
  

 

UNIVERSITÀ DEGLI STUDI “MEDITERRANEA” DI 
REGGIO CALABRIA 

DIPARTIMENTO DI AGRARIA 
Dottorato di Ricerca in 

Scienze Agrarie, Alimentari e Forestali 
Curriculum Scienze Forestali 

Ciclo XXXVI, 2020/23 - SSD: AGR/10- Costruzioni Rurali e Territorio Agroforestale 
 
 
 
 

 

Giovanni Lumia 

An innovative proposal to implement Multispecies Ecological 

Networks in the framework of sustainable landscape planning. 

An application in the Reggio Calabria metropolitan area. 

PH.D. THESIS 
 
 

 
Tutor 
Prof. Giuseppe Modica 

 
 

Co-Tutor 
Dott. Samuel Cushman 

 
 

Ph.D. Coordinator 
Prof. Leonardo Schena 

 
 
 
 

 
Reggio Calabria 21/02/2024 



 
 

Index 
Abstract....................................................................................................................................... 3 

Riassunto .................................................................................................................................... 4 

1 General Introduction ................................................................................................................ 5 

1.1. Ecological Networks (ENs) overview ............................................................................. 5 

1.2. Ecological networks implementation, state of the art summary ...................................... 8 

1.3 Objectives and organisation of the thesis ....................................................................... 12 

2 Ecological network implementations based on Copernicus free datasets. ............................ 14 

2.1. Materials and Methods .................................................................................................. 16 

2.1.1. Study area ............................................................................................................... 18 

2.1.2. Base data collection and organisation ................................................................... 19 

2.1.3. Animal species identification .................................................................................. 20 

2.1.4. Data processing ...................................................................................................... 21 

2.1.5. Construction of the multi-species ecological network (EN) ................................... 24 

2.1.6. Building network components: patches and ecological corridors ......................... 24 

2.1.7. Network connectivity metrics and indices analysis ................................................ 25 

2.1.8. Hypothesis of ecological defragmentation scenario .............................................. 26 

2.2. Results ........................................................................................................................... 27 

2.2.1. Vegetation Fractional Coverage (VFC) ................................................................. 27 

2.2.2. Ecological network (EN) spatial configuration...................................................... 28 

2.3. Discussion...................................................................................................................... 33 

2.4. Conclusions ................................................................................................................... 36 

3 Combining Pathwalker simulations and Graphab graphs...................................................... 38 

3.1. Materials and Methods .................................................................................................. 39 

3.1.1. Base data ................................................................................................................ 39 

3.1.2. Data processing ...................................................................................................... 39 

3.2. Results ........................................................................................................................... 41 

3.3. Discussions .................................................................................................................... 43 

3.4. Conclusions ................................................................................................................... 44 

4 Comparison of two different strategies, centroid vs synoptic approach................................ 46 

4.1. Materials and methods ....................................................................................................... 49 

4.1.1 Data collection and processing ................................................................................... 50 

4.1.2. Graphab Implementation............................................................................................ 52 

4.1.3 UNICOR Implementation ............................................................................................ 56 

4.1.4. PCA, Hierarchical Agglomerative Clustering and Mantel testing of hypotheses ...... 58 



 
 

4.2. Results ............................................................................................................................... 59 

4.2.1. Principal Component Analysis ................................................................................... 60 

4.2.2. Hierarchical Agglomerative Clustering ..................................................................... 63 

4.2.3.Mantel testing of hypotheses........................................................................................ 63 

4.3. Discussion.......................................................................................................................... 64 

4.4. Conclusions ....................................................................................................................... 67 

5 Comparison of connectivity metrics and predictive models of movements .......................... 68 

5.1. Materials and Methods ...................................................................................................... 70 

5.1.2. Base data .................................................................................................................... 70 

5.1.3. Pathwalker simulations .............................................................................................. 72 

5.1.4. Graphab analysis........................................................................................................ 78 

5.1.5. UNICOR analysis ....................................................................................................... 80 

5.2. Results ............................................................................................................................... 81 

5.2.1 Analysis of Variance .................................................................................................... 81 

5.2.2 Main effect model boxplot ........................................................................................... 81 

5.3. Discussion.......................................................................................................................... 85 

5.4. Conclusions ....................................................................................................................... 89 

6 A proposal for a Multispecies Ecological Network for the Reggio Calabria metropolitan 

area............................................................................................................................................ 90 

6.1. Introduction ................................................................................................................... 90 

6.2. Materials and Methods .................................................................................................. 91 

6.2.1. Habitat mapping ..................................................................................................... 91 

6.2.2. The Multispecies Ecological Network .................................................................... 95 

6.3. Results ......................................................................................................................... 101 

6.4. Discussion.................................................................................................................... 107 

6.5. Conclusions ..................................................................................................................... 109 

7 General Conclusions ............................................................................................................ 111 

8 Bibliography ........................................................................................................................ 113 

9 Websites............................................................................................................................... 127 

 

 



3 

 

Abstract 

 

