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Botanical nano-insecticides are a trend in pest control. The
natural origin of the active substances, alongside with the
methodological approach granted by nanotechnologies are a
promising combination of innovation and eco-sustainability, hot
topics in the context of ecological transition in agriculture.
Nevertheless, their field application is still limited, due to pro-
duction challenges and risk assessment concerns. Nano-
formulations have some advantages over traditional
bioinsecticides, including increased bioactivity and persis-
tence, and slow-release rates. Recent research reported
promising insecticidal activity of nano-emulsions, micro-emul-
sions, and nanoparticles loaded with different botanical ex-
tracts, oils, and essential oils. Though, despite their proven
efficacy against insect pests and vectors, a limited number of
studies investigated their safety towards nontarget organisms
and fate in the environment. This mini-review provides an
overview of the side-effects of botanical nano-insecticides and
the main challenges to improve their sustainability in term of
ecological and production cost.
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Introduction
In the last decades, ecofriendly pest control has become
a key topic to safeguard crop production and ensure food
security worldwide. The adverse consequences of the
extensive use of synthetic insecticides, naming pesti-
cide resistance, water and soil contamination, and the
negative effects on human health and nontarget species,
prompted stakeholders to explore innovative and more

selective eco-friendly tools [1]. Combining nano-
technological approaches with botanical active sub-
stances is a leading trajectory for developing and
commercializing innovative bioinsecticides [2]. Syn-
thetic insecticides are usually preferred by farmers
because of their superior effectiveness to control pests
compared to botanical insecticides [3]. Nevertheless,
nano-bioinsecticides often showed higher insecticidal
activity, biodegradability, and controlled or targeted
release, if compared to the synthetic counterparts [3].

Despite many studies on the efficacy of botanical ex-
tracts as insecticides, only a few commercial products
are available because some disadvantages limit their use
in field conditions [4]. Most bioactive botanicals are
secondary metabolites synthesized by plants as a
mixture of different molecules, called phytocomplex.
Their natural origin secures biodegradability, although it
also determines rapid degradation and low persistence,
sometimes associated with flammability, poor solubility
in water, and phytotoxicity [3,5].

Those negative characteristics are some of the chal-
lenges to overcome for the ecological transition in agri-
culture, which could be mitigated through the
application of nanotechnology [6]. Granting improved
persistence and efficacy on target pests, botanical nano-
insecticides might also prove increased bioactivity
toward nontarget organisms, as well as environmental
concerns. Nevertheless, those aspects are usually
neglected; besides, the selectivity of botanicals is
commonly acknowledged, occasionally without a solid
scientific ground [7].

In this scenario, the present mini-review explores the
use of botanical nano-delivery systems in managing
insect pests and vectors focusing on the associated
ecological challenges. The primary objective is to define
these systems and emphasize their environmental
impact, including toxicity to nontarget organisms and
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long-term ecological effects. Nano-delivery systems,
such as nanoparticles, nano-emulsions, and nano-
capsules are described, and their respective character-
istics are highlighted. The recent literature on side-
effects of nanoformulations containing active sub-
stances obtained from plants or industrial botanical
byproducts, rather than chemically-synthesized single
molecules (e.g. terpenes) originally identified from

botanical sources, is reviewed. Nanodelivery systems
where botanicals were used as co-formulants or carriers
were disregarded. Lastly, the sustainability of
manufacturing processes leading to the production of
botanical nano-systems and the future challenges for
their development and commercialization
are highlighted.
Botanical nanoinsecticides
Overall, nanotechnology refers to materials with di-
mensions ranging in the nanometric scale (between 1
and 100 nm). Instead, approaches for nanoinsecticidal
design refer to nanodelivery systems with particle sizes
lower than 1000 nm [8]. Nano-formulations applied to
the development of botanical nanoinsecticides consist
of two main groups: (i) nano-emulsions and micro-

emulsions, and (ii) nanoparticles. Due to their ease of
preparation and industrial scalability, both groups can
work for innovative pest control formulations [9].
Nanodelivery systems offer several advantages over
traditional botanical pesticides, improving surface
coverage, dispersibility, controlled release kinetics, and
enhancing penetration through the insect cuticles and
the plant tissues. Overall, those features can reduce the
amount of the active substance required in field con-
ditions, meanwhile increasing pest control efficiency in
crop protection [6]. Therefore, the efficacy of botanical
nano-insecticides was well studied against different crop

and stored product pests, as well as insect vec-
tors [10,11].

