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Abstract— We introduce and discuss a new approach to the 

phase retrieval of fields radiated by continuous aperture sources 

having a circular support, which is of interest in many 

applications including the detection of shape deformations on 

reflector antennas. The approach is based on a decomposition of 

the actual 2-D problem into a number of 1-D phase retrieval 

problems along diameters and concentric rings of the visible part 

of the spectrum. In particular, the 1-D problems are effectively 

solved by using the spectral factorization method, while 

discrimination arguments at the crossing points allow completing 

the retrieval of the 2-D complex field. The proposed procedure 

just requires a single set of far field amplitudes (but for an 

additional bit of information) and takes advantage from up-to-

now unexplored field properties. The developed technique is 

assessed in the case of reflector aperture fields. 

 
Index Terms—Antenna measurements, aperture antennas, 

inverse problems, phase retrieval, spectral factorization. 

I. INTRODUCTION 

N reflector antennas, deviations of the actual surface from 

the ideal one caused by gravity, wind, load, and temperature 

play an important role as they imply a degradation of the 

antenna efficiency [1],[2]. In fact [1], the root mean square 

error (RMSE) deviation of the reflector surface from the ideal 

one should be less than λ/15 in order to obtain more than 50% 

aperture efficiency (λ being the operating wavelength). 

Therefore, the challenge is to retrieve the reflector shape in an 

accurate fashion, so that possible countermeasures can be 

adopted. In this respect, Rahmat-Samii introduced in [2] a 

simple and widely adopted model relating the reflector shape 

deformation to the phase of the aperture field. More recently, a 

deformation-amplitude relationship has also been introduced 

in [3]. In both cases it is argued that the knowledge of the 

aperture field allows providing the desired information on 
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deformation.  

Several approaches have been proposed for reflector surface 

diagnostics. In short, one can find strategies based on the 

processing of both amplitude and phase of the radiated far-

field [4]-[8] as well as strategies exploiting just the far-field 

power pattern (see for instance [9]-[14]). In particular, by 

using Geometrical Optics (GO) and the aperture antennas 

theory, Leone and Pierri analyzed in detail in [9] the problem 

of determining the reflector antenna surface from far-field 

phaseless data. As a matter of fact, collecting phase 

measurements can be very difficult or excessively expensive 

with increasing frequencies [15]-[17], and hence the second 

kind of strategy is indeed of interest. Accordingly, the problem 

of the surface shape detection in reflector antennas can be 

conveniently linked to a Phase Retrieval (PR) problem 

[10],[13]. 

By considering an unknown complex function 𝑓(𝑥) and an 

operator 𝒯 such that 𝐹(𝑘) = 𝒯[𝑓(𝑥)] = |𝐹(𝑘)|𝑒𝑗∠𝐹(𝑘), the 

PR problem deals with the determination of the complex 

quantity 𝐹(𝑘) starting from the knowledge of |𝐹(𝑘)| plus 

some additional information [18].  

A very popular approach for such a kind of problems has 

been given by Misell in [19] in the context of electron 

microscopy, and later adapted to reflector antennas [10]. As 

essentially all PR methods available in literature for antenna or 

other devices characterization (but for [17],[20]), the latter 

approach requires some diversity in the collected data (e.g., 

two or more probes, two or more measurement surfaces, 

defocusing conditions, or the like [21],[22]). While being 

conceptually simple and fast, this procedure may converge to 

a so-called ‘false solution’ [23] if the initial estimation of the 

aperture distribution is far from the ground truth. A common 

way to tackle this issue (at least from a practical point of view) 

is the so-called ‘hybrid input-output’ empirical strategy [24], 

which is widely adopted [25].  

Another benchmark and well-assessed approach, based on 

global optimization, is proposed in [14]. However, since the 

computational complexity of global optimization-based 

procedures is expected to exponentially grow with the number 

of unknowns [26], it can prevent the actual attainment of the 

global optimum in case of very large sources.  

Finally, different approaches to PR have been recently 

introduced by relying on the ‘PhaseLift’ strategy (see [27],[28] 

and references therein). Unfortunately, the latter has two 
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important drawbacks, i.e., the computational complexity 

(which grows very rapidly with the number of unknowns) as 

well as the capability of determining only one solution of the 

problem (while in many cases, including 1-D PR, the problem 

can admit multiple solutions) [17],[29]. 

As a contribution towards effective solution strategies for 

such a problem, we present in the following a novel approach 

to PR. Notably, by avoiding iterative procedures, it allows 

determining the globally-optimal solution by using just one set 

of far-field amplitude measurements and the knowledge of the 

source support (and some other minimal information, see 

below). 

The proposed approach relies on three basic bricks. 

The first, and more obvious one, is the aperture antenna 

theory, which allows for simple relationships amongst the 

aperture field and the corresponding far-field from one side, 

and the aperture field and the reflector deformations from the 

other side.  

The second brick, related indeed to the previous one, is 

given by the expansions of the aperture field and its spectrum 

in terms of the so-called Orbital Angular Momentum (OAM) 

modes, where the spectrum is given by suitable Hankel 

transforms of the aperture field modes [30],[31].  

The third (and more innovative) brick is a recent approach to 

PR problems introduced by the authors for the case of 2-D 

discrete signals (with particular attention to array antennas and 

hence periodic spectra) [29]. In the latter, an analogy between 

filling the rows and columns of the spectrum matrix and 

completing a ‘crosswords’ scheme is introduced and 

discussed. In particular, the approach in [29] first casts the 2-D 

PR as a combination of 1-D PR problems. Then, it finds in a 

deterministic fashion all the admissible solutions of each 1-D 

problem by means of the Spectral Factorization (SF) method 

[32],[33]. Finally, enforcing congruence and discrimination 

criteria amongst them, the approach determines the correct 

field behavior along the different (horizontal, vertical, and 

diagonal) strips covering the 2-D scenario. 

As in [29], the approach presented herein also exploits the 

strategy of decomposing the 2-D PR into a number of 1-D 

problems and solving these latter through the SF method. 

However, differently from [29], we solve herein 1-D problems 

along circles and diameters (rather than horizontal, vertical, 

and diagonal strips) over the spectral plane. Such a choice, 

which was just briefly introduced in [34],[35]1, automatically 

allows a considerable reduction of the computational burden 

associated to the inherent combinatorial problem. Moreover, it 

allows taking full advantage from effective representations 

based both on OAM field modes [30] and the inherent 

expansions based on Singular Value Decompositions (SVD) 

[36] and bandlimitedness [37]. These representations lead to a 

simple initialization of the PR procedure as well as a 

considerable reduction of the number of cases to be considered 

when checking congruence amongst fields on diameters and 

circles, which is achieved by also exploiting a relevant (and 

up-to-now overlooked) property of the fields along circles of 

 
1 In these latter, two phase measurements were anyway used, and no equations 

were given. 

the spectral plane.  

Once the spectrum has been determined in a number of 

circles and diameters, the overall scheme can be eventually 

completed by solving a fitting problem that takes into account 

both the starting data (i.e., the square amplitude of the far-

field) and the samples of the complex spectrum which have 

already been retrieved. In so doing, the presence of a quadratic 

and positive-definite term allows (along the guidelines of 

[23],[38]) avoiding the occurrence of false solutions. 

Notably, the capability to complete the overall PR procedure 

by exploiting a single set of measurements (i.e., no diversity is 

needed) is indeed a relevant asset, since it allows a great 

simplification in the measurement procedure and acquisition 

time [17]. Following [18], we tackle the problem as an inverse 

one where, starting from the square amplitude distribution 

(and additional information), we mean to retrieve the complex 

spectrum and possibly the source. Hence, in order to 

accurately represent the data, the square amplitude has to be 

sampled at a rate which is twice that of the complex spectrum. 

The method is herein presented in case of generic planar 

continuous sources contained in a finite circular support and 

exhibiting no particular symmetries. By virtue of its 

generality, it applies to whatever related PR problem, so that 

similar tools may be applied to synthesis (rather than 

recovery) problems. As detailed in the Conclusions, the 

approach can also be extended to near-field and other scanning 

configurations.  

The remainder of the paper is as follows. In Section II, we 

briefly recall some useful mathematical tools of interest for 

aperture antennas. Then, convenient representations for the 

aperture field and the corresponding spectrum are given in 

Section III. In particular, it is argued that the aperture field’s 

spectrum can be represented as a trigonometric polynomial 

along any circle and diameter of the spectral domain, and 

some up-to-now overlooked properties of this kind of 

polynomials are given. Then, the theoretical uniqueness and 

expected performances of the procedure are discussed in 

Section IV. After that, the rationale of the proposed strategy is 

presented in Section V, while the procedure arising from the 

joint consideration of the basic approach and of the introduced 

properties, as well as a detailed discussion about limitations 

and possible improvements, are given in Section VI. Finally, 

Section VII is devoted to an application of the given concepts 

to the diagnostics of deformations of reflector antennas. 

Conclusions follow. 

