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Abstract: Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from
healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual
inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach
based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects
with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive
low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients
with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection,
were analyzed in the study; none of them was taking psychotropic drugs before registration. The
processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels
in order to extract enhanced features learned automatically from the customized convolutional neural
network (CNN). The resulting CNN has been shown to perform well during classification, with an
accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in
difficult clinical settings.

Keywords: EEG; empirical mode decomposition; convolutional neural network; deep learning;
PNES; epilepsy

1. Introduction

Epilepsy is a neurological and medical disorder that affects millions of people each
year, causing increasing socioeconomic health costs as well as decreased life quality and
expectancy. It is a brain disorder characterized by recurrent, unprovoked seizures. The
cause is frequently unknown, but it could be a brain injury or a genetic trait [1,2]. The
starting point for diagnosing epilepsy is a careful examination of the symptoms, the
collection of the history related to the health status of the affected person and the description
of what happened in the moments immediately before the onset of the seizure, during its
development and at its end. With this in mind, it is of paramount importance to acquire
the testimonies of relatives, friends or bystanders who witnessed the episode. Due to
the frequent absence of eyewitnesses and the high prevalence of seizure mimics (such
as transient ischemic attacks, syncope, transient global amnesia, or vertigo), diagnosing
epilepsy can be difficult. Moreover, when patients suffer from cognitive impairment, the
diagnostic issue is much more challenging [3].
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Epileptic seizures can also be confused with psychogenic non-epileptic seizures
(PNES), i.e., events that semiologically mimic an epileptic seizure but lack the characteristic
electrical discharge. PNES are characterized by the sudden and transient impairment of
motor, sensory, autonomic, cognitive and/or emotional functions which are determined
by psychological mechanisms and not by alterations in brain electrical activity. The psy-
chological mechanisms underlying PNES are poorly understood and there is a lack of
well-established, evidence-based treatments. They are common in neurological settings
and are frequently associated with severe distress and disability [4]. Misdiagnosis may
result in inappropriate and dangerous drug treatment.

PNES can be suspected clinically based on the clinical history and semiological features
of the episodes, but it requires experienced clinicians and time-consuming interviews. It
needs to be confirmed by a video-EEG recording of typical episodes, which is the gold
standard for identifying this type of seizure [5,6].

The main diagnostic test for both PNES and ES is the EEG. It is a non-invasive and low-
cost method of recording the electrical activity of the brain with high temporal resolution [7].
Recording an ES or PNES during the screening is uncommon. During the examination,
the subject under analysis may be asked to do something that might trigger seizures such
as, for example, breathing fast or staring at flashing light sources, but this method poses
ethical problems [6]. That is why interictal EEG on visual inspection may appear normal,
but advanced analyses using engineered methods are able to pick up hidden alterations so
as to allow large-scale diagnosis without the ethical problems mentioned above.

In this regard, several automatic classification algorithms based on EEG have been
proposed in the literature [8–12] and a significant amount of research has focused on the
diagnosis of ES and PNES, but it is still an open and a challenging issue. The remarkable
technological advances of deep learning (DL) algorithms have provided a boost in solving
the task. They have abilities to learn complex patterns, including latent features that are
not discernible by visual inspection or standard approaches. Indeed, in a previous paper,
we [13] compared the processing capabilities of standard algorithms with deep algorithms.
We analyzed 18 patients with ES and 18 patients with PNES. In this study, we extend the
dataset and include CS in the classification. This increases the flexibility of the network in
distinguishing the features of potentially healthy subjects as well as giving more clinically
useful information. In addition, unlike [13], we use EMD instead of wavelets. It is a fully
data-driven, adaptive technique that extracts the oscillatory modes present in the data,
yielding a variable number of components. EMD overcomes the limitations of the wavelet
approach. In fact, in EMD, the basis for the analysis is generated by the same analyzed
signal; in other words, it is not necessary to set the level of decomposition a priori.

