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Abstract: Manganese oxides are considered an essential component of natural geochemical barriers
due to their redox and sorptive reactivity towards essential and potentially toxic trace elements.
Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the
prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that
is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable
of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals,
including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated
transformation influences the (bio)geochemistry of manganese and also the environmental chemistry
of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-
bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may
inevitably and severely impact the environment. This review highlights and discusses the role of
microbially induced or catalyzed processes that affect the transformation of manganese oxides in the
environment as relevant to the function of geochemical barriers.

Keywords: manganese; biotransformation; microorganisms; manganese oxides; sorption

1. Introduction

Geochemical barriers are epigenetic zones with diverse functional characteristics re-
lated to their distinct physical or chemical gradients in the soil or sediment environments [1].
They can decrease the migration capacity of chemical compounds, and, consequently, due
to the accumulation of elements within their bodies, natural ore deposits are formed at
these zones [2].

One of the prevailing and vital components of the geochemical barriers are manganese
oxides [3], which affect the immobilization of both inorganic and organic compounds
due to their significant sorption and redox properties [4–6]. They are considered the
strongest naturally occurring oxidants [7], and their diverse crystalline forms serve as a
pool of essential elements, including manganese. Therefore, their composition and other
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chemical features may affect the proper functioning of cellular metabolic pathways and the
organisms’ physiological state within the geochemical barriers [8,9].

Throughout the history of Earth’s ore formation and mineral diversification, microor-
ganisms have been a driving force in major geological events. For example, the Great
Oxidation Event (~2.2 to 2.0 Ga) and the evolution of eukaryotic microorganisms led to
direct and indirect biotransformation of an initial ~1500 mineral species, resulting in an
increase to over 4000 species [10,11]. Therefore, throughout Earth’s history, autochthonous
microorganisms have developed various strategies to transform and acquire manganese
and other elements associated with manganese oxides [12,13].

This is usually promoted by the interaction of reactive microbial extracellular metabo-
lites with the surfaces of manganese phases, resulting in the gradual dissolution and
transformation of its oxides [14]. These processes are primarily mediated by the redox
and protolytic reactions, in which the microorganisms (both bacteria and fungi) may be
involved directly or indirectly [15,16]. Consequently, microorganisms possess an excep-
tional ability to deteriorate and transform the manganese-bearing minerals, thus, altering
their reactivity and stability in the environment [17–19]. However, the biodeterioration
of manganese oxides in natural geochemical barriers may also contribute to releasing
associated potentially hazardous elements [3,18–20], adversely affecting the environment’s
vitality [21].

In addition to the release of hazardous elements, microbially induced biodeterioration
of manganese phases supports the development of sustainable agriculture by increasing
the bioavailability of various essential nutrients (e.g., phosphorus and nitrogen) [22,23] and
bioavailable manganese, which plays a crucial role in various metabolic processes in plants
including ROS scavenging and photosynthesis [12,24,25].

From a holistic point of view, the role of microorganisms in optimal or excessive
manganese availability for plants should not be overlooked. Manganese deficiency can
occur in dry calcareous soils, while its toxicity occurs in poorly drained acidic soils [26,27].

Since we consider the biologically induced transformation of manganese oxides es-
sential for the mobility of both the nutrients and potentially toxic elements, the following
review introduces the biogeochemical aspects of manganese oxides’ microbially driven
transformation in the natural environment and highlights the capacities of microorganisms
to alter these reactive phases by various direct and indirect mechanisms.

2. Geochemistry of Manganese in Soils

Manganese can exist in different forms in soils and sediments, including Mn(II),
Mn(III), and Mn(IV). This variety of oxidation states leads to numerous manganese minerals
in these environments. Post [28] reported that at least thirty different crystal structures
of manganese oxides occur in the environment, with the most prevalent being birnessite,
vernadite, hollandite, lithiophorite, pyrolusite, todorokite, cryptomelane, hausmannite, and
romanechite. Of these, the vernadite and birnessite are the most widespread [29], although
the birnessite content can be actually lower than reported in favor of vernadite [30].

In the soil environment, the manganese can be found in soil solution in dissolved
form (mostly as complexed Mn(II)); it is adsorbed onto the surfaces of the soil mineral
components and soil organic matter or sequestered in organisms. Still, the major pool of
soil manganese comprises primary or secondary minerals [31].

The manganese content in the surface soil horizons is very variable. Bowen [32]
estimated that the global average manganese concentration is 1000 mg·kg−1, ranging from
20 mg·kg−1 to 10,000 mg·kg−1. The reported value is identical to the concentration of
manganese in the lithosphere, which indicates the dependence of the soil manganese on its
content in the parent rock [33]. It also suggests that the manganese remains largely immobile
during regional metamorphism. Thus, rock-forming minerals are the primary source of
manganese in soils. There, manganese is predominantly associated with ferromagnetic
silicates since Mn(II) is capable of an isomorphic substitution with Fe(II) [34].
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In sediments, the manganese is more prevalent in fine-grained fractions and primarily
associates with the layered silicates, sesquioxides, and carbonates, while its content in
mature quartzose sandstones is low. Therefore, the soils that are formed from mafic
volcanic rocks (with a manganese content over 1000 mg·kg−1) or shales rich in iron and
magnesium contain higher amounts of manganese in comparison to soils developed from
granite or sandstone (up to 400 mg·kg−1 Mn) [35].