II. SOME USEFUL EXPANSIONS AND FORMULATION OF THE 

PROBLEM 

By the sake of simplicity, let us consider the case where the 

aperture field is purely polarized along the 𝑥′ (or 𝑦′) 
direction, 𝑥′ and 𝑦′ denoting the coordinates spanning the 

aperture plane. In such a case, it is simple to see from the 

aperture antenna theory [39] that the knowledge of the square 

amplitude of the far-field components 𝐸∞𝜃
(𝜃, 𝜙) or 

𝐸∞𝜙
(𝜃, 𝜙), 𝜃 and 𝜙 respectively denoting the antenna 

elevation and azimuth angles, is equivalent to the knowledge 
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of the square amplitude of the Fourier transform of the 

aperture field components 𝐸𝑥(𝑥′, 𝑦′) or 𝐸𝑦(𝑥′, 𝑦′) in the visible 

part of the spectrum. Hence, assuming we can measure either 

|𝐸∞𝜃
|
2
 or |𝐸∞𝜙

|
2
, we can restrict our attention to the 2-D 

Fourier-transform relationship amongst the (scalar) aperture 

field, which is named 𝑓(𝑥′, 𝑦′) in the following, and the 

corresponding spectrum. 

Then, let us consider a continuous aperture field 𝑓 having a 

circular support of radius 𝑎, which is of interest in reflector 

antenna diagnostics and in many other cases2. By denoting 

with 𝜌′ and 𝜙′ the radial and azimuth coordinates spanning 

the aperture, 𝑓 can be expanded in a multipole series as (see 

[30] for more details):  

                            𝑓(𝜌′, 𝜙′) = ∑ 𝑓ℓ(𝜌′)𝑒𝑗ℓ𝜙′

+∞

ℓ=−∞

                        (1) 

where: 

                         𝑓ℓ(𝜌′) =
1

2𝜋
∫ 𝑓(𝜌′, 𝜙′)𝑒−𝑗ℓ𝜙′

𝑑𝜙′

2𝜋

0

                (2) 

 

Then, by respectively denoting with 𝑘 and 𝜙 the radial and 

azimuth coordinates spanning the spectral domain, the Fourier 

transform of the source (1) is equal to: 

      𝐹(𝑘, 𝜙) =
1

2𝜋
∫ ∫ 𝑓(𝜌′ , 𝜙′)

∞

0

𝑒−𝑗𝑘𝜌′𝑐𝑜𝑠(𝜙′−𝜙)𝜌′𝑑𝜌′𝑑𝜙′

2𝜋

0

        (3. 𝑎) 

 

and hence, for our finite-dimensional source enclosed in a 

circle of radius 𝑎, the following relationship holds true: 
 

   𝐹(𝑘, 𝜙) =   
1

2𝜋
∫ ∫ 𝑓(𝜌′ , 𝜙′)𝑒−𝑗𝑘𝜌′𝑐𝑜𝑠(𝜙′−𝜙)𝜌′𝑑𝜌′𝑑𝜙′

𝑎

0

2𝜋

0

       (3. 𝑏) 

 

The Fourier transform (i.e., the spectrum) of the source can 

also be expanded in a multipole series as: 

                                  𝐹(𝑘, 𝜙) = ∑ 𝐹ℓ(𝑘)𝑒𝑗ℓ𝜙

+∞

ℓ=−∞

                        (4) 

where:                        

                        𝐹ℓ(𝑘) =
1

2𝜋
∫ 𝐹(𝑘, 𝜙)𝑒−𝑗ℓ𝜙𝑑𝜙

2𝜋

0

                        (5) 

 

Note that, since we are dealing with a finite-dimensional 

source, 𝐹(𝑘, 𝜙) is a bandlimited function, so that expansion 

(4) admits convenient truncations. 

On the basis of the (polarization) assumptions above, let us 

now consider the problem of reconstructing the 2-D source 

𝑓(𝜌′, 𝜙′) from the knowledge (e.g., measurements) of the 

square-amplitude distribution of its Fourier transform in the 

visible part of the spectrum, i.e., 𝑘 ≤ 𝛽 (𝛽 being the 

wavenumber). To this end, let us denote by 𝓑[∙] and * the 

operator respectively performing the square amplitude and 

complex conjugate operations, so that : 
 

              𝓑[𝐹(𝑘, 𝜙)] = 𝐹(𝑘, 𝜙)𝐹∗(𝑘, 𝜙) = |𝐹(𝑘, 𝜙)|2            (6) 
 

Then, if 𝑀2(𝑘, 𝜙) denotes the measured square-amplitude far-

 
2 Obviously, any finite-dimensional planar source can be delimited by some 

circle having a sufficiently large radius. 

field distribution3, the (auxiliary, see below) 2-D PR problem 

of interest can be stated as the determination of the ‘correct’ 𝐹 

distribution (say 𝐹̂) such that: 
 
 

           𝓑[𝐹̂(𝑘, 𝜙)] = 𝑀2(𝑘, 𝜙)                                 (7. 𝑎) 
 

subject to 
 

              𝐹̂(𝑘, 𝜙) 𝑜𝑏𝑒𝑦𝑖𝑛𝑔 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (3. 𝑏)             (7. b)                              
 

so that (7.b) enforces the finite dimension of the source.  
 

Note that retrieving the phase of 𝐹 (in the visible part of the 

spectrum) and retrieving 𝑓(𝜌′, 𝜙′) are not exactly the same 

problem, as the whole spectrum (and not just its visible part) 

would be required in order to safely recover the source 

distribution. Also, let us note that, in case of noisy data, the 

measured square-amplitude distribution might not permit the 

exact fulfillment of problem (7) and hence, even if uniqueness 

issues (see below) are neglected, the problem is still ill-posed 

[36]. Indeed, in solving (7) one generally looks for some best 

fitting, rather than looking for an exact fulfilment [18]. 

III. EFFECTIVE REPRESENTATION FOR THE SPECTRUM AND 

THE SOURCE, AND FURTHER USEFUL PROPERTIES  

A. Representing the spectrum and the source via OAM modes 

and SVD 

To give an accurate representation of the spectrum, we can 

exploit the SVD of the radiation operator relating the source 

𝑓ℓ(𝜌′) to the corresponding spectrum component 𝐹ℓ(𝑘).  

In fact, if (1) is substituted into (3.b), and then (4) is used, 

the contribution to the radiated field given by (5) can be 

written as:  

                𝐹ℓ(𝑘) = ∫ 𝑓ℓ(𝜌′)𝐽ℓ(𝑘𝜌′)𝜌′𝑑𝜌′

𝑎

0

= 𝐻ℓ{𝑓ℓ(𝜌′)}         (8) 

wherein, as reported in [30], 𝐽ℓ(∙) is the ℓ-th order Bessel 

function of the first kind, and the last expression denotes the 

ℓ-order Hankel transform [31] of 𝑓ℓ(𝜌′) (which is in turn 

supposed to be zero for 𝜌′ > 𝑎). 

Then, equation (8) can be written in an operator form as: 
 
 

                                               𝐹ℓ = 𝐴ℓ𝑓ℓ                                          (9) 
 

 

𝐴ℓ being a compact notation for the corresponding (radiation) 

operator.  

We can now perform the SVD of 𝐴ℓ, i.e., {𝑣ℓ,𝑛, 𝜎ℓ,𝑛, 𝑢ℓ,𝑛} 

such that: 

                                        𝐴ℓ𝑣ℓ,𝑛 = 𝜎ℓ,𝑛𝑢ℓ,𝑛                             (10. 𝑎) 

                                       𝐴ℓ
+𝑢ℓ,𝑛 = 𝜎ℓ,𝑛𝑣ℓ,𝑛                             (10. 𝑏)   

 

𝜎ℓ,𝑛, 𝑣ℓ,𝑛, 𝑢ℓ,𝑛 denoting the 𝑛-th singular value, left-hand 

singular functions, and right-hand singular functions 

associated to the ℓ-th order, respectively, while 𝐴ℓ
+ is the 

adjoint operator of 𝐴ℓ. A detailed description on how to 

compute the functions and scalars at hand is given in [30]. 

