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Abstract: We study a differential evasion game of multiple pursuers and an evader governed by sev-
eral infinite systems of two-block differential equations in the Hilbert space l2. Geometric constraints
are imposed on the players’ control functions. If the state of a controlled system falls into the origin
of the space l2 at some finite time, then pursuit is said to be completed in a differential game. The
aim of the pursuers is to transfer the state of at least one of the systems into the origin of the space l2,
while the purpose of the evader is to prevent it. A sufficient evasion condition is obtained from any
of the players’ initial states and an evasion strategy is constructed for the evader.

Keywords: infinite system of differential equations; differential game; strategy; control; geometric
constraint

MSC: 91A23; 49N75

1. Introduction

Differential games have been the subject of research since the 1960s (see, for exam-
ple, [1–12]). In recent years, there has been a growing interest in differential games (see,
for example, [13–20]. However, most of the studies in the field of differential games have
focused only on games of finite-dimensional Euclidean spaces.

Many real-world problems can be modeled as control problems for partial differen-
tial equations. A large and growing body of literature has studied the control problems
described by partial differential equations. In [21], a time-optimal control problem for the
parabolic equation has been studied for the first time. For more detailed information, we
refer readers to [22].

Two earlier works, [23,24], studied the differential game problems for partial differen-
tial equations. The decomposition method is one of the most practical ways to study partial
differential equations. Using the decomposition method allows us to obtain a control or
differential game problem governed by a system of ordinary differential equations (see,
e.g., [25–34]).

For example, the work [31] considers the following controlled system

zt − Az = −u + v, z(x, 0) = z0(x), z|ST = 0, (1)

where z = z(x, t), z0(x) ∈ L2(Ω), x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn, n ≥ 1, Ω is bounded,

T is a given positive number, t ∈ [0, T], the operator A has the form Az =
n
∑

i,j=1

∂
∂xi

(aij(x)zxj),

aij(x) = aji(x), aij(x) are measurable bounded functions that satisfy the condition
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n
∑

i,j=1
aij(x)ξiξ j ≥ K

n
∑

i=1
ξ2

i for some K > 0 and for all (ξ1, . . . , ξn) ∈ Rn and x ∈ Ω,

u(x, t), v(x, t) ∈ L2(QT) are the control functions of pursuer and evader, respectively,
and QT = {(x, t)| x ∈ Ω, 0 < t < T}, ST = {(x, t)| x ∈ ∂Ω, 0 < t < T}.

Using the decompositions

z(x, t) =
∞

∑
i=1

zi(t)ψ(t), z0(x) =
∞

∑
i=1

zi0(t)ψ(t), u(x, t) =
∞

∑
i=1

ui(t)ψ(t), v(x, t) =
∞

∑
i=1

vi(t)ψ(t)

Equation (1) is reduced to the following infinite system of ordinary differential equations

żi = −λizi − ui + vi, zi(0) = zi0, i = 1, 2, . . .

Although the decomposition method provides countably many differential equations
in the Hilbert space l2, the simplicity of the equations attracts the attention of the authors.
The works [30,31,33] suggest considering differential game problems for the infinite system
of differential equations independently of partial differential equations. The work [35]
proposes a differential game for such an infinite system of differential equations. Several
studies on control problems and differential game problems have been carried out on
infinite systems of differential equations (see, for example, [26,36–38]).

Papers [39,40] are dedicated to the evasion differential game in the finite-dimensional
Euclidean space Rn. It has been shown [39] that one evader can avoid many slow pursuers.
This result has been extended to the case where the pursuers’ control set is a subset of the
interior of the evader control set [40].

For the multi-pursuer simple motion differential game,

ẋi = ui, xi(0) = xi0, |ui| ≤ 1,
ẏ = v, y(0) = y0, |v| ≤ 1, xi0 6= y0,

(2)

where i ∈ I = {1, 2, . . . , m}, m ≥ 1, xi, y ∈ Rn, i ∈ I, and it is known [41] that if y0 belongs
to the interior of the convex hull of the points xi0, i ∈ I, then one can construct the strategies
of pursuers x1, x2,. . . , xm such that, for the arbitrary control of the evader, the pursuers can
capture the evader y, that is, xi(t1) = y(t1) at some index i ∈ {1, 2, . . . , m} and t1 > 0; if
y0 outside of the interior of the convex hull of the initial states xi0, i ∈ I, then evasion is
possible in game (2), i.e., one can construct a control for the evader such that xi(t) 6= y(t),
t > 0, for any controls of the pursuers and for all i = 1, 2, . . . , m.

