship between the bending moment at the j − th 
beam end M(h)

j and the relative rotation φ(h)
rj is given by: 

Fig. 1. Typical moment-rotation curves for various types of connections 
(adapted from [22]). 

Fig. 2. Sketch of the frame element with semi-rigid connections.  
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M(h)
j = − k(h)j φ(h)

rj . (1) 

Due to the flexibility of the connection, the rotation of the nodal 
restraints can be expressed as φ(h)

j = φ(h)
bj + φ(h)

rj where φ(h)
bj is the rotation 

at the beam ends. 
The constant stiffness of the rotational spring k(h)

j can be expressed as 
follows (see e.g., [5,6]): 

k(h)j

(
f (h)j

)
=

4E(h)I(h)

L(h)

3f (h)j

4
(

1 − f (h)j

) (2)  

where I(h), L(h), and E(h) are the moment of inertia, length, and Young’s 
modulus of the member; f (h)j is the dimensionless fixity factor which varies 
in the range [0, 1]. The ideally pinned and perfectly rigid connections are 
retrieved as limit cases when f (h)j →0 and f (h)j →1, respectively. For steel 
frame structures, the limit values of the fixity factors established by EC3 
[3] for pinned and rigid joints are 0.14 and 0.89, respectively. 

Based on Eq. (2), the rotational deformability of the semi-rigid 
connection can be defined as: 

ρ(h)
j =

1
k(h)j

=
L(h)

4E(h)I(h)
λ(h)j (3)  

where 

λ(h)j =
4
(

1 − f (h)j

)

3f (h)j

(4)  

is a dimensionless quantity such that λ(h)j →0 and λ(h)j →∞ in the limit cases 

of perfectly rigid (f (h)j →1) and ideally pinned (f (h)j →0) connections. For 

the limit values of the fixity factors established by EC3, λ(h)j ∈ [0.16,8.19]. 

2.2. Interval fixity factor 

Connection rotational stiffness is affected by a high degree of un
certainty so that a non-deterministic model is needed to obtain accurate 
estimates of structural response. In the present study, uncertainty 
affecting the behaviour of semi-rigid connections is taken into account 
by modelling the fixity factors as interval variables [27] with given lower 
bound (LB) and upper bound (UB). Specifically, the fixity factor for the 
j-th connection of the h-th element of a frame is expressed as follows: 

f (h)Ij = f (h)0j

(
1+α(h)I

j

)
(5)  

where the apex denotes interval variables; α(h)I
j =

[
α(h)

j , ᾱ(h)
j

]
∈ IR is a 

symmetric interval variable (α(h)
j = − ᾱ(h)

j ) representing the dimen

sionless fluctuation of the fixity factor around the nominal value, f (h)0j ; the 

symbols α(h)
j and ᾱ(h)

j denote the LB and UB of the interval variable; IR is 
the set of all real interval numbers. Following the Improved Interval 
Analysis via Extra Unitary Interval (IIA via EUI) [33], the symmetric in
terval variable α(h)I

j can be expressed as: 

α(h)I
j = Δα(h)

j ê(h)I
j (6)  

where 

Δα(h)
j =

Δf (h)j

f (h)0j

=
ᾱ(h)

j − α(h)
j

2
(7)  

is the normalized deviation amplitude which satisfies the condition 
Δα(h)

j < 1 in order to ensure positive values of the fixity factor; ê(h)Ij =

[− 1, 1] is the so-called EUI [33] associated with the fluctuation of the 
fixity factor of the j − th connection of the h − th element. In order to 
guarantee that the values of the fixity factors are always within the in
terval [0, 1], the normalized deviation amplitude should also satisfy the 
condition Δα(h)

j < (1 − f (h)0j )/f (h)0j . 
Based on Eq. (5), the rotational stiffness and deformability of the j-th 

connection in Eqs. (2) and (3) have an interval nature and are functions 
of the interval variable α(h)I

j : 

k(h)Ij ≡ k(h)j

(
α(h)I

j

)
=

4E(h)I(h)

L(h)

1

λj

(
α(h)I

j

);

ρ(h)I
j ≡ ρ(h)

j

(
α(h)I

j

)
=

1
k(h)Ij

=
L(h)

4E(h)I(h)
λj

(
α(h)I

j

)
(8a,b)  

where 

λ(h)Ij ≡ λ(h)j

(
α(h)I

j

)
=

4
(

1 − f (h)Ij

)

3f (h)Ij

=
4
[
1 − f (h)0j

(
1 + α(h)I

j

)]

3f (h)0j

(
1 + α(h)I

j

) (9)  

is the rotational spring deformability normalized with respect to L(h)/ 
(4E(h)I(h)). 