It is now well known throughout the world that the well-being of a society is strongly linked to 

the environment in which it develops and grows. The environment is no longer seen as a 

container of resources to be drawn upon in times of need but rather as a system capable of 

providing a range of services (ecosystem services) only if it is preserved in its naturalness. The 

animal and plant species that inhabit the land are the result of a slow evolution that has been 

going on for millions of years, and for that reason, they need time to adapt to changes. Human 

activities such as urban expansion, agriculture or reclamation of various kinds tend to upset 

these balances rapidly. This trend in the last century has led to increasing degradation of natural 

environments and consequent loss of biodiversity. In this regard, the scholarly community has 

particularly emphasised the importance of protecting the planet's natural areas in the last 

century. It was further seen that merely protecting individual areas is insufficient; rather, 

protection measures are effective if protected areas are placed in an ecological network, 

canonically consisting of core areas, corridors, and stepping stones. To create efficient 

ecological networks, it is necessary to have a good knowledge of the territory on which one is 

working, and in this context, the recent work on the production of the Nature Map of the 

National Territory is an added value, making available to the planner a Habitat Map for each 

region. This Ph.D. thesis focused on ecological networks, paying attention to the mechanisms 

that generate them, those that damage them, and the most modern strategies for identifying and 

restoring them. The goal was to create an ecological network over a part of the Calabrian 

territory, knowing that it was necessary to find a balance between the natural and artificial 

components of the land. It started by analysing free and freely available cartographic data, 

particularly land use maps of the study area. Then it moved on to the creation and use of a 

habitat map. The present doctoral work actively contributed to the creation of the latter. 

Subsequently, simulations were conducted, and ecological network modelling was put in place, 

with free and open-source software support, to identify the most reliable strategy for realising 

the ecological network over the survey area. In particular, graph theory, circuit theory, resistant 

kernels approach and Pathwalker simulations were explored. The results obtained indicated the 

resistant kernels approach and Pathwalker simulations as the most reliable strategies in 

predicting the movement of animal species over the area. The results also suggest that using a 

habitat map instead of a land use map increases the robustness and reliability of the ecological 

network. 
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Riassunto 

È ormai risaputa in tutto il mondo che il benessere di una società è fortemente legato 

all’ambiente in cui questa si sviluppa e cresce. L’ambiente non è più visto come un contenitore 

di risorse a cui attingere al momento del bisogno ma piuttosto come un sistema in grado di dare 

una serie di servizi (servizi ecosistemici), solo se preservato nella sua naturalità. Le specie 

animali e vegetali che popolano il territorio sono frutto di una lenta evoluzione che va avanti da 

milioni di anni e per tale ragione necessitano di tempo per adattarsi ai cambiamenti. Le attività 

umane come espansione urbana, agricola o bonifiche di varia natura tendono a sconvolgere 

rapidamente questi equilibri. Questo trend nell’ultimo secolo ha portato ad un degrado sempre 

maggiore degli ambienti naturali e alla conseguente perdita di biodiversità. A tal proposito 

nell’ultimo secolo la comunità scientifica ha spinto particolarmente sull’importanza di tutelare 

le aree naturali del pianeta. Si è visto inoltre come limitarsi a proteggere delle singole aree non 

sia sufficiente ma, piuttosto, le misure di protezione risultano efficaci se le aree protette 

vengono inserite nel contesto di una rete ecologica, canonicamente costituita da core areas, 

corridoi e stepping stones. Per realizzare reti ecologiche efficienti è necessario avere una buona 

conoscenza del territorio su cui si opera e, in questo contesto, il recente lavoro sulla produzione 

della Carta della Natura del territorio Nazionale risulta un valore aggiunto, mettendo a 

disposizione del pianificatore una Carta degli Habitat per ogni regione. La presente tesi di 

Dottorato ha focalizzato la sua attenzione proprio sulle reti ecologiche, ponendo attenzione ai 

meccanismi che la generano, a quelli che la danneggiano, e alle più moderne strategie che 

permettono di individuarle e ripristinarle. L’obbiettivo è stato quello realizzare una rete 

ecologica su una parte del territorio calabrese sapendo che è necessario trovare un equilibrio fra 

componente naturale e artificiale del territorio. Si è partito analizzando i dati cartografici gratuiti 

e liberi disponibili, in particolare mappe di uso del suolo dell’area studio, per poi passare alla 

realizzazione e utilizzo di una carta degli habitat. Il presente lavoro di dottorato ha contribuito 

attivamente alla realizzazione di quest’ultima. Successivamente sono state  condotte simulazioni 

e messe in atto modellazioni di reti ecologiche, con il supporto di software gratuiti e liberi, al 

fine di individuare la strategia più affidabile in termini predittivi, per la realizzazione della rete 

ecologica sull’area d’indagine. In particolare, sono state esplorate: teoria dei grafi, teoria dei 

circuiti, approccio delle resistant kernels e simulazioni Pathwalker. I risultati ottenuti hanno 

permesso di indicare l’approccio delle resistant kernels e le simulazioni di Pathwalker come le 

strategie più affidabili nel predire il movimento delle specie animali sul territorio. I risultati 

suggeriscono oltretutto che l’utilizzo di una carta degli habitat al posto di una carta degli usi del 

suolo aumenta la solidità e l’affidabilità della rete ecologica. 
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1 General Introduction 

Over the past century, the sharp and rapid increase in the human population, which has grown 

dramatically from around 2.6 billion to 7.8 billion in 2021, has been a significant cause of 

biodiversity loss (Cafaro et al., 2022). The emergence of large cities, new and numerous 

villages, road networks, railways, power grids, water networks, and numerous other man-made 

interventions have resulted in the fragmentation, isolation, and loss of natural habitats (Diniz et 

al., 2020; Hudson, 1991a; Sauter et al., 2019). Habitat fragmentation refers to the reduction in 

the area of natural surfaces, the progressive spacing between residual fragments, and the 

consequent loss of habitat quality (Li et al., 2022).  