Manganese is usually bound to minerals in rocks that form under reducing conditions,
which predominantly causes Mn(II) to occur in the primary minerals. However, in the
weathering zone, the rocks are exposed to water and permanent or fluctuating oxidizing
conditions, which allows the incorporation of manganese into the weathering products.
Under these conditions, it is oxidized to metastable Mn(III) or to stable Mn(IV), while Mn(II)
ion is being leached out by the reactive components from the aqueous solution. From the
mentioned naturally occurring manganese species, the metastable Mn(III) drives oxidative
activity in organic soil layers [36]. At the same time, the released Mn(II) ion can precipitate
to form secondary minerals, e.g., oxides and oxyhydroxides [37], and potentially can form
coatings on rock surfaces and mineral particles [28]. Therefore, the redox conditions are
one of the dominating factors which control the Mn speciation in the soils. In addition to
redox conditions of the soil environment, the prevailing pH is also a determining factor in
manganese speciation. Under acidic soil conditions (pH < 5.5) the bioavailable Mn(II) is
favored [38], while at a higher pH range, the species of Mn(III) and Mn(IV) are likely. The
increase in one pH unit leads to a 100-fold decrease in Mn(II) concentrations [39]. Despite
the natural mobilization of manganese (excluding anthropogenic sources), the concentration
of its soluble forms in the surface waters only exceeds 1000 µg·L−1 in exceptional conditions
and usually does not reach the concentration of 200 µg·L−1 [40].

The processes of manganese oxides and oxyhydroxides dissolution and precipitation
regulate the mobility of manganese in soils and sediments and its availability to organisms.
As we mentioned earlier, the solubility of manganese oxides is primarily a function of pH.
It decreases in the order of pyrochroite > hausmannite > bixbyite > manganite > birnessite
> nsutite > pyrolusite (Table 1). The dissolution of manganese oxides can also be facilitated
by the presence of various chelating ligands [41].

Table 1. Common manganese oxide minerals occurring in soils.

Mineral PZC Chemical Formula Structure

Birnessite 1.18–2.8 [42–44] Na7Ca3Mn7O14 2.8H2O layer
Cryptomelane 1.98–2.1 [42,43] Kx(MnIIIMnIV)8O16 (x = 1.3–1.5) tunnel

Hollandite (α-MnO2) 4.6 [45] Bax(MnIIIMnIV)8O16(x < 1) tunnel
Lithiophorite 6.9 [44] LiAl2(MnIIIMnIV)3O6(OH)6 layer

Todorokite 3.2–3.98 [42–44] (Ca, Na, K)0.3–0.5(MnIIIMnIV)6O12
3.5 H2O

tunnel

Vernadite (δ-MnO2) 2.8–3.1 [46,47] MnO2 layer

The stability of manganese oxides in the soil environment depends not only on the
redox reactions and pH but also on the crystal structure of the respective mineral. The main
types of crystal structures of manganese oxides include tunnel and layered structures [28]
whose elementary unit is the MnO6 octahedron [3]. The tunnel structure is formed by the
MnO6 octahedron chains sharing the corners of the neighboring chains, resulting in typical
square or rectangular “tunnels” (Figure 1).

Manganese oxides with the layered structure consist of MnO6 octahedron-based layers,
and birnessite (Figure 1) is a typical representative. Depending on the degree of hydration
and the cations’ size, the layered structures may expand or collapse. The typical dimensions
of the interlayer spaces are 7 or 10 Å. While the Ca(II), Mg(II), Ni(II) and Cu(II) cations
stabilize the structure of 10 Å phyllomanganates, the H(I), K(I), Pb(II), Ce(III) and Th(IV)
cations stimulate the collapse of the crystal structure [48]. However, manganese with a
tunnel structure (e.g., todorokite) (Figure 1) does not collapse or expand [49].
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Figure 1. The tunnel- and layer-type crystal structures of Mn oxides. The layer-type crystal structure is
represented by birnessite (left image) with various interlayer cations H+, Li+, Na+ and K+. Todorokite
(right image) represents the tunnel type (3 × 3) crystal structure with Mg2+, Ca2+ and Na+ cations in
the central tunnels.

The layered structures of manganese oxides are the precursors of tunnel-structured
oxides [50]. The conversion between these is possible in soils, and it depends on the
temperature [51], the ratio of Mn(III) to Mn(IV) [52], pH [53], light conditions [54] and
the nature of the present cation between the layers of the precursors. For example, Mg(II)
saturated precursors transform into todorokite [55] while Na(I) saturated precursors convert
to synthetic cryptomelane [56].

3. Transformation of Manganese by Microorganisms

As we mentioned in the previous chapter, the transformations of manganese to various
species and their environmental abundance are significantly influenced by the prevailing
pH and redox conditions. Except for these abiotic determinants, several biotic factors affect
the geochemistry of manganese, among which the microorganisms play an essential role.