Fig. 3 shows the LB, UB, and nominal value of the interval dimen
sionless deformability λ(h)Ij (Eq. (9)), for Δα(h)

j = 0.1, versus the nominal 

value of the fixity factor within the range prescribed by EC3 [3] i.e., f (h)0j ∈

[f (h)0j,min, f
(h)
0j,max] = [0.14, 0.89]. The extreme values of the nominal dimen

sionless deformability, λ(h)0j,max = 8.19 and λ(h)0j,min = 0.16, corresponding to 

f (h)0j,min and f (h)0j,max, respectively, are also displayed. It can be observed that 
the nominal value of the deformability tends to zero and infinity, 
respectively, when f (h)0j →1 and f (h)0j →0, i.e. when the reference connection 
is perfectly rigid and ideally pinned. Due to the uncertain initial rotational 
stiffness, the dimensionless flexibility of the actual connection ranges 
between a LB and an UB, λ(h)j and ̄λ(h)j , which correspond to the UB and LB 

of the fixity factor i.e., f̄ (h)j = f (h)0j (1+Δα(h)
j ) and f (h)j = f (h)0j (1 − Δα(h)

j ). 

3. Novel interval matrix stiffness method 

3.1. Beam element with uncertain semi-rigid connections 

Let us consider the h − th beam element of a frame structure with 

Fig. 3. Interval dimensionless deformability of the j − th semi-rigid connection 
(Δα(h)

j = 0.1) versus the nominal value of the fixity factor. 
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semi-rigid restraints at the end nodes 1 and 2 described by rotational 
springs (see Fig. 2) with uncertain stiffness depending on the interval 
fixity factors f (h)Ij (j = 1, 2), defined in Eq. (5). Due to the uncertainty 
affecting semi-rigid connections, all response quantities have an interval 
nature. 

By interval extension of Eq. (1), the interval bending moment at the 
beam ends depends on the interval relative rotation due to the flexibility 
of the rotational springs through the following relationship: 

M(h)I
j = − k(h)Ij φ(h)I

rj = −
φ(h)I

rj

ρ(h)I
j

. (10) 

In the previous equation, φ(h)I
rj = φ(h)I

j − φ(h)I
bj is the relative rotation, 

with φ(h)I
j and φ(h)I

bj (j = 1, 2) denoting the interval rotations at the nodal 

restraints and the beam ends (see Fig. 2); k(h)I
j and ρ(h)I

j are the interval 
rotational stiffness and deformability defined by Eqs. (8a,b). Based on 
Eq. (10), the moment capacity of the connection ranges between an UB 
and a LB depending on the value of the uncertain initial stiffness. 

Let u(h)I =
[

w(h)I
1 φ(h)I

1 w(h)I
2 φ(h)I

2

]T 
be the interval vector which 

collects the nodal displacements and rotations describing the flexural 
behaviour of the h − th beam element with partially restrained nodes 

and q(h)I =
[

V(h)I
1 M(h)I

1 V(h)I
2 M(h)I

2

]T 
the interval vector listing the 

transversal forces and bending moment reactions at nodes (see Fig. 2). 
Furthermore, the interval fluctuations of the fixity factors 
f (h)Ij ≡ f (h)j (α(h)I

j ), (j = 1, 2), around the nominal values are collected into 

the interval vector α(h)I ≡
[

α(h)I
1 α(h)I

2

]T
. 

The element stiffness matrix in the local reference system can be 
defined by interval extension of the deterministic stiffness matrix 
available in the relevant literature (see e.g., [8]): 

k(h)I ≡ k(h)( α(h)I)

=
E(h)I(h)

L(h)3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12g(h)I
11 − 6L(h)g(h)I

12 − 12g(h)I
13 − 6L(h)g(h)I

14

− 6L(h)g(h)I
21 4L(h)2g(h)I

22 6L(h)g(h)I
23 2L(h)2g(h)I

24

− 12g(h)I
31 6L(h)g(h)I

32 12g(h)I
33 6L(h)g(h)I

34

− 6L(h)g(h)I
41 2L(h)2g(h)I

42 6L(h)g(h)I
43 4L(h)2g(h)I

44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)  

where the entries of the classical stiffness matrix of the beam element 
with perfectly fixed end nodes are multiplied by the following dimen
sionless interval functions: 

g(h)I
11 = g(h)I

33 = g(h)I
13 = g(h)I

31 =
1

ΨI

{

1 +
1
4

(
λ(h)1

I
+ λ(h)2

I)
}

;

g(h)I
12 = g(h)I

21 = g(h)I
32 = g(h)I

23 =
1

ΨI

(

1 +
1
2

λ(h)2
I
)

;

g(h)I
41 = g(h)I

14 = g(h)I
34 = g(h)I

43 =
1

ΨI

(

1 +
1
2

λ(h)1
I
)

;

g(h)I
22 =

1
ΨI

(

1 +
3
4

λ(h)2
I
)

;

g(h)I
44 =

1
ΨI

(

1 +
3
4
λ(h)I1

)

;

g(h)I
24 = g(h)I

42 =
1

ΨI

(12a-f)  

with 

ΨI ≡ Ψ
(
α(h)I) = 1 +

(
λ(h)1

I
+ λ(h)2

I)
+

3
4

λ(h)1
I
λ(h)2

I
. (13) 

It can be readily verified that the stiffness matrix of the beam with 
perfectly rigid and ideally hinged nodes can be retrieved from Eq. (11) as 
the limit case when λ(h)j →0 and λ(h)j →∞ (j = 1, 2). 

