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Abstract—Gesture recognition is a novel technology that 

aims to change the way people interact with machines. 

Existing solutions typically recognize gestures using camera 

vision, wearable sensors, or specialized signals (e.g., WiFi, 

sound, and visible light), but they have limitations such as 

high-power consumption or low signal-to-noise ratio (SNR) in 

comparison to their surroundings, making it difficult to 

accurately detect finger movements. In this research, we 

propose a device-free gesture identification system that 

recognizes different hand movements by processing through 

Edge Machine Learning (EML) algorithms the received signal 

strength indication (RSSI) and phase values from 

backscattered signals of a collection of Radio Frequency 

IDentification (RFID) tags mounted on a plastic plate. The 

performances of three algorithms, the Random Forest 

Classifier, the Support Vector Machine, and the Decision Tree 

Classifier, were compared giving very encouraging results 

with accuracy up to 99.4%. 

Keywords—edge machine learning, hand gesture, RFID, 

RSSI, sensorless 

I. INTRODUCTION 

Hand gesture is used in the everyday lives of persons and 
is an undeniable element of body language in the interaction 
of human beings. With the development of computing 
devices, the research of natural interaction between humans 
and computing devices has become increasingly important. 
Hand gesture recognition is gaining more and more 
attention for use in different areas, such as virtual devices, 
virtual and augmented reality (VR and AR), safety in 
workplaces, especially when handling heavy machinery 
used in manufacturing, such as in the casting process [1]. 

Several works for gesture recognition have been carried 
out using camera or application-specific sensors [2]–[4], 
based on computer vision, localization systems [5], [6] or 
time-of-flight [7] cameras. This kind of gesture interface has 
attracted attentions because it does not require additional 
hardware from the user perspective. 

A simple solution for RFID-based gesture recognition is 
to utilize RFID localization schemes [8] to directly locate 
tagged objects [9]. Generally, gesture recognition systems 
mainly use phase values to achieve an accurate localization 
[10] or a combination of RSSI and phase values [11]–[13]. 
 Recently, the use of RFID tags on special gloves [11] or 
body parts [14], [15] is widespread in the literature, which 
identifies RFID technology as a very promising candidate 
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for this type of task. Nevertheless, the approach used in 
[11]-[12], [14]-[16] limits the usability due to the need of 
wearing special clothes and/or a fixed positioning of the 
tags.  

Indeed, in some other works, the tags are not attached to 
body parts or objects to be located but are placed in the 
surrounding environment, and the modified backscattered 
signal is analyzed [16]; the number of tags used to provide 
a fine-grained resolution of the gesture recognition is quite 
high [13], while providing the higher resolution in terms of 
gesture recognized. The approach that relies on the 
backscatter signal analysis, however, causes a reduction of 
the read range of the system in the order of centimeters [13], 
[16]. Other approaches require specific design of augmented 
tags with sensing capabilities [17]–[21] or protocol 
enhancements [22]. In addition, the use of recent machine 
learning (ML) models [23] extends the field of application 
of RFID device-free approach to gesture recognition [16]. 
The systems found in the literature fail to provide at the 
same time: i) a compact solution that can be implemented 
on devices with limited resources; ii) a good accuracy in 
gesture recognition; iii) relatively small number of tags not 
attached to the hands or objects performing the gesture; iv) 
operation without requiring a sophisticated setup or a larger 
number of antennas. 

In this paper, we present a device-less gesture 
recognition technique that leverages the use of ML, based 
on the inference of RSSI and phase values from the 
backscattered signals as measured by an array of tags placed 
on a plastic plate, extending the results previously presented 
in [24]. The main additions to the previous work are the 
extension of the measurement campaigns for the dataset 
gathering, the usage of two antennas, an increased number 
of tags, the use of a higher number of ML models trained 
and compared, and finally the implementation on an edge 
device. The above improvements have resulted in a 
comprehensive analysis of the results and improved 
accuracy levels, which are discussed in detail in the 
following sections.  

The proposed technique novelties are mainly associated 
to the use of: 
1)  a single channel frequency to avoid post-processing 

for phase dewrapping; 
2)  two antennas and evaluation of the performance of the 

system considering alternatively: both antennas, only 
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antenna 1 (placed in front of the tags) and only antenna 
2 (placed behind the tags); 

3)  16 tags; 
4)  a single dataset obtained in our laboratories with the 

hand in a static position, performed by 5 people, in two 
different locations and varying the relative distance 
from antennas to tags (station 1: 30 cm and 40 cm; 
station 2: only 30 cm); 

5)  the Edge Machine Learning (EML) capabilities for the 
inference of the gesture recognition on a Raspberry PI 
3 model b device. 

Throughout the measurement campaign detailed in the 
following sections, we trained three different models, 
namely Random Forest Classifier (RFC), Support Vector 
Machine (SVM), and Decision Tree Classifier (DTC), with 
the data coming from the complete dataset obtained by 
using both antennas, and from two datasets derived using 
only data from Antenna 1 and Antenna 2, separately.  
As we will see in the following, all three ML models showed 
high performance on all the considered metrics, obtaining 
accuracy values of over 90%, with RFC achieving the best 
results. 

