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Abstract Introduction. Shading devices are used to

control solar radiations that penetrate into the occupied

environment through the windows with the aim of en-

suring visual comfort and saving the building’s energy

consumption. Venetian blinds are commonly employed

for the practicality and ease of application. However,

occupants often do not change slat orientation caus-

ing unnecessary consumption and discomfort. Hence,

automatic shading control systems can enhance the en-

ergy performance and make the environment more com-

fortable. Method. In this context, a cognitive venetian

blinds system, denoted to as CogVBS and based on a

deep feed-forward neural network, is proposed for au-

tomatic estimation of slat angle. Here, the EnergyPlus

software is employed to simulate the test environment.

Results. Experimental results demonstrate the promis-

ing performance of the proposed deep CogVBS, report-

ing a Root Mean Square Error (RMSE ) and correlation

coefficient (r) of 0.1018±0.0015 and 0.9319±0.0020, re-

spectively. Conclusion. The achieved outcomes encour-

age the use of the proposed cognitive system in realistic

environments.
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1 Introduction

In the recent years, energy efficiency of buildings has

gained a great deal of interest. Solar radiations intro-

duced through the windows are indeed used as impor-

tant source able to decrease the energy consumption of

edifices [21], [19]. However, in order to determine the

effect of a window on the energy consumption, several

variables should be considered such as its size, orien-

tation and climatic conditions [1], [15]. Daylight can

result in a reduction of the heating load in the winter

season and an increase of the cooling load in the sum-

mer [9]. In addition, an inappropriate amount of direct

solar radiation may cause a sense of discomfort to the

occupants with the consequent consumption of electric

energy. External or internal shields (shutters, venetian
blinds, curtains) are commonly used to filter the so-

lar radiation penetrating into the environment [13], [3].

The shielding systems allow the occupants to regulate

the incoming radiation. However, users typically adjust

the blinds for improving visual quality with an increase

of energy consumption. Identifying the best conditions

to adjust solar shading and ensure energy savings is in-

deed a difficult task for the occupants [11]. Venetian

blinds are widely employed as shading devices to con-

trol the inside comfort conditions of buildings. Standard

blind systems are manually set by occupants but, it was

noted that blinds are not usually re-adjusted until the

occupants feel uncomfortable due to the sunlight [23].

Paik et al. [24] carried out an on-site study about the

employment of blinds in offices and observed that blinds

were mostly kept in a fixed position. Hence, in order to

optimize the energy efficiency of the buildings as well

as the comfort of occupants, automated blind control

systems were proposed [17]. For example, Guillemin et

al. [12] developed a genetic algorithm based shading
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control system capable of adapting the blinds consid-

ering the preferences of the occupants. In [26], Zhang

et al. designed an open-loop control using the geomet-

ric properties of the window and an analytic solar an-

gle model. The proposed control system was able to

avoid direct penetration of sun rays from the room en-

trance. In [6] Chan et al. took into account daylight

utilization and glare protection for implementing four

control approaches, i.e., a sunlight redirecting control,

a cut-off angle control, two control strategies to con-

trast glare able to achieve very good glare protection.