In the context of the matrix stiffness method, the nodal actions due to 
external loads acting along the beam axis need to be evaluated. For 
instance, in the case of a beam subjected to a uniformly distributed 
transversal load of intensity q, the interval vector collecting nodal ac
tions takes the following form (see e.g., [8]): 

f(h)
(
α(h)I) ≡ f(h)I = −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vq(h)
1

(
α(h)I)

Mq(h)
1

(
α(h)I)

Vq(h)
2

(
α(h)I)

Mq(h)
2

(
α(h)I)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −
qL(h)

12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 6v(h)I1

L(h)m(h)I
1

− 6v(h)I2

− L(h)m(h)I
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)  

where Vq(h)
j (α(h)I) and Mq(h)

j (α(h)I), (j = 1, 2), are the transversal and 
moment reactions at the beam end nodes. In Eq. (14), the entries per
taining to the beam with perfectly fixed end nodes are multiplied by the 
following dimensionless interval functions: 

v(h)I1 =
1

ΨI

(

ηI +
1
2

λ(h)2
I
)

;

m(h)I
1 =

1
ΨI

(

1 +
3
2

λ(h)2
I
)

;

v(h)I2 =
1

ΨI

(

ηI +
1
2
λ(h)I1

)

;

m(h)I
2 =

1
ΨI

(

1 +
3
2

λ(h)I1

)

(15a-d)  

with: 

η
(
α(h)I) = 1 +

3
4

[
λ(h)I1 + λ(h)I2

]
+

3
4
λ(h)I1 λ(h)I2 . (16) 

It is worth remarking that the functions in Eqs. (12), (13), (15) and 
(16) depend only on the interval fluctuations collected into the interval 
vector α(h)I ≡

[
α(h)I

1 α(h)I
2

]T and on the nominal value of the interval 
fixity factors f (h)0j , (j = 1, 2). 

3.2. Interval equilibrium equations 

By performing the standard coordinate transformation from the local 
to the global reference system and assembly procedure, the following set 
of linear interval algebraic equations governing the equilibrium of the 
frame structure is obtained: 

K
(
αI)U

(
αI) = F

(
αI) (17)  

where U(αI) is the interval n-vector of global nodal displacements; K(αI) 
is the (n × n) interval global stiffness matrix, formally expressed as 
follows: 

K
(
αI) =

∑N
(ID)
e

h=1
L(h)Tk(h)L(h) +

∑N
(PR)
e

h=1
L(h)Tk(h)( α(h)I)L(h), (18)  

and F(αI) is the interval n-vector collecting the nodal global external 
loads, given by: 

F
(
αI) =

∑N
(ID)
e

h=1
L(h)Tf(h) +

∑N
(PR)
e

h=1
L(h)Tf(h)

(
α(h)I). (19) 

For notation conciseness, it is assumed that the matrix L(h) accounts 
for both connectivity and coordinate transformation of the element 
properties from the local to the global reference system. In the previous 
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equations, N(ID)
e and N(PR)

e indicate the number of elements with ideal (ID) 
and partially restrained (PR) connections; αI is the vector collecting the 
interval fluctuations of the fixity factors of all the semi-rigid connections 
around the nominal values: 

αI =
[ (

α(1)I)T (
α(2)I)T ⋯

(
α(N(PR)

e )I
)T ]T

(20)  

where α(h)I ≡
[

α(h)I
1 α(h)I

2

]T
, (h = 1,2,…,N(PR)

e ). 

It is worth noting that in Eqs. (18) and (19) the contributions asso
ciated with elements having ideal and partially restrained connections 
are separated in order to emphasize that the uncertain rotational stiff
ness of the joints only affects the stiffness matrix and the nodal force 
vector of the beam elements with flexible restraints. 

4. Sensitivity-based procedure 

4.1. Bounds of interval generalized displacements 

All possible solutions of the interval global equilibrium (see Eq. 
(17)), obtained as the uncertain parameters vary within their intervals, 
are contained in a solution set, Σ, formally defined as: 

Σ =
{

U ∈ Rn|K(α)U(α) = F(α),α ∈ αI} (21)  

where n denotes the order of the global displacement vector U(α). The 
exact evaluation of the solution set is very difficult since it is typically 
described by a complicated region in the output space (see e.g., [25]). To 
address this issue, in the framework of interval structural analysis, the 
interval displacement vector UI, containing the solution set Σ, which has 
the narrowest interval components, is commonly determined. In the 
literature, several strategies have been proposed to evaluate the LB and 
UB of the interval displacement vector UI (see e.g., [25,26,34-36,40, 
41]). 