 In Section II, RFID technology and its low-level 
features (RSSI and phase), used to discriminate the gestures, 
are introduced. In Section III, the architecture and set-up of 
the gesture recognition system are described. In Section IV, 
the datasets and the ML models employed are described 
together with the EML implementation. Section V reports 
the performance results of the ML models trained on the 
provided datasets, as per the evaluation metrics employed.  
Lastly, the conclusions are drawn in Section VI. 

II. RFID WORKING PRINCIPLE 

Passive Radio Frequency Identification (Passive RFID) 
is the technology chosen for the development of the gesture 
recognition system. RFID is a technology engineered to 
both identify and track objects using RFID tags. Passive 
RFID tags have no batteries and work by harvesting energy 
from the RF signal produced by the reader. 

Passive RFID systems working in the UHF (Ultra High 
Frequency) band gather the data stored in the tags by means 
of the backscattering mechanism. The reader emits an RF 
signal, and the tag is energized allowing it to activate its 
microchip. The absorption of the impinging energy is 
modulated based on the data stored in the chip and a 
modulated reflected wave is sent back to the reader.  Then, 
the reader intercepts the backscattered signal and evaluates 
the contained information. 

In our design, the low-level information, made available 
by the RFID technology standard, and used to characterize 
the different gestures are RSSI and phase. RSSI is the power 
level of the RF signal received by the RFID reader. The 
Phase is a measure of the displacement angle between the 
RF carrier transmitted by the reader and the return signal 
from the tag. The RFID reader performs frequency hopping 
from one channel to another and, as a result, the actual phase 
values are dependent also on the switching of the channel 
frequency.  

III. GESTURE RECOGNITION SYSTEM 

The system exploited for gesture recognition consists of 
sixteen passive Impinj Monza 5 RFID tags [25], an RFID 
Reader ThingMagic M6e Micro UHF RAIN [26], and two 
antennas Laird S8658PLJ (LHCP) [27] as shown in the 
setup reported in Fig. 1. 

The sixteen tags are laid out on a plastic plate supported 
by a wooden support, to prevent metal surfaces from 
interfering with the data acquisition.  In fact, it is proven that 
the presence of metallic materials impacts the strength of the 
signal received and thus the RSSI value [28]. Each RFID tag 
was programmed with a unique EPC (Electronic Product 
Code) so that each individual tag could be easily identified 
across acquisitions. The antennas used were positioned at 
the same distance from the tag array, one in front (Antenna 
1) of the tag array and the other behind (Antenna 2). For the 
acquisitions, the hand was inserted only between the 
Antenna 1 and the plate that supports the matrix of tags. For 
this study, five hand gestures were analyzed, each one 
associated with a numeric label ranging from 1 to 5. 

 

Fig. 1. Gesture recognition system setup. 
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Furthermore, the case of absence of the hand between the 
tags and the Antenna 1, called gesture 0, was considered. In 
addition, we also considered case of no hand between the 
antenna and the tags’ plate, and it was referred to as gesture 
0. The same setup has been used to perform the hand 
gestures and acquire data that compose the training dataset.  

For the reading operations, we developed a C# 
application that exploits the ThingMagic Mercury API 
library, to setup the reader and to handle the operations. The 
same software library allows for gathering data from the 
tags detected by the reader. In addition, the Universal 
Reader Assistant (URA) software was used, which provides 
a complete and thorough interface for the ThingMagic RFID 
readers. 

By default, the RFID reader has been set to operate at a 
fixed frequency of 865.7 MHz. In normal working mode, 
the reader is set by default to work in frequency-hopping 
mode, which consists of the reader changing the working 
frequency, at every reading, in a given frequency range 
following to the operating region of the reader. However, 
this behavior leads to a discontinuity in the saved phase 
values over time, which makes them unsuitable for the given 
purposes, unless a phase correction formula is applied [11]. 

Moreover, the reader is configured to use the EPC Gen2 
protocol and an output power of 30 dBm. The reader is 
polling every 300 ms (150 ms Antenna 1 + 150 ms Antenna 
2), for every tag in the range, the RSSI, the phase, and the 
EPC unique code of the backscattered signal is acquired. 
This timing has been determined as a trade-off between the 
ability to properly read the appropriate information from all 
tags and the speed at which the acquisition is performed. 

The tags are placed on the far-field zone border. We 
positioned them on the border since the tags we employ 
have a technological limitation: following several 
preliminary tests, we discovered that the reader struggled to 
receive data from all 16 tags beyond 40 cm, hence we set 
the upper limit at such distance. Since going to lower 
distance would violate the near field region, which is not a 
goal in our study, the lower limit was set at 30 cm. 

Moreover, the distances must be sufficient to allow for 
easy positioning of the hand between tags and antenna, as 
well as accurate data collecting at rapid rates, which is why 
distances of 30-40 cm are more than sufficient. To switch 
from one gesture to another without colliding into the 
antenna and/or tags, a spacing of 30-40 centimeters is 
sufficient. 