Nano and microemulsions
Among all the nanodelivery systems, nanoemulsions
(NEs) and microemulsions (MEs) have been the most
common in the design of nano-insecticides from
botanical extracts. NEs and MEs are dispersed systems
composed of a mixture of immiscible liquids (e.g. oil and
water) stabilized by an emulsifying agent. NEs and MEs
can be mainly developed through bottom-up and top-
down approaches [12]. Top-down methods, utilizing
high-energy systems (i.e. sonication, high-pressure ho-

mogenization, or micro-fluidization) offer some advan-
tages, such as precise control over physical properties
and the scalability for large-scale production. Bottom-up
approaches require low-energy (e.g. self-emulsification,
phase inversion concentration or temperature, precipi-
tation) and are advantageous in terms of versatility and
the ability to develop materials with unique properties.
The choice of the adequate method is a key issue to
Current Opinion in Environmental Science & Health 2024, 42:100579
balance NE and ME characteristics and production’s
energy costs [13].

NEs and MEs can be applied to insecticidal formula-
tions to make some lipophile botanical extracts miscible
with water. This is the case of several vegetable oils,
such as neem and castor oil, and essential oils (EOs).
Some of those botanical extracts are quite common

pests and vector control tools, although some drawbacks
can impair their efficacy in field conditions [14].

Nanoparticles
Nanoparticles (NPs) refer to solid or liquid nano-
materials, such as nanospheres and nanocapsules,
derived from substances capable of absorbing or encap-
sulating active substances. Various approaches can be
used to develop NPs, including precipitation, solvent
evaporation, and melt dispersion, utilizing materials like
poly-ε-caprolactone (PCL), polyethylene glycol (PEG),
silica, chitosan, and zein [15]. These nanoformulations
can absorb, dissolve, encapsulate or entrap different
botanical active substances, such as EOs, pyrethrins,

rotenone, neem oil, and other plant extracts. Their
insecticidal efficacy was proven against several crop and
stored product pests, as well as on mosquito vectors
[16]. The materials used to produce the nanocapsules or
nanospheres can alter several physicochemical charac-
teristics of the botanical extracts, influencing the release
rate, the persistence and the bioavailability of the
phytocompounds. However, the inclusion of active
substances inside a protective shell can also assume
undesired effects, like bioactivity reduction and residual
presence on crops.
Are botanical nanoinsecticides ecofriendly
and sustainable?
The impact of botanical nanoinsecticides for pest con-
trol on the biota of both natural and agroecosystems is

still far to be clarified. However, nanoformulated sub-
stances could potentially impact several ecological
components and processes. Recently, the environmental
impact and fate of nanopesticides have been reviewed,
dealing with different aspects of eco-sustainability
[17e19]. Nevertheless, those studies mainly focused
on metallic NPs or nanoformulations containing syn-
thetic insecticides, highlighting the need of a focused
revision of the literature on botanical nanoformulations.
However, some of the considerations and concerns
defined for synthetic and metallic nanomaterials cannot

be extended to plant-based nano-insecticides since, for
their nature, those are more prone to biodegradation.

Side effects on nontarget species
The potential adverse effects of botanical-based nano-
insecticides towards nontarget organisms, including ar-
thropods (such as natural enemies and pollinators),
aquatic and soil organisms and microorganisms, plants,
www.sciencedirect.com
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as well as humans, are still uncertain. Indeed, the un-
desirable effects of plant-based nanopesticides depend
on several factors, including the particle number, con-
centration, size, distribution, and application rate [20].