Microorganisms are capable of modifying and maintaining the distinctive pH [57],
and redox conditions [58,59] in their microenvironment due to their metabolic [60] and
enzymatic activities [61], which enables the processes of manganese-bearing minerals’ and
dissolved species’ transformations. These include (i) the oxidation of dissolved Mn(II) that
results in the precipitation of Mn(III), Mn(IV) or mixed-valence oxides, (ii) the reduction of
insoluble manganese oxides into the mobilizable Mn(II), and (iii) the chelation of dissolved
Mn(II) with organic exudates that triggers the formation of biogenic minerals [62–65].
Furthermore, some microorganisms can oxidize and reduce manganese simultaneously,
e.g., Bacillus pumilus and B. cereus [66].

3.1. Manganese Oxidation by Bacteria

The microbial oxidation of Mn(II) in the presence of dissolved or free oxygen will man-
ifest in a way that is likely to follow the mechanism of abiotic (Equation (1)) transformation:

Mn2+ + H2O + 0.5O2 ↔MnO2 + 2H+ (1)

Although the oxidation of Mn(II) to Mn(III) or Mn(IV) states is thermodynamically
favored, especially at pH values and partial pressures that are characteristic for the upper
soil horizons and the surface waters (e.g., pH 6.5 to 8.5 and pO2 ~ 21 kPa), the kinetics
of the process are extremely slow under such environmental conditions [67]. However,
the presence of microorganisms can significantly increase the manganese transformation
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rate [68]. Biological oxidation of Mn(II) through Mn(III) to Mn(IV) is characteristic for
various phylogenetic bacterial groups, e.g., the species and isolates belonging to Firmicutes
(Bacillus subtilis, Bacillus sp. MB-11), Actinobacteria (Arthrobacter globiformis) or Proteobacte-
ria (Leptothrix discophora, Erythrobacter sp.) [3].

The molecular mechanism of biologically induced manganese oxidation has been
studied in the Gram-positive bacterium Bacillus sp. SG-1 [69]. This model organism oxidizes
Mn(II) using a multi-copper oxidase (MCO) MnxG that is localized in the exosporium
of bacterial spores [70]. The redox transformation of Cu(II)/Cu(I) in MnxG enables the
electron exchange, which leads to effective regulation of manganese as well as homeostasis
of other metals both directly and indirectly in the cell (Figure 2) [71]. The regulation is
primarily due to the formation of an insoluble layer around bacterial spores comprising
Mn(IV) oxides with high sorptive and redox capacities [72]. Furthermore, due to the
formation of the insoluble biogenic Mn(IV) oxides, not only the Mn(II) is transformed, but
the biogeochemical cycles of various elements in the surrounding environment are also
affected [73].
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Figure 2. Schematic illustration of manganese oxidation by bacteria. (1) Enzymatic oxidation of
dissolved manganese results in the formation of metastable Mn(III), which readily (2) disproportion-
ates into Mn2+ and Mn4+. Bacterially produced secondary metabolites, e.g., bacterial pyoverdines,
(3) stabilize the metastable Mn(III), which makes the additional oxidation of Mn(III) possible and
leads to (4) MnO2 precipitation.

It is apparent that Mn(II) oxidation to Mn(IV) requires a two-electron transfer. How-
ever, the MnxG catalyzes only the transfer of one electron. Therefore, it was assumed that
MnxG catalyzes the transformation of Mn(II) to Mn(III), followed by another bio-catalyzed
one-electron transfer. The experimental data have confirmed that this is actually a two-step
process since during the bacterial Mn(II) oxidation of a metastable Mn(III) has been iden-
tified (Figure 2) [74]. In the kinetic studies of manganese oxidation, a pyrophosphate
was used as a stabilizing agent for Mn(III) in the solution. The formed Mn(III) complex
with pyrophosphate was determinable by UV-Vis spectrometry [75]. In the presence of
microorganisms, the metastable Mn(III) is most likely stabilized via complexation with the
extracellular metabolites for a period sufficient for Mn(III) to be oxidized by MCO [76,77].

Interestingly, the formation of Mn(III) complexes has an important influence on iron
acquisition. For example, iron deficiency in strains of Pseudomonas putida MnB1 and GB-1
led to the production of the fluorescent pyoverdine (a siderophore) that can form a stable
complex with Fe(III). However, the extruded pyoverdines bound Mn(III) more efficiently
than Fe(III); thus, the competitive relationship prevents the formation of manganese oxides
and restricts the uptake of iron by bacteria [78,79].
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Siderophores also promote the oxidation of Mn(II) indirectly by providing a negative
charge from the ligand to Mn(II), which reduces the activation energy of oxidation and
promotes the electron transfer from Mn(II) to O2 [63,80]. Biogenic siderophores are common
in surface waters [13,81] and in soils [82], and thereby, their role in Mn(II) oxidation in the
environment is relevant.