Since the singular functions 𝑣ℓ,𝑛 and 𝑢ℓ,𝑛 are orthonormal in 

 
3 Note that, by virtue of the bandlimitedness of the field [37], the function 

𝑀2(𝑘, 𝜙) can be conveniently acquired through proper sampling and 

interpolation operations.  
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the space of sources and spectra [30],[36] respectively, they 

can be used as representation bases in the corresponding 

domains. Therefore, we can represent the different spectrum 

components as follows: 

                                     𝐹ℓ(𝑘) = ∑ 𝑏ℓ,𝑛

∞

𝑛=1

𝑢ℓ,𝑛(𝑘)                       (11) 

 

and, by substituting (11) into (4), we finally achieve: 
 

                    𝐹(𝑘, 𝜙) = ∑ ∑ 𝑏ℓ,𝑛

∞

𝑛=1

𝑢ℓ,𝑛(𝑘)𝑒𝑗ℓ𝜙

+∞

ℓ=−∞

                  (12) 

     

Then, assuming the source is not superdirective, expansion 

(12) can be conveniently truncated by following the rules 

reported in [30]. By so doing, one achieves:  

                       𝐹(𝑘, 𝜙) = ∑ ∑ 𝑏ℓ,𝑛

𝑁ℓ

𝑛=1

𝑢ℓ,𝑛(𝑘)𝑒𝑗ℓ𝜙

𝛽𝑎

ℓ=−𝛽𝑎 

             (13) 

where 𝑁0 =
2𝑎

𝜆
 and the generic value of 𝑁ℓ is given by: 

                                              𝑁ℓ = 𝑁0 −
|ℓ|

𝜋
                                (14) 

 

Hence, starting from (13), a convenient representation for 

the aperture field, corresponding to a regularized inversion of 

the (visible part of the) spectrum to the source, is given by: 

             𝑓(𝜌′, 𝜙′) = ∑ ∑ 𝛼ℓ,𝑛

𝑁ℓ

𝑛=1

𝑣ℓ,𝑛(𝜌′)𝑒𝑗ℓ𝜙′
 

𝛽𝑎

ℓ=−𝛽𝑎 

                 (15) 

with 𝑏ℓ,𝑛 = 𝜎ℓ,𝑛𝛼ℓ,𝑛. 

Notably, provided one is able to retrieve the visible part of 

the spectrum, (15) can be conveniently exploited in order to 

regularize the ill-posed problem of identifying the aperture 

source distribution corresponding to the retrieved visible part 

of the spectrum. 

B. Trigonometric polynomial representation of the spectrum 

along rings of the data domain, and its properties with 

increasing radii 

Spectrum and source representations even more convenient 

than (13) and (15) can be devised by exploiting the fact that 

the singular functions 𝑢ℓ,𝑛(𝑘) exhibit a |ℓ|-th order zero for 

𝑘 = 0. Hence, for 𝑘 = 0 only the functions 𝑢0,𝑛(𝑘) contribute 

to the spectrum. Moreover, the smaller the value of 𝑘 the 

smaller the value of ℓ up to which functions 𝑢ℓ,𝑛(𝑘) play a 

significant role in the spectrum generation [30]. 

Accordingly, in (13) the external summation can be further 

truncated to the interval [−𝐻, 𝐻], where 𝐻 depends both on 𝑎 

and 𝑘, i.e.: 
 

               𝐹(𝑘, 𝜙) = ∑ ∑ 𝑏ℓ,𝑛

𝑁ℓ

𝑛=1

𝑢ℓ,𝑛(𝑘)𝑒𝑗ℓ𝜙

𝐻(𝑘,𝑎)

ℓ=−𝐻(𝑘,𝑎) 

           (16. 𝑎) 

 

Therefore, when considering a ring of radius 𝑘 = 𝑘, the 

spectrum can be conveniently written in terms of a 

trigonometric polynomial whose order depends indeed on 𝑘 

(i.e., the lower 𝑘, the lower the order of the polynomial). As a 

matter of fact, along a ring of radius 𝑘 one can use: 
 

                     𝐹(𝑘, 𝜙) = ∑ 𝐶ℓ(𝑘)𝑒𝑗ℓ𝜙

𝐻(𝑘,𝑎)

ℓ=−𝐻(𝑘,𝑎) 

                      (16. 𝑏) 

 

As far as the actual choice of H is concerned, it could be 

deduced from the properties of the singular functions. 

However, a simpler yet accurate estimation of the (minimum) 

value of H to be used in (16) can be given as follows.  

First note that, by virtue of the source size, the minimal 

sampling period in the spatial frequency domain is equal to 

1/2𝑎. As a consequence, the sampling period along any line 

in the spectral domain is equal to 𝜋/𝑎. Hence, along a 

circumference having a radius 𝑘 = 𝑘 one needs a number of 

samples equal to (2𝜋𝑘)/(𝜋/𝑎) = 2𝑘𝑎. Then, by performing a 

trigonometric interpolation of these samples, one can 

transform the arising sampling series based on the Dirichlet 

kernel into a truncated Fourier series [40], finding that 𝐻 must 

be greater than or equal to 𝑘𝑎.  

The choice 𝐻 = 𝑘𝑎, which we assume in the following, 

nicely agrees with (13) when 𝑘 = 𝛽, i.e., along the maximum 

circle of the visible space. In fact, 𝐻(𝛽, 𝑎) = 𝛽𝑎.  

Notably, by obvious derivations, the square amplitude 

distribution of the spectra along rings can also be expressed as 

trigonometric polynomials whose order is exactly twice the 

one of the corresponding complex spectra. Such a 

circumstance also suggests a further (practical) rule for a 

convenient choice of 𝐻 along any circle in the spectral 

domain. In fact, one can estimate the value of 2𝐻 directly 

from the square amplitude distribution available along the 

circle at hand.  

Expressions (16) for the spectrum in terms of the singular 

functions (or, more simply, in terms of trigonometric 

polynomials) can be conveniently used in the proposed 

procedure. To this end, let us note that trigonometric 

polynomials of the kind (16.b) can also be seen as the 

restriction to the unitary circle of an expression of the 

following kind: 

                               𝐹(𝑘, 𝜙) = ∑ 𝐶ℓ(𝑘)𝑧ℓ

𝐻

ℓ=−𝐻 

                           (17) 

 

with 𝑧 = 𝑒𝑗𝜙.  

It is also well known [41] that the complex zeroes of (17) 

determine the actual behavior of the spectrum [32]. In this 

respect, it is useful to get an understanding of the (number 

and) locations of these zeroes with increasing values of 𝑘, 

which corresponds to increasing values of 𝐻.  
One can easily understand that such an order is nothing but 

zero when 𝑘 = 0. Then, when 𝑘 gently moves from the origin 

to larger values, the order of the polynomial also progressively 

increases, so that new zeroes come into play in the 𝑧-plane. 

Notably (see Appendix A) if one considers two nearby 

concentric circles with different radii such that the required 

value of 𝐻 increases by one, and no zero occurs in the 

corresponding annulus of the spectrum, the two additional 

zeroes must necessarily be located one inside and one outside 
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the unitary circle in the 𝑧-plane4. Then, as long as the function 

𝐹(𝑘, 𝜙) does not exhibit any zero in the disk 𝑘 < 𝑘 , the 

trigonometric polynomial (17) exactly has half of the zeroes 

inside the unitary circle and the other half outside5. 

C. Trigonometric polynomial representation of the spectrum 

along diameters of the data domain 

Convenient representations of the spectrum can also be 

given for fixed values of 𝜙, i.e., along diameters of the circle 

corresponding to the visible region of the spectral plane. 

If we assume that the spectrum is negligible in its invisible 

part, and that it is sufficiently small on its border (which is 

usually the case with reflector antennas), then the behavior of 

the spectrum along the diameter at hand can be accurately 

reconstructed from its Nyquist samples. Then, as any diameter 

of the visible space is shorter than the maximum circle by a 

factor 𝜋, one finds that the number of required samples is 

equal to 2𝛽𝑎/𝜋 = 4𝑎/𝜆, and the same statement holds true if 

we re-normalize the coordinate along the diameter by using 

𝑘′ = 𝑘/2, so that −𝜋 ≤ 𝑘′ ≤ 𝜋. Finally, for any of the above 

diameters identified by 𝜙 = 𝜙, we can again use the 

correspondence amongst Dirichlet sampling series and 

truncated Fourier series [40] to come to the following 

expression:  
 

                          𝐹(𝑘, 𝜙) = ∑ 𝐶̂ℓ(𝜙)𝑧′ℓ

2𝑎/𝜆

ℓ=−2𝑎/𝜆 

                          (18) 

with 𝑧′ = 𝑒
𝑗𝑘
2 = 𝑒𝑗𝑘′

 6. 
A more detailed explanation of (18) can be found in [42], 

where it is also argued that it may be convenient to slightly 

extend the summation in case of sources which are not so 

large with respect to 𝜆. Roughly speaking, one can also argue 

that (18) is nothing but the field radiated by the original source 

as collapsed (according to the definition in [29],[43]) on the 𝜙 

=𝜙 line, and it is known [42] that the field radiated by a linear 

non-superdirective source can be seen as the field radiated by 

an equivalent ‘virtual’ array with a spacing equal to (or 

slightly smaller) than 𝜆/2. In fact, (18) can also be seen as an 

array factor where the present 𝑘′ replaces the usual spectral 

variable ‘𝑢’.  

Again, the (complex) zeroes of (18) will determine the 

actual behavior of the spectrum [32], and of course the power 

pattern will have a similar expansion (with 4𝑎/𝜆 replacing 

2𝑎/𝜆). Finally, since the source is supposed to be circular, the 

summation indices do not vary with the chosen line, i.e., with 

the value of 𝜙. However, different indices could be 

conveniently used for different 𝜙 values in other cases (see 

Conclusions). 