There has been increasing awareness of this issue in recent years, so how landscape planning 

is conceived has changed rapidly. Europe has taken a stand on this issue, starting with the 

"Environmental Ecological Network" (EECONET) project in the Netherlands (Bennet, 

1991.). Subsequently, the initiatives of the Institute for European Environmental Policy 

(IEEP), the "European Landscape Convention" (CoE, 2000), the "EU Biodiversity Strategy 

for 2030," the 'Natura 2000' project (EU), which has as its ultimate goal sustainable land 

management toward planning interventions that promote ecological restoration and, the 

emergence of new protected areas that go to form an Ecological network on European 

territory. Not to be forgotten was Italy, which, with the 'Carta della Natura' project (of the 

‘Istituto Superiore per la Protezione e la Ricerca Ambientale’, ISPRA (https://www. 

isprambiente.gov.it/en/projects/biodiversity/ecological-network-and-terrritorial-planning, 

ISPRA website, last access on 10 November 2023:), took part in the Natura 2000 project and 

thus built a nationwide ecological network. Governments and the scientific community then 

began to think about the importance of planning land interventions sustainably and the best 

strategies to implement them, starting precisely from the planning of the Ecological Networks 

themselves (Balbi et al., 2019; Mateo-Sánchez et al., 2015; Rudnick et al., 2012; Tiang et al., 

2021).  

1.1. Ecological Networks (ENs) overview 

The first time the Ecological Network was discussed was at EECONET, and here, the 

characteristics that its main components, namely patches, ecological corridors and stepping 

stones have been discussed: 

• A patch, as per the original definition in EECONET, is defined as a cover type providing 

habitat value which differs from its surroundings, for which it is possible to delineate a 

perimeter. A more recent definition of a patch can be given by saying that i t is defined as an 
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area of variable extent predominantly occupied by features of natural origin whose level of 

quality can be defined by its biodiversity content (Keeley et al., 2021).  A patch may be a distinct 

habitat for certain species, have varying degrees of conservation, or be included among 

protected areas (Hilty et al., 2020). For example, areas protected by the Natura 2000 

programme, such as Birds Directive sites (BDS) or Habitats Directive sites (Sites of Community 

Importance, Special Areas of Conservation) (European Commission website, last access 30 

October 2023: https://environment.ec. europa.eu/topics/nature- and-biodiversity/habitats-

directive_en).  

• An ecological corridor is defined as a portion of land that connects two patches, habitats 

or ecosystems and allows the movement of a species between EN elements (Clark, 2010). It 

can, therefore, actively contribute to the maintenance of biodiversity by fostering genetic 

exchange among patches and itself occupying an area of land with distinctly natural features.  

• Stepping stones are other connecting elements. They are essential transit points between 

patches, which may fall within a corridor; they are also crucial for ecological processes such as 

carrying material and energy flows (Luo et al., 2021a). Unlike ecological corridors, which are 

elements that develop linearly and maintain spatial continuity between patches, stepping stones 

(an example of stepping stones may be ponds or lakes useful as stopovers for migrating birds 

or for moving amphibian species) are a series of non-contiguous natural areas that serve as a 

resource for animals moving over the landscape that stop within them (Hilty et al., 2020).  

Starting from the elements described above, the planner who intends to build an ecological 

network is required to put together the minimum set of patches, corridors, and stepping stones 

needed to protect the most biological diversity of a given area (Margules & Pressey, 2000). 

Building on this very general consideration, there are numerous other factors to consider when 

constructing an ecological network, depending on the goal for which it is created. One of them 

can be to have Ecological Networks aimed at protecting single species, particular areas rich in 

biodiversity, entire habitats, or species groups (Elsen et al., 2018; Erwin, 2007). In general, for 

modelling ENs there are three dominant approaches (S. A. Cushman, Lewis, et al., 2013), based, 

respectively, on (1) single-species, (2) multi-species, and (3) coarse-filters or ecological 

systems. In single-species modelling, the analysis considers the needs of only one species of 

interest (Bourdouxhe et al., 2020; Cushman et al., 2009; S. A. Cushman et al., 2016; Hardion 

et al., 2019). In contrast, multi-species modelling considers the needs of a set of species, called 

focal species, considered representative of all species present in the examined context (S. A. 

Cushman & Landguth, 2012; Diniz et al., 2020; Guimarães, 2020; Lechner & Lefroy, 2014a). 