In the context of linear interval structural analysis, the monotonic 
behaviour of the response with respect to the uncertain parameters is 
often exploited to estimate its bounds. When the response is a monotonic 
function of the interval parameters, the exact bounds can be evaluated 
by applying a time-consuming combinatorial procedure, known as vertex 
method [39]. The key idea of this procedure is to seek the bounds of the 
response among the 2Nu solutions pertaining to all possible combinations 
of the endpoints of the Nu uncertain parameters. The computational 
burden of the vertex method becomes prohibitive as the number of un
certain parameters increases, so that it is commonly used to derive 
benchmark solutions for validation purposes. 

In the present study, a sensitivity-based procedure (see e.g., [34–38]) 
is applied for the evaluation of the bounds of the response of frame 
structures with semi-rigid connections, characterized by interval initial 
rotational stiffness. Without loss of generality, elements with partially 
restrained connections at both ends will be considered so that the gov
erning equations involve Nu = 2N(PR)

e uncertain parameters. 
The sensitivity of the interval global displacement vector with 

respect to the i − th uncertain parameter αi = α(h)
p ∈ αI

i =
[
αi,ᾱi

]
, (i = 2h 

− 2 + p; p = 1, 2; h = 1,2,…,N(PR)
e ), can be obtained by direct differ

entiation of the equilibrium equations in Eq. (17) i.e.: 

sU,i =
∂U(α)

∂αi

⃒
⃒
⃒
⃒

α=0
= K− 1

0 (Fi − KiU0) (22)  

where 

K0 = K(α)|α=0; F0 = F(α)|α=0; U0 = K− 1
0 F0 (23a-c)  

are the nominal global stiffness matrix, nodal force vector and 
displacement vector. 

Furthermore, the (n × n) matrix Ki in Eq. (22) is defined as: 

Ki =
∂K(α)

∂αi

⃒
⃒
⃒
⃒

α=0
=

∂K(α)
∂α(h)

p

⃒
⃒
⃒
⃒
⃒

α=0

= L(h)Ts(h)k,pL(h) (24)  

where s(h)k,p is the sensitivity of the stiffness matrix of the h − th element to 

the parameter αi = α(h)
p which can be evaluated by direct differentiation 

of Eq. (11): 

s(h)k,p =
∂k(h)( α(h)

)

∂α(h)
p

⃒
⃒
⃒
⃒
⃒

α(h)=0

=
E(h)I(h)

L(h)3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12g(h)
11,p − 6L(h)g(h)

12,p − 12g(h)
13,p − 6L(h)g(h)

14,p

− 6L(h)g(h)
21,p 4L(h)2g(h)

22,p 6L(h)g(h)
23,p 2L(h)2g(h)

24,p

− 12g(h)
31,p 6L(h)g(h)

32,p 12g(h)
33,p 6L(h)g(h)

34,p

− 6L(h)g(h)
41,p 2L(h)2g(h)

42,p 6L(h)g(h)
43,p 4L(h)2g(h)

44,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)  

with 

g(h)
rs,p =

∂g(h)
rs

(
α(h)

)

∂α(h)
p

⃒
⃒
⃒
⃒
⃒

α(h)=0

(26)  

where g(h)rs (α(h)), (r,s = 1,2,3,4; h = 1,2,⋯,N(PR)
e ), are the dimensionless 

interval functions defined in Eqs. (12a-f). It is worth remarking that such 
functions depend on the nominal value of the fixity factors and the in
terval fluctuations. It follows that, for elements with semi-rigid con
nections of the same reference type i.e. characterized by the same 
nominal value of the fixity factor, the partial derivatives in Eq. (26) need 
to be evaluated only once. This provides substantial computational 
savings. 

The n-vector Fi in Eq. (22) collects the sensitivities of the global nodal 

forces to the i − th uncertain parameter αi = α(h)
p ∈ αI

i =
[
αi, ᾱi

]
, (i = 2h 

− 2 + p; p = 1, 2; h = 1,2,…,N(PR)
e ), i.e.: 

Fi =
∂F(α)

∂αi

⃒
⃒
⃒
⃒

α=0
=

∂F(α)
∂α(h)

p

⃒
⃒
⃒
⃒
⃒

α=0

= L(h)Ts(h)f,p (27)  

where s(h)f,p is the sensitivity vector of the nodal forces of the h − th 

element to the parameter αi = α(h)
p . In the case of a beam element sub

jected to a uniformly distributed transversal load of intensity q, the 
vector s(h)f,p can be obtained by direct differentiation of the vector f(h)(α(h))

defined in Eq. (14): 

s(h)f,p =
∂f(h)

(
α(h)

)

∂α(h)
p

⃒
⃒
⃒
⃒
⃒

α(h)=0

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vq(h)
1,p

Mq(h)
1,p

Vq(h)
2,p

Mq(h)
2,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28)  

with 

Vq(h)
r,p =

∂Vq(h)
r

(
α(h)

)

∂α(h)
p

⃒
⃒
⃒
⃒
⃒

α(h)=0

;