IV. MACHINE LEARNING 

A. Datasets 

For the dataset acquisition, it was considered to explore 
the system functioning at different distances and in different 
positions of the antennas: 

• Position 1: both antennas placed first at 30 cm from the 
tags, and then at 40 cm; 

• Position 2: both antennas placed at 30 cm from the tags 
 

Five people participated in the creation of the dataset, 
composed of approximately 450 acquisitions. 

For each gesture, EPC, RSSI, and phase of every single 
tag in the matrix have been acquired. The EPC value is only 
used to filter and sort the data read from the various tags, 
while the acquired RSSI and phase values are saved in the 

TABLE I.   

Total lost tags vs. gesture & antenna  

 
 Gesture 

0  1 2 3 4 5 

Antenna 1 

 

1 952 
 

1184 
 

1166 
 

913 
 

1655 
 

Antenna 2 1 

 

0 

 

0 

 

2 

 

0 3 

 

Total records 2560 2805 2735 2552 2527 2452 

 

  

Fig. 2. Lost tags by Antenna 1 vs. gesture. 

 

 

Fig. 3. Lost tags by Antenna 2 vs. gesture. 

 

 

Fig. 4. Tag 1 RSSI and phase vs. gesture. 
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dataset, along with a numeric label representing the gesture 
number of each record. 

The acquired data results in a dataset that consist of 65 
features, including RSSI and phase for each of the 16 tags 
detected by the two antennas (a total of 64 elements), plus 
one gesture numerical label. About 2500 records were 
acquired for each gesture, resulting in a dataset populated 
by approximately 15000 samples (6 gestures × 2500 records 
= 15000 samples). 

During the process of dataset creation there was a 
problem of non-acquisition of data from some tags, i.e., 
when the hand was present between the tag matrix and 
Antenna 1 the system was unable to identify some tags and 
consequently to read the related information. 
 To overcome this problem, we proceeded in the 
following way: 
1)  during the creation of the dataset, not a number (NaN) 

values have been entered in correspondence of the 
cells relating to the RSSI and phase values of the 
missing tag information to keep the size of the dataset 
fixed (64 columns) and paying attention to the 
ordering of the columns (from tag 1 to tag 16) which, 
as already mentioned, is based on the tag EPC;  

2)  subsequently, using the MATLAB code, the NaNs 
were replaced with the arithmetic mean of RSSI and 
phase carried out on the column values (for each tag) 
and in relation to each gesture.  

Before replacing the NaN values with the arithmetic 
mean of the correct readings, we estimated the number of 
NaN values present in the dataset to estimate how many tags 
were lost during the acquisitions. 

Table I shows the number of tags lost for each gesture 
and each antenna. The numbers in the last row (Total 
records) are the readings acquired for each gesture, so for 
example for Gesture 1 on 2805 acquisitions were found 952 
NaN values. Note that the loss of acquisition is relative to 
the tag, so since for each tag there are two data (RSSI and 
phase), for each lost tag there are two NaN values, but in 
Table I we considered only one NaN value for each lost tag 
since we are analyzing the number of tags lost during the 
acquisitions. 

Fig. 2 and 3 give a better look at this analysis. They show 
the number of readings lost for each tag (number of NaN 
values), in correspondence with each gesture, and for both 
antennas. For example, for Gesture 1 out of 2805 
acquisitions the NaN values found are: 1 in the AAA8 tag, 
1 in the AAA9 tag, 16 in the AAB0 tag, 12 in the AAB1 tag, 
172 in the AAB2 tag, 295 in the AAB3 tag, 318 in the AAB4 
tag, 61 in the AAB5 tag and 76 in the AAB6 tag; for a total 
of 952 NaN values. As can be seen, the number of failed tag 
readings during the polling time is significantly higher for 
Antenna 1, and this could be due to the fact that the hand 
between the tag and antenna reduces the backscattered 
signal amount under the sensitivity threshold, resulting in a 
missing acquisition from the reader.  
 Fig. 4 shows the trend of the RSSI and phase values of 
tag 1 (EPC: AAA1) over 200 readings for each gesture and 
for both antennas. The figure highlights how data variability 
is larger in the case of Antenna 1, and this is motivated by 
the presence of the hand between the tag and Antenna 1. 

B. Models 
The study in this paper evaluates three different ML 

models to assess their performance for this specific 
application.  Since the challenge we are solving can be 
considered as a supervised learning problem, having labeled 
the acquired samples (the model is trained on the input data 
knowing the associated output class), and since the model 
has to categorize a set of input data into different classes (5 
hand gestures + 1), what we are facing is, in particular, a 
multi-class classification problem. To this end, the 
following models were selected and tested: 
1) Random Forest Classifier (RFC): ensemble classifier 
obtained from the aggregation by bagging of decision trees. 
The implemented causal forest is made up of 100 decision 
trees with a maximum depth equal to 14. 