Finally, the coarse-filter approach assesses the connectivity of intact or natural ecosystems 

irrespective of any focal species (Cushman et al., 2012a; Diniz et al., 2018). 
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In the case of the multi-species approach, the most widely used conservation strategy is to 

identify focal species, i.e., a set of species whose characteristics are such that they can 

summarise the needs of all other species that inhabit their area (Beier et al., 2011; Lambeck, 

2002). In order to implement this strategy, a set of species that are very similar in terms of 

autecology will then be identified; among them, one will be chosen to be used as a 

representative species of the whole group; subsequently, this procedure will be repeated for all 

groups of species with similar characteristics until all focal species in the area are obtained. In 

most works dealing with ecological network modelling, numerous variables regarding the target 

species’ autecology are considered (Fricke & Svenning, 2020; Xing & Fayle, 2021).  

Specifically, the most commonly used data (Boitani et al., 2003; Poisot et al., 2021; Saura & de 

la Fuente, 2017) are those referring to dispersal ability during migration, dispersal ability during 

resource search, home range of the species, species habitat affinity, risk elements, disturbance 

elements, or elements impeding species movement in the territory (McGarigal, 2005; Modica 

et al., 2021; Tarabon et al., 2022). Dispersal distance (either migration or search for resources) 

refers to the distance (minimum, average, maximum, etc.) that an animal needs to travel in order 

to carry out activities that are essential to the fulfilment of its life cycle, such as migrating to 

find a partner, nest, food, etc. (Boitani et al., 2007a; Nevřelová & Novota, 2020; Sáez et al., 

2023; Xu et al., 2019). Home range, with reference to either a single species or a collection of 

species, refers to the portion of land large enough to contain resources necessary for the 

fulfilment of the vital functions of the individuals that populate it  (Boitani et al., 2003; 

Dugatkin, 2020; Formica et al., 2010; Zheng et al., 2018). Risk, impediment, or disturbance are 

factors that can endanger the animal's life or disturb or even prevent its normal activities. These 

elements are most often anthropogenic in origin and are divided into material elements such as 

cities, roads, railways, dams, or various infrastructures, which physically hinder the activities 

of animals, or polluting factors such as noise or light disturbance (Beyer et al., 2016; W. Xu et 

al., 2021; Yavartanoo et al., 2023). 

Once the autecological information of the species to be protected has been obtained, it is 

necessary to combine this knowledge with a study of the area on which interventions are to be 

planned. Indeed, it is well known that not all protected areas enjoy good quality and capacity 

to conserve biodiversity (Jones et al., 2018; Venter et al., 2018). This is very often due to the 

incorrect distribution of protected areas, which are then isolated from the rest of the territory, 

increasing the risk of species extinction (Newmark, 1995, 2008; Prugh et al., 2008). This 

phenomenon has been studied and demonstrated in the theory of metapopulation and island 

biogeography (Hanski, 1999; MacArthur & Wilson, 1963; McCullough, 1996). Metapopulation 

theory shows that the possibility of species living in an area to explore new territories promotes 
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genetic exchange and reduces the risk of extinction. In the island biogeography theory, on the 

other hand, it is shown that the possibility of extension of one or more species in a protected 

area is directly related to the distance from other natural areas. The greater the isolation, the 

greater the probability of extinction. Both of these theories thus confirm that protected areas are 

much more helpful when placed within an ecological network (Hilty et al., 2020). In addition, 

the theory of island biogeography shows that the quality of a patch, or protected area, also 

depends on its size and shape.  

The main causes of the change in patch shape and size are attributed to landscape fragmentation, 

which reduces the average area of patches and changes their shape, causing a negative effect 

that is called edge effect  (Dunn & Loehle, 1988; Ewers et al., 2007; Fletcher, Jr. et al., 2007; 

Gustafson & Gardner, 1996).  It has been shown that the properties of patches also change in 

relation to shape and size, in particular we will have a greater amount of interior habitat in a 

patch that tends to be circular and larger in size, while we will have an increasing quote of edge 

habitat in a patch with a stretched shape and smaller size (Diaz & Apostol, 1992; Murcia, 1995; 

Ries et al., 2004). An interior habitat is characterised by greater stability, the species that inhabit 

it have achieved an equilibrium in species-to-species and species-to-territory relationships, this 

allows the interior habitat to maintain its biodiversity content more stable and lasting over time 

(Bender et al., 1998; Ries et al., 2004). Biodiversity levels that remain high over time further 

increase habitat stability (Zurita et al., 2012). Indeed, it is well known that greater biodiversity 

leads to greater ecosystem resilience and a reduced chance of extinction(Isaac et al., 2018). An 

edge habitat, on the other hand, is characterised by greater instability (Gascon et al., 2000; 

Gignac & Dale, 2007). This is populated by species that live on the edge, with greater proximity 

to unfavourable areas and from which variables can come into play that very quickly upset the 

balance  (Harper et al., 2005).  

Together, all of these considerations support the need for larger, well-connected ecological 

networks to ensure biodiversity conservation over time, and it has been these considerations 

that have led governments and researchers around the world to work to identify innovative 

strategies that enable the modelling of effective ecological networks on the ground. 