Mq(h)
r,p =

∂Mq(h)
r

(
α(h)

)

∂α(h)
p

⃒
⃒
⃒
⃒
⃒

α(h)=0

(29a,b)  

where r = 1, 2; p = 1, 2; Vq(h)
r (α(h)) and Mq(h)

r (α(h)), (r = 1, 2), are the 
transversal forces and bending moments at beam end nodes defined in 
Eq.(14). 
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By examining the sign of the i − th sensitivity of the j − th 
displacement component, sUj ,i, the monotonic increasing or decreasing 
behaviour of UI

j for small variations of the i − th uncertain parameter 
around the nominal value can be predicted. Hence, the combinations of 
the endpoints of the uncertain parameters, α(LB)

(j)i and α(UB)
(j)i , which yield 

accurate estimates of the LB and UB of UI
j can be determined as follows: 

if sUj , i > 0, then α(UB)
(j)i = αi, α(LB)

(j),i = αi;

if sUj , i < 0, then α(UB)
(j)i = αi, α(LB)

(j)i = αi,

(j = 1, 2,⋯, n; i = 1, 2,⋯,Nu).

(30a,b) 

The parameters α(LB)
(j)i and α(UB)

(j)i can be collected into the following 
vectors: 

α(LB)
(j) =

[
α(LB)
(j)1 α(LB)

(j)2 ⋯ α(LB)
(j)Nu

]T
;

α(UB)
(j) =

[
α(UB)
(j)1 α(UB)

(j)2 ⋯ α(UB)
(j)Nu

]T
, (j = 1, 2,⋯, n).

(31a,b) 

The LB and UB of the j − th interval displacement component UI
j can 

be obtained by solving the equilibrium (see Eq. (17)) for the two sets of 
parameters, α(LB)

(j) and α(UB)
(j) , identified by sensitivity analysis, i.e.: 

Uj =
{

U
(

α(LB)
(j)

)}

j
=

{
K− 1

(
α(LB)
(j)

)
F
(

α(LB)
(j)

)}

j
;

Uj =
{

U
(

α(UB)
(j)

)}

j
=

{
K− 1

(
α(UB)
(j)

)
F
(

α(UB)
(j)

)}

j

(32a,b)  

where { ⋅ }j means the j − th component of the vector between curly 
brackets. 

4.2. Bounds of interval nodal forces 

The sensitivity-based procedure outlined in the previous sub-section 
can also be applied to evaluate the bounds of the transversal forces and 
bending moments at the end nodes of the h − th beam element, collected 

into the vector q(h)I ≡ q(h)(αI) =
[

V(h)I
1 M(h)I

1 V(h)I
2 M(h)I

2

]T
. For a 

beam element with semi-rigid connections, such a vector reads: 

q(h)( αI) = k(h)( α(h)I)L(h)U
(
αI) − f(h)

(
α(h)I) (33)  

Fig. 4. One-storey frame with semi-rigid beam-to-column connections.  

Fig. 5. Normalized responses of the one-storey frame versus the dimensionless fluctuations, α1 and α2, of the interval fixity factors: a) horizontal displacement; b) 
rotation of node C; c) bending moment at node D; d) transversal force at node D (f0 = 0.16). 
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where k(h)(α(h)I) is the interval element stiffness matrix (Eq. (11)) and 
f(h)(α(h)I) is the vector collecting nodal actions due to external loads (see 
e.g., Eq. (14)). 

The sensitivity of q(h)(αI) to the i − th uncertain parameter αi ∈ αI
i =

[
αi, ᾱi

]
can be derived by direct differentiation of the previous equation, 

i.e.: 

s(h)q,i =
∂q(h)(α)

∂αi

⃒
⃒
⃒
⃒

α=0
= s(h)k,i L

(h)U0 + k(h)
0 L(h)sU,i − s(h)f,i (34)  

where s(h)k,i , sU,i and s(h)f,i are the i − th sensitivities of the stiffness matrix of 
the h − th element (see Eq. (25)), of the global nodal displacement 
vector (see Eq. (22)) and of the nodal actions due to external loads (see 
Eq. (28)); k(h)

0 and U0 are the nominal element stiffness matrix and 
nominal global displacement vector. 

In the case of beam elements with ideal connections, the vector 
collecting transversal forces and bending moments at beam end nodes 
takes the following form: 

q(h)( αI) = k(h)L(h)U
(
αI) − f(h) (35)  

where the classical element stiffness matrix and force vector are 
involved, and all the quantities on the right-hand side are deterministic 
except the global displacement vector. It follows that the sensitivity to 

the i − th uncertain parameter αi ∈ αI
i =

[
αi, ᾱi

]
reads: 

s(h)q,i =
∂q(h)(α)

∂αi

⃒
⃒
⃒
⃒

α=0
= k(h)L(h)sU,i. (36) 

The combinations of the endpoints of the uncertain parameters 
which yield accurate estimates of the LB and UB of the j − th component 
of the force vector qI

j can be determined by examining the sign of sen
sitivities, as outlined in Eq. (30) for the nodal displacements. 