Another indirect process of Mn(II) oxidation is a production of an inorganic oxidizing
agent by microorganisms. The strain of Leptothrix pseudoochraceae produces H2O2 during
aerobic growth by metabolizing glucose and other organic substrates. This facilitates the
oxidation of Mn(II) and precipitation of MnO2. While this process is not important in terms
of energy metabolism, it helps microorganisms reduce the elevated concentrations of toxic
H2O2 [83].

3.2. Oxidation of Manganese by Filamentous Fungi

In the previous section, we introduced the microbial oxidation process of Mn(II)
by bacteria. Unfortunately, manganese oxidation by microscopic filamentous fungi is
significantly less studied, although they are expected to play a similar role in the manganese
biogeochemistry as the bacteria [62].

The white rot fungi (mostly of Basidiomycota division), which can degrade lignin and
certain aromatic pollutants [84] via the activity of manganese peroxidase [85], are the
most studied group of Mn(II) oxidizing fungi. The manganese peroxidase transforms the
Mn(II) to Mn(III) by a single-electron transfer [86]. Synthesized Mn(III) is then chelated
by the fungal exudates, degrading lignin phenolic units. Otherwise, the Mn(III) ions are
disproportionate to manganese oxides and Mn(II) [87].

The ascomycetous fungi are also able to break down lignin, however, the mechanism
of degradation is not identical to white rot fungi since it is not manganese dependent, and
they preferentially degrade carbohydrates [88]. The oxidation of Mn(II) by ascomycetous
fungi does not serve any apparent physiological benefit for this fungal group; thus, its
utilization is in contrast to some bacterial strains that are capable of conserving energy
during the oxidation of Mn(II) to MnO2 by coupling the oxidation to ATP synthesis [89,90].
In the case of fungi, the Mn(II) oxidation is not linked to energy conservation [91] and
neither the growth or the cell differentiation of fungus is enhanced in the presence of Mn(II).

The Ascomycetes are capable of producing the reactive oxygen species (ROS), including
the superoxide (O2

−) diradical [92], which is a key redox oxidant that plays a significant
role in the geochemical transformation of numerous metals, including the oxidation of
Mn(II) (Figure 3) [84,93]. Since the abiotic oxidation of Mn(II) is unfavorable under pH
8 in oxic environments, the oxidation of Mn(II) in surface waters is usually slow. This is
due to thermodynamically unfavorable electron transfer from Mn(II) to molecular oxygen.
However, the superoxide is more likely to gain an electron from Mn(II) [94].
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enzymes, or (2) indirectly via extracellularly produced reactive oxygen species (e.g., superoxide). The
oxidation process can be mitigated by supplementation of organosulfur compounds (sulfonic acids).
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In the fungal kingdom, the extracellular production of superoxide is widespread [95],
and it is involved in hyphal branching, cell signaling, and cell differentiation [96]. The
NADPH-oxidases are responsible for the superoxide production in fungi. Hansel et al. [84]
studied the interaction of soluble Mn(II) during the cultivation of the filamentous fungus
Stilbella aciculosa. The presence of Mn(II) resulted in the formation of a brown precipitate
deposited at the base of reproductive structures. The X-ray absorption spectroscopy con-
firmed that the manganese associated with the fungus was predominantly in the form
of Mn(IV) (80%), while the abundance of Mn(III) (11%) and Mn(II) (9%) was lesser. The
precipitated phase consisted primarily of birnessite, a hydrous manganese dioxide mineral
that belongs to the dominant biogenic manganese oxides formed by microorganisms [97].
Biogenic birnessite is a highly disordered mineral with a high degree of layer site vacancies.
Due to these characteristics, it possesses high sorptive and oxidative capacities. Therefore,
it seems that microorganisms purposely oxidize Mn(II) to deposit birnessite outside the cell,
which can then act as a protection layer against the toxic metals, or it enables the oxidation
of recalcitrant organic compounds to increase the pool of organic carbon sources [98].

Hansel et al. [84] noted that the precipitation of the manganese oxides in the adjacent
space of the hyphae and conidiophore of S. aciculosa is likely an accidental side reaction
related to the exudation of extracellular superoxide since the superoxide production is
linked to cell differentiation of the fungus. Still, this is an interesting homology between
fungal and bacterial Mn(II) oxidation mechanisms since some bacterial oxidation of Mn(II) is
also mediated by superoxide, such as the case of bacterial strain Roseobacter Azw-3b [99,100].

Since the Mn(II) oxidation by fungi is superoxide dependent, the reactive oxygen
species (ROS) scavengers generally inhibit the formation of manganese oxide. Superoxide
dismutase (SOD) [99] and Cu(II) [101] are considered effective deteriorators of superoxide.
The production of superoxide in fungi serves as a signal for the proliferation of asexual
and sexual reproductive structures [102]; therefore, by increasing the Cu(II) concentration
over 100 µM, not only the Mn(II) oxidation is suppressed, the formation of reproductive
structures is also inhibited [96].

According to a study by Zeiner et al. [100], the Mn(II) oxidation by Ascomycetes
could be also catalyzed enzymatically by various species of Ascomycetes (Stagonospora sp.,
Pyrenochaeta sp., and Paraconiothyrium sporulosum), which are capable of producing the
Mn(II) oxidizing enzymes, including the glucose–methanol–choline (GMC) oxidoreduc-
tases, tyrosinase, bilirubin oxidase, and glyoxal oxidase (Figure 3) [100].