 

Fig. 5. Block scheme of the experiments. 
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2) Support Vector Machine (SVM): has the objective of 
identifying the hyperplane (decision boundary) that best 
divides the samples into classes, trying to maximize the 
margin. The SVM was implemented in a one vs. one mode 
to perform multiclass classification, using both a 
polynomial kernel and an RBF (Radial Basis Function) 
kernel. The kernel method is used to tackle non-linear 
classification problems. The idea behind kernel methods is 
to define linear combinations of the original characteristics 
to project them into a larger space through a mapping 
function, called the kernel function, where such data 
becomes linearly separable. 
3) Decision Tree Classifier: ML model that uses the tree 
data structure. The model evaluates the characteristics of the 
training dataset and learns a series of questions to determine 
the class labels of the samples. The decision-making 
algorithm starts from the root of the tree and divides the 
samples according to the characteristic that produces the 
greatest information gain (IG), whose goodness is evaluated 
through a metric called impurity. This subdivision process 
takes place iteratively on each child node obtained until the 
leaf nodes (pure nodes) are reached. The implemented 
decision tree has a maximum depth of 17 and uses the Gini 
Criterion for calculating impurity. 
 The choice of these three algorithms was based on 
several motivations. 

A first motivation lies in the nature of the dataset; in fact, 
having a dataset with a high number of samples (about 
15000) and a low number of features (64, low compared to 
the number of samples) we narrowed the choice to 
algorithms with low bias and high variance, so that they 
learn best without underfitting. Algorithms like Decision 
Tree, Random Forest, Kernel SVM fall into this category. 

A second motivation is to concurrently obtain good 
values of computational speed and accuracy. Decision Tree 
is a simple algorithm that requires little data preparation (no 
standardization) and is fast in training (computational cost 
logarithmic with data size), but with the flaw of being 
inaccurate, as overly complex (high depth) decision trees do 
not generalize the data well, which results in overfitting. 
Another shortcoming is instability, because small changes 
in the data could generate a completely different tree. These 
problems are mitigated by the use of Decision Tree within 
an ensemble (one of the reasons we use RFC). Random 
Forest and Kernel SVM are more complex algorithms, 
reason why they provide better performance but longer 
training times. Random Forest overcomes the problems of 
maximum depth (irrelevant for RTC) and sensitivity to data 

variations of Decision Tree since, being an ensemble 
algorithm, it employs multiple decision trees trained on 
subsets of the starting dataset and obtains the output (class 
label) based on a majority vote. The only element of concern 
is the high number of decision trees it generates, because 
this, increasing the complexity of the model, makes it 
slower, albeit more accurate. SVM adapts well to problems 
with a relative high number of features (as in our case: 64) 
and, since we have to deal with a nonlinear classification 
problem, we employ two different kernels: polynomial and 
RBF, which are among the best known and performing 
ones. Finally, we included Kernel SVM to evaluate how the 
performance of the model changes if the number of features 
is reduced. As shown below, the performance of the two 
SVM worsen more than the other two models when we 
employ only 32 features instead of 64. The three considered 
classifiers fulfill the same function, accepting as input 
unidimensional vectors whose entries are the RSSI and 
phase read from the reader, and producing a prediction of 
the six class labels, corresponding to gestures from 0 to 5, 
as output. 

Fig. 5 shows the block scheme that represents the 
conducted experiments. 

C. Edge Machine Learning 

EML Learning is a technique by which IoT devices 
exploit ML or Deep Learning algorithms to perform data 
processing locally (using local or at device level processing 
resources). The goal of this approach is to reduce 
dependence on Cloud infrastructure both for reasons related 
to the limitations of the Cloud (high latency, intermittent 
connectivity, use of IoT constrained devices, etc.) and to 
satisfy the need for many IoT applications that require 
processing operations, data transmission and receipt of the 
result in a very short time (for example applications in the 
medical and vehicular fields). 

For the implemented system, a Raspberry Pi 3 Model B 
running Xubuntu operating system was used. Python was 
used as the programming language to implement the ML 
models presented above. 

ML models were imported from the open-source library 
Scikit-learn [29] and the data within the dataset have been 
manipulated using NumPy [30] and Pandas libraries [31]. 
All three model implementations follow the same procedure 
detailed in Fig. 6: 

1) Preprocessing 

a) Data scaling: we performed a standardization of 

the data only in the SVM. Through this approach, 

 

Fig. 6. Block scheme of the Machine Learning (ML) procedure. 
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the feature values were transformed into a zero-

mean standard normal distribution with unity 

standard deviation. This operation was necessary 

for this model to avoid long training times and 

low-quality results. 

b) Subdivision between training and test dataset: it 

consists in shuffling the records of the dataset and 

dividing them into two datasets: one training and 

one test dataset, respectively. The training dataset 

is the set of samples from which the model learns, 

while the test dataset is used in the evaluation 

phase to assess whether the trained model is 

actually capable of predicting outputs. 

 

2) Training 

 

a) Model instance creation: we imported the model 

from the Scikit-learn library and created the model 

instance. Each model has parameters that define it 

and determine how it will learn during the training 

process. 

b) Fitting of the model: once the instance of the 

model has been created, it is trained by feeding the 

training samples set. This is the part of the process 

that often takes the longest to perform. 

c) Evaluation and prediction: after having trained the 

model, the forecast quality of the data involved is 

estimated. Different metrics are used to perform 

this estimation, as presented below. 