Compared with previous developments relying on the monotonicity 
assumption (see e.g., [34,35]), this study presents the formulation of a 
novel interval matrix stiffness method based on the IIA via EUI [33] and 
highlights the potential of the sensitivity-based approach when response 
sensitivities can be evaluated by direct differentiation. In this regard, 
both the implementation and computational efficiency of the method 
benefit from the explicit dependence of the interval element stiffness 
matrix and force vector on the interval fixity factors. Furthermore, the 
formulation includes the evaluation of the bounds of nodal forces which 
is quite a challenging task in the context of interval structural analysis 
due to overestimation issues. 

It is worth remarking that the applicability of the presented pro
cedure is not restricted to steel frame structures with uncertain semi- 
rigid connections. Different materials as well as other sources of un
certainty e.g., material and geometrical properties of the members or 
applied loads, can be considered. Within the more general framework of 
the interval finite element formulation (see e.g., [25,26,36,40,41]), the 
proposed approach can be applied to arbitrary linear discretized struc
tures, provided that the response is a monotonic function of the interval 
parameters. 

5. Numerical applications 

5.1. One-storey frame with semi-rigid beam-to-column connections 

The single-bay one-storey steel frame with semi-rigid beam-to- 

Fig. 6. Bounds of the normalized responses of the one-storey frame evaluated by the proposed sensitivity-based procedure and the vertex method along with the 
nominal solutions versus the normalized deviation amplitude of the uncertain parameters: a) horizontal displacement; b) rotation at node C; c) bending moment at 
node D; d) shear force at node D (f0 = 0.16). 
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column connections depicted in Fig. 4 is selected as the first case study. 
The moment of inertia, I, the length of the members, L, and Young’s 
modulus of the material, E, are assumed the same for the beam and 
columns. The beam is subjected to a uniformly distributed transversal 
load of intensity q; a horizontal force of magnitude P = qL is applied to 
node B. 

The partially restrained beam-to-column connections are character
ized by interval fixity factors (see Eq.(5)) f I

j = f0(1 + αI
j) = f0(1 + ΔαêI

j), 
(j = 1, 2), with the same nominal value f0 and normalized deviation 
amplitude Δα. 

The normalized horizontal displacement, uEI/(qL4), rotation of node 
C, φCEI/(qL3), bending moment, MD/(qL2), and shear force, VD/(qL), at 
node D, are selected as response quantities of interest. As a first step, the 
monotonic behaviour of such quantities with respect to the uncertain 
parameters is assessed. 

Fig. 5 displays the normalized response quantities of interest versus 
the dimensionless fluctuations αj ∈ αI

j = [ − Δα,Δα], (j = 1, 2), of the two 
uncertain parameters for Δα = 0.2. The nominal value of the interval 
fixity factors is set equal to f0 = 0.16 which could correspond to a top- 
and-seat angle connection [2]. It can be observed that both the 
normalized horizontal displacement, uEI/(qL4), and bending moment at 
node D, MD/(qL2), are monotonic decreasing functions of α1 and α2. 
Furthermore, the normalized rotation of node C, φCEI/(qL3), is a 
monotonic increasing function of both the uncertain parameters, while 
the normalized shear force at node D, VD/(qL), is a monotonic increasing 
function of α1 and a decreasing function of α2. Since the four functions 
exhibit a monotonic behaviour, their bounds are achieved for suitable 
combinations of the endpoints of the interval parameters which can also 
be predicted by applying the sensitivity-based approach described in 

Section 4. It is worth mentioning that response samples provided by the 
presented stiffness matrix method for assigned values of the uncertain 
fixity factors of the semi-rigid connections are in agreement with those 
obtained by applying the finite element software SAP2000. 

The accuracy of the proposed method is demonstrated by performing 
appropriate comparisons with the exact bounds of the response provided 
by the vertex method. The latter requires 22 deterministic analyses, since 
Nu = 2 uncertain parameters are involved. Two values of the nominal 
fixity factors i.e., f0 = 0.16 and f0 = 0.84, are considered to represent the 
behaviour of nearly-pinned and nearly-rigid connections [22], respec
tively. Indeed, f0 = 0.84 could correspond to the fixity factor of either a 
T-stub or an extended end-plate connection [2]. Figs. 6 and 7 display the 
bounds of the normalized response quantities of interest versus the 
normalized deviation amplitude of the uncertain parameters, Δα, eval
uated by applying the proposed sensitivity-based procedure and the 
vertex method for f0 = 0.16 and f0 = 0.84, respectively. The nominal 
solution is also plotted. It can be observed that the proposed bounds are 
the same as the exact ones obtained by the vertex method. As expected, 
the region of the response becomes wider as the normalized deviation 
amplitude Δα increases. It is worth remarking that the sensitivity-based 
procedure is able to predict the exact bounds of interval internal forces 
which are more affected by the dependency phenomenon than 
displacements. 