However, the selectivity of bioinsecticides is commonly
acknowledged and, thus, extended to nano-
biopesticides. Nevertheless, current literature about the

nontarget impact of botanical insecticides reported
contrasting results [7], and the same may also
be supposed for their nanoformulations. For example,
pyrethrum-based nanopesticides did not significantly
affect honeybee survival, whereas unformulated pyre-
thrum reduced bee longevity and caused morphological
alterations in the midgut [21]. Natural enemies, such as
insect predators and parasitoids, merit attention when
considering the use of botanical nanoinsecticides for
crop protection [22e24]. Among invertebrates, aquatic
microcrustaceans, like Daphnia magna Straus, and

earthworms, such as Eisenia fetida Savigny, are recognized
model organisms for ecotoxicological study, which can
help to understand the activity of xenobiotics on
different organisms of the agroecosystem trophic chain
[25e27]. Furthermore, botanicals may influence soil
microorganisms, including soil nitrogen cycle microbiota
[28], while their nanoformulation could be more selec-
tive [29]. Lastly, the safety of several EO-based NEs
toward mammalian [30e32] and human cell lines has
been reported [31e34]. The impact of botanical nano-
insecticides toward nontarget organisms is detailed in

Table 1. To date, severe acute toxicity has not been
reported for tested nanoinsecticides, although further
research is required to safely apply botanical nano-
substances in the field.

Environmental persistence
A further key issue about botanical nanoinsecticides is
the environmental impact assessment, in particular their
accumulation in soil, water, plants, and foods. In this
context, the most common methodologies for studying
the behavior and fate of nanoformulated pesticides in
soil and water were discussed [48]. In aquatic and soil
environments, the physicochemical properties of the
botanical nanomaterials can alter some physicochemical

characteristics and influence both the biotope and the
biocenosis [45,49]. The European Food Safety Authority
(EFSA) published a guideline on the food safety
assessment of nanoformulations applied in agriculture
[50]. Since the nanoinsecticides may not be environ-
mentally safe, deeper knowledge about the fate of
botanical nanosystems is required. Life cycle assess-
ment (LCA) in soil, water, and plants could be an
interesting approach to estimate the safety of botanical
nanomaterials, since in open fields their fates depend on
their physicochemical properties (e.g. particle size,

surface chemistry, and charge) and bioactivity, alongside
with field conditions (e.g. soil/water composition and
www.sciencedirect.com
climate), which can alter biodegradation and bioavail-
ability processes [51], including soil enzymatic activ-
ity [24,52].

The possible bioaccumulation in the environment and
the biomagnification through the trophic chain are the
most concerning aspects related to the field application
of botanical nanoinsecticides, although few studies have

tried to investigate those aspects [53,54]. Nano-
formulations could increase the soil half-life of some
synthetic pesticides up to 2-fold, with recorded bio-
accumulation in earthworms and plants [55]. On this
basis, a similar persistence trend cannot be excluded
also for botanical nanoformulations, which can stay
active in organic substrates, such as soil and water, for
quite a long period due to their controlled release rate
and increased stability. In our opinion, long-term studies
to fully understand the environmental persistence and
potential bioaccumulation of botanical nanoinsecticides

is a crucial issue deserving further research.

Sustainability and commercial challenges
Among the characteristic limitations of plant-based
nanopesticides, the quantity of coformulants used to
stabilize the nanoformulations is a key issue. Some of
these substances are known to adversely affect plant
growth and cell membrane permeability at high con-
centrations [56]. The use of natural versus synthetic
emulsifiers and coformulants should be preferred to
improve the complete biodegradation of the
nanoformulation in open field conditions
[57] (Table 2).

On the other hand, while reducing the use of synthetic
coformulants, the botanical active substance included in
the nanopesticidal formulation should be highly
concentrated; otherwise, high volumes of nano-
formulants would be needed for real-world use, causing
issues during storage, transport, and application. There
are only a few stable nanoinsecticides formulated with
high ratios of botanical active substances (i.e. >15%)
[e.g. 22,23], although this aspect needs to be further
improved to match commercial requirements.

Lastly, the processes employed to produce botanical
nanoformulations merit attention. Besides the prom-
ising physicochemical characteristics of nanoformulates,
some of the proposed approaches require expensive
external inputs, such as high energy costs, as well as
expensive materials [57]. The environmental impact of
the industrial production of nanoinsecticides involves
land use for raw material production, carbon and water
footprint, as well as waste management. Indeed, when
accounting for the sustainability of those insecticides, all
these aspects (i.e. from field to commercialization)

should be considered. In this framework, the extraction
methods of the botanical active substances, the
Current Opinion in Environmental Science & Health 2024, 42:100579

www.sciencedirect.com/science/journal/24685844


Table 1

Side effects of botanical nanoinsecticides on nontarget organisms.