Manganese oxides found in the environment are predominantly biogenic, formed
by the oxidation of Mn(II) through biological processes by various microorganisms [3,62].
The biosynthesized Mn oxides are diverse, as various Mn(II) oxidation mechanisms occur.
The large diversity of biogenic Mn oxides depends on the synthesizing microorganism
(e.g., bacteria or fungus). Still, the prevailing conditions during biosynthesis also have
significant relevance. For example, the microscopic filamentous fungus Acremonium sp.
produced two types of manganese oxides during the distinguished cultivation conditions.
When the cultivation resulted in cell suspension, the δ-MnO2 was formed. However, the
surface-attached growth of the fungus induced the δ-MnO2 and todorokite formation [103].
Moreover, the Mn(II)-oxidative capacity of various groups of microorganisms can vary
based on their metabolic activity, e.g., the acidogenic group has less oxidative capacity in
comparison to the non-acidogenic group. Furthermore, the increase in glucose concentra-
tion supports the rate of Mn(II) oxidation by the acidogenic species [104].

Hinkle et al. [105] reported that the sulfonic acids, i.e., the organosulfur compounds,
could influence the Mn(II) oxidizing ability of various ascomycetous fungi since they have
promoted the Mn(II) oxidation by Plectosphaerella cucumerina DS2psM2a2 and resulted in a
formation of hexagonal birnessite. In the case of Paraphaeosphaeria sporulosa AP3s5–JAC2a,
the oxidation to Mn(IV) was suppressed by the supplemented sulfonic acids and were
observed during the cultivation formation of biogenic bixbyite (Mn2O3). Meanwhile,
the supplementation of sulfonic acids exerted a minimal effect on Mn(II) oxidation by
Stagonospora sp. SRC1lsM3a [105].
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3.3. Bacterial Reduction of Manganese

Microbially induced manganese reduction has an important role in geochemical
processes occurring in natural waters, aquifers, and soil systems [106,107]. The reduction of
manganese oxides by microorganisms can be indirect (a non-enzymatic transformation) or
direct (mediated by the extracellular reductases) (Figure 4). During the indirect reduction,
the produced metabolites serve as reducing agents, e.g., formic acid, pyruvate, sulfite or
oxalate [15].
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Figure 4. Bacterial reduction of Mn oxides by (1) extracellular reductases directly reduces Mn oxides
through a one-step process. (2) Indirect reduction occurs in a two-step process, which is driven by
secondary extracellular metabolites (e.g., oxalate, sulfite) where (3) an intermediate Mn(III) is formed
in the first step and reduced in the second step.

The mechanism of biocatalyzed reduction of Mn(IV) is considered as a one-step process
where two electrons are transferred, and the final product of the reaction is Mn(II) [16].
The indirect reduction by reducing agents [108] is considered a two-step process where the
transfer of one electron to MnO2 takes place, and the metastable intermediate product of
Mn(III) is formed (Figure 4) [109].

Since Mn(IV) is prevalent in amorphous and crystalline oxides and oxyhydroxides
under neutral soil conditions, it is relatively complicated for the microorganisms to utilize
direct (enzymatic) reduction of these complex phases [110]. Therefore, microorganisms ca-
pable of transforming the Mn(IV) imply various extracellular ligands to extract manganese
from the manganese precipitates by complexolysis in order to increase its bioavailability.
The formed Mn(IV) organometallic compounds are then transformed by reductases in the
periplasmic space of bacteria [111]. A different strategy is to use an electron transfer via
an endogenous or exogenous compound, which is at first enzymatically reduced and then
used as a reducing agent during the indirect redox transformation of Mn(IV) [112].

The reduction of manganese in higher valency states has an important role in the
energy metabolism of some microorganisms (e.g., Alteromonas putrefaciens MR-1) that use
Mn(IV) as a terminal electron acceptor [113] during the oxidation of organic compounds or
hydrogen. At the same time, the bacterial strain Sulfurimonas marisnigri, which was isolated
from the Black Sea, showed a capacity to couple the reduction of MnO2 to the oxidation of
H2S or thiosulfate for energy generation [114]. Furthermore, the strain of S. marisnigri was
able to completely reduce MnO2 towards the end of the growth phase, and the reduced
Mn(II) precipitated into carbonates.
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It was reported that the growth of Shewanella oneidensis coincided with the reduction
of Mn(III) to Mn(II) [109], which highlighted the significance of Mn(III) intermediate in
bacterial metabolism and geochemistry of sulfur and manganese in sea sediments [115].
Manganese intermediate is also key in acetate oxidation in aquatic environments [116].
Szeinbaum, et al. [117] reported that marine bacteria Shewanella sp. can couple anaerobic
acetate oxidation with Mn(III) reduction. In this case, the acetate consumption and Mn(III)
reduction has been in a ratio of from 1 to 6, which means that, for one acetate molecule, six
Mn(III) ions have been reduced. However, the ratio was lower than theoretical values since
acetate has been partially used in endergonic metabolic pathways [117]. Still, the process
has been predominantly exergonic and relates to organic carbon mineralization [115].