Once the accuracy of the sensitivity-based procedure has been 
assessed, the influence of uncertainty on different types of semi-rigid 
connections is investigated by varying both the nominal value and the 
deviation amplitude of the interval fixity factors. The 3D plots in Fig. 8 
display the proposed LB and UB of the normalized response quantities of 
interest versus the nominal value 0.14 ≤ f0 ≤ 0.89 [3] and the 
normalized deviation amplitude 0 ≤ Δα ≤ 0.12 of the fixity factors of the 

Fig. 7. Bounds of the normalized responses of the one-storey frame evaluated by the proposed sensitivity-based procedure and the vertex method along with the 
nominal solutions versus the normalized deviation amplitude of the uncertain parameters: a) horizontal displacement; b) rotation at node C; c) bending moment at 
node D; d) shear force at node D (f0 = 0.84). 
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partially restrained beam-to-column connections along with the nomi
nal solutions. Besides the increase of the width of the response region 
with Δα, the 3D plots capture a significant change in the response as the 
behaviour of the nominal semi-rigid connections varies within the limits 
established by EC3 [3]. The nominal solutions pertaining to Δα = 0 fall 
between the LB and UB for any value of Δα, as shown in Figs. 6 and 7. 

5.2. Five-storey frame with semi-rigid beam-to-column connections 

The second numerical example concerns the single-bay five-storey 
frame with beam-to-column semi-rigid connections depicted in Fig. 9. 
The moment of inertia, I, the length of the members, L, and Young’s 
modulus of the material, E, are assumed the same for all the beams and 
columns. All the beams are subjected to a uniformly distributed trans
versal load of intensity q; a horizontal force of magnitude P = qL is 
applied at each floor (see Fig. 9). 

The ten partially restrained beam-to-column connections are char
acterized by interval fixity factors (see Eq.(5)) f (h)Ij = f0(1 + Δαê(h)Ij ), (h 
= 1, 2, …, 5; j = 1, 2), with the same nominal value f0 and normalized 
deviation amplitude Δα. 

The response quantities of interest are: the normalized horizontal 
displacement and drift ratio at the top floor, u5EI/(qL4) and δ5EI/(qL3); 
the normalized maximum bending moment and shear force (at the base 
of the frame, right column), Mmax/(qL2) and Vmax/(qL). Preliminary 
investigations, omitted for conciseness, have demonstrated that the 
selected response quantities are monotonic functions of the uncertain 
parameters. 

For validation purposes, Fig. 10 displays the proposed bounds of the 
four response quantities contrasted to the exact ones provided by the 

Fig. 8. Bounds of the normalized responses of the one-storey frame versus the nominal value and normalized deviation amplitude of the fixity factors: a) horizontal 
displacement; b) rotation of node C; c) bending moment at node D; d) transversal force at node D. 

Fig. 9. Five-storey frame with partially restrained beam-to-column 
connections. 

F. Genovese and A. Sofi                                                                                                                                                                                                                       



Advances in Engineering Software 192 (2024) 103629

10

vertex method, versus the normalized deviation amplitude of the uncer
tain parameters Δα, for f0 = 0.16. An excellent agreement can be 
observed even for relatively large degrees of uncertainty. It is observed 
that the sensitivity-based procedure is able to accurately predict the 
bounds of interval internal forces which are more affected by the 

dependency phenomenon than displacements. Furthermore, it is worth 
emphasizing that the evaluation of response bounds by the proposed 
approach involves only 2 deterministic analyses whatever the number of 
the uncertain parameters is. Conversely, for the selected case study, the 
vertex method requires 210=1024 deterministic analyses to be 

Fig. 10. Bounds of the normalized responses of the five-storey frame evaluated by the proposed sensitivity-based procedure and the vertex method along with the 
nominal solutions versus the normalized deviation amplitude of the uncertain parameters: a) horizontal displacement of the top floor; b) interstory drift ratio of the 
top floor; c) maximum bending moment; d) maximum transversal force (f0 = 0.16). 

Fig. 11. Proposed bounds and nominal values of the normalized horizontal displacements at nodal points of the five-storey frame (f0 = 0.16): a) Δα = 0.1; b) Δα 
= 0.2. 
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performed, as many as all possible combinations of the endpoints of the 
ten interval fixity factors. Furthermore, it can be observed that the region 
enclosed by the LB and UB of the response becomes wider as larger 
deviation amplitudes of the fixity factors are considered. Similar con
clusions can be drawn from Figs. 11 and 12 which display the compar
ison between the proposed and exact LB and UB of the interval response 

in terms of the overall normalized horizontal displacements at each floor 
and interstory drift ratios at nodal points of the frame, for Δα = 0.1 and 
Δα = 0.2. 

The influence of uncertainty on different types of semi-rigid con
nections can be inferred from the 3D plots in Fig. 13, which display the 
proposed LB and UB of the normalized response quantities of interest 

Fig. 12. Proposed bounds and nominal values of the interstory drift ratios of the five-storey frame (f0 = 0.16): a) Δα = 0.1; b) Δα = 0.2.  