Thus, in this paper, EEGs of 103 subjects (42 ES, 42 PNES, 19 CS) were collected at the
Regional Epilepsy Centre, Great Metropolitan Hospital of Reggio Calabria, University of
Catanzaro and an automatic elaboration pipeline was developed based on the classification
of the EMD-decomposed signal using DL. Specifically, in this study, we propose a data-
driven convolutional neural network (CNN) capable of differentiating intrinsic mode
functions (IMFs), i.e., components of empirical mode decomposition (EMD), extracted from
the EEGs of ES, PNES and CS. The EMD performs time-frequency analysis while remaining
in the time domain.

Based on these assumptions, the following contributions are achieved by this work:

• Data-driven DL approach based on convolutional neural network (CNN) to classify
ES, PNES and CS subjects by analyzing only noninvasive EEG recordings;

• Automated system potentially useful for clinical applications.

2. Materials and Methods

We propose an analytical model of EEG segments based on machine learning that can
be used to classify three different classes of subjects. To process them, the decomposition of
the EEG signal into appropriate function bases, i.e., empirical mode decomposition (EMD)
combined with machine learning methods, is proposed.
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The workflow of the method is graphically represented in Figure 1: (1) acquisition of
the 19-channels EEG recording; (2) segmentation of the EEG signals into 50% overlapped
EEG segments; (3) estimation of IMFs in the range 1–3 for each EEG channel. The IMFs
are used as input to a customized convolutional neural network characterized by two
convolution layers, two max pooling layers, and three fully connected layers followed by a
softmax layer that performs three-way (ES vs. PNES vs. CS) classification; (4) Testing the
classification of the IMFs (i.e., the corresponding EEG segments) as belonging to ES, PNES
or CS subjects, is tested (EMD segment-based classification).
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Figure 1. The electroencephalogram (EEG) was recorded and saved on a computer. Following that,
the EEG was cleaned of artifacts, filtered, and divided into 50% overlapped EEG segments of 5 s
each. Three IMFs of EMD over each channel were estimated for each EEG segment. The obtained
database was the input of a convolutional neural network composed of two convolutional layers
(+ReLu activation layer), two max pooling layers, three fully connected layers separated by a dropout
layer, and a sigmoid layer that performs classification tasks (three ways: ES, PNES vs. CS)

2.1. Study Population

EEGs of 103 subjects previously enrolled at the Regional Epilepsy Centre, Great Metropoli-
tan Hospital of Reggio Calabria, University of Catanzaro, Italy were used: 42 subjects with
new-onset clinically diagnosed ES, 42 subjects with video-recorded PNES, and 19 CS clinically
healthy on EEG inspection. Only artifact-free EEG recordings were considered.

2.2. EEG Recording

The EEG signals were acquired using a standard 10–20 system [14] with 19 channels.
The inclusion criteria were willingness to participate, informed consent, and normal in-
terictal EEG at visual inspection. The chronic use of psychotropic drugs at the time of
registration was an exclusion criterion. The participant was informed and instructed on the
diagnostic setup while seated in a hushed, dimly lit room during the recording process.

2.3. EEG Processing

Following the acquisition, the EEGs were visually inspected by an expert clinician
for artifact removal, subsampled at 256 Hz and archived in MAT (MATLAB® File Format)
file. The EEG recording was then band-pass filtered at 0.5–32 Hz using the Matlab toolbox
EEGLab [15,16] and partitioned into 5-second EEG segments (1280 samples derived from
5(s) × 256(Hz)) overlapping by 50% in order to improve dataset extension with data
augmentation. Three well-behaved components defined as Intrinsic Mode Functions (IMFs)
were then retrieved by using algorithms based on empirical mode decomposition (EMD).
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2.4. Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a fully data-driven adaptive technique
for obtaining the oscillatory modes present in data, resulting in a variable number of
components. Huang et al. first proposed it [17].

EMD begins by estimating a signal locally as a sum of a local trend and a detail signal
component: the local trend is a low-frequency component, and the local detail reports high
frequencies. The high-frequency (detail) components of EMD are referred to as intrinsic
mode function (IMF), while the low-frequency component is referred to as residual. The
procedure is then applied to the residual again, this time as a new time series, yielding a
new IMF and residual. As a result, the IMFs can be extracted iteratively. The IMFs should
meet two conditions:

• The number of extrema and zero crossings in the entire data set must be equal or differ
from each other by no more than one;

• At every point, the mean value of the envelope defined by the local maxima and the
envelope described by the local minima must be zero.