Karlsen et al. [16] proposed a realistic solar shading

control algorithm based on a combined logic of exter-

nal and internal shading, used for office buildings in

cold conditions; whereas, the control strategy proposed

in [5] was able to move the lamellae only to fixed inclina-

tions. Other approaches are based on the cut-off angle

to prevent any glare effect on undesired secondary re-

flection [18] [2], [8]. It is worth mentioning that most of

the existing approaches are based on specific parame-

ters (such as position, reflection coefficient, inclination

angle of the slats) or improved internal environment

conditions without taking into account the presence of

occupants. There is a limited number of studies that

focused on the optimal slat angle of blinds by using

not only the outdoor weather conditions but also the

internal factors i.e., the presence of occupants in the

environment. This is due to the difficulty to estimate

the future state of the control system using rule-based

strategies. In addition, such strategies are not adapt-

able to buildings with different external and internal

conditions. In order to overcome the above limitations,

cognitive systems based on artificial intelligence tech-

niques have been developed to estimate efficiently the

blinds’ slat angle. In this context, a few number of works

are presented in the literature. Hu et al. [14] proposed

a system denoted as Illuminance-based Slat Angle Se-

lection based on a series of shallow feed-forward neural

network (FNN) able to forecast the illuminance levels

and the optimal slat angles, achieving percentage errors

less than 10% and 5%, respectively. Yeon et al. [25] de-

veloped a shallow FNN-based automatic blind control

system for slat angle prediction with the aim to reduce

cooling, heating, and lighting loads; while, recently, Luo

et al. developed shading controller systems using sur-

rogate models based on the radial basis function NN

[22]. However, the aforementioned systems are based

on shallow neural models. In contrast, here, deep archi-

tectures are taken into account. Specifically, a cognitive

venetian blinds system, referred to CogVBS and based

on deep FNN, is proposed for the prediction of the slat

angle control estimated according to the control logic

proposed in [23]. The developed CogVBS is trained us-

ing data generated by EnergyPlus, a widely simulation

software employed to emulate shading models by con-

sidering physical phenomena associated to the energy

of the building [7], [10], [4], [20]. The rest of the paper

is organized as follows. Section 2 introduces the simula-

tion environment carried out with EnergyPlus software.

Section 3 describes the proposed methodology, includ-

ing the evaluation of the slat angle, data pre-processing,

the developed cognitive venetian blinds system and def-

initions of the performance metrics used. Section 4 re-

ports the achieved results and Section 5 concludes the

paper.

2 Simulation Environment

In this study, EnergyPlus is used as simulation soft-

ware since it is able to deal with solar radiation and

solar shading issues. The energy simulations are con-

ducted dynamically, in order to take into account any

capacitive effect present in homes. The test building

consists of a square room of 25 m2 with four walls ori-

ented exactly in correspondence with the four cardinal

directions i.e., South, East, West, North. Fig. 1 shows

the representation of the test building located in the

city of Cosenza, Italy (Latitude: 39.31 N; Longitude:

16.25 W) and also all the possible positions that the

sun can assume during the year for this city. Each ver-

tical surface includes a window with a size correspond-

ing to 15% of the entire wall. Furthermore, the vertical

walls, floor and roof have thermal transmittances equal

to 0.38, 0.34 and 0.27 W/m2K, respectively. The win-

dows are composed of double glass and air gap (4-12-
4) with a thermal transmittance of 1.91 W/m2K. The

sky model is simulated using an anisotropic radiance

distribution of the sky (“CIE sunny clear day”) with

also a direct solar lighting. The presence of the occu-

pants in the room is set randomly, alternating phases

of presence and absence. LED lights are used as arti-

ficial lighting system with a linear control to provide

an average illuminance of 500 Lux. An air condition-

ing system with fan coil powered by a heat pump is

also included in order to maintain the indoor air tem-

perature between 20 ◦C and 26 ◦C. Overall, the fol-

lowing parameters have been considered and used as

input to the proposed cognitive network: presence of

occupants (v1), internal temperature (v2), solar radi-

ations incident on the vertical surface of each facade

(South (v3), North (v4), East (v5), West (v6)), artificial

light (v7), and day light (v8). The measures have been

simulated for one year for a total of 525.592 samples

(around 43.500 measurements per month). Each vari-

able values ranged as follows: v1 [0-1]; v2 [12-34] ◦C, v3
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[0-690] W/m2; v4 [0-576]; v5 [0-528] W/m2; v6 [0-1750]

W/m2; v7 [0-0.1] kW ; v8 [0-13581] lux.

Fig. 1 Representation of the simulation environment with
relative sun trajectories.

3 Methodology

3.1 Evaluation of slat angle

The slats angle inclination is estimated according to the

logic proposed in [23]. This is defined in Fig. 2, as the

angle between the vertical and slat plane. Note that, in

this study, the southern surface of the building is con-

sidered. In order to determine the optimal inclination,

three different cases are taken into account: winter op-

erating conditions (if the internal temperature is lower

than 21 ◦C), summer operating conditions (if the in-

ternal temperature is higher than 25 ◦C), intermediate

conditions (if the internal temperature is ranged be-

tween 21 ◦C and 25 ◦C). In winter conditions, in case

of no occupants in the room, the maximum solar radi-

ation is introduced into the environment. If the sun is

not visible from the window, this condition is obtained

through an inclination of 110◦; else, the angle sets the

slats parallel to the direction of the sun rays as shown

in Fig. 2 (left). This working mode is represented by

the following equation:

slat = 90◦ + arctan

(
tan(α)

cos(γ − γw)