1.2. Ecological networks implementation, state of the art summary 

The functioning of an ecological network is based on the assumption that landscape structure 

influences and is influenced by flows, considered as movements of resources or species 

(Franco, 2004; Levins, 1969). Over the years, various schools of thought have arisen, proposing 
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different theories but this basic principle unites them all. Among the most popular strategies 

created for the purpose of identifying, weighing and spatialising network elements are:  

• Circuit theory is one of the most widely used strategies that build on these foundations. 

This theory assimilates the movement of animal species, within complex territories, to 

the flow of electric current moving on a matrix composed of elements of different 

conductivity. Several software programmes have emerged to perform simulations based 

on these principles, several software programmes have emerged, capable of exploiting 

data such as raster images vector elements, typically used for mappings in GIS software. 

In order to apply circuit theory to landscape ecology, the planner need to make a number 

of evaluations on previously acquired data related to land and species. First, a level of 

resistance to habitat-species movement needs to be identified. At this stage you need to 

have a matrix, typically a raster, that virtually represents specific properties of the land 

over which you intend to plan. The properties may refer to land use, habitat, elevation, 

slope, etc., the pixels in the raster will therefore have resistance values assigned 

considering the level of affinity of the animal to that particular attribute. The next step 

is to determine which pixels are to be considered as patches, i.e., source of initiation of 

the animal's movement, and next, it is necessary to identify a maximum dispersal 

distance and an energy cap available to the walker. The simulation starts from the pixels 

classified as patches, from which the movement continues following the principle of 

minimum cost path. This implies that the walker in the movement follows adjacent 

pixels with the lowest resistance value. At each step from one pixel to another, 

depending on the resistance cost of that pixel, the walker consumes energy, and the 

movement stops when the energy is exhausted or when a patch is reached (Foltête et al., 

2021a).  

• Among the most commonly used strategies is the graph theory. This approach, when 

applied to ecological networks, allows patches to be taken as nodes and corridors as 

links in a graph, allowing ecology-related properties to be quantified through a series of 

metrics and connectivity indices (Foltête, 2019; Foltête, Clauzel, et al., 2012; Ruiz et 

al., 2014; Urban, J. D., Keitt, 2001). Graph nodes and links are nothing more than a 

simplification, represented in mathematical form, of complex ecosystems in a way that 

makes their dynamics easier for the planner to understand and evaluate (Gross & Yellen, 

2005).  Several software programmes have emerged that exploit the principle of graph 

theory to make these complex operations faster to perform, considering that the network 

may contain thousands of nodes and links. Among these, Graphab (Foltête et al., 2021a) 

is the only tool able to include the construction and visualisation of graphs, connectivity 
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analyses and links with external data and is easily compatible with Geographical 

Information Systems (GIS) software. The Graph construction begins by assigning a 

node to each patch, while the links are later identified by exploiting circuit theory. To 

achieve this, it is necessary to assign resistance values to each pixel in the matrix, the 

simulation starts from the pixels classified as patches and, if the walker in the simulation 

does not exhaust its energy and manages to reach another patch, a link between the 

nodes of the two respective patches is created. The potential of graph theory is it allows 

a series of numbers of connectivity metrics to be calculated. First, it allows the 

calculation of a number of nodes, links, and components, which give the planner a first 

view of how elements are distributed in the ecological network and on the state of 

fragmentation of the network. Second, it allows the identification of a number of indices 

of connectivity for the qualitative assessment of the different elements. Among the most 

widely used is the Integral Index of Connectivity (Freeman, 1977), which is capable of 

evidencing the robustness of an ecological network. This index is in addition very 

sensitive to variation, allowing for the evaluation of factors such as change in patch 

number, links, partial loss of patch area, and loss of entire components. This makes it 

an ideal index for the planner who wants to assess changes in an ecological network 

caused by fragmentation over time, or if assumptions are to be made about future 

changes (such as defragmentation scenarios). Another important index widely used in 

the field of ecological connectivity is the Betweenness Centrality Index (Freeman, 

1978). It expresses the importance of nodes (and thus patches) as a source of connection 

for other parts of the ecological network.  This means that a node with BC of value 0 

has importance as a connector for no other node in the network, BC of increasing value 

means increasing connections for other elements (Newman, 2004). There are also a 

number of other widely used indices such as the Harary Index (H) (Ricotta, 2000), Flux 

(F) (Foltête et al., 2012) and Probability of Connectivity (PC) (Pascual-Hortal & Saura, 

2008), all indices capable of making quality assessments about a network. This 

diversification of metrics and indices shows all its potential and usefulness when action 

is to be taken to protect the environment.  