Fig. 13. Bounds of the normalized responses of the five-storey frame versus the nominal value and normalized deviation amplitude of the fixity factors: a) horizontal 
displacement of the top floor; b) interstory drift ratio of the top floor; c) maximum bending moment; d) maximum transversal force. 
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versus the nominal value 0.14 ≤ f0 ≤ 0.89 [3] and the normalized de
viation amplitude 0 ≤ Δα ≤ 0.12 of the fixity factors along with the 
nominal solutions. As for the previous case study, the 3D plots show both 
the increase in the width of the response region with Δα and the 
remarkable change in the response as the nominal value of the fixity 
factor varies within the limits established by EC3 [3] for pinned and rigid 
joints. 

A measure of the dispersion of the interval response around the 
midpoint value is provided by the coefficient of interval uncertainty (c.i. 
u.), defined as [36]: 

c.i.u.
[
RI] =

ΔR
⃒
⃒mid

{
RI
}⃒
⃒
=

R̄ − R
⃒
⃒
⃒R̄ + R

⃒
⃒
⃒

(37)  

where RI =

[

R, R̄
]

is the generic interval response quantity. 

Fig. 14 shows the c.i.u. (Eq. (37)) of the selected response quantities 
versus the normalized deviation amplitude of the uncertain parameters 
Δα, for two different types of semi-rigid connections characterized by 
nominal fixity factors f0 = 0.16 and f0 = 0.84. In both cases, it is observed 
that the c.i.u. increases linearly with Δα for all the response quantities. 
Furthermore, the drift ratio and horizontal displacement at the top floor 
exhibit the largest dispersion around the nominal value. In particular, 
for both these response quantities, uncertainty in the fixity factors is 
amplified through the propagation process when a reference connection 
type with f0 = 0.84 i.e. with a nominal behaviour close to the one of rigid 
joints, is considered. 

6. Conclusions 

A novel interval matrix stiffness method for the static analysis of steel 
frames with uncertain semi-rigid connections has been presented. The 
non-deterministic behaviour of the connections, evidenced by the large 
scatter of experimental measures, has been described by modelling the 
fixity factors as interval variables with assigned lower bound and upper 
bound. The presented model allows the analyst to select a reference type 
of connection by assigning the nominal value of the fixity factor. Then, 
interval fluctuations around the selected nominal fixity factor enable one 
to describe the uncertain behaviour of the actual connection as ranging 
between two extremes corresponding to the upper bound and the lower 
bound of the moment capacity. The proposed interval matrix stiffness 
method has been derived by incorporating the interval stiffness of the 
semi-rigid connections into the classical deterministic formulation. 
Then, a sensitivity-based procedure for estimating the bounds of the 
response has been presented. Sensitivities of the response to the uncer
tain parameters have been efficiently derived by direct differentiation 
taking advantage of the explicit dependence of the stiffness matrix and 

nodal force vector of the elements with semi-rigid connections on the 
uncertain fixity factors. This remarkable feature facilitates computer 
implementation and enhances computational efficiency. The knowledge 
of response sensitivities can also be exploited to identify the semi-rigid 
connections whose changes in stiffness significantly affect the selected 
response quantity. 

Numerical results have demonstrated the accuracy of the presented 
procedure and the significant effect of the uncertain initial stiffness of 
the semi-rigid connections on structural response. By varying the nom
inal value of the fixity factor, it has been observed that uncertainty has a 
different influence on the response for various types of reference con
nections. A detailed design of joints as well as accurate manufacturing 
and construction processes are recommended to reduce uncertainties in 
the behaviour of joints. 

The proposed interval matrix stiffness method represents an effective 
tool to predict the response of frame structures under possible variations 
in the initial stiffness of partially restrained connections and aid de
signers in selecting the most suitable type of joint. The adoption of the 
interval model appears particularly appropriate to deal with the limited 
information on steel frame connections typically available to designers. 
Before joints are detailed and realized, by applying the proposed 
approach in conjunction with expert judgment, structural engineers can 
select the reference connection type and assume a possible range of the 
initial stiffness to account for the various sources of uncertainty. The 
corresponding range of structural response provides designers with 
more confidence than a crisp value in the context of decision-making. 

It is worth remarking that the applicability of the presented method 
is not restricted to steel frames with uncertain semi-rigid connections as 
different materials can be considered in the analysis and uncertainties 
affecting material and geometrical properties of members or applied 
loads can also be included. Furthermore, the proposed procedure can be 
applied to arbitrary linear discretized structures within the general 
framework of interval finite element analysis. 

Ongoing research is focusing on the extension of the presented 
formulation to include the inherently nonlinear behaviour of semi-rigid 
connections. To this aim, a suitable nonlinear moment-rotation curve 
has to be incorporated into the formulation of the interval matrix stiff
ness method, and efficient propagation strategies are needed to predict 
the bounds of the nonlinear response. 
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