)
(1)

where α is the solar altitude (i.e., the angle between

the direction of the sun rays and the horizontal plane);

γ − γw is the difference between the sun and surface

Azimuth. Note that, if the slat value achieved by (1) is

greater than 155◦ and the solar radiation incident on

the window under analysis is less than 300 W/m2, then

the energy contribution of solar rays will be low and

the angle is estimated by:

slat = 120◦ − 0.66α (2)

In case of the presence of occupants in the room, it

is necessary to arrange the slats in order to block the

spokes, as shown in Fig. 2 (right). This working mode

is represented by the following equation:

slat = 2 arctan

 tan(α)
cos(γ−γw) +

√
[ tan(α)
cos(γ−γw) ]

2 + 1 − ( dL )2

1 + d
L


(3)

where d is the slat distance and L is the slat depth.

Here, d= 18.8 mm and L= 25 mm. In summer condi-

tions, in case of no occupants in the room, in order to

minimize the sun radiation, the angle of inclination is

set equal to 180◦. This corresponds to venetian blind

completely closed. In case of occupants in the room,

instead, the angle of inclination is 45◦. In this scenario

the venetian blinds are slightly opened to ensure a min-

imum of natural lighting. Finally, in intermediate oper-

ating conditions, the inclination is set to 80◦. It is worth

mentioning that in case of exposure to direct sun radi-

ation the inclination is obtained by eq. (3) to prevent

occupants from glare.

Fig. 2 Representation of the lamellae parallel to the direc-
tion of the sun rays (left). Minimum inclination of the lamel-
lae able to block the sun rays (right).

3.2 Data pre-processing

In order to map data into the range [0-1], the min-max

normalization techniques is used, according to:
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x̃ =
x−min(x)

max(x) −min(x)
(4)

where max(x) and min(x) denote the maximum and

minimum values of the xth feature under analysis; while,

x̃ is the normalized feature value ranging between [0–1].

3.3 Cognitive venetian blinds system

The cognitive venetian blind system is based on com-

putational artificial intelligence techniques. Specifically,

shallow and deep FNN are tested. Details are reported

as follows.

3.3.1 Cognitive Architecture

The proposed deep network is composed of one input

layer that includes the eight control parameters defined

in Section 2, six hidden layers (with 100, 80, 60, 40, 20,

10 units, respectively) and one output neuron for esti-

mating the slat angle control of the South facade. As

the slat angle ranges between 0◦ and 180◦ (both condi-

tions correspond to venetian blind completely closed),

the output angle of the network was constrained to this

range because values exceeding such limits are not phys-

ically applicable by the slat control system. Values ex-

ceeding 180 degree were set at 180◦, and values below

0◦ were set at zero. The deep FNN was designed in

MATLAB R2021b and trained in a supervised learning

fashion for 2*102 iterations, until the convergence of the

loss function. It is worth mentioning that the proposed

cognitive architecture and the training parameters were

chosen according to a trial and error approach. In par-

ticular, the sigmoid activation function was set for all

hidden units, while the linear transfer function for the

output neuron. Furthermore, the mean square error was

employed as loss function using the scaled conjugate

gradient algorithm with the following optimized param-

eters: min-gradient: 10−6, µ=0.005 (Marquardt adjust-

ment parameter); σ= 5x10−5 (parameter for determin-

ing the change in weight for second derivative approx-

imation); λ=5x10−7 (parameter for regulating the in-

definiteness of the Hessian). Table 1 reports different

shallow and deep configurations tested by changing the

number of hidden layers and neurons.

3.4 Performance metrics

The performance of the proposed cognitive venetian

blind system is measured using the Root Mean Square

Error (RMSE ) and the correlation coefficient (r), de-

fined as follows:

RMSE =

√√√√ 1

N

N∑
i

(ỹi − yi)2 (5)

where N is the number of samples, ỹ and y represent

the measured and target slat angle, respectively.

r =
N
∑N
i ỹiyi −

∑N
i yi

∑N
i ỹi√

[N
∑N
i y

2
i − (

∑N
i yi)

2][N
∑N
i ỹi

2 − (
∑N
i ỹi)

2]

(6)

with r ranged between [-1;1] (r=0 denotes no correla-

tion; whereas, r =-1 and r =1 indicate perfect negative

and positive correlation between the target and the es-

timated value).