Another strategy widely used in the literature to implement ecological networks is based 

on resistant kernels (Compton et al., 2007). This model is based on the combination of 

two models used in the past, the kernel estimator (Silverman, 2018) and least-cost paths 

with resistant surfaces (Worton, 1989). The kernel estimators are typically used when 

needed to obtain valuations on home ranges. Having a two-dimensional datum x, y of 

points, it produces a three-dimensional surface representing (a raster image 
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representation) an estimate of the underlying probability distribution by summing across 

bivariate curves centred on each sampled point (Compton et al., 2007). This approach, 

which, like the others of Circuit theory, is based on resistant surfaces, has now surpassed 

the old approaches based on binary habitat/nonhabitat classifications of island 

biogeography and classic metapopulation models (Ricketts, 2001). As we have already 

explained, minimum path analysis indicates the shortest functional distance between 

two points, but this minimum path approach can be extended to a multidirectional 

approach. In this case, the functional distance between a focal cell and every other cell 

in the landscape within a maximum scattering or migration distance will be measured 

(Compton et al., 2007). In this case, we will obtain a kind of minimum-cost "kernel," a 

surface that can be scaled to represent the dispersal probability of an individual from the 

focal cell to any other location in the pixel array. To obtain the robust kernel estimator, 

it will be necessary to create a minimum-cost kernel for each focal cell that represents 

a source of dispersal (i.e., a location in the landscape where the animal is assumed to 

initiate movement) and sum all the kernels in each cell. 

These above-mentioned strategies, which account for a large part of the literature, gave rise to 

a new approach based on movement simulations (Cushman et al. 2023; Kumar et al., 2024). 

This model, which was created accompanied by the Pathwalker software to simplify its 

application, is partly based on the already established strategies (theory of resistant kernels and 

circuits), and partly on new strategies that take new variables into account. Whereas the old 

models only took into account the energy mechanism (known as the virtual budget available to 

the animal that stops its movement when energy is exhausted) this new approach includes three 

other new mechanisms: attraction, risk and the autocorrelation factor. Attraction is a factor that 

simulates the movement of an animal that knows the territory, and therefore always chooses the 

most suitable routes to move. Risk, on the other hand, simulates the animal moving through a 

hostile territory, and therefore with each step the animal has an increasing probabili ty (directly 

proportional to the amount of unfavourable or dangerous environments it encounters) of 

suddenly stopping its movement. The autocorrelation factor makes it possible to simulate the 

movement of an animal in an unfamiliar territory, and thus also to take paths that are not 

necessarily the best ones. 

Furthermore, the rapidly advancing development of satellite systems carrying multispectral 

sensors, capable of collecting data on a daily basis, has given rise to new opportunities for 

studying the landscape and thus its connectivity. Indices of vegetative vigour have emerged that 

are now used in studies for modelling ecological networks such as the VFC (Yu et al, 2021; 



12 

 

Lumia et al., 2023; Liu et al., 2022) and NDVI (Hu et al., 2021; Prăvălie et al., 2022; Zelený et 

al., 2021). 

1.3 Objectives and organisation of the thesis 

In the framework of this Ph.D. thesis, partly carried out abroad in collaboration with the School 

of Forestry department, Northern Arizona University (United States of America), the research 

activity aims to implement through cartographic representation an ecological network within a 

Mediterranean climate’s - ecosystem’s metropolitan area in Calabria region (southern Italy). 

and to the realisation of a habitat map in the context of the European Natura 2000 programme 

(Natura 2000 project, link: https://environment.ec.europa.eu/topics/nature-and-

biodiversity/natura-2000_en; last access 31 January 2024).  

The aim of the PhD thesis work in its first phase (Chapter 1) was to (by studying recent literature 

and its evolution over time) identify among the most common connectivity modelling strategies 

those most suitable for creating an ecological network in the study area and to hypothesise a 

defragmentation scenario on it. In this phase, the theory of graphs, circuits and related 

connectivity indices were exploited, and some of the most modern techniques were used to 

assess vegetation qualities using multispectral satellite images. 

In the second phase of the work (Chapter 2), new strategies found in the literature, born during 

the PhD thesis period, were explored. In particular, a new connectivity model based on 

movement simulations performed in the Pathwalker software environment was focused 

(discussed in the previous section). At this phase, what has been done is to take the network 

that was constructed in Chapter 1, in particular the corridors, and assess its quality using 

Pathwalker's motion simulation model. In fact, unlike graph theory which can only identify 

corridors as simple lines (least cost paths, line data type), the movement simulation model 

allows three-dimensional surfaces (two dimensions for the X and Y coordinates, and one 

dimension for the pixel value of which each pair of coordinates in the matrix, raster data type) 

of the corridors.  

In a third phase (Chapter 3), the performance of two different connectivity models, resistant 

kernel and graph theory, was tested. Specifically, it was observed what the differences are in 

terms of prediction when comparing different parameters; source point distribution (referring 

to the place from which the animal starts its movement in the simulations), dispersal distance 

(the maximum distance the animal can travel in the simulation) and method used (graph theory 

or resistant kernel). Next (Chapter 5), motion simulations (Pathwalker) were used to test the 

performance of the first two approaches (graph theory and resistance kernels). What was done 

is to create 3 networks, 1 for each of the models, and also calculating the respective connectivity 

https://environment.ec.europa.eu/topics/nature-and-biodiversity/natura-2000_en
https://environment.ec.europa.eu/topics/nature-and-biodiversity/natura-2000_en
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indices, and comparing everything to assess how these values deviate from the predictions made 

by Pathwalker. The reason for using Pathwalker as a validator is related to its being more 

versatile, as it can take into account a greater number of parameters ignored by the other two 

models. (Kumar et al, 2022; Cushman et al., 2023; Lumia et al., 2024).  