If we consider differential game (2) in the Hilbert space l2 with countably many
pursuers xi, i = 1, 2, . . ., and one evader y ∈ l2, then we can specify some initial states of
players for which evasion is possible. However, no previous studies have investigated
pursuit differential game (2) in l2. Despite the simplicity of the players’ movements, so far
no initial position (y0, x10, x20, . . .) is specified from which the pursuit in game (2) can be
completed with countably many pursuers in l2.

For an infinite system of binary differential equations in the Hilbert space l2, the
pursuit differential game of one pursuer and one evader was studied in [42], when the
pursuer’s control set contains the evader’s control set.

For the same infinite system of binary differential equations in the Hilbert space l2, an
evasion differential game of multiple pursuers and one evader is studied in the present
paper. We prove that if the evader’s control set contains or coincides with the control set
of any pursuer, then evasion is possible for any number of pursuers and from any initial
position of the game. We also build an evasion strategy for the evader. As mentioned
above, in the case of the finite-dimensional space, for some initial states of the players, the
pursuit can be completed [41]. The main result of the present paper shows that the infinite
dimensionality of the space l2 is itself an advantage for the evader and evasion is possible
from any finite number of pursuers.
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2. Statement of Problem

We recall the vector space of all sequences of real numbers

l2 =

{
ξ = (ξ1, ξ2, . . .) |

∞

∑
n=1

ξ2
n < ∞

}

is a Hilbert space where the inner product of the vectors µ, ν ∈ l2 and the norm of µ are
given by

〈µ, ν〉 =
∞

∑
n=1

µnνn, ||µ|| =
√
〈µ, µ〉.

We consider a differential game governed by the following infinite system of binary differ-
ential equations

ẋij = −αjxij − β jyij + u1
ij − v1

j , xij(0) = x0
ij,

ẏij = β jxij − αjyij + u2
ij − v2

j , yij(0) = y0
ij,

(3)

where xij, yij ∈ R, i = 1, 2, . . . , m, j = 1, 2, . . ., are the state variables, αj, β j are real numbers
and αj ≥ 0, u1

ij, u2
ij, j = 1, 2, . . ., are the control parameters of the i-th pursuer, i = 1, 2, . . . , m,

and v1
j , v2

j , j = 1, 2, . . ., are the evader’s control parameters. We assume that

x0
i = (x0

i1, x0
i2, . . .) ∈ l2, y0

i = (y0
i1, y0

i2, . . .) ∈ l2, i = 1, 2, . . . , m.

Let, for j = 1, 2, . . ., i = 1, 2, . . . , m,

uij = (u1
ij, u2

ij), vj = (v1
j , v2

j ), z0
ij = (x0

ij, y0
ij),

z0
i = (z0

i1, z0
i2, . . .), ‖z0

i ‖ =
(

∞

∑
j=1

((
x0

ij

)2
+
(

y0
ij

)2
))1/2

,

ui(t) = (ui1, ui2, . . .), ||ui(t)|| =
(

∞

∑
j=1

((
u1

ij(t)
)2

+
(

u2
ij(t)

)2
))1/2

,

v = (v1, v2, . . .), ||v|| =
(

∞

∑
j=1

((
v1

j (t)
)2

+
(

v2
j (t)

)2
))1/2

,

We assume that z0
i 6= 0 for all i = 1, 2, . . . , m.

Definition 1. We call the function ui(t) = (ui1(t), ui2(t), . . . ), i ∈ {1, 2, . . . , m}, with mea-
surable coordinates uij(t), j = 1, 2, . . ., such that ||ui(t)|| ≤ ρi, 0 ≤ t ≤ T, the i-th pursuer’s
admissible control, where the positive number ρi is a given, and T is a sufficiently large positive
number.

Definition 2. We call the function v(t) = (v1(t), v2(t), . . . ), ||v(t)|| ≤ σ, with measurable
coordinates vj(t), 0 ≤ t ≤ T, j = 1, 2, . . ., the evader’s admissible control, where the positive
number σ is a given.

We consider the case where σ ≥ ρi for all i = 1, . . . , m. The solutions zi(t) =
(zi1(t), zi2(t), . . . ), 0 ≤ t ≤ T, of infinite system of differential equations (3) are con-
sidered in the space of functions h(t) = (h1(t), h2(t), . . . ) ∈ l2 whose coordinates hi(t) are
absolutely continuous and defined on the interval 0 ≤ t ≤ T.