 
4 Actually, they will be close to the origin and close to infinity, respectively, 

when beginning to come into play. 

5 If 𝐹(𝑘, 𝜙) exhibits instead one or more zeroes within the disk 𝑘<𝑘, one can 

eventually track the evolutions of the zeroes in the complex plane, thus 

determining (for any fixed value of 𝑘) how many zeroes of the corresponding 

trigonometric polynomial are inside or outside the unitary circle of the z plane. 
6 Note such a choice implies that spanning a diameter corresponds to spanning 

the entire unitary circle in the z plane. 

IV. UNIQUENESS AND OTHER RELEVANT ISSUES 

The rationale, scope, and capabilities of the proposed 

approach to 2-D PR are intimately related to relevant results 

regarding the uniqueness (or lack of uniqueness) for the 

considered problem in both the 1-D and 2-D cases. Hence, it is 

appropriate to briefly resume these results.  

As a matter of fact, 1-D PR problems do not admit a unique 

solution. In fact, besides the ‘trivial ambiguities’ discussed 

below, the far-field square amplitude can be written (but for a 

constant) as the product of factors of the kind7 (𝑒𝑗𝑢̂ − 𝑧𝑖), 

(𝑒𝑗𝑢̂ −
1

𝑧𝑖
∗) and any ‘flipping’ amongst each couple corresponds 

to a different solution8 [32]. On the other side, by means of a 

well-defined procedure based on extracting (and pairing) the 

roots of the spectrum expression, one can determine all the 

possible solutions of the 1-D PR problems at hand. Therefore, 

for each 1-D PR problem we have a collection of possible 

solutions for the pertaining part of the spectrum. 

As 2-D polynomials are not factorable (but for a zero-

measure set of cases), ambiguities due to the spectral 
factorization do not generally occur in 2-D PR problems [17]. 

Accordingly, the solution of a number of 1-D PR problems 

and their correct intersection according to congruence and 

discrimination arguments allow achieving the actual solution, 

the only residual problem being the so called ‘trivial 

ambiguities’. These latter are reported in the following:  

(i) a constant phase on the spectrum, corresponding to the 

same constant phase on the aperture source;  

(ii) a linear phase on the spectrum, corresponding to a 

translation of the source; 

(iii) a conjugation of the complex spectrum, corresponding 

to a reversal (with respect to both axis) plus a 

conjugation of the source (i.e., of the aperture field in 

the problem at hand); 

(iv) any combination of (i),(ii),(iii). 

In fact, all the above situations result in the same identical 

square-amplitude field distribution.  

The first two ambiguities can be successfully faced by 

respectively fixing a reference phase and supposing to know 

the support of the source. The third ambiguity keeps however 

there, and hence (even neglecting the zero-measure set of 

cases where the 2-D spectrum can be further factored) some 

additional a-priori information is needed in order to get a 

theoretically unique solution also in the 2-D case. However, 

the set of possible solutions is reduced to just a couple of 

possible solutions which are complex conjugate each of the 

other9. As detailed in Sect. VI, simple practical ways can solve 

this residual ambiguity and come to a unique solution.  

By assuming that the required additional information is 

available, or when looking for all the different solutions in 

case of non-uniqueness, we still need a computational 

procedure able to get the ground truth (in case of uniqueness) 

or all the possible solutions (in case uniqueness does not hold 

true). As a matter of fact, because of false solutions [23], or 

 
7 𝑢̂ ≡ 𝑘/2 along diameters, whereas 𝑢̂ ≡ 𝜙 along rings. 
8 Unless the two roots of the couple have unitary amplitude. 
9 Hence, a single bit of information can solve the residual ambiguity. 
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computational issues [17],[22],[38],[44], this is still an open 

problem in the literature, unless a number of independent 

measurements of the radiated field amplitude substantially 

larger than the one required for the theoretical uniqueness is 

used. This is actually the reason why in antenna diagnostics 

two different sets of (sufficiently-different) phaseless 

measurements [21],[22],[45]-[51] are usually assumed (but for 

our contributions [17],[29]). 

V. RATIONALE OF THE PROPOSED PHASE RETRIEVAL 

STRATEGY: A CONCENTRIC CROSSWORDS-LIKE SCHEME 

Our proposed PR procedure, originally introduced for the 

case of array antennas in [29], is inspired by the solution of 

crosswords puzzles. These latter, which are quite diffused in 

every culture whose language adopts alphabets rather than 

ideograms, are indeed puzzles where vertical and horizontal 

words, subject to some (possibly ambiguous) definitions, have 

to correctly intersect. In fact, by virtue of bandlimitedness, the 

far-field matrix to be retrieved can be seen as a crossword 

scheme to be solved, so that the 2-D PR problem can be 

tackled as a collection of auxiliary 1-D PR problems along 

rows, columns, and diagonal lines.  

Since we are dealing with circularly-supported aperture 

sources, and by virtue of the fact that it will bring a number of 

advantages, herein we will consider instead 1-D PR problems 

along rings and diameters of the spectral plane. For this 

reason, we refer to the present approach as to a ‘concentric’ 

crosswords-like scheme. 

The approach overcomes relevant issues associated to our 

previous approach in [29]. In fact, in the latter, a horizontal, a 

vertical, and a diagonal cut of the far-field were needed in 

order to have three intersections and initialize the solution of 

the puzzle, resulting in a cumbersome combinatorial 

problem10. Notably, the ‘concentric’ scheme allows instead 

starting with just one ring and one diameter, hence 

considerably reducing the computational burden11. Moreover, 

and more important, further relevant advantages do occur (see 

Sections VI.B and VI.D below). 

VI. THE PROPOSED PROCEDURE 

In the proposed procedure, one has to solve a sequence of 1-

D problems and then use congruence arguments at the 

intersection points until the entire far-field matrix is retrieved. 

As already noticed, a substantial speed-up is however possible 

once solutions along a sufficient number of rings and 

diameters have been identified.  

In the following, in subsection VI.A we briefly resume how 

to solve the 1-D PR problem, which is the basic brick for the 

overall procedure described in subsection VI.B. Then, 

subsections VI.C, VI.D, and VI.E discuss drawbacks of the 

basic procedure and the corresponding countermeasures and 

improvements allowed by the properties discussed in 

subsection III.B and [38]. Finally, the exploitation of the 

 
10 In fact, the first two intersections just normalize the phase along the second 
and third strip, and the third intersection allows for discrimination [29]. 
11 In fact, they have two intersection points, the second one already allowing 

to discard incongruent solutions amongst the chosen diameter and ring. 

retrieved spectrum in order to determine the corresponding 

source is considered in subsection VI.F. 

VI.A. A basic brick: 1-D Phase Retrieval via Spectral 

Factorization  

Let us define with 𝑢̂ the generic variable spanning the 1-D 

observation domain at hand, i.e.: 

 

𝐹(𝑢̂) = {
𝐹(𝑘/2) 𝑓𝑜𝑟 𝜙 = 𝜙   (i. e. , for any diameter)

𝐹(𝜙)     𝑓𝑜𝑟 𝑘 = 𝑘    (i. e. , for any ring)         
 (19) 

 

Then, by using (17) or (18), and by obvious derivations 

[32], the square-amplitude distribution of (19) can be 

expressed in terms of auxiliary coefficients 𝐷𝑝 such that: 

|𝐹(𝑢̂)|2 = 𝑆(𝑢̂) = ∑ 𝐷𝑝𝑒𝑗𝑝𝑢̂

2𝑃

𝑝=−2𝑃

    (20) 

where, according to contents of Section III, 𝑃 = 𝐻 =

𝑘𝑎  when 𝑢̂ = 𝜙 (i.e., for a ring) and 𝑃 = 𝐻 = 2𝑎/𝜆 when 

𝑢̂ = 𝑘/2 (i.e., for a diameter). Also note that, since the left-

hand member is a real quantity, {𝐷} is a Hermitian sequence 

of 4𝑃 + 1 complex coefficients, i.e., 𝐷𝑝 = 𝐷−𝑝
∗ , 𝑝 =

0, 1, … , 2𝑃. 

Then, by considering the measured square-amplitude data, 

i.e., 𝑀2 as sampled in a grid of points 𝐮 = [û1, … , û𝑁], where 

𝑁 is the number of measurements taken according to [37], the 

Hermitian sequence {𝐷𝑝} can be identified by enforcing (in a 

least square sense) that: 

∑ 𝐷𝑝𝑒𝑗𝑝𝐮

2𝑃

𝑝=−2𝑃

= 𝑀2(𝒖) (21) 

Once the coefficients {𝐷} have been determined, the SF 

technique developed in [32] can be applied to get the 

multiplicity of solutions for any 1-D cut of the power pattern.  

VI.B. An effective implementation for the conceived 

crosswords rationale 

The rationale described in Section V could be implemented 

in many different ways. However, it is convenient dealing as 

much as possible with low-order polynomials. In fact, this 

allows an easier SF and, more important, a reduced number of 

possible solutions along the ring or diameter at hand. By 

following this general criterion, one comes to the procedure 

detailed in Appendix B.  