In the last phase (Chapter 6), all the strengths of the various methods studied in the previous 

chapters were identified and put together to create a definitive ecological network for the study 

area and also hypothesise defragmentation interventions on it. Specifically, the network patches 

were identified with the help of Graphab and Sentinel-2 satellite images,while the corridors 

with the Pathwalker movement simulation model.  

The first steps of our work, chapters 2 – 5, were carried out using free and open base map data 

obtained from the European Copernicus Project Database. The final step (chapter 6) was carried 

out using an habitat map specifically constructed for this purpose. In fact, part of the work of 

this PhD thesis involved the construction of a habitat map for the Calabria region in the context 

of the European Natura 2000 programme and Habitat Map project  

(https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura last access 20 February 

2024). 

  

https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura%20last
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2 Ecological network implementations based on Copernicus free datasets. 

Adapted from 

Lumia G., Praticò S., Di Fazio S., Cushman S., Modica G.: Combined use of urban Atlas 

and Corine land cover datasets for the implementation of an ecological network using 

graph theory within a multi-species approach. 

https://doi.org/10.1016/j.ecolind.2023.110150. 
 

https://doi.org/10.1016/j.ecolind.2023.110150
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Over most of the Earth’s biomes, contiguous natural landscapes have been fragmented into a 

mosaic of residual patches divided by barriers dispersing animal species across the landscape 

(Diniz et al., 2018; Hudson, 1991b). Species have evolved, and populations were previously 

sustained in often dramatically different environments than the one in which human-driven 

perturbations have produced; moreover, the reduction of areas of residual natural ecosystems 

inevitably has effects on the life cycles of the species themselves (Hanski, 1999).  

In this scenario, for sustainable spatial planning, ecological networks are themselves the object 

of spatial planning (Balbi et al., 2019b; Mateo-Sánchez et al., 2015b; Tarabon et al., 2020; 

Tiang et al., 2021b, 2021c) and their implementation can counteract landscape fragmentation 

(Liccari et al., 2022), create and strengthen relationships, and promote exchanges between 

otherwise isolated elements (De Montis et al., 2016; Fichera et al., 2015). Moreover, landscape 

improvement policies and actions are widely recommended as tools for combating climate 

change (Heller & Zavaleta, 2009). 

Given urban sprawl affecting many regions worldwide and the conflict between urbanisation 

and ecological planning, assessing landscape connectivity in peri-urban areas is crucial (Dong 

et al., 2020). Rural fringe areas are characterised by specific dynamics and patterns of 

contiguity, inclusion with the urban environment and its sprawling, and the natural contexts and 

their connectivity elements. Such dynamics often underline alterations affecting the ecosystem 

functionality, reducing the provision of ecosystem services, and jeopardising the quality of life 

of many animal and vegetal species and human settlements. Rivers and riparian zones are the 

most threatened ecosystems and should be protected adequately (Samways & Pryke, 2016). 

Moreover, it was recently recognised that riparian zones can be essential in improving 

landscape ecological connectivity (Ribeiro et al., 2022). 

For this work, we chose a multi-species approach based on the needs of 10 focal species, 

identified exclusively among medium and small mammals. A widespread practice for 

modelling an EN is to anchor the ecological network in nodes defined by protected areas 

(Bonnin, 2007; Kheirkhah Ghehi et al., 2020). The approach adopted in this first step of the 

Ph.D. thesis is novel in employing two different land use maps for the network modelling: 

Urban Atlas (UA2018) and Corine Land Cover (CLC2018). These datasets, provided by the 

European Union Copernicus programme, were created to meet different needs. CLC provides 

a representation of the land uses of 39 countries and contains information that can support the 

European Union’s Environmental Action Programmes. UA was created to provide a very 

detailed representation of urbanised areas, covering 788 FUAs (Functional Urban Areas) of 39 

European countries in the 2018 release. A Digital Terrain Model (DTM) and multispectral 
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satellite images were used to support the UA and CLC, which together allowed a high degree 

of detail set for the representation of natural and artificial elements of the study area. Our model 

proposes an accurate choice of faunal species, considering the adopted large spatial scale 

(1:10,000) and the heterogeneous landscapes with the significant and increasing occupation of 

urbanised areas. Moreover, we optimised our model of EN using a high-resolution DTM and a 

multi-temporal Vegetation Fractional Coverage (VFC) capable of better-discriminating areas 

with higher naturalness and based on a three-year (2016-2019) time series of Sentinel-2 red-

edge Normalised Difference Vegetation Index (NDVI_4re). Finally, the proposed EN and the 

current landscape configuration were assessed and compared with a defragmentation scenario 

proposed, reconnecting isolated patches and improving riparian zones in specific areas. A set 

of landscape indicators was defined to this end. Reconnecting isolated patches, especially in 

rural-urban fringe areas, is crucial in promoting climate-resilient defragmentation measures in 

heterogeneous landscapes. The proposed method was developed using free and open-source 

software (FOSS). 

The main objectives of the work presented here are: (i) to identify the most important areas for 

wildlife connectivity based on a multi-species approach; (ii) to develop a defragmentation 

scenario within a heavily anthropised area to improve network connectivity; (iii) to compare 

the pre- and post-defragmentation networks to assess their effectiveness. 