The formation of the Mn(III) intermediate is generally either driven via the reductive
dissolution of Mn(IV) oxides by siderophore-like ligands [118] or is synthesized during
microbial Mn(II) oxidation [74]. The dissolved Mn(III) is metastable, and it is therefore
necessary to stabilize it in the aqueous solution with ligands complexation, including
humic substances [119] and inorganic pyrophosphate [120]. The Mn(III)-complexes can
still donate or accept the electrons; therefore, they can act as both the reductant and
oxidant [119]. Thus, in the case of Mn(III) as an extracellular electron acceptor, the large
abundance of Mn(III) at oxic and anoxic interfaces [121] can support microbial activity and
preserve the microbial populations until the point when a more appropriate substrate for
growth becomes available [117].

3.4. Reduction of Manganese-Bearing Rocks and Minerals by Filamentous Fungi

Filamentous fungi can also reduce the manganese minerals or manganese-bearing
rocks. However, they do not benefit from the reduction of manganese of higher valences
compared to bacteria since the fungal energy metabolism is not associated with the man-
ganese. Therefore, the main reason for manganese reduction in fungi is nutrition acquisition.
Thus, there is also a difference in the prevalent mechanism of manganese reduction by
filamentous fungi compared to other microorganisms. Fungi mainly reduce the Mn(IV) indi-
rectly (non-enzymatically) by producing extracellular metabolites that act as reductants [15].
The indirect reduction of Mn(IV) leads to the solubilization of Mn(IV) bearing minerals and
the formation of a soluble metal-ligand complex (Figure 5) [122].

The organic metabolites that are linked to the process of Mn(IV) reduction and
dissolution [123] are predominantly the low-molecular-weight extracellular organic acids
that have exceptional chelating and redox properties [124]. Heterotrophic fungi synthesize
these (e.g., gluconic, oxalic, citric, and acetic acids) by conversion of the primary sugar
sources [125]. However, it is important to note that fungi usually excrete these in dissoci-
ated form since the intracellular pH is neutral [126]. However, other than the production of
chelating organic ions, the coinciding extrusion of H+ which facilitates the Mn(IV) reduction
is due to mineral or rock dissolution (Figure 5) [127].

Acharya, et al. [128] identified two extracellular metabolites, oxalate and citrate, that
are responsible for the bioextraction of manganese from manganese ore by the fungus
Penicillium citrinum. The fungal strain was able to extract approximately 68% of manganese
from the ore during 45-day cultivation. In comparison, the 0.5 M sulfuric acid was able
to extract only up to 1.2% of manganese in 30 days, which is considered a negligible
efficiency. Srimekanond, et al. [129] noted that the mineralogy of the ore may play a
prominent role in microbial community bioleaching performance. The organic carbon
pools are also important factors that affect efficient manganese reduction and extraction.
Acharya, et al. [130] noted a direct relation between the manganese extraction efficiency of
manganese ore and sugar concentration in the media. They noted that the maximum extent
of manganese bioextraction was 33% in the case of 10% sucrose concentration while the
lowest sucrose content (2%) reached only 7% of manganese bioextraction efficiency. The
authors hypothesized that the absence of sufficient amounts of organic carbon substrates
resulted in a decrease in the extracellular metabolites’ exudation, and, thus, the fungus
P. citrinum was unable to extract manganese from the ore sufficiently.
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Figure 5. Reduction of Mn oxides by microscopic filamentous fungus. (1) Extracellular metabolites
mediate the Mn oxides’ biodeterioration and dissolution via acidolysis, redoxolysis, and complex-
olysis. Accumulated secondary metabolic products with chelating properties (e.g., oxalate) form
complexes with dissolved manganese. This may result in (2) precipitation of stable biogenic minerals
(e.g., manganese oxalate).

Since acidolysis can be an alternative or co-occurring pathway of manganese oxides’
deterioration [131], the acidification of culture media facilitates the manganese oxides’ dis-
solution [17]. Still, acidification is only partially responsible for the manganese bioextraction
and plays a secondary role compared to reductive dissolution [128]. Godunov, et al. [132]
also reported that the diluted sulfuric acid solutions were not capable of dissolving Mn2O3
and Mn3O4 completely. This is due to the formation of the thermodynamically stable
MnO2 on the surfaces of the initial oxides (Equations (2) and (3)). However, if oxalate
(Equation (4)) is supplemented to the sulfuric acid solution, the dissolution rate is consider-
ably accelerated [133].