In short, it proves convenient to initially (steps 1-5) 

consider a diameter and a small ring (such as for example the 

one at the Nyquist distance from the origin). Then, by using 

the SF, one can find all the possible behaviors along the 

diameter and the ring at hand. Note that, in order to be 

compatible, solutions on the two curves must have (but for 

some tolerance) the same phase shift at the two intersection 

points. Hence, one can discard all solutions along the diameter 

which are not congruent with any of the solutions on the ring 

(and vice versa). Also, it is fruitful keeping track of the 

surviving trial solutions, and of their diameter-ring solutions 

pairing. 

Then (steps 7-11) a slightly larger ring can be considered, 
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and congruence arguments allow to further reduce the number 

of admissible solutions along the diameter. Notably, going 

back to the pairing of solutions amongst the diameter and the 

ring, solutions along the previous ring can also be pruned. As 

a consequence, the initial set of possible solutions along the 

initial couple diameter-ring is also pruned. 

The procedure, allowing pruning along the chosen diameter 

and all the considered rings, can be repeated (step 12). As 

soon as the perimeter of the ring becomes equal to or greater 

than the diameter of the visible space, it proves convenient to 

switch to the consideration of a second diameter (step 13), and 

perform the SF therein. Notably, pruning of the set of 

solutions along such a line is very effective, as one can take 

profit from a number of discrimination points which is twice 

the number of considered rings. Also, such a congruence test 

will reduce the number of overall admissible solutions along 

the already-considered rings.  

Further diameters can be then considered (steps 13-17). 

As a final result, one will get all the different solutions of 

the problem at hand. In particular, in case the unknown 

spectrum is a non-factorable polynomial (which will always 

happen but for a zero-measure set of cases), at the end of the 

procedure one will get a couple of solutions respectively 

corresponding to the ground truth spectrum (or its best 

possible approximation) and its complex conjugate. Then, a 

single bit of additional information can solve the ambiguity. 

Practical additional information performing the job could be: 

• a single phase shift measurement amongst two points; 

• the knowledge of the (non-symmetric) support of the 

aperture source (in fact, conjugation of the spectrum 

corresponds to a source which is overturned with respect to 

the axes, and conjugated as well); 

• other a-priori knowledge, such as for instance a quadratic 

phase component (with its sign) which is expected because 

of the chosen defocusing of the feed; 

• knowledge of a sub-part of the aperture source (e.g., 

because of the blocking effects of the struts); 

and further possibilities could be also devised.  

In case the unknown spectrum is instead a factorable 

polynomial, because of its discrimination way of thinking the 

basic procedure will furnish in principle all the different 

solutions of the problem at hand, which could be a huge 

number. In such a case, which (luckily) is unlikely in the 

general case, the additional information which is needed for a 

unique solution implies additional a-priori information (or at 

least a part of a second set of data). 
 

 

VI.C. Limitations of the approach 

The proposed approach is affected from two main (related) 

limitations. 

First, the presence of noise on data implies that one has to 

relax the requirements at the discrimination points. In fact, 

some tolerance has to be guaranteed when checking 

congruence in order to avoid discarding potential solutions 

along the different domains. As a consequence, more solutions 

may become admissible, and one may miss coming to the 

single couple of solutions which is expected, and finding 

instead more solutions. On the other side, let us note that 

whatever PR procedure using the same data would incur in the 

same kind of problem, as the solution(s) we find at the end are 

all compatible with the existing noisy data.  

Second, the larger the source or the considered circle, the 

higher the order of the involved polynomials. As a 

consequence, one may have problems in the factorization12 

and, more important, one will have very many candidate 

solutions along the line (or the ring) at hand, so that many of 

them could be anyway admissible at the discrimination points, 

particularly in case of noisy data and hence larger tolerances.  

In case of rings, let us note that if 𝐻 is the index to be used 

in (17) (where 𝐻 is proportional to 𝑘), then the corresponding 

square amplitude distributions have 4𝐻 possible zeroes, paired 

in couples of the kind (𝑧𝑖 , 1/𝑧𝑖
∗) [32]. Then, without using any 

peculiar property of the spectrum, one should explore a total 

of 22𝐻 possible spectrum behaviors (as any of the 2𝐻 zeroes 

for the spectrum representation can be both inside or outside 

the unitary circle in the complex plane). 

VI.D. Possible Improvements/1: exploitation of overlooked 

spectrum properties  

Some interesting improvement in performance can be 

achieved by taking advantage of the properties discussed in 

Section III.B. In fact, by considering two nearby rings such 

that 𝐻 has to be increased by one when moving from the 

smaller to the larger one, the two new zeroes must necessarily 

be located one inside and one outside the unitary circle, 

respectively. Such a circumstance implies that, amongst all the 

22𝐻 possibilities above (and supposing for the time being that 

the spectrum does not exhibit any zero within the disk having 

the radius 𝑘 at hand), the ones actually admissible are those 

where the inherent 2𝐻 zeroes are located half inside and half 

outside the unitary circle of the complex plane. Therefore, the 

number of combinations to be checked considerably reduces 

from 22𝐻 to the binomial coefficient (
2𝐻

𝐻
), thus allowing a 

significant improvement in pruning the set of admissible 

solutions and computational effectiveness. Such a property 

can be exploited in all cases where no zero is present in the 

pattern over the disk of radius 𝑘. Once one or more zeroes are 

instead present within the above disk, one can focus the 

attention on the ring where transition occurs and ‘track’ the 

transition of the zeroes from inside to outside and vice versa, 

so that the number of situations to be checked is still much 

lower than 22𝐻. 

Interestingly, the possibilities of enhancing the PR 

procedure are not over yet. As a matter of fact, the ‘zeroes 

tracking’ idea can allow a further reduction of the complexity. 

In particular, if the ‘zero tacking’ procedure detailed in 

Appendix C is followed, by progressively enlarging the rings, 

the number of potential solutions to be explored follow a rule 

of the kind 2𝐻, which is a further relevant reduction. 

 
12 By using the subroutine ‘roots’ from Matlab we experienced some problems 

in correctly identifying (couples of) zeroes when the order of the polynomial 

is as high as 140 or more.   
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Fig. 1. Pictorial view of the field in the spectral domain before switching to 

the fitting procedure. At a certain step of the procedure detailed in Section 

VI.B and Appendix B, the complex field has already been retrieved along the 

green lines, while in the red zone it has yet to be recovered. 

 

VI.E. Possible Improvements/2: a faster exploitation of partial 

results  

At a certain step of the procedure detailed in Section VI.B 

and in Appendix B, the scenario at hand will appear as 

depicted in Fig. 1. In this figure, the retrieved spectrum is 

highlighted in green while the red part indicates those points 

where just the amplitude of the spectrum is known. Hence, to 

run out the PR procedure, we need to recover those points (or, 

better to say, the missing Nyquist samples).  

Obviously, one can continue to consider additional 

diameters (or eventually rings). As an alternative strategy, 

advantage can be taken from [23],[38]. In these papers it is in 

fact shown that once a sufficiently large ratio amongst the 

number of independent square amplitude data and the number 

of independent unknowns is available, false solutions 

(corresponding to local minima of suitable cost functionals) 

can be avoided, and PR problems can be safely solved by local 

optimization techniques. In particular, it has been argued in 

[38] that once the ratio between the effective dimensions of 

the data space and the space of real independent unknowns is 

as large as 3, iterative procedures minimizing a cost function 

on the square amplitude data are not any more trapped into 

false solutions. 

Herein, the recovered spectrum samples can be seen as 

constraints lowering the number of independent unknowns 

[38], so that the strategies (and procedures) explored and 

discussed therein can be conveniently applied. In so doing, 

one can take advantage from the minimally-redundant 

spectrum representation (16. 𝑎) and enforce the already known 

spectrum behavior by means of penalty terms rather than by 

strict equality constraints.  

Coming to detail, let us suppose splitting the spectral domain 

samples in two sub-sets, i.e.: Π̂ ≡ (𝑘̂, 𝜙̂) where the complex 

spectrum values have already been retrieved and Π̃ ≡ (𝑘̃, 𝜙̃) 

where just amplitude data (i.e., 𝑀𝑘̃,𝜙̃
2 ) are known. The PR 

completion is then performed by solving the following 

optimization problem: 
 

                    𝑚𝑖𝑛
𝒃

𝜓(𝒃) = 𝑤1
2𝜓1(𝒃) + 𝑤2

2𝜓2(𝒃)                     (22) 
 

where 𝒃 is the vector containing the representation 

coefficients 𝑏ℓ,𝑛, while 𝑤1
2 and 𝑤2

2 are positive constants 

properly weighting the two functionals 𝜓1 and 𝜓2. These 

latter, following [38], are defined as: 

                    𝜓1(𝒃) = ‖
|𝐹𝑘̃,𝜙̃|

2
− 𝑀𝑘̃,𝜙̃

2

𝑀𝑘̃,𝜙̃

‖

Π̃

2

= ∑ ∑
[|𝐹𝑘̃,𝜙̃|

2
− 𝑀𝑘̃,𝜙̃

2 ]
2

𝑀
𝑘̃,𝜙̃
2

𝜙̃𝑘̃

                (23. 𝑎) 

 

𝜓2(𝒃) = ‖𝐹𝑘̂,𝜙̂ − 𝑇𝑘̂,𝜙̂‖
Π̂

2
= ∑ ∑|𝐹𝑘̂,𝜙̂ − 𝑇𝑘̂,𝜙̂|

2

𝜙̂𝑘̂

       (23. 𝑏) 

 

where 𝑇𝑘̂,𝜙̂ , is the complex spectrum as retrieved by following 

the procedure described in Section VI.B.  