Furthermore, the behaviour of the building is eval-

uated according to the energy consumption of the air

conditioning system and according to daylight. The lat-

ter represents the illuminance from the solar source

alone, received on a plane 0.8 m above the ground in

the center of the room. The Usefull Daylight Illumi-

nance (UDI) parameter is defined as the percentage of

time in which illuminance falls within a range of val-

ues that is considered comfortable by the users. In the

present analysis the range 200-800 lux was considered.

4 Experimental results

Table 1 reports comparative prediction performance in

terms of RMSE and r coefficients. It is worth mention-

ing that in order to determine the best cognitive config-

uration, shallow and deep FNN with different number

of hidden units and layers were tested. Furthermore, in

order to estimate the efficiency and generalization ca-

pability of the proposed cognitive venetian blinds sys-

tems, the k -fold cross validation technique (with k=10)

was employed. Hence, the achieved outcomes are re-

ported as average values ± standard deviation. Experi-

mental results show that the highest performance were

achieved by the cognitive systems composed of deeper

models such as CogV BS4−7 and CogV BS10,11. In par-

ticular, best results were achieved by CogV BS6 with

RMSE of 0.1018±0.0015 and r coefficient of 0.9319±0.0020.

In contrast, as can be seen in Table 1, shallow models

achieved low prediction results. For example, CogV BS1

(with only 1-hidden layer) and CogV BS22 (with only 2-

hidden layers) reported RMSE of 0.1250±0.0112; and,

r coefficient of 0.8943±0.0213. Table 1 reports also the
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Predicted
Slat Angle

HL1
(100x1)

HL2
(80x1)

HL3
(60x1)

HL4
(40x1)

HL5
(20x1)

HL6
(10x1)

Occupants
Temperature

Solar radiation South
Solar radiation North
Solar radiation East
Solar radiation West

Artificial light
Day light

Fig. 3 Architecture of the proposed deep Cognitive Venetian Blinds System (CogVBS).

Time Computing (TC) and Memory Computing (MC)

for training the different prediction networks. The ex-

periments were conducted on a high performance work-

station with graphics processing units (Intel UHD graph-

ics 630 and NVIDIA GeForce RTX 2080 Ti) of 43 GB.

As can be observed, smaller models were more perform-

ing in terms of TC and MC (e.g., CogV BS21: TC=5.35

s, MC=2%), but with lower results; vice-versa, larger

models were less performing in terms of TC and MC

(e.g., CogV BS7: TC=82 s, MC=11%) but with higher

results. However, it is worth noting that, although the

proposed deep models were time and memory consum-

ing, they took approximately only 80 s with a memory

usage of only 10%. Fig. 4 reports the average RMSE

and correlation coefficient r along with the standard

deviation (i.e., vertical lines) of all the developed cog-

nitive venetian blind systems. It is to be noted that

the CogV BS4−7 and CogV BS10,11 achieved compara-

ble results. However, CogV BS6 reported less standard

deviation in terms of RMSE and r parameters, making

this configuration more stable and reliable. As an exam-

ple, Fig. 5 show comparisons between the desired slat

angle (green) and the predicted values (red) estimated

by deep cognitive models CogV BS6,7,10,11. As can be

seen, the cognitive systems were able to provide very

good prediction performance. In contrast, Fig. 6 shows

the behavior of shallow networks CogV BS1,12,21,22. The

estimated values by the models were indeed not able to

follow effectively the desired angles. In addition, in or-

der to validate statistically the achieved results, the cor-

relation between the target slat angle and the angle es-

timated by CogV BS was evaluated by Pearson’s linear

correlation test. A positive and significant correlation

(p < 0.05) could be observed for every network. In par-

ticular, the highest correlation coefficient (r≈0.93) were
achieved by CogV BS4,CogV BS5, CogV BS6, CogV BS7,

CogV BS10 and CogV BS11. Finally, an energy efficiency

analysis was carried out over a sample period in the

year. In particular, in a sample week in the month of

August, a cooling energy consumption of 38.3 kWh was

observed, with a 12% saving compared to rule-based

logic. Visual comfort was also adequate as the UDI200-

800 index is 85% while it is 70% with the rule-based

logic.