Mn2O3 + 2H+ ↔Mn2+ + MnO2 + H2O (2)

Mn3O4 + 4H+ ↔ 2Mn2+ + MnO2 + 2H2O (3)

Xyla et al. [131] hypothesized that the accelerated effect of oxalate on MnO2 deteriora-
tion in acidic media was due to formation of surface oxalate-MnO2 complex that resulted
in an electron transfer and a release of the reduced Mn(II) into the solution. Thus, during
the dissolution, oxalate, Mn(IV)-oxide, and protons are consumed (Equation (4)) as follows:

MnO2 (s) + C2O4
2− + 4H+ ↔Mn2+ + 2CO2 + 2H2O (4)

Other than the aforementioned factors, the extent of Mn(II) extraction from the
manganese-bearing minerals and ores by filamentous fungi is influenced by various other
factors, such as pulp density of manganese mineral and composition of manganese ore,
and temperature. The strain of Aspergillus niger managed to extract 91% of manganese from
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oceanic polymetallic nodules (5% w/v) [134], 69% from the synthetic Mn3O4 [17] and 78.8%
from the low-grade pyrolusite [135]. Fungus Aspergillus oryzae reached the maximum of
79% extraction efficiency under optimized conditions (pH 6, 37 ◦C, 2% pulp density of
manganese ore and dextrose as carbon source) [125].

Furthermore, when evaluating the manganese extraction efficiency, we also need to
take into account the readsorption of Mn(II) ions onto the solid manganese phases [136], as
well as the precipitation of biogenic mineral phases [17]. In a culture medium, the elevated
concentration of Mn(II) and accumulated extracellular oxalate allows the formation of
secondary minerals, including manganese oxalate trihydrate (falottaite) and manganese ox-
alate dihydrate (lindbergite) [65,137]. However, the formation of manganese oxalate phases
can be beneficial for the producing microorganism. The elevated dissolved concentrations
of Mn could have inhibiting effects towards microbial growth, and therefore, complexation
of Mn onto oxalate phases possess indirect detoxification effects/outcomes in the case of
the fungus A. niger [17]. In addition to the favorable outcomes for microorganisms, the
formation of oxalate phases also influences the geochemistry of some potentially toxic
elements, e.g., arsenic [65].

4. The Role of Manganese in Geochemical Barriers

Due to their redox and adsorption capacities, manganese minerals (primarily oxides
and oxyhydroxides) control the speciation and mobility of various compounds in soil,
freshwater, and marine sediments [138]. Furthermore, these natural scavengers excel in
the adsorption of ions, thereby contributing to the immobilization of various metals and
metalloids [139–141]. Their exceptional reactivity can be competed only with iron oxides.
Furthermore, manganese oxides are reportedly capable of oxidizing a wide range of organic
pollutants, including azo compounds [142], hormones [143] and antibiotics (Figure 6) [144].
As a result, synthetic and natural (hydrated) manganese oxides and oxyhydroxides are
applied as active components in the engineered geochemical barriers for immobilization
and transformation of organic and inorganic contaminants.

The reaction pathway of phenolic compounds’ oxidation includes electron transfer
from phenolic groups to manganese oxides, leading to phenoxyl radical formation. The
radicals undergo rearrangement, and manganese oxides could further oxidize more stable
intermediates [145]. Thus, the transformation of organic compounds can lead to a depletion
of manganese oxides of higher valences, and the concentration of dissolved Mn(II) increases
simultaneously [146].

Decontamination of the persistent chemical warfare [147] and organophosphate pesti-
cides [148] is also doable via transformation in the presence of manganese oxides. Meso-
porous adsorbents based on MnO2 nanobelts showed promising results in decontaminating
chemical warfare, such as sarin, sulfur mustard, and chloroethyl sulfide. The MnO2-based
nanobelts could decompose these compounds by forming non-toxic products [147].

In the case of bisphenol A, an omnipresent environmental contaminant with endocrine
disruption potential, the manganese oxides have been shown capable of oxidation in
aqueous solutions [149]. However, in the soil environment, the transformation of phenolic
compounds can be inhibited by soil pH [150] or the presence of other organic compounds,
e.g., dissolved organic matter [151].

Manganese oxides have also shown great potential to remediate sites contaminated
with inorganic substances, e.g., the labile and toxic As(III) can be oxidized to a more
stable and less toxic As(V) in their presence. The kinetics of As(III) oxidation under natural
conditions are very slow and it can take several months for As(III) to be oxidized completely.
However, manganese oxides can decrease the oxidation half-life of As(III) oxidation to
10–20 min (Figure 6) [152], which seems beneficial for the ecosystem. On the other hand,
the oxidation of inorganic metals or metalloids by manganese oxides can also have adverse
effects on the environment. This is the case with chromium, which is more toxic in its
hexavalent form. Therefore, reducing Cr(VI) to Cr(III) is preferential in the remediation
processes. However, it was reported that Cr(III) is susceptible to oxidation and form
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Cr(VI) in the presence of birnessite [153], thus, manganese oxides are not utilizable in the
remediation of media contaminated with Cr(VI).
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Other than the ability of manganese oxides to oxidatively transform the organic and
inorganic compounds into less toxic or, in some cases, potentially harmful substances,
manganese oxides also possess the excellent capability to immobilize these transformants.
Furthermore, due to their specific structure and surface, manganese oxides are effective
adsorbents of wide range of metals and metalloids, including As, Sb, Se, Hg, Cu, Co, Pb,
Zn, and Cd [3,154–156]. Thus, in the case of arsenic, the manganese oxides play a role in
remediation processes as a redox-active component of the geochemical barrier and provide
sorption sites for both As(III) and As(V) species. However, it is important to note that the
ferric oxides seem more suitable for arsenic immobilization. Thus, the application of a
two-step treatment is a suitable solution for the remediation of arsenic-contaminated media,
starting with As(III) oxidation by manganese oxides that is followed by As(V) adsorption
onto ferric oxides [140,157]. Still, in some cases, ions are more efficiently adsorbed onto
manganese oxides compared to ferric oxides [158].