V. RESULTS 

Different metrics have been considered to reliably 
evaluate the system performance. The performance metrics 
used to evaluate the models are accuracy, precision, recall, 
and f1-score. Fig. 7 shows the confusion matrix that 
summarizes the prediction results of the classification 
model; in the confusion matrix, each row represents the 
number of instances in a certain class while each column 
represents the number of instances expected in a certain 
class. The matrix provides the results with the adoption of 
the RFC algorithm with whole dataset.  
For the training of the models, we considered three 
configurations of the dataset: 

- complete dataset: considering all the data collected, 
both from Antenna 1 and Antenna 2; 

- Antenna 1 dataset: considering only the data read 
by Antenna 1; 

- Antenna 2 dataset: considering only the data read 
by Antenna 2. 

 
 

 
 

 

 

Fig. 7. RFC confusion matrix. 

 

 

Fig. 8. Accuracy of the different models vs datasets. 
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 Table II outlines the performance of the hand gesture 
recognition system for each of the classifiers trained on the 
entire dataset, according to the aforementioned metrics. 
Table III reports the performance on the dataset related to 
Antenna 1, while Table IV reports the performance of the 
system trained on the dataset related to Antenna 2. 

Fig. 8 reports the accuracy values of the different models 
trained on the three datasets considered. 

Discussion 

RFC performs best on all metrics, with an accuracy that 
reaches 99.40%. SVM has very similar performances to 
RFC although its accuracy notably drops when it considers 
only the dataset with a single antenna, especially with the 
Antenna 2 dataset. Furthermore, an RBF kernel seems to be 
more suitable than a polynomial one for the classification 
problem addressed. 

Decision Tree Classifier achieves the worst performance 
albeit the accuracy is still higher than 93%. However, it 
must be taken into account that DTC is the basis of the RFC; 
the fact that a single tree shows high performance explains 

how RFC, which uses multiple decision trees, has the best 
performance. As it can be seen, the metric values drop when 
the three models are trained on a single antenna dataset and 
this can be explained by the fact that part of the context 
information is missing, compared to the complete dataset, 
which is therefore much richer in information. 

Furthermore, between the two single-antenna datasets, 
the one relating to Antenna 1 offers the best performance 
since the data it contains has greater variability, as 
highlighted in Fig. 2. However, the results with Antenna 2 
are still positive, and give an accuracy of 97.54 % with the 
RFC algorithm. The use of Antenna 2 only, in the 
configuration with the tags positioned between the antenna 
and the hand, can potentially give a great advantage from 
the point of view of ergonomics and practical applications 
of the device. In fact, with this arrangement, the user could 
simply place the hand in front of the surface containing the 
tags, and not in the space between the antenna and the tags. 

TABLE II.   

SYSTEM PERFORMANCE WITH WHOLE DATASET 

 

 RFC SVM Polynomial SVM RBF DTC 

Precision Recall 
F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 

Gesture 0 1 1 1 1 1 1 1 1 1 1 1 1 

Gesture 1 1 1 1 0.97 0.99 0.98 0.98 0.99 0.98 0.93 0.97 0.95 

Gesture 2 0.99 0.99 0.99 0.97 0.97 0.97 0.99 0.98 0.98 0.96 0.92 0.94 

Gesture 3 0.99 0.99 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.95 0.95 0.95 

Gesture 4 0.99 1 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.95 0.95 0.95 

Gesture 5 1 0.99 0.99 0.99 0.99 0.99 1 0.99 1 0.96 0.96 0.96 

Weighted Avg 0.99 0.99 0.99 0.98 0.98 0.98 0.99 0.99 1 0.96 0.96 0.96 

Accuracy 99.40 % 98.37 % 99.01 % 95.75 % 

 

TABLE III.   
SYSTEM PERFORMANCE WITH ANTENNA 1 DATASET  

 

 RFC SVM Polynomial SVM RBF DTC 

Precision Recall 
F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 

Gesture 0 1 1 1 1 1 1 1 1 1 1 1 1 

Gesture 1 0.99 0.98 0.99 0.93 0.93 0.93 0.97 0.97 0.97 0.94 0.95 0.95 

Gesture 2 0.98 0.99 0.98 0.90 0.94 0.92 0.95 0.96 0.96 0.93 0.95 0.94 

Gesture 3 1 0.99 0.99 0.94 0.93 0.93 0.97 0.96 0.96 0.94 0.93 0.94 

Gesture 4 0.98 0.99 0.99 0.95 0.93 0.94 0.99 0.97 0.98 0.95 0.93 0.94 

Gesture 5 0.99 1 0.99 0.96 0.95 0.96 0.98 0.99 0.98 0.95 0.95 0.95 

Weighted Avg 0.99 0.99 0.99 0.95 0.95 0.95 0.98 0.98 0.98 0.95 0.95 0.95 

Accuracy 99.06% 94.66 % 97.59 % 95.13 % 

 

TABLE IV.   
SYSTEM PERFORMANCE WITH ANTENNA 2 DATASET  

 

 RFC SVM Polynomial SVM RBF DTC 

Precision Recall 
F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 
Precision Recall 