Definition 3. We say that evasion is possible in game (3) if there exists a control v0(t), 0 ≤ t ≤ T,
of evader such that for any controls ui(t), 0 ≤ t ≤ T, of the pursuers, the solutions of initial value
problems (3), zi(t) = (zi1(t), zi2(t), . . . ), i = 1, . . . , m, are nonzero for all t, 0 ≤ t ≤ T, in other
words, on the interval 0 ≤ t ≤ T, we have zi(t) 6= 0 for all i = 1, 2, . . . , m.
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It should be noted that the evader uses the control v0(t) on the time interval [0, T] and
the pursuers apply arbitrary controls ui(t), i = 1, 2, . . . , m, on that interval.

Problem 1. The problem is to find a control v0(t), 0 ≤ t ≤ T, of evader such that evasion is
possible in game (3).

3. The Main Result

In this section, we prove the following statement.

Theorem 1. For any initial states z0
i , i = 1, 2, . . . , m, evasion is possible in the game described by

the infinite system of equations (3).

Proof. Clearly, system (3) can be rewritten as follows

żij = Ajzij + uij − vj, zij(0) = z0
ij, i = 1, 2, . . . , m, j = 1, 2, . . . , (4)

where

Aj =

[
−αj −β j
β j −αj

]
, j = 1, 2, . . . .

It is not difficult to verify that

eAjt = e−αjt
[

cos β jt − sin β jt
sin β jt cos β jt

]
, j = 1, 2, . . . .

For the solution of (3) or the same of (4), we have

zij(t) = eAjtψij(t), ψij(t) = z0
ij +

t∫
0

e−Ajs(uij(s)− vj(s))ds. (5)

Note that the matrices eAjt are not singular, and so, the equation zij(t) = 0 is equivalent to
the equation ψij(t) = 0, i = 1, 2, . . . , m, j = 1, 2, . . ..

Therefore, to prove the theorem, it is sufficient to construct an admissible control v0(t),
0 ≤ t ≤ T, of the evader such that ψi(t) = (ψi1(t), ψi2(t), . . .) 6= 0 for all i = 1, 2, . . . , m and
0 ≤ t ≤ T.

Indeed, because z0
1 = (z0

11, z0
12, . . .) 6= 0, therefore at least one of the components

z0
1j ∈ R2, j = 1, 2, . . ., of z0

1 is not equal to 0. In other words, there exists a positive integer n1

such that z0
1n1
6= 0. Similarly, the inequality z0

2 = (z0
21, z0

22, . . .) 6= 0 implies that z0
2n2
6= 0 for

some positive integer n2. Finally, z0
m = (z0

m1, z0
m2, . . .) 6= 0 implies that z0

mnm 6= 0 for some
positive integer nm.

Let n = max
i=1,...,m

ni. Then, clearly, Z0
i = (z0

i1, z0
i2, . . . , z0

in) 6= 0 for all i = 1, 2, . . . , m. We

can assume, by increasing n if necessary, that 2n ≥ m. Thus, we have

Z0
i = (z0

i1, z0
i2, . . . , z0

in) 6= 0, Z0
i ∈ R2n, i = 1, 2, . . . , m. (6)

Let
Ψi(t) = (ψi1(t), ψi2(t), . . . , ψin(t)), i = 1, . . . , m,

where

ψij(t) = z0
ij +

t∫
0

e−Ajs(uij(s)− vj(s))ds, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

The proof of the theorem is completed by showing that Ψi(t) 6= 0, i = 1, . . . , m, because
these relations imply that
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ψi(t) = (ψi1(t), ψi2(t), . . .) 6= 0, i = 1, 2, . . . , m, 0 ≤ t ≤ T,

hence that zi(t) 6= 0, i = 1, 2, .., m. In other words, we have reduced the differential game in
the Hilbert space l2 to a differential game in the finite-dimensional Euclidean space R2n.

We recall the number m of points Z0
i ∈ R2n does not exceed the dimension 2n of the

space R2n, i.e., m ≤ 2n. From this, we conclude that there is a unit vector

e = (e1, e2, . . . , en) ∈ R2n, |e| = 1, ej ∈ R2,

such that the inner product 〈Z0
i , e〉 ≥ 0 for all i = 1, . . . , m. As the vector e, we can take an

orthonormal vector to the hyperplane in R2n passing through the points Z0
i , i = 1, 2, . . . , m.

Next, we construct a control for the evader as follows

vj(t) = −
e−A∗j tej√

n
∑

k=1
|e−A∗k tek|2

σ, j = 1, . . . , n, vj(t) = 0, j = n + 1, n + 2, . . . , t ≥ 0, (7)

where A∗ denotes the transpose of the matrix A, and show that the control (7) of the evader
guarantees the evasion on the time interval [0, T]. Note that the denominator in (7) does
not equal zero, i.e.,

n

∑
k=1
|e−A∗k tek|2 6= 0, t ≥ 0,

because otherwise we would have

e−A∗k tek = 0, k = 1, 2, . . . , n,

which implies that ek = 0, k = 1, 2, . . . , n, that is, e = 0, which is impossible because
e = (e1, e2, . . . , en) is a unit vector.