The conditions listed above are empirical, as there is no explicit formula for calculating
IMFs. As it will be demonstrated, the analysis of the power spectrum of IMFs allows us to
confirm that these functions represent the original signal decomposed into different time
scales or frequency bandwidths [17,18]. Given a signal x(t), the EMD’s effective algorithm
is as follows [17]:

1. Identify all extrema (maxima and minima) of x(t);
2. Generate the upper and lower envelope (emin(t), emax(t)) by connecting the maxima

and minima points separately with cubic spline;
3. Compute the local mean r(t) = (emin(t) + emax(t))/2;
4. Extract the detail d(t) = x(t) − r(t);
5. Iterate on the residual r(t).

At the end of the decomposition process, the EMD method expresses the signal x(t) as
the sum of a finite number of IMFs and a final residual [17]:

x(t) =
n

∑
i=1

hi(t) + rn(t) (1)

where hi(t) are the IMFs and rn(t) is a final residual, which is less than an arbitrarily
predetermined threshold. The algorithm iteratively works by identifying the signal’s
extrema and breaking it down, ensuring that the number of modes is finite. At each
iteration, the envelope is estimated by interpolating the signal’s extrema at each iteration.
To avoid over-sampling issues, the EMD algorithm must focus on both the choice of extrema
and the boundary conditions for the analysis of discrete-time sequences. IMFs provide
the original signal with a complete and “nearly” orthogonal basis. Different components
may have parts with similar frequencies at different time durations in some conditions, but
locally, any two components will tend to be orthogonal. The EMD approach has gained
popularity in a variety of fields of applications [19–23]. It is frequently used in contrast to
the wavelet approach [24].

2.5. Proposed Architecture

The proposed CNN architecture has been chosen empirically after several experi-
mental tests. It is intended to accept fixed-size EEG segments of 19 × 1280 × 3 (where
19 denotes the number of EEG channels, 1280 denotes the number of samples, and 3 de-
notes the number of IMF). After several experimental tests, also the number of filters and
their size were determined empirically. We used 64 learnable filters of size 1 × 6. Each
filter convolves with the input image with a stride s = 1 × 2, developing 64 feature maps
with a 50% reduction in input size 19 × 640 × 64. The CNN now has 1216 learnable pa-
rameters. The max pooling layer (MaxPool) reduces the size of the features maps from the
convolutional layer’s initial size of 19 × 640 × 64 to 19 × 320 × 64 using 1 × 2 filters with a
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stride = 1 × 2. The next convolutional layer is made up of 32 learnable filters with a
size of 1 × 3. Each filter convolves with the features maps with a stride s = 1 × 2, pro-
ducing 32 feature maps with a half-size input: 19 × 160 × 32. The CNN now contains
6.176 parameters that can be learned. The second max pooling layer (MaxPool), which
reduces the size of the features maps, comes after the convolutional layer and reduces
the features maps size from 19 × 160 × 32 to 19 × 80 × 32 using 1 × 3 filters with a
stride = 1 × 2. The collected feature maps were flattened using the Flatten layer, resulting
in 48.640 features, which were then fed as input to two fully connected layers, the first with
128 hidden units and the second with 32 hidden units. It is followed by a Dropout layer (of
0.3), which separates from the third fully connected layer with 16 hidden neurons in order
to improve generalization and prevent overfitting. A soft-max (SF) layer that estimates
the three-way classification is added at the bottom of the network. The total number of
parameters utilized is shown in Table 1. Different training options were evaluated for CNN:
varying the learning rate α, the rate of decay of the first moment β1 and the rate of decay of
the second moment β2. It was observed that the best results were obtained with: learning
rate α = 10−2, first-moment decay rate β1 = 0.9 and second-moment decay rate β2 = 0.999
according to the practical recommendations reported in [25,26].

Table 1. The proposed CNN architecture’s total number of parameters. The CNN consists of two
convolutional layers (+ReLu), two max pooling layers, three fully connected layers, one dropout
layer, and a sigmoid layer that performs three-way classification tasks.