Xie, et al. [159] noted that manganese oxides are promising reactive components for
removing Se (IV) from contaminated environments. Both predominant selenium species in
aqueous environments and soils, oxyanions of Se(IV) and Se(VI), are highly mobile [160],
with the former being more toxic for aquatic organisms [161]. Novel research studied
the adsorption properties of synthetic δ-MnO2 towards Se(IV) and described a formation
of inner layer surface complexation of Se(IV) by the manganese phase. Therefore, the
Se(IV)-O-Mn(III) complex represented mainly the adsorption process. Moreover, it was
observed that, during the adsorption-redox processes, the oxidation of Se(IV) to Se(VI)
was coupled to δ-MnO2 reduction and Mn(III) was formed as the primary product. As we
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mentioned earlier, the formed Mn(III) is metastable, and therefore, it is disproportionated
to Mn(II) and Mn(IV). The Mn(III) could also be adsorbed onto δ-MnO2 or complexed by
the microorganisms and act as an enhancer of microbial activity [162]. Nevertheless, the
experiments performed by Li et al. [162] showed that Mn(II) adsorption onto the δ-MnO2
did not affect the potential sorption positions for Se(IV).

The crystal structure of manganese phases also influences the sorption properties.
The presence of internal reactive sites in the layered structure of birnessite caused the
increase in the sorption efficiency for Pb(II), while the tunneled structure of cryptomelane
(K(Mn4+,Mn2+)8O16) possessed a lower sorption capacity [163]. Some cations can occupy
limited structural sorption sites. While the substantial immobilization of Pb(II) by the
birnessite can be explained by the occupation of both interlayer and surface sites, other
cations, including Cu(II), Zn(II), and Cd(II), are preferentially adsorbed onto the interlayer
sites [164].

An additional factor that plays a significant role in the cation adsorption affinity
towards the surfaces of manganese minerals is the point of zero charge (PZC). Several types
of manganese oxides (e.g., cryptomelane, pyrolusite, birnessite) have PZC at pH below 4.7.
The variabilities in the value of PZC contribute to the significant differences in the uptake
of ions in a wide range of pH between various minerals [165].

Manganese oxides are not the only manganese-bearing minerals in geochemical bar-
riers. Carbonates and biosynthesized organic manganese oxalates also occur in such
environments. Recent research reported that the microbially synthesized manganese ox-
alate phases by the fungus Aspergillus niger represent secondary biominerals derived from
the kutnohorite (CaMn2+(CO3)2) and todorokite [166,167]. The initial Mn-bearing minerals
were transformed into lindbergite (MnC2O4.2H2O) and falottaite (MnC2O4.3H2O), with the
latter being less stable and, therefore, being transformed into the more thermodynamically
stable dihydrate phase towards the end of cultivation [137,166].

The secondary manganese minerals possess altered sorptive properties, e.g., the
transformation of the mineral phase of hausmannite (Mn3O4) to biomineral lindbergite,
which resulted in a decrease of the immobilization efficiency towards Sb(III) [168]. However,
the formation of biogenic oxalates had a beneficial effect on As(V) immobilization [65],
where the mobility of the potentially toxic element of arsenic decreased, and therefore,
the As immobilization by biogenic phases was enhanced compared to the initial phase of
manganese oxide [65].

5. Concluding Remarks

The main objective of this review is to elucidate the impact of microorganisms (bac-
teria and fungi) on the stability and environmental fate of manganese oxides. We have
highlighted the role of manganese-bearing minerals in geochemical barriers and the influ-
ence of naturally occurring biological transformations on the geochemistry of hazardous
elements immobilized in these reactive zones. Since microbial consortia can dynamically
influence the prevailing conditions in their microenvironment, they also possess the ability
to transform stable and insoluble manganese oxides. Some microorganisms chemically
deteriorate manganese mineral phases intentionally and, thus, benefit from the transforma-
tion energetically, while other microbial groups alter the manganese phases to increase the
bioavailability of essential elements associated with their surfaces, which possess excellent
sorptive capacities. This is of specific interest to environmental chemists, as microbially
mediated manganese oxide transformation, either direct or indirect, may affect the fate and
bioavailability of associated potentially toxic elements and trace elements. Furthermore,
the biologically induced processes of bioextraction and biotransformation are considered
innovative methods for wastewater treatment, the development of sustainable fertilizers
in agriculture, the degradation and removal of persistent organic compounds, and the
recovery of some industrially important metals from wastes.
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However, the implementation of these processes, their optimization, and improvement
in efficiency are challenging issues that can be addressed only after their environmental
impact and geochemical consequences are known and well understood.
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