Plant species (Family) Active substance Type of
formulation

Target species Major results Nontarget species Main effects Reference

Schinus terebinthifolius
(Anacardiaceae)

EO NE Culex pipiens Larvae: LC50 = 6.8 ml/L,
LC95 = 13.2 ml/L

Gambusia affinis LC50 = 3042.7 ml/ml [35]

Adults: LC50 = 5.3 ml/L,
LC95 = 11.3 ml/L

LC95 = 5614.7 ml/ml

Repellent at all tested doses
(mg/cm2).

Eisenia fetida Not detected effects on
mortality

Allium sativum
(Amaryllidaceae)

EO NE Planococcus citri 24h: LC50 = 0.76%;
LC90 = 1.378%

Apis mellifera Survival: 100% [13]

48h: LC50 = 0.65%;
LC90 = 1.1%
Direct: LC50 0.248%,
LC90 = 0.967%

Cryptolaemus montrouzieri Survival = 90% ± 5.37 at
LC90; 84.44% ± 6.7 at
1.25%

[22]

Residual: LC50 = 0.782%,
LC90 = 1.088%

Tuta absoluta Eggs: LC50 = 0.124%,
LC90 = 0.772%

Nesidiocoris tenuis Mortality: undetected [23]

Larvae: 100% mortality at
3%, 7.78 mortality at LC50

eggs

Reduced progeny in treated
plants

Repellent Tomato plants Undetected
Acmella oleracea

(Asteraceae)
EO NE Culex

quinquefasciatus
LC50 = 407.5 mL/L Mammalian fibroblasts and

microglia cells
Low level of cytotoxicity and
anti inflammatory effect

[33]

Ageratina adenophora
(Asteraceae)

4,7-dimethyl-1-(propan-
2-ilidene)−1,4,4a,8a-
tetrahydronaphthalene-
2,6(1 H,7 H)-dione
(DTD)

NE Spodoptera
frugiperda

S. frugiperda: 72h
LC50 = 47.02 mg/L, 96h
LC50 = 24.02 mg/L

Cell Low toxicity [36]

Spodoptera litura S. litura: 72h
LC50 = 14.03 mg/L, 96h
LC50 = 0.79 mg/L

Earthworms 7d LC50 = 40.46(mg/kg);
14d LC50 = 37.57 (mg/kg)

Ostrinia
furnacalis

O. furnacalis: 72h
LC50 = 33.89 mg/L, 96h
LC50 = 2.19 mg/L

Zea mais Undetected

Carlina acaulis
(Asteraceae)

EO & carlina oxide NE Culex
quinquefasciatus

LC50 = 579.1 mL L−1;
LC90 = 791.3 mL L−1

Human cells Low toxicity [31]

Sublethal effects: LC16

(384.5 mL L−1) = 100%
mortality after 18 days

Wistar rats Undetected toxicity
(LC50 = 5000 mg/kg)

Tanacetum
cinerariifolium
(Asteraceae)

Pyrethrins (commercial
product)

solid lipid NP - – Apis mellifera Undetected on longevity
and digestive cells

[21]

Lithobates catesbeianus Genotoxic [37]
Pyrethrins (commercial
product)

ME Aphis gossypii Population reduction (%):
3.1 g a.i/hl after7d (90.68%);
1.86 g a.i/hl after 7d
(77.66%)

Coccinella septempunctata Undetected [38]

Macrolophus pygmaeus Undetected
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Pimpinella anisum EO ME Culex
quinquefasciatus

LC50 = ranging from 1.45 to
4.01 ml/L

Daphnia magna Low toxicity [39]

Trachyspermum ammi LC90 = ranging from 1.81 to
6.48 ml/L

Tubifex tubifex High toxicity

Crithmum maritimum
(Apiaceae)

Eisenia fetida Undetected

Smyrnium olusatrum
(Apiaceae)

Isofuranodiene ME Culex
quinquefasciatus

24h: LC50 = 17.7 ml/L,
LC90 = 39.1 ml/L

Daphnia magna Mortality: 18.7% (32 ml/L) [40]

7d: LC50 = 4.1 ml/L,
LC90 = 11.3 ml/L

Eisenia fetida Undetected mortality

Cannabis sativa
(Cannabaceae)

EO NE Culex
quinquefasciatus

LC50 = 72.2 ppm;
LC90 = 207.2 ppm

Daphnia magna Mortality <16% at LC90 [41]

Cupressus
sempervirens
(Cupressaceae)

EO NE Culex
quinquefasciatus

Larvae: LC50 = 11.4 mg/ml,
LC90 = 19.7 mg/ml

Gambusia affinis LC50 = 1488.4 mg/ml [42]

Adults: LC50 = 7.2 mg/l,
LC90 = 13.1 mg/l; Repellent
at all tested doses (mg/cm2).