Layer Name Output Shape Parameters

Input 19 × 1280 × 64
1st Conv2D 19 × 640 × 64 1216

2nd MaxPooling 19 × 80 × 32
Flatten 48.640

1st Dense 128 6.226.048
2nd Dense 32 4128
Dropout 32

3rd Dense 16 528
Output 3 51

Total 6.328.147

We performed a k-fold with k = 5 to avoid overfitting generated by data obtained from
different subjects with several EEG segments per subject.

2.6. Metrics of Classification

The study’s objective was to evaluate the network’s ability to correctly classify the
class of EEG segments (ES vs PNES VS CS). The accuracy of EEG segments classification
was assessed using the following metrics:

ACCURACY =
TP + TN

TP + TN + FP + FN
(2)

PRECISION =
TP

TP + FP
(3)

RECALL =
TP

TP + FN
(4)

F1-score = 2 × PRECISION × RECALL
PRECISION + RECALL

(5)
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where TP, TN, FP and FN represent the true positive, true negative, false positive and false
negative, respectively. Specifically, TP and TN are the numbers of EEG segments classified
correctly; FP is the number of EEG segments incorrectly classified, FN is the number of
EEG segments misclassified.

3. Experimental Results

The goal was to assess the ability of the network to correctly classify IMFs of EMD ex-
tracted from the EEG segments as belonging to class ES, PNES or CS (epoch-based classification).

The dataset included 103 EEG recordings. EEG segments of 5 s were extracted and
preprocessed to construct the dataset of IMFs that was used to train and test the network.

The ability to correctly classify ES, PNES or CS EEG segments was evaluated through
standard metrics: accuracy, precision, recall and F1-score as outlined in Table 2.

Table 2. The proposed CNN’s classification metrics in terms of mean value.

Accuracy Precision Recall F1 Score

85.7% 85.7% 85.7% 85.7%

Given that the entire dataset contains 25.754 EEG segments, 80% of epochs were used
for training and the remaining 20% of epochs were used for testing. Each division of the
dataset into train and test considered balanced portions with the class of subjects, in the
entire 5-fold iteration. The ability to correctly classify ES, PNES or CS EEG segments was
evaluated through standard metrics: accuracy, precision, recall and F1-score. This is an
excellent result, given that interictal EEGs are difficult to analyze, as confirmed by the
few papers in the literature. Table 3 summarizes the results of classification algorithms
of ES and PNES from interictal EEG present in the literature. From the comparison, the
result confirmed the effectiveness of the proposed approach compared with conventional
classifiers based on handcrafted feature extraction of EEG signals. EMD, in fact, seems
to contain more information than manual features extracted directly from EEG, even if
relevant. EMD allows a signal to be decomposed into physically significant components
with multi-resolution, thus it succeeds in containing more information. Specifically, the
best classification performances were observed in the binary classification performed in
previous work. However, considering the 3-way classification, we can be completely
satisfied with the result, given the more difficult classification and more importantly, given
the clinical utility as our primary goal.

Table 3. Comparison of accuracy results with ES vs. PNES classifications proposed in the literature.

References Classification Type Classifiers Accuracy

[27]
Binary classification
of ES vs. PNES based on
coverage feature of the
EEG microstate analysis
in beta-band

Random Forest
SVM (Linear)
SVM (RBF)
Decision Tree
kNN
Gradient Boost

79.4%
66.8%
65.6%
76.4%
77.6%
78.8%

[13]
Binary classification of
ES vs. PNES
in interictal EEG

CNN
MLP
SVM (Linear)
LDA
QDA

94.4%
47.2%
58.3%
55.6%
55.6%

4. Discussion

In this paper, we propose EEG data DL classification methods for classifying EEG
recordings from ES, PNES, and CS by interictal EEG, using a processing pipeline that
includes EMD and advanced artificial intelligence methodologies. Our proposed model has
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been shown to provide good classification accuracy for EEG data. We use EMD for signal de-
composition. EMD is completely data-driven and performs multi-scale decomposition and
temporal time analysis of real-world signals into physically meaningful components. The
development of an innovative method based on the decomposition of EEG segments using
EMD combined with DL techniques was one of the study’s main contributions. Compared
to the previous work [13] using wavelets, we have several advantages because EMD de-
composes the original signal without a preselected basis function, as it is instead necessary
for wavelet decomposition. EMD overcomes this limitation by generating the algorithm’s
basis from the same analyzed signal using a data-driven heuristic procedure [24,28]. In
EMD, the frequency is calculated by differentiation instead of convolution, as in wavelet
analysis; this allows the volatility principal limitations to be overcome. The disadvantage
of EMD is that it lacks a theoretical foundation; instead, it is purely based on empirical
evidence. However, since the wavelet can be influenced by mother functions, the EMD
algorithm overcomes it. EMD has also been preferred over other modal decomposition
algorithms, e.g., over the VMD method, a non-recursive decomposition technique in which
modes are decomposed simultaneously with respect to their center frequency [29], because
EMD has the advantage of decomposing the signal adaptively and, in a data-driven way.