F1-

score 

Gesture 0 1 1 1 0.99 1 1 1 1 1 1 1 1 

Gesture 1 0.97 0.99 0.98 0.88 0.96 0.92 0.96 0.97 0.96 0.95 0.95 0.95 

Gesture 2 0.96 0.96 0.96 0.85 0.84 0.85 0.91 0.94 0.92 0.93 0.92 0.92 

Gesture 3 0.98 0.94 0.96 0.88 0.86 0.87 0.94 0.90 0.92 0.91 0.89 0.90 

Gesture 4 0.98 0.97 0.97 0.86 0.84 0.85 0.91 0.93 0.92 0.89 0.92 0.91 

Gesture 5 0.97 0.98 0.98 0.92 0.86 0.89 0.96 0.94 0.95 0.92 0.91 0.92 

Weighted Avg 0.98 0.98 0.98 0.89 0.89 0.89 0.95 0.95 0.95 0.93 0.93 0.93 

Accuracy 97.54 % 89.38 % 94.64 % 93.14 % 
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Antenna 2 could also be placed in a position close to the 
tags, making the system much more compact. 

Table V provides a comparison with similar systems 
found in the literature. As per our knowledge, this is the first 
time that a compact solution able to perform gesture 
recognition using such a low number of tags with the 
provided accuracy and a resource-constrained inference 
engine is presented. In [2] a vision-based hand gesture 
interface is introduced, and the average accuracy of 
recognition in the experiment is 0.938. However, the results 
show the performance depends on the SNR, worsening 
when the recognition is performed under cluttered 
background vs. simple background. Regarding the power 
consumption, the rated power of most cameras varies from 
2 watt to 15 watt. Similarly, applications that use Time-of-
Flight cameras [7] show a power consumption of about 2.5 
W. In the proposed solution, the active part in the process of 
hand-gesture recognition is the RFID reader, an RFID 
ThingMagic M6e Micro UHF RAIN which exhibit a 
nominal DC Power consumption of 5.5 W in active mode 
(RF on, +30 dBm), 0.325 W when it is not transmitting and 
0.06 W in standby mode. In the case the system acquires 
every second within which 300 ms are used for the single 
reading (RF on) and the remaining 700 ms remains in "no 
transmitting" mode, then the average power consumption 
within that second is 1.87 W @ 1 Hz. Duty-cycled 
operations allow to reduce the power consumption up to 
0.241 W with a reading rate of 0.1 Hz. 

The change in luminance or brightness of the 
environment does not affect the SNR, envisioning the usage 
of the system in not-controlled environment also under 
direct sunlight, which is an important pitfall of the vision-
based solutions. Real-life applications of the system can be 
envisioned in the industrial context to improve the safety 
and privacy of machinery operators; in fact, the current 
technologies in the industrial sector for monitoring activities 

are based on the use of cameras that can violate the privacy 
of the operators. Furthermore, the sensorless nature of the 
system allows operators not to have to wear suitable 
clothing or tools, therefore facilitating the work. 

It could also be thought of using the system to carry out 
touch-less authorization and control operations, for example 
entering a PIN code to access the bank account in an ATM 
(the system would replace the classic numeric keypads), 
with the advantage of not having to touch objects used by 
multiple users. Contactless operations can also cover 
gaming and entertainment, such as a simple remote control 
system for electrical equipment. 

Another envisioned application could be a text-to-voice 
system for communication with deaf people. 

VI. CONCLUSIONS 

This work proposes a novel hand gesture recognition 
system that allows distinguishing five different gestures 
making use of ML models, deployed to an edge device. 
Unlike existing approaches, the designed solution does not 
involve the use of special signals or wearable sensors. The 
system consists of 16 passive RFID tags, and an RFID 
reader with two antennas, in front and behind the tags 
matrix. Placing a hand between Antenna 1 and the tag 
cluster causes an interference with the RF signal radiated 
from both antennas, resulting in variations in RSSI and 
phase values. A greater variability was observed in the 
values read by Antenna 1 compared to those read by 
Antenna 2. Detecting the phase and RSSI values, the system 
is able to distinguish one gesture from another. 

Exploiting the presented system, a training dataset was 
built for training ML models to recognize five hand gestures 
with the addition of a gesture 0 related to the case of absence 
of the hand. During the creation of the training dataset, it 
was observed that the use of a relatively large number of 
tags can lead, in the presence of the hand between the 

TABLE V. 

SYSTEM COMPARISON WITH SOTA 

 

 
Accuracy Way of use 

Range / 

Covered area 

Number of 

gestures 
Number of tags 

Platform Acquisition 

rate 

[11] 98% Tags attached on glove – 
1 antenna 

80 cm 5 5 Desktop 500 ms 

[12] NA Tags attached to each 

object. 8 antennas and a 

large number of various 
sensors and effectors. 