5 Discussion and Conclusion

In the present research, a deep cognitive venetian blinds

system, denoted as CogVBS was developed in order

to predict the slat angle achieved by the rule-based

control-logic proposed in [23]. To the best of our knowl-

edge this is the first work using a deep architecture

for predicting the slat orientation of venetian blinds.

Specifically, a custom deep FNN composed of six-hidden
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Fig. 5 Comparison between the desired slat angle (green) and the predicted values (red) estimated by the cognitive models
(CogV BS6,7,10,11) that achieved high performance.

layers of 100, 80, 60, 40, 20 and 10 hidden neurons

(CogV BS6) was developed to receive as input the eight

control parameters taken into account (Section 2) and

output the predicted orientation of blinds installed in

the South facade. The EnergyPlus software was em-

ployed to simulate the test building composed of a room

with a window for each exposure. Although the network

was designed to predict slats angles belonging to the

venetian blinds of the South facade, solar radiations in-

cident over the four faces of the building were included

since affect the internal temperature. Experimental re-

sults showed that the proposed deep cognitive model,

achieved very good performance in terms of RMSE and

r coefficient: 0.1018±0.0015 and 0.9319±0.0020, respec-

tively. It is to be noted that other deep networks achieved

good results (e.g, CogV BS4,5,7 and CogV BS10,11), but

with greater standard deviation. It is worth mentioning,

as can be noted in Fig. 5 that the slat angle estimated

by CogVBS varies gradually over time, in contrast to

the slat angle estimated by the model which, at the

exact time of sunset, automatically closes the venetian

blinds completely (slat angle = 180) regardless of pos-

sible residual natural light. The natural lighting is in-

stead taken into account by the neural model which

learns to estimate the optimal angle on the basis of

a plurality of input factors. In other words, the model

learns that in the presence of daylight the blinds should

not be completely closed, which the analytical model

is not able to take into account. Hence, the proposed

CogVBS estimates the angle using the detected illu-
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Fig. 6 Comparison between the desired slat angle (green) and the predicted values (red) estimated by cognitive models
(CogV BS1,12,21,22) that exhibited poor performance.

minance and solar radiation data with no information

about the position of the sun in the sky. In this way,

the sun may be down, but if an adequate natural illu-

minance is still present, the network will not close the

blinds instantly, as the analytical model would do, and

will adapt to the context. In this perspective, the neural

model reproduces the analytical model but overcomes

its limitation of the on-off logic linked to the time of

sunset. As consequent the visual comfort of the occu-

pants improves since that are able to benefit from the

sunlight for a longer time. It is also to be noted that the

rule-based algorithm reported in [23] depends on several

operating variables (e.g., geometry of the window, in-

ternal and external environmental conditions, etc) and

should be reinvented when new parameters are consid-

ered. The cognitive strategy overcomes this drawback

as it is easily adaptable to different contexts, also when

new variables are included. To this end, a long term

campaign of data acquisition will be carried out in the

future on a set of sample buildings. It is worth mention-

ing that data should be collected from sensors for dif-

ferent slat angle settings and used as input to the neu-

ral system to be developed. The energy consumption

of the building should be then evaluated for different

slat angles and different input variable settings. In the

end, for every input variable setting, the slat angle en-

suring optimal energy consumption could be identified

and used as target response to train a neural system.

Such a data collection campaign would be time con-

suming but it would allow, for the definition of a neu-

ral system taking into account, many input variables

while ensuring the best energy consumption, which is

nowadays a urgent problem to be solved both for eco-

nomic and environment reasons. In addition, we intend

to investigate the prediction performance also for the

North, West and East facades of the simulated build-

ing. Moreover, a more complex building with multiple

rooms, levels and other control parameters will be also

taken into account. Finally, the proposed system will

be implemented in a real test-bed as part of the COG-

ITO project. This set up will provide the opportunity

to evaluate the performance of the proposed system in

a operational environment.
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in hot climates. Energy and Buildings 151, 263–274
(2017)