LC90 = 2425.5 mg/ml

Croton linearis
(Euphorbiaceae)

EO NE Aedes aegypti LC50 = 17.86 mg/mL Human cells Undetected effects
(LC50 > 2000 mg/kg)

[32]

Aeollanthus suaveolens
(Lamiaceae)

EO NE Aedes aegypti 24h: LC50 = 54.23 mg/mL,
LC90 = 96.96 mg/mL

Mus musculus Undetected effects
(LC50 > 2000 mg/kg)

[30]

48h: LC50 = 46.06 mg/mL,
LC90 = 75.31 mg/mL

Mentha piperita
(Lamiaceae)

EO Polymeric NP Sitophilus oryzae S. oryzae: LC50 = 130.5 mg/
cm2, LC90 = 327.61 mg/cm2

Artemia salina LC50 = 24.74 ppm,
LC90 = 47.72 ppm

[43]

Lasioderma
serricorne

L. serricorne:
LC50 = 162.04 mg/cm2,
LC90 = 348.86 mg/cm2

Culex pipiens C. pipiens: LC50 = 66.02 mg/
cm2, LC90 = 122.43 mg/cm2

Mentha spicata
(Lamiaceae)

EO Chitosan NP Callosobruchus
maculatus

C. maculatus: LC50 56 mL/L Vero cell line Undetected effects [34]

Sitophilus
granarius

S. granaries: LC50 47 mL/L

Persea venosa
(Lauraceae)

EO NE Dysdercus
peruvianus

LC50 = 28.73 mg/mL Apis mellifera Undetected mortality [44]

Partamona helleri Undetected mortality
Azadirachta indica

(Meliaceae)
Neem oil zein NP - – Allium cepa Decreased mitotic index [28]

Slightly increased damage
index

Soil nitrogen cycle
microbiota

Undetected

Caenorhabditis elegans Undetected
PLC NP - – Soil microbiota Undetected until 300 days [29]

Zea mays Dose-responsive
phytotoxicity

Allium cepa
Neem gum Nano-

suspension
Helicoverpa
armigera

LC50 = 10.20 ppm;
LC90 = 32.68 ppm

Eudrilus eugeniae Undetected mortality [26]

(continued on next page)
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Table 1. (continued )

Antifeedant

Pupal toxicity
Spodoptera litura LC50 = 12.49 ppm;

LC90 = 36.68 ppm;
Antifeedant
Pupal toxicity

Myristica fragrans
(Myristicaceae)

EO chitosan NP - – Rice Reduced peroxidase activity [45]

Undetected phytotoxicity on
seed germination

Mice LC50 = 9231.89 mL/kg
Syzygium aromaticum

(Myristicaceae)
EO & Eugenol zein NP Drosophila

melanogaster
Mortality after 14 days:
100% (Zn-EO) & >60%
(Zn–Eu)

Caenorhabditis elegans Low toxicity [46]

Cymbopogon martinii
(Poaceae)

EO Polymeric NP Sitophilus oryzae S. oryzae: LC50 = 128.82 mg/
cm2, LC90 = 209.37 mg/cm2

Artemia salina LC50 = 30.74 ppm,
LC90 = 69.97 ppm

[43]

Lasioderma
serricorne

L. serricorne:
LC50 = 141.08 mg/cm2,
LC90 = 321.81 mg/cm2

Culex pipiens C. pipiens: LC50 = 53.12 mg/
cm2, LC90 = 105.55 mg/cm2

Citrus sinensis EO NE - – Nesidiocoris tenuis C. reticula causes lethal and
sublethal effects

[24]