Accordingly, the optimization problem (22) aims at 

determining coefficients 𝑏ℓ,𝑛 such that the amplitude data, i.e., 

𝑀𝑘̃,𝜙̃
2 , are fitted through (23. 𝑎), while 𝑇𝑘̂,𝜙̂ , is fitted through 

(23. 𝑏). Note that, while functional (23. 𝑏) is quadratic with 

respect to unknowns, functional (23. 𝑎) is indeed quartic.  

To perform the optimization, a conjugate gradient-based 

minimization scheme is adopted. As well known, for a given 

starting guess, this kind of deterministic solution algorithm 

converges to the closest local minimum of the cost functional 

[52]. Therefore, thanks to the already retrieved portions of the 

spectrum and the presence of the corresponding positive 

definite quadratic functional (23. 𝑏), one can avoid the 

occurrence of minima other than the global one [38]. 

VI.F Aperture Field Retrieval  

While the PR problem can be considered accomplished at 

the end of the procedures described in Sections VI.B and VI.D 

and/or the solution of the optimization problem (22)-(23), the 

diagnostics problem we are interested in pursues the retrieval 

of the aperture field distribution (as it is the one actually 

conveying information about reflector shape deformations).  

By virtue of the choice we have performed on the spectrum 

representation, such a last step can be performed in a simple 

fashion. In fact, once the complex spectrum is identified, 𝑏ℓ,𝑛 

coefficients are also known. Then, we can use (15) in order to 

determine the aperture field, where 𝛼ℓ,𝑛 = 𝑏ℓ,𝑛/𝜎ℓ,𝑛. An even 

simpler solution, which can be safely applied whenever the 

spectrum is negligible in its invisible part (which is usually the 

case with reflector antennas) amounts to perform an inverse 2-

D Fourier transform. 

VII. NUMERICAL EXAMPLES 

The aim of this Section is to assess feasibility and 

effectiveness of the proposed approach in the diagnosis of 

surface deformations on a reflector antenna by not exploiting 

any phase measurement of the field. To this end, following 

[13], we have examined two different cases, namely the case 

where only the phase of the aperture field is affected and the 
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case where both the amplitude and the phase are affected.  

As a reference scenario, we considered a continuous aperture 

field with a circular support of radius 𝑎 = 10𝜆, whose 

nominal expression, corresponding to an undistorted reflector 

and an out of focus feed, is the following: 
 

                                       𝑓(𝜌′, 𝜙′) = |𝑓|𝑒𝑗𝜑𝑓                          (24. 𝑎) 
 

                                         |𝑓| =
4𝐹𝐿

4𝐹𝐿2 + 𝜌′2                            (24. 𝑏) 

                      𝜑𝑓 = 𝛽 [2𝐹𝐿 + 𝐶 (
4𝐹𝐿2 − 𝜌′2

4𝐹𝐿
)]                 (24. 𝑐) 

 

wherein 𝐹𝐿 is the focal length. In all the examples below, 

𝐹𝐿 = 3𝜆, 𝐶 = 0.5 and, as in [13], a gaussian taper has been 

superimposed to (24.b) in order to get an overall 12 dB ratio 

amongst values attained by the field at the origin and at the 

border of the disk source. 

In order to quantitatively appraise the accuracy of the 

        
 
 

          
 

                           (a)                                                   (b)                                                                 (c)                                                             (d)                                            
 

Fig. 2. Assessment scenario #1: phase distortion on aperture field (𝑢 = 𝑘𝑐𝑜𝑠𝜙, 𝑣 = 𝑘𝑠𝑖𝑛𝜙). From left to right: (a) reference (top) and retrieved (bottom) 

phase of the radiated far-field; (b) reference (top) and retrieved (bottom) reflector surface deformation; (c) 1-D cuts of the reference (black curve) and 

retrieved (dashed-cyan curve) far-field phase along the ring at 𝑘 = 0.2094 (top) and the diameter 𝑣 = 0 (bottom); (d) 1-D cuts of the reference (black 

curve) and retrieved (dashed-cyan curve) surface deformation along  𝑦 = 0 (top) and 𝑥 = 0  (bottom).  
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Fig. 3. Assessment scenario #1 in presence of noisy data (SNR=25dB): phase distortion on aperture field (𝑢 = 𝑘𝑐𝑜𝑠𝜙, 𝑣 = 𝑘𝑠𝑖𝑛𝜙). From left to right: (a) 

reference (top) and retrieved (bottom) phase of the radiated far-field; (b) reference (top) and retrieved (bottom) reflector surface deformation; (c) 1-D cuts 

of the reference (black curve) and retrieved (dashed-cyan curve) far-field phase along the ring at 𝑘 = 0.2094 (top) and the diameter 𝑣 = 0 (bottom); (d) 1-

D cuts of the reference (black curve) and retrieved (dashed-cyan curve) surface deformation along  𝑦 = 0 (top) and 𝑥 = 0  (bottom).  
 



Manuscript n.: AP2106-1256.R2 

 

obtained results, we introduced a normalized square error 

(NSE) metric for both the radiated field (i.e., 𝑁𝑆𝐸𝑟𝑓) and the 

surface deformation 𝛿 (i.e., 𝑁𝑆𝐸𝑠𝑑) as follows: 
 

     𝑁𝑆𝐸𝑟𝑓 =
‖𝐹𝑎𝑐𝑡𝑢𝑎𝑙 (𝑘, 𝜙) − 𝐹𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑(𝑘, 𝜙)‖2

‖𝐹𝑎𝑐𝑡𝑢𝑎𝑙(𝑘, 𝜙)‖2
       (25. 𝑎) 

 

      𝑁𝑆𝐸𝑠𝑑 =
‖𝛿𝑎𝑐𝑡𝑢𝑎𝑙(𝜆) − 𝛿𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑(𝜆)‖2

‖𝛿𝑎𝑐𝑡𝑢𝑎𝑙(𝜆)‖2
                  (25. 𝑏) 

VII.A Phase distortion example 

In the first example, besides the non-trivial behavior 

induced by (24.c), we also considered, as in [13], a surface 

deformation 𝛿(𝜌′, 𝜙′) on the reflector corresponding to a 

phase distortion of the aperture field as modeled in [2], that 

reads: 
 

                                𝑓(𝜌′, 𝜙′) = |𝑓|𝑒𝑗(𝜑𝑓+∆)                            (26) 

with: 

          
 

      
                           (a)                                                    (b)                                                        (c)                                                                   (d)                                            
 

Fig. 4. Assessment scenario #2: amplitude and phase distortion on aperture field (𝑢 = 𝑘𝑐𝑜𝑠𝜙, 𝑣 = 𝑘𝑠𝑖𝑛𝜙). From left to right: (a) reference (top) and 

retrieved (bottom) phase of the radiated far-field; (b) reference (top) and retrieved (bottom) reflector surface deformation; (c) reference (top) and retrieved 

(bottom) amplitude deformation; (d) 1-D cuts of the reference (black curve) and retrieved (dashed-cyan curve) far-field phase along the ring at 𝑘 = 0.4189 

(top) and surface and amplitude deformations along  𝑦 = 0 (bottom). 

 

 

           
 

              

                           (a)                                                   (b)                                                          (c)                                                                  (d)                                            
 

Fig. 5 Assessment scenario #2 in presence of noisy data (SNR=25dB): amplitude and phase distortion on aperture field (𝑢 = 𝑘𝑐𝑜𝑠𝜙, 𝑣 = 𝑘𝑠𝑖𝑛𝜙). From left 

to right: (a) reference (top) and retrieved (bottom) phase of the radiated far-field; (b) reference (top) and retrieved (bottom) reflector surface deformation; 

(c) reference (top) and retrieved (bottom) amplitude deformation; (d) 1-D cuts of the reference (black curve) and retrieved (dashed-cyan curve) far-field 

phase along the ring at 𝑘 = 0.4189 (top) and surface and amplitude deformations along  𝑦 = 0 (bottom). 
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                                       ∆ =
8𝐹𝐿2𝛽

4𝐹𝐿2 + 𝜌′2 𝛿                                  (27) 

 

In order to set the same conditions, we fixed 𝛿 as randomly 

smooth in the range [−
𝜆

30
,

𝜆

30
] according to the same rules as 

in [13]. 