To prove the theorem, we assume the contrary. There exist admissible controls of pur-
suers such that when the evader applies the control (7), Ψp(τ) = 0 for some p ∈ {1, . . . , m}
and τ > 0. We conclude from the inequalities 〈Z0

i , e〉 ≥ 0, i = 1, 2, . . . , m, that

n

∑
j=1
〈z0

pj, ej〉 ≥ 0, i = 1, 2, . . . , m, (8)

hence that

〈Ψp(τ), e〉 =
n

∑
j=1

ψpj(τ)ej (9)

=
n

∑
j=1
〈z0

pj, ej〉+
n

∑
j=1

τ∫
0

〈e−Ajs(upj(s)− vj(s)), ej〉ds (10)

≥
τ∫

0

n

∑
j=1
〈e−Ajsupj(s), ej〉ds−

τ∫
0

n

∑
j=1
〈e−Ajsvj(s), ej〉ds (11)

We use the Cauchy–Schwartz inequality to estimate the first integral in (9)

τ∫
0

n

∑
j=1
〈e−Ajsupj(s), ej〉ds =

τ∫
0

n

∑
j=1
〈upj(s), e−A∗j sej〉ds (12)

≥ −ρp

τ∫
0

√√√√ n

∑
j=1
|e−A∗j sej|2ds, (13)
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where the equality sign holds at

upl(t) = −
e−A∗l tel√

n
∑

j=1
|e−A∗j tej|2

ρp, l = 1, 2, . . . , n, 0 ≤ t ≤ τ. (14)

Using (7) and (12) leads to the inequality

〈Ψp(τ), e〉 =

τ∫
0

n

∑
j=1
〈upj(s), e−A∗j sej〉ds−

τ∫
0

n

∑
j=1
〈vj(s), e−A∗j sej〉ds (15)

≥ −ρp

τ∫
0

√√√√ n

∑
j=1
|e−A∗j sej|2ds + σ

τ∫
0

√√√√ n

∑
j=1
|e−A∗j sej|2ds ≥ 0 (16)

because ρp ≤ σ. Thus, we have showed that 〈Ψp(τ), e〉 ≥ 0. By our assumption Ψp(τ) = 0
and hence 〈Ψp(τ), e〉 = 0.

However, in the inequality (15), the equality sign holds if and only if ρp = σ, and

upl(t), l = 1, 2, . . . , n, 0 ≤ t ≤ τ, are defined by (14), and
n
∑

j=1
(zi0 j, ej) = 0 meaning that the

equality sign holds in (9). Comparing (7) and (14), we then have

upl(t) = vl(t), l = 1, 2, . . . , n, 0 ≤ t ≤ τ.

Substituting this into equation (5) yields

Ψpl(τ) = z0
pl , l = 1, 2, . . . , n.

By the choice of the number n, we obtain the following inequality

Ψp(τ) = (ψp1(τ), . . . , ψpn(τ)) = (z0
p1, . . . , z0

pn) 6= 0.

On the other side, by assumption Ψp(τ) = 0, contradiction. Thus, Ψi(t) 6= 0, for all
t ∈ [0, T] and i = 1, 2, . . . , m. The proof of the theorem is complete.

4. Conclusions

For an infinite system of binary differential equations in the space l2, we have studied
an evasion differential game problem. In [42], it has been shown that if the pursuer control
set contains the evader control set, i.e., if ρ > σ, then the pursuit can be completed for
a finite time. Consequently, if in game (3) ρk > σ for some k ∈ {1, 2, . . . , m}, then the
pursuers can capture the evader. For this reason, in the present work, we have studied
differential game (3) under the conditions that ρi ≤ σ for all i = 1, 2, . . . , m. In the case of
a finite number of pursuers, we have proved a theorem of evasion. In addition, we have
built an evasion strategy that ensures evasion.

As a future work, it is recommended to study the differential game described by
equation (2) with countably many pursuers xi, i = 1, 2, . . ., and one evader y whose control
parameters satisfy the conditions ||ui|| ≤ 1, i = 1, 2, . . ., ||v|| ≤ 1. Similar to the work
in [41], it is required to find the set of all the initial positions (y0, x10, x20, . . .) from which
the pursuit can be completed.
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