Soil activity Undetected
Citrus reticulata Tomato plant Undetected

PEG NP Nesidiocoris tenuis C. reticula causes lethal and
sublethal effects

Citrus limon (Rutaceae) Soil activity Undetected
Tomato plant Undetected

Murraya koenigii
(Rutaceae)

EO NE Aedes aegypti LC50 = 11,8 mg/ml,
LC90 = 22,6 mg/ml

Allium cepa Antiproliferative [47]

Siparuna guianensis
(Siparunaceae)

EO Chitosan NP Aedes aegypti Mortality 7d: 100% Poecilia reticulata Mortality 24h: <30%
(0.83 mg/mL)

[27]

Danio rerio Mortality 24h: <30%
(0.45 mg/mL)
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Table 2

Common coformulants used to produce nanoinsecticides.

Substance Description Advantages Disadvantages

Polysorbates (Tween) Ethoxylated sorbitan esterified with
fatty acids
Amphiphilic, synthetic nonionic
surfactants

Biodegradable in soil
Used as wetter on agricultural
crops

Phytotoxicity (high concentrations)
High amount required
Expensive

Sorbitan esters (Span) Sorbitan esterified with fatty acids
Amphiphilic, synthetic nonionic
surfactants

Biodegradable in soil Phytotoxicity (high concentrations)
High amount required
Expensive

Polyethylene glycol (PEG) Linear polyether
Synthetic coating

Biocompatible
Soluble in water and most organic
solvents

Dry formulations
Moisture degradation

Polycaprolactone (PCL) Linear aliphatic polyester
Synthetic adsorbent, coating

Biocompatible
Long term persistence

Hydrophobic
Residual problems

Polyvinyl alcohols Vinyl polymer
Synthetic thinner, emulsifier

Biocompatible
Water-soluble

Low persistence
High degradability

Silica Amorphous mineral, natural or
synthetic
Adsorbent

Biostimulant on several crops
Natural or synthetic

High temperature
ROS generation
Limited water solubility

Alginates Linear anionic polysaccharide
Adsorbent, coating, emulsifier

Natural product
Water soluble

Intrinsically variable structure
Not degradable by mammals

Chitosan Linear polysaccharide
Emulsifier, coating

Natural product
Biostimulant on several crops

Insoluble in water and organic
solvents
Variable molecular weight and
deacetylation degree

Zein Plant protein isolated
Adsorbent, coating, emulsifier

Natural product
Soluble in organic solution

Expensive
Low stability, enzymatic
degradation

Pectin Linear polysaccharide
Emulsifier, coating

Natural product
Soluble in water

Intrinsically variable structure
Strong retention

Ecological costs of botanical nano-insecticides Modafferi et al. 7
production technologies, byproduct disposal, but also
the storage requirements (i.e. refrigeration), could
greatly impact on the sustainability of botanical nano-
insecticides [5,58]. Researchers are beginning to face
these challenges, as for the bioproduct management,
proposing alternative and more sustainable methods
(i.e. solvent-free extraction) [59].
Conclusions
Although the potential of botanical biopesticides has
been recognized by a growing body of literature, to date
only a few biopesticides are commercialized and used by
stakeholders [4]. This could be explained by the limited
effectiveness of botanical insecticides in the field.
Nevertheless, the dangers associated with synthetic
insecticides became clear once residuals accumulated in

soil, water, and plants and contaminated the environ-
ment, highlighting that in several cases the risks have
outweighed their benefits [58].

A similar misconnection between research and market
is apparently occurring also for botanical nano-
insecticides. Undoubtfully, their widespread adoption
and commercial development hinge on addressing
ecological concerns, optimizing formulation processes,
www.sciencedirect.com
and ensuring compatibility with environmental and
human health standards. Therefore, risk assessment
of nanomaterials has become a trend challenge to face
in the next future. However, common methodologies
and frameworks for risk assessment of botanical
nanoinsecticides are still lacking, posing difficulties to
assess and compare their side effects on nontarget
species, as well as their impact and risks on aquatic
and terrestrial ecosystems, biodiversity, and
food webs.

Overall, besides the encouraging results available from
the literature on their ecotoxicology, the risk assessment
and the sustainability of botanical nanoinsecticides need
further investigation to validate both industrial scal-
ability and environmental safety.
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