3. Aste, N., Adhikari, R.S., Del Pero, C.: An algorithm for
designing dynamic solar shading system. Energy Proce-
dia 30, 1079–1089 (2012)

4. Bellia, L., De Falco, F., Minichiello, F.: Effects of solar
shading devices on energy requirements of standalone of-
fice buildings for italian climates. Applied Thermal En-
gineering 54(1), 190–201 (2013)

5. Carletti, C., Sciurpi, F., Pierangioli, L., Asdrubali, F.,
Pisello, A.L., Bianchi, F., Sambuco, S., Guattari, C.:
Thermal and lighting effects of an external venetian
blind: Experimental analysis in a full scale test room.
Building and Environment 106, 45–56 (2016)

6. Chan, Y.C., Tzempelikos, A.: Efficient venetian blind
control strategies considering daylight utilization and
glare protection. Solar Energy 98, 241–254 (2013)

7. Crawley, D.B., Lawrie, L.K., Pedersen, C.O., Liesen,
R.J., Fisher, D.E., Strand, R.K., Taylor, R.D., Winkel-
mann, R., Buhl, W., Huang, Y.J., et al.: Energyplus, a
new-generation building energy simulation program. In:
Proceedings of Building Simulation’99, vol. 1, pp. 81–88
(1999)

8. Eltaweel, A., Su, Y.: Controlling venetian blinds based on
parametric design; via implementing grasshopper’s plug-
ins: A case study of an office building in cairo. Energy
and Buildings 139, 31–43 (2017)

9. Evangelisti, L., Guattari, C., Asdrubali, F., de Lieto Vol-
laro, R.: An experimental investigation of the thermal
performance of a building solar shading device. Journal
of Building Engineering 28, 101089 (2020)

10. Ghosh, A., Neogi, S.: Effect of fenestration geometrical
factors on building energy consumption and performance
evaluation of a new external solar shading device in warm
and humid climatic condition. Solar Energy 169, 94–104
(2018)

11. Grynning, S., Time, B., Matusiak, B.: Solar shading con-
trol strategies in cold climates–heating, cooling demand
and daylight availability in office spaces. Solar energy
107, 182–194 (2014)

12. Guillemin, A., Molteni, S.: An energy-efficient controller
for shading devices self-adapting to the user wishes.
Building and Environment 37(11), 1091–1097 (2002)

13. Hashemi, A., Khatami, N.: Effects of solar shading on
thermal comfort in low-income tropical housing. Energy
Procedia 111, 235–244 (2017)

14. Hu, J., Olbina, S.: Illuminance-based slat angle selection
model for automated control of split blinds. Building and
Environment 46(3), 786–796 (2011)

15. Huang, L., Wu, J.: Effects of the splayed window type on
daylighting and solar shading. Building and environment
81, 436–447 (2014)

16. Karlsen, L., Heiselberg, P., Bryn, I., Johra, H.: Solar
shading control strategy for office buildings in cold cli-
mate. Energy and buildings 118, 316–328 (2016)

17. Koo, S.Y., Yeo, M.S., Kim, K.W.: Automated blind con-
trol to maximize the benefits of daylight in buildings.
Building and environment 45(6), 1508–1520 (2010)

18. Kunwar, N., Cetin, K.S., Passe, U., Zhou, X., Li, Y.: En-
ergy savings and daylighting evaluation of dynamic vene-
tian blinds and lighting through full-scale experimental
testing. Energy 197, 117190 (2020)

19. Lai, K., Wang, W., Giles, H.: Solar shading performance
of window with constant and dynamic shading function
in different climate zones. Solar Energy 147, 113–125
(2017)

20. Loutzenhiser, P.G., Manz, H., Carl, S., Simmler, H.,
Maxwell, G.M.: Empirical validations of solar gain mod-
els for a glazing unit with exterior and interior blind as-
semblies. Energy and Buildings 40(3), 330–340 (2008)

21. Luo, S., Li, H., Mao, Y., Yang, C.: Experimental research
on a novel sun shading & solar energy collecting coupling
device for inpatient building in hot summer and cold win-
ter climate zone in china. Applied Thermal Engineering
142, 89–99 (2018)