By following the procedure reported in Appendix B, we 

started by initially considering the horizontal diameter and the 

first non-null ring at the Nyquist distance from the origin, i.e., 

𝑘 = 0.157. The solution of the corresponding 1-D PR 

problems led to 214 and 23 possible solutions on the diameter 

and the ring, respectively. After fixing the reference phase at 

(𝑘, 𝜙)=(0.157, 0°), the congruence amongst solutions has been 

verified in (𝑘, 𝜙)=(0.157, 180°) by checking that the misfit on 

the unwrapped phase of trial solutions on diameter and ring is 

lower than 3°. As a consequence, only 62 and 4 solutions 

survived on the diameter and the ring, respectively. 

Then, we considered the next ring at a Nyquist distance from 

the previous one and solved the pertaining 1-D PR problem, 

thus collecting 24 possible solutions. Once the reference phase 

has been set in order to get congruence at the (𝑘, 𝜙)=(0.314, 

0°) point, the overall congruence amongst trial solutions has 

been checked at (𝑘, 𝜙)=(0.314, 180°). As a result, only 54 

solutions survived along the diameter, and a pruning also 

occurred on the first ring by eliminating the solutions which 

were paired to the ones just withdrawn on the diameter. Then, 

we systematically proceeded by considering subsequent rings 

until the criterion relative to step 12 of the procedure 

described in Appendix B has been fulfilled, which in this case 

required the consideration of 8 rings. Then, we processed the 

subsequent diameters as described in steps 13-17 and achieved 

a single couple of complex conjugate solutions along each 

one-dimensional cut. Note that, in order to speed up the 

procedure, we exploited the first trick detailed in Subsection 

VI.D.  

Once a sufficient number of field samples were achieved, we 

finally solved the fitting problem (22) by setting the weighting 

parameters 𝑤1
2 and 𝑤2

2 equal to the inverse of the energy of 

the pertaining data. 

A comparison between the reference and one of the two final 

reconstructions of 𝐹(𝑘, 𝜙) (the other one being the complex 

conjugate) is given in Fig. 2 in terms of spectra [subplots (a)], 

and surface deformation [subplot (b)], respectively. As a 

matter of fact, a satisfactory PR solution has been achieved, as 

also witnessed by the cuts in Fig. 2 [subplot (c) and (d)] 

leading to 𝑁𝑆𝐸𝑟𝑓 =  5.09 ∙ 10−4 and 𝑁𝑆𝐸𝑠𝑑 = 6.15 ∙ 10−4. 

By exploiting a PC equipped with an Intel i7-6700HQ CPU 

and 16 GB RAM, the numerical reconstruction required 

roughly three hours. As it can be seen, the approach has been 

able to retrieve not only the far-field phase, but also the 

aperture source amplitude and phase, including the term 

related to the reflector deformation [see subplot (d) of Fig. 2].  

In the second example, the proposed PR strategy has been 

successfully tested in case of data corrupted by white gaussian 

noise with a given signal-to-noise-ratio (SNR) equal to 25dB. 

As the 1-D PR problem solutions are affected by error, we 

enlarged the tolerance on the phase misfit to 15°, which 

implies more difficulties in pruning (as more solutions become 

admissible). However, the procedure again succeeded in 

finding the actual 𝐹(𝑘, 𝜙) (and its complex conjugate 

function), and the computational time only slightly increased. 

The achieved results, corresponding to 𝑁𝑆𝐸𝑟𝑓 =  7.91 ∙

10−3 and 𝑁𝑆𝐸𝑠𝑑 = 8.09 ∙ 10−3, are shown in Fig. 3, and 

confirm the effectiveness of the proposed PR approach also in 

presence of noise on data. In fact, one is able to come to a 

fully satisfactory reconstruction of the radiated field as well as 

of the overall aperture deformation.  

VII.B Amplitude and Phase distortion example  

As a second assessment scenario, we simulated a distortion 

on both the amplitude and the phase of the aperture field. In 

particular, we assumed that the surface deformation 𝛿(𝜌′, 𝜙′) 

[13] causes a phase distortion on 𝑓(𝜌′, 𝜙′) together with an 

increase 𝐶(𝜌′, 𝜙′) [13] in the amplitude, i.e.:  
 

                           𝑓(𝜌′, 𝜙′) = |𝑓|(1 + 𝐶)𝑒𝑗(𝜑𝑓+∆)                    (28) 
 

As in [13], we set 𝐶 randomly smooth such that 0 < 𝐶 < 0.1 

[see Fig. 4(c)].  

The PR procedure led to applying the 1-D PR via SF to the 

same rings and diameters of the previous example, by 

adopting also the same tolerance for the phase misfit. 

The outcomes of the fitting problem for one of the two final 

solutions can be seen in Fig. 4 in terms of spectra [subplots 

(a)] and surface deformation [subplot (b) and (c)]. As it can be 

seen, the proposed method led again to a fully satisfactory 

recovery, which is testified by the very low values of the 

𝑁𝑆𝐸𝑟𝑓 =  4.23 ∙ 10−4 and 𝑁𝑆𝐸𝑠𝑑 = 7.05 ∙ 10−4. This 

numerical example required a computational time close to that 

of the previous examples. 

As last test case, we used the same scenario but enhanced 

the PR difficulty by corrupting each measured amplitude with 

SNR=25dB. A comparison between the reference and the 

reconstruction is given in Fig. 5 in terms of spectra [subplots 

(a)] and surface deformation [subplot (b) and (c)]. By adopting 

again a tolerance equal to 15° for the phase misfit, a 

satisfactory PR solution has been achieved as testified by Fig. 

5 as well as 𝑁𝑆𝐸𝑟𝑓 =  8.03 ∙ 10−3 and 𝑁𝑆𝐸𝑠𝑑 = 9.12 ∙ 10−3. 

In all the examples, we exactly followed the prescribed 

unambiguous steps defined in Appendix B. A full automation 

of the overall code is in progress.  

VIII. CONCLUSIONS 

A new general approach to the canonical problem of 

reconstructing 2-D spectra starting from amplitude 

measurements has been proposed and discussed.  

The proposed technique, which also aims at recovering the 

corresponding aperture sources, jointly exploits a number of 

theoretical and methodological tools including recent   

expansions based on OAM modes and SVD, the overlooked 

spectral factorization method, and a crosswords-inspired 

processing.  

By complementing all the above with the analysis and 

exploitation of the zeroes of the trigonometric polynomials 

expressing the spectrum and its square amplitude along 
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diameters and rings, the proposed procedure brings decisive 

useful characteristics with respect to the state-of-the-art 

approaches under different aspects. In fact, differently from 

essentially all the available phase retrieval procedures, the 

presented one just requires a single measurement set (plus the 

knowledge of the support of the source or some other minimal 

a-priori information), with relevant advantages in terms of 

cost, reliability, and effectiveness.  

Such a result is achieved by taking joint advantage from 

theoretical circumstances as well as an original way of 

exploiting the available data. In fact, by virtue of 2-D 

bandlimitedness, discrimination arguments of the kind in [53] 

can be fruitfully used within the same set of data, rather than 

exploiting a second set of data. Moreover, in comparison with 

more usual approaches based on the minimization of cost 

functionals, we exploit herein a different discrimination 

procedure.  

The price which is paid is a considerable increase in 

computational burden with respect to procedures based on the 

minimization of a cost functional. However, the strategy 

presented herein (as compared to the one in [29]) as well as 

the (up-to-now overlooked) properties of the field along rings 

presented in Section III allows very relevant savings.  

The actual capability to retrieve the complex aperture field 

distribution has been assessed in the detection of shape 

deformations on reflector antennas. However, any aperture 

antenna can be considered.  

Of course, the approach is best suited for the case of sources 

having a circular shape, but it can also be applied to (for 

example) planar arrays on a rectangular grid13. In that case, 

one will use the superposition of the effects (and possibly the 

array factor) rather than the SVD expansion in going back 

from the spectrum to the source.  

Obviously, as long as one can define a finite-dimension 

planar aperture such that the field is negligible outside it, one 

can also define a (minimum dimensions) circular aperture 

enclosing the actual aperture, and proceed along the same 

steps. As an alternative, in case of elliptical planar apertures, 

one can take into account the apparent dimensions of the 

source along any diameter of the spectral plane [43]. By so 

doing, one can use a less dense sampling along the diameters 

of the spectral plane parallel to the ‘short’ dimensions, thus 

reducing complexity of factorization of the corresponding 

polynomial and the number of solutions to be checked along 

the line at hand. 

Notably, as the technique is essentially based on 

bandlimitedness of the source, and the fields keep bandlimited 

whatever the (finite-dimensional) source [37], the basic 

approach can be also extended to other kind of sources. 