DL, on the other hand, is an advanced artificial intelligence technique capable of
automatically learning latent discriminating variables (features) from input data, avoiding
the need for hand-crafted feature extraction. In particular, CNN is a DL classifier that is
widely regarded as being at the cutting edge of this field. We also investigated the effect of
network depth on classification time. Our experimental results indicate that proper depth
balance of architectures are crucial for accurate classification. Based on our findings, we
recommend using three Fully Connected hidden layers with 128-32-16 hidden units per layer
for this EEG data classification tasks.

To our knowledge, this is the first study to address the classification of ES, PNES, and
CS using a data-driven framework based on EMD and DL.

In the previously introduced CNN classifier, we differentiate EEG recordings of only
ES and PNES subjects [13]. The system was built across wavelet signal decomposition and
automatic feature extraction from time representations and EEG time series. Although
good classification performance was obtained (94.4% accuracy in binary ES vs. PNES
classification), it was tested on a small data set (36 subjects) across two classes. Three
classes amounting to 103 subjects were examined in this study. The proposed DL procedure
necessitated a greater number of EEGs to perform a more difficult classification based on
three classes rather than two.

The 50% overlap for data augmentation, combined with the large extension of the
data, allowed us to significantly expand the dataset, resulting in a total of 35 h, 46 min, and
10 s database, large enough to train a CNN with convolutional, Relu, and Max Pooling
Layer (CNN) modules with excellent generalization capabilities.

The proposed CNN performed exceptionally well despite the inclusion of a new class
that significantly complicates the processing outcome.

In CNN, there were more than 6 million learning parameters, and the computation
required 3946 s. It should be noted that the study’s findings led to a classification latency
time of 31 s, which is still a perfectly reasonable waiting time but prevents the definition
of a real-time system. This is due to the increase in computational complexity (and,
consequently, computational cost) in the study.

DL methods might be a significant advance in practical clinical applications. The
suggested approach, however, has several drawbacks. The number of subjects is the key
constraint; future work could have precisely balanced classes to minimize bias. These
results may influence clinical practice. Indeed, the proposed classification system may
help in the differential diagnosis between the three classes and particularly between ES
and PNES. The epoch-based approach, however, does not allow to perform of clear-cut
discrimination on a patient basis, but it may help the clinician by providing a probability of
classification for the single EEG trace. However, despite improved classification algorithms,
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misclassifications may still occur because of tiny changes between patients that result from
interictal recordings.

5. Conclusions

In this paper, the authors introduced a new EMD-based DL method for classifying
EEG segments of subjects with ES, PNES or CS. The originality of the proposed method lies
in using EMD for the automatic extraction of multiresolution features to be sent as input to
a convolutional neural network (CNN) capable of automatically mapping latent features
from interictal EEG segments.

The use of interictal EEG is another important contribution to the originality of
the paper, which increases the complexity of the study but has completely undisputed
clinical advantages.

Experimental results indicate that CNN provided high performance in classifying EEG
segments epochs, which is not achieved by standard learning algorithms given the lack
of handcrafted feature extraction. Future training and testing processes for the proposed
EMD-based CNN architecture will be optimized utilizing more potent graphics processing
units (GPUs), enabling real-time analysis and a patient-based approach. To further illustrate
and make use of the generalization potential of DL approaches in clinical applications, a
larger cohort of ES/PNES/CS participants will be taken into consideration. On the strength
of an information theoretic approach, classifications on various IMFs will also be analyzed
to understand which part of the data has more information.
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