22. Luo, Z., Sun, C., Dong, Q., Yu, J.: An innovative shading
controller for blinds in an open-plan office using machine
learning. Building and Environment p. 107529 (2020)

23. Nicoletti, F., Carpino, C., Cucumo, M.A., Arcuri, N.: The
control of venetian blinds: A solution for reduction of
energy consumption preserving visual comfort. Energies
13(7), 1731 (2020)

24. Paik, J., Kim, J., Yeo, M., Kim, K.: A study on the occu-
pants use of the blinds in office building. Journal of the
Architectural Institute of Korea 22, 311–318 (2006)

25. Yeon, S., Yu, B., Seo, B., Yoon, Y., Lee, K.H.: Ann based
automatic slat angle control of venetian blind for mini-
mized total load in an office building. Solar Energy 180,
133–145 (2019)

26. Zhang, S., Birru, D.: An open-loop venetian blind control
to avoid direct sunlight and enhance daylight utilization.
Solar Energy 86(3), 860–866 (2012)



A deep Cognitive Venetian Blinds System for automatic estimation of slat orientation 9

Table 1 Performance (i.e. Root Mean Square Error (RMSE) and correlation coefficient (r)) of the developed cognitive
venetian blinds systems composed of shallow and deep FNN with different hidden layers (HL), one input layer that includes
eight input parameters and one output neuron. Results are expressed as average score ± standard deviation. Time computing
(TC ) and memory computing (MC) are also reported.

Model Input HL1 HL2 HL3 HL4 HL5 HL6 HL7 Output RMSE r Time Computing [s] Memory Computing [%]

CogV BS1 8 100 - - - - - - 1 0.1250±0.0112 0.8943±0.0213 15.83 5%

CogV BS2 8 100 80 - - - - - 1 0.1077±0.0016 0.9234±0.0025 37.07 8%

CogV BS3 8 100 80 60 - - - - 1 0.1062±0.0024 0.9256±0.0035 62.05 9%

CogV BS4 8 100 80 60 40 - - - 1 0.1033±0.0019 0.9299±0.0025 70.06 10%

CogV BS5 8 100 80 60 40 20 - - 1 0.1023±0.0020 0.9313±0.0028 79.03 10%

CogV BS6 8 100 80 60 40 20 10 - 1 0.1018±0.0015 0.9319±0.0020 78.98 10%

CogV BS7 8 100 80 60 40 20 10 5 1 0.1032±0.0030 0.9299±0.0040 81.89 11%

CogV BS8 8 50 - - - - - - 1 0.1107±0.0019 0.9190±0.0029 9.60 4%

CogV BS9 8 50 30 - - - - - 1 0.1054±0.0023 0.9268±0.0033 16.88 5%

CogV BS10 8 50 30 10 - - - - 1 0.1032±0.0029 0.9300±0.0039 19.47 5%

CogV BS11 8 50 30 10 5 - - - 1 0.1033±0.0018 0.9299±0.0021 23.95 5%

CogV BS12 8 20 - - - - - - 1 0.1119±0.0019 0.9171±0.0028 9.93 3%

CogV BS13 8 20 10 - - - - - 1 0.1076±0.0021 0.9236±0.0031 11.09 3%

CogV BS14 8 20 10 5 - - - - 1 0.1069±0.0029 0.9245±0.0042 15.14 3%

CogV BS15 8 10 - - - - - - 1 0.1127±0.0012 0.9158±0.0020 5.65 3%

CogV BS16 8 10 8 - - - - - 1 0.1094±0.0035 0.9208±0.0053 9.91 3%

CogV BS17 8 10 8 5 - - - - 1 0.1096±0.0036 0.9206±0.0055 13.75 3%

CogV BS18 8 8 - - - - - 1 0.1146±0.0024 0.9129±0.0038 5.47 3%

CogV BS19 8 8 4 - - - - - 1 0.1118±0.0062 0.9169±0.0101 9.43 3%

CogV BS20 8 8 4 2 - - - - 1 0.1143±0.0069 0.9131±0.0108 12.93 3%

CogV BS21 8 4 - - - - - 1 0.1177±0.0031 0.9079±0.0049 5.35 2%

CogV BS22 8 4 2 - - - - - 1 0.1250±0.0112 0.8943±0.0213 8.87 3%