Our interest to the problem started from the case of radio 

telescopes [10],[54]. In fact, with respect to the amplitude and 

phase configuration [54], where unmodulated beacons from 

geostationary satellites are used for measuring amplitude and 

 
13 Note the recent brief contribution [35] (where no theoretical analysis or 

equations is present) already provides examples dealing with planar arrays. 

phase in the receiving mode, phaseless techniques allow to 

compensate for possible turbulence effects or position 

uncertainties affecting phase measurements. However, many 

different antennas related problems may benefit from the 

proposed approach and procedures. In this respect, extension 

to near-field measurements is a very interesting possibility. As 

a matter of fact, the theory of ‘reduced radiated fields’ by 

Bucci and co-workers [37],[55] demonstrate that near-fields 

(and their square amplitudes) can also be safely sampled along 

suitable auxiliary coordinates (i.e., they are bandlimited in 

terms of these auxiliary variables). Then, Shelkunoff-like [41] 

representations of the kind (17) and (18) can still be exploited, 

and in case of near-field measurements on a plane one can use 

essentially the same phase retrieval procedure as in the present 

paper, the additional difficulty being possible truncation 

errors. Moreover, one can intersect different circles for the 

spherical scanning, and in both cases advantage can be taken 

from bandlimitedness (in the auxiliary variables if needed) and 

the above procedures. 

The main limitation of the proposed technique is related to 

the actual capability of dealing with larger and larger sources, 

and work on this issue is in progress. In fact, it is expected that 

a full exploitation of the basic ideas, of all the discussed 

possible improvements, and of the hybridization of the 

proposed approach and tools with other methods will further 

boost the effectiveness and interest of the proposed technique. 

APPENDIX A 

PROPERTIES OF SPECTRUM ZEROES BY MOVING ALONG RINGS 

WITH INCREASING RADIUS 

The aim of this Appendix is to show an important and useful 

property concerning the zeroes of the spectrum along a given 

ring of the spectral plane. To this end, let us consider the 

polynomial representation (17) for the spectrum. For 𝑘 = 0, it 

particularizes as: 

𝐹(0, 𝜙) = 𝐶0 (A.1) 

where we can assume 𝐶0 = 1 for the sake of simplicity. Then, 

let us suppose to move to a ring in the close proximity of the 

previous one, that is 𝑘 = 𝜀 (𝜀 denoting a real and positive 

small number). In this case, we expect that: 

𝐹(𝜀, 𝜙) = ∑ 𝐶ℓ 𝑧ℓ

1

ℓ=−1 

 (A.2) 

 

with 𝑧 = 𝑒𝑗𝜙, i.e., the spectrum representation admits two 

zeroes, 𝑧1 and 𝑧2. Accordingly, (A.2) can be re-written as 

follows: 
 

𝐹(𝜀, 𝜙) = 𝐶0(𝑧 − 𝑧1) (
1

𝑧
−

1

𝑧2
) (A.3) 

For 𝜀 sufficiently small, the spectrum behavior has to keep 

almost unchanged, i.e.: 

(𝑧 − 𝑧1) (
1

𝑧
−

1

𝑧2
) ≈ 𝐶0 = 1 

(A.4) 

1 −
1

𝑧2
𝑒𝑗𝜙 − 𝑧1𝑒−𝑗𝜙 +

𝑧1

𝑧2
≈ 1 

 

which just holds true if 𝑧1 → 0 and |𝑧2| → ∞.  
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By supposing that zeroes gently vary by moving along rings 

having an increased radius, and that no zero is present in the 

pattern over the disk of radius 𝑘 (otherwise the two zeroes 

degenerate to a zero having multiplicity equal to two and lying 

on the unitary circle of the complex plane), the same 

arguments can be applied by gradually increasing the radius 

(and the corresponding number 𝐻 of harmonics). 

As a consequence, result (A.4) allows asserting that the 

couples of zeroes progressively coming into play by 

increasing the radius of the ring emerge from zero and infinity, 

respectively. Hence, in the lack of zeroes inside the disk 

contained within the ring at hand, the zeroes of the spectrum 

along the ring at hand are located half inside and half outside 

the unitary circle of the complex plane.  

APPENDIX B 

THE PROPOSED PR PROCEDURE STEP-BY-STEP 

The aim of this Appendix is to list the different steps of the 

proposed PR procedure, i.e.: 

1. consider initially a diameter and a small ring, for example 

the one at a Nyquist distance (for the spectrum) from the 

center; 

2. find all possible spectrum behaviors along the diameter 

and the ring. In order to get rid of problems arising with 

possible phase constants, fix the phase reference in such a 

way that the phase at the diameter-ring first intersecting 

point is zero; 

3. check for congruence amongst the trial solutions along the 

diameter and along the ring. In order to be compatible, 

solutions on the two curves must have the same phase (but 

for some tolerance) at the diameter-ring second 

intersecting point;  

4. discard all trial solutions along the diameter which are not 

congruent with any of the solution along the ring. In a dual 

fashion, discard all trial solutions along the ring which are 

not congruent with any of the solutions on the diameter;  

5. keep track of the couples of admissible solutions. Note 

that, at this stage, the number of possible solutions along 

the diameter usually results (largely) decreased with 

respect to the initial number, and the same statement holds 

true for the ring; 

6. consider a further (slightly larger) ring, and find all 

possible field solutions; 

7. fix the phase constant along the ring at hand in such a way 

that the phase at the first intersection points is the same as 

the one of the corresponding trial solution along the 

diameter; 

8. check congruence of these solutions with the residual trial 

solutions on the diameter. In order to be compatible, 

solutions on the two curves must have the same phase (but 

for some tolerance) at the second intersection point; 

9. discard all residual trial solutions along the diameter which 

are not congruent with any of the solutions along the ring 

at hand. In a dual fashion, discard all trial solutions along 

the ring which are not congruent with any of the residual 

trial solutions on the diameter;  

10. go back to the previously considered rings and discard all 

solutions linked to the solutions on the diameter which 

have been just eliminated; 

11. keep track of the overall (diameter plus considered rings) 

surviving trial solutions; 

12. repeat steps 6-11 for rings having an increasing radius until 

the circumference of the ring equals the value of the 

diameter of the visible part of the spectrum (i.e., 𝑘 ≤ 1). 

Note these steps allows a subsequent pruning of the set of 

trial solutions along the diameter (see step 9) and the rings 

(see step 10);  

13. consider a further diameter having the maximum possible 

angular distance with respect to the already considered 

ones, and find all possible spectrum solutions along it. For 

all of them, fix the phase reference in such a way that the 

phase in the origin is equal to the one determined along the 

first diameter;  

14. check congruence of these solutions along the diameter at 

hand with the present set of overall possible solutions 

along the considered rings. Note in such a step one takes 

profit from a number of intersections (discrimination 

points) which is twice the number of the considered rings; 

15. discard solutions on the diameter which are not compatible 

with any of the present overall trial solutions; 

16. update the set of overall admissible trial solutions; 

17. repeat steps 13-16 until one covers the overall spectral 

plane at the Nyquist rate. As an alternative, if just a couple 

of trial solutions survives and a sufficiently large number 

of spectrum samples has been retrieved according to the 

rules in [38], switch to a best-fitting procedure starting 

from one of them. 

APPENDIX C 

A ‘ZERO-TRACKING’ POSSIBLE PROCEDURE 

To explain the idea of ‘zero-tracking’, let us consider a ring 

where just 𝐻 = 1 is needed (which happens for a sufficiently 

small 𝑘). In this case, four zeroes are present in the square-

amplitude distribution polynomial representation, say 𝑧1, 1/

𝑧1
∗, 𝑧2, 1/𝑧2

∗14.  

On the basis of the considerations above, the number of 

possible corresponding spectrum behaviors on such a ring is 

given by the binomial coefficients described in Section VI.D 

and is equal to 2. In particular, they are associated to the two 

pairs of zeroes {𝑧1, 1/𝑧2
∗} and (its reciprocal and conjugate) 

{1/𝑧1
∗ ,  𝑧2}.  

Then, suppose to consider the next ring and that, along it, 

the spectrum representation requires 𝐻 = 2. In this case, four 

additional zeroes are present in the square-amplitude 

distribution beyond the initial ones, which have gently moved 

from their original positions in the complex plane. Let us 

denote by 𝑧3, 1/𝑧3
∗, 𝑧4, 1/𝑧4

∗ these additional zeroes. Again, by 

virtue of the spectrum properties, only the couples {𝑧3, 1/𝑧4
∗} 

and {1/𝑧3
∗, 𝑧4} are actually admissible.  

 
14 Without any loss of generality, we assume that 𝑧𝑖 is within the unitary circle 

while 1/𝑧𝑖
∗ is outside it. 
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It follows that each of the initial two solutions ‘bifurcates’ 

in two new solutions. Notably, the same kind of reasoning 

applies when further increasing the radius of the considered 

ring. An illustrative representation of the bifurcation tree for 

increasing 𝐻 values is shown in Fig. 6.  
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