9 m2 13 2 - 4 Desktop 20 ms 

[13] 99.9% (static 

gestures) 94.8% 
(dynamic 

gestures) 

Tags not attached, 49 

tags, 1 antenna 
 

10 cm 26 (static 

gestures) +10 
(dynamic 

gestures) 

49 Desktop NA 

[14] NA Tags attached to the 
object 

120/60 cm NA From 2 to 6 tags for 
movement gesture 

and 1 tag for touch 

gesture 

Desktop NA 

[15] 96.2% One tag attached to each 

hand 

Antenna fixed 

at the ceiling of 

a room (2.2m 

high) 

8 2 tags (one per 

hand) 

Desktop NA 

[16] 100 % One antenna for each tag Not more than 

3-4cm 

5 4 Desktop 200 ms 

This 

work 

99% Tags not attached, 16 

tags, 1-2 antenna(s) 

30 – 40 cm 6 16 Edge,  

Machine 
Learning 

300 ms 
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antenna and the tag, to difficulties in reading some of them. 
Such difficulties lead to the consequent need to fill the gap 
left empty. It has been found that the a posteriori calculation 
of the arithmetic mean of RSSI and phase carried out on the 
column (for each tag) and in relation to each gesture can 
validly replace the missing data, thus not affecting the 
accuracy of the models trained. 

EML techniques have been used for training and 
running the considered models (RFC, SVM with 
polynomial and RBF kernel, and DTC) on a Raspberry Pi3 
model B The performance of these different classification 
algorithms has been evaluated using different metrics 
providing an accuracy of gesture recognition up to 99.4 %. 
When only the dataset with a single antenna is considered, 
the accuracy is slightly reduced, especially with the Antenna 
2 dataset. However, this configuration, with only an antenna 
put behind the tags, still allows for more than 97% accuracy 
and is an attractive option that can eliminate the need for the 
user to put the hand in the space region between the antenna 
and the tag array, paving the way for a sort of virtual touch-
less input device. 

REFERENCES 

[1] M. Di Foggia and D. M. D’Addona, “Identification of critical 
key parameters and their impact to zero-defect manufacturing in 

the investment casting process,” Procedia CIRP, vol. 12, pp. 

264–269, 2013, doi: 10.1016/j.procir.2013.09.046. 
[2] F. Yikai, W. Kongqiao, C. Jian, and L. Hanqing, “A real-time 

hand gesture recognition method,” in Proceedings of the 2007 

IEEE International Conference on Multimedia and Expo, ICME 
2007, 2007, pp. 995–998. doi: 10.1109/icme.2007.4284820. 

[3] S. S. Rautaray and A. Agrawal, “Vision based hand gesture 

recognition for human computer interaction: a survey,” 
Artificial Intelligence Review, vol. 43, no. 1, pp. 1–54, 2015, 

doi: 10.1007/s10462-012-9356-9. 

[4] O. Patsadu, C. Nukoolkit, and B. Watanapa, “Human gesture 
recognition using Kinect camera,” JCSSE 2012 - 9th 

International Joint Conference on Computer Science and 

Software Engineering, pp. 28–32, 2012, doi: 

10.1109/JCSSE.2012.6261920. 

[5] R. Carotenuto, M. Merenda, D. Iero, and F. G. Della Corte, “An 

Indoor Ultrasonic System for Autonomous 3-D Positioning,” 
IEEE Transactions on Instrumentation and Measurement, vol. 

68, no. 7, 2019, doi: 10.1109/TIM.2018.2866358. 

[6] R. Carotenuto, M. Merenda, D. Iero, and F. G. Della Corte, 
“Mobile Synchronization Recovery for Ultrasonic Indoor 

Positioning,” Sensors, Jan. 2020, doi: 10.3390/s20030702. 

[7] T. Kapuściński, M. Oszust, and M. Wysocki, “Hand gesture 
recognition using time-of-flight camera and viewpoint feature 

histogram,” Advances in Intelligent Systems and Computing, 
vol. 230, pp. 403–414, 2014, doi: 10.1007/978-3-642-39881-

0_34. 

[8] R. Carotenuto, M. Merenda, D. Iero, and F. G. Della Corte, 
“Ranging RFID tags with ultrasound,” IEEE Sensors Journal, 

pp. 1–1, 2018, doi: 10.1109/JSEN.2018.2806564. 

[9] J. Wang and D. Katabi, “Dude, where’s my card? RFID 
positioning that works with multipath and non-line of sight,” 

Computer Communication Review, vol. 43, no. 4, pp. 51–62, 

2013, doi: 10.1145/2534169.2486029. 

[10] W. Ruan, L. Yao, Q. Z. Sheng, N. J. G. Falkner, and X. Li, 

“TagTrack: Device-free localization and tracking using passive 

RFID tags,” MobiQuitous 2014 - 11th International Conference 
on Mobile and Ubiquitous Systems: Computing, Networking 

and Services, pp. 80–89, 2014, doi: 

10.4108/icst.mobiquitous.2014.258004. 
[11] S. N. R. Kantareddy, Y. Sun, R. Bhattacharyya, and S. E. Sarma, 

“Learning gestures using a passive data-glove with RFID tags,” 

in 2019 IEEE International Conference on RFID Technology 
and Applications, RFID-TA 2019, 2019, pp. 327–332. doi: 

10.1109/RFID-TA.2019.8892224. 