2.1. Materials and Methods 

The method (Fig. 2.1) is structured in 4 phases: (i) collection and organisation of the database 

to accurately describe the geomorphological characteristics of the area, as well as the ecological 

characteristics of the area and the autecological characteristics of the considered species 

(habitat, home range, dispersal distance, level of affinity to various land uses); (ii) data 

processing using FOSS and remote sensing techniques, to create the structure of the EN of the 

entire examined area; (iii) Analysis of the implemented EN through connectivity metrics and 

indices; (iv) defragmentation intervention scenario development to improve the current network 

and comparison of pre- and post-intervention network connectivity metrics and indices. 
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Figure 2.1 - Workflow of the proposed method, entirely developed in free and open-source software 

(FOSS) environments (QGIS, Google Earth Engine, and Graphab). 
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2.1.1. Study area 

The analysis was applied in the metropolitan area of Reggio Calabria, which has an extension 

of 47,822.63 ha and is located in the southernmost part of the Calabria Region (Italy) (Fig. 2.2). 

According to the Urban Atlas 2018 data, the urbanised areas and the road system cover an area 

of 6773.25 ha (14.16% of the investigated area).  

 

Figure 2.2 - Study area. In yellow is the perimeter of the Urban Atlas Reggio Calabria data for 2018, 

including 12 municipalities (black line) in the province of Reggio Calabria. In red is the boundary of 

the Aspromonte National Park, which partially crosses the study area. 

The region is characterised by a typical Mediterranean climate (Pellicone et al., 2018), with a 

rainy winter and dry summers. The study area includes twelve municipalities between Villa San 

Giovanni and Montebello Ionico, with a 68.9 km coastal strip facing the sea at the Stretto di 
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Messina. The investigated territory extends to the highest peaks of Aspromonte, including part 

of the Aspromonte National Park.  

2.1.2. Base data collection and organisation   

All data used for building the EN are synthesised in Table 2.1. Two vector data layers provided 

by the European Union Copernicus programme were used (https://land.copernicus.eu/ - last 

access 30 June 2022). The CLC data was characterised by a minimum mapping unit (MMU) of 

25 ha and 25 different land use classes grouped into 5 categories. The UA dataset has very high 

geometric and thematic detail of man-made elements (buildings, infrastructure, etc.), including 

27 different land use classes with an MMU of 0.25 ha for category 1 and 1ha for categories 2 

to 5. The legend used by UA and CLC has a hierarchical structure on several levels. The first 

level is the most general and consists of 5 categories: 1, highly artificial areas; 2, agricultural 

areas; 3, natural areas; 4, wetlands; 5, water elements. In the present study, the 2018 UA and 

CLC 2018 datasets were integrated using the UA for land use classes of the first category, which 

goes up to the fourth hierarchical level by highlighting important infrastructural elements such 

as secondary roads (Bourgeois & Sahraoui, 2020), which are missing in CLC. For the remaining 

categories, we used the CLC dataset (Fig 2.4). Although it has a lower spatial resolution, it 

shows greater thematic detail in the differentiation of agricultural and forest land, going up to 

the third hierarchical level, unlike the UA datum, which remains at the second level. Through 

the code editor of the Google Earth Engine (GEE) (Gorelick et al., 2017), multispectral images 

of Sentinel-2 in a time series from 2016 to 2019 were processed. A cloud masking operation 

was performed, removing images with cloud coverage of 70 % or more in the first instance. 

This was done to exclude cloud-covered pixels from the analysis and, secondly, in images with 

high cloud cover, even pixels not covered by clouds may have noise, cirrus, or georeferencing 

problems(Xu M. et al., 2019). At this point, further filtering was performed, masking all pixels 

with a probability of being covered by clouds greater than 20% (this value is referred to as the 

band named “probability” in the S2_Cloud_Probability dataset). Finally, Sentinel -2 

multispectral images were used to obtain vegetation vigour and naturalness information through 

specific spectral indices (§ 2.4). 

A 5 x 5m resolution raster DTM and the derived slope raster were used to characteri se the 

topographic conditions of the study area, highlighting those areas not suitable because of their 

slope or elevation.  

https://land.copernicus.eu/
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2.1.3. Animal species identification 

For the construction of the EN, ten medium and small mammal species, summarised in figure 

2.3, were identified and selected as focal species, which we considered representative, in terms 

of ecological requirements, of other mammal species with which they share the ecosystem. 

They act as umbrella species, i.e., at the top of the trophic chain and of particular conservation 

interest, and their protection implies the conservation of the underlying trophic levels. The 

method is based on actual data collected by Boitani (Boitani et al., 2003) on the behavioural 

and auto-ecological properties of the selected species. This information gives values that refer 

to optimal minimum/maximum thresholds, such as the distance an animal can travel in a hostile 

environment to reach resources, the size of the surface area it needs to carry out its life cycle, 

and the affinity of the species to a given environment.  

Table 2.1 - Spatial dataset used in this research work. 

Data description Reference year Data source 

Land use - CORINE Land Cover 
(CLC) at the third