[12] K. Bouchard, S. Giroux, B. Bouchard, and A. Bouzouane, 

“Regression analysis for gesture recognition using passive 

RFID technology in smart home environments,” International 

Journal of Smart Home, vol. 8, no. 5, pp. 245–260, 2014, doi: 

10.14257/ijsh.2014.8.5.22. 
[13] H. Ding et al., “RFnet: Automatic Gesture Recognition and 

Human Identification Using Time Series RFID Signals,” Mobile 

Networks and Applications, vol. 25, no. 6, pp. 2240–2253, Dec. 
2020, doi: 10.1007/s11036-020-01659-4. 

[14] Y. Bu et al., “RF-Dial: Rigid Motion Tracking and Touch 

Gesture Detection for Interaction via RFID Tags,” IEEE 
Transactions on Mobile Computing, pp. 1–1, 2020, doi: 

10.1109/tmc.2020.3017721. 

[15] B. Chen, Q. Zhang, R. Zhao, D. Li, and D. Wang, “SGRS: A 
sequential gesture recognition system using COTS RFID,” in 

IEEE Wireless Communications and Networking Conference, 

WCNC, 2018, vol. 2018-April, pp. 1–6. doi: 
10.1109/WCNC.2018.8376998. 

[16] R. Parada, K. Nur, J. Melia-Segui, and R. Pous, “Smart surface: 

RFID-based gesture recognition using k-means algorithm,” in 
Proceedings - 12th International Conference on Intelligent 

Environments, IE 2016, 2016, pp. 111–118. doi: 

10.1109/IE.2016.25. 

[17] D. De Donno, L. Catarinucci, and L. Tarricone, “RAMSES: 

RFID augmented module for smart environmental sensing,” 

IEEE Transactions on Instrumentation and Measurement, vol. 
63, no. 7, pp. 1701–1708, 2014, doi: 

10.1109/TIM.2014.2298692. 

[18] M. Merenda et al., “Performance assessment of an enhanced 
RFID sensor tag for long-run sensing applications,” in 

Proceedings of IEEE Sensors, 2014, vol. 2014-December, no. 

December, pp. 738–741. doi: 10.1109/ICSENS.2014.6985105. 
[19] M. S. Khan, M. S. Islam, and H. Deng, “Design of a 

reconfigurable RFID sensing tag as a generic sensing platform 

toward the future Internet of things,” IEEE Internet of Things 
Journal, vol. 1, no. 4, pp. 300–310, 2014, doi: 

10.1109/JIOT.2014.2329189. 

[20] M. Merenda, D. Iero, and F. G. D. Corte, “Cmos rf transmitters 
with on-chip antenna for passive RFID and iot nodes,” 

Electronics (Switzerland), vol. 8, no. 12, 2019, doi: 

10.3390/electronics8121448. 
[21] M. Merenda, C. Felini, and F. G. Della Corte, “A monolithic 

multisensor microchip with complete on-chip RF front-end,” 

Sensors (Switzerland), vol. 18, no. 1, 2018, doi: 
10.3390/s18010110. 

[22] I. Farris, S. Pizzi, M. Merenda, A. Molinaro, R. Carotenuto, and 

A. Iera, “6lo-RFID: A framework for full integration of smart 
UHF RFID tags into the internet of things,” IEEE Network, vol. 

31, no. 5, 2017, doi: 10.1109/MNET.2017.1600269. 
[23] M. Merenda, C. Porcaro, and D. Iero, “Edge Machine Learning 

for AI-enabled IoT devices: a review,” Sensors (Switzerland), 

2020. 
[24] M. Merenda, G. Cimino, R. Carotenuto, F. G. Della Corte, and 

D. Iero, “Device-free hand gesture recognition exploiting 

machine learning applied to RFID,” 2021 6th International 
Conference on Smart and Sustainable Technologies, SpliTech 

2021, 2021, doi: 10.23919/SpliTech52315.2021.9566385. 

[25] “Impinji Monza 5 chip datasheet.” 
https://support.impinj.com/hc/article_attachments/203268870/

Monza%205%20Tag%20Chip%20Datasheet%20R3%202016

0823.pdf  (accessed Jan. 31, 2022). 
[26] Jadak, “ThingMagic UHF RAIN RFID Module Series,” 2015. 

[27] LAIRD, “S865 Series RFID Panel Antenna.” 

[28] G. Çaliş, B. Becerik-Gerber, A. B. Göktepe, S. Li, and N. Li, 

“Analysis of the variability of RSSI values for active RFID-

based indoor applications,” Turkish Journal of Engineering and 

Environmental Sciences, vol. 37, no. 2, pp. 186–210, 2013, doi: 
10.3906/muh-1208-3. 

[29] “scikit-learn.” https://scikit-learn.org/stable/about.html 

(accessed Jan. 31, 2022). 
[30] “Numply Library.” https://numpy.org/citing-numpy/ (accessed 

Jan. 31, 2022). 

[31] “Pandas libraries.” https://pandas.pydata.org/about/citing.html 
(accessed Jan. 31, 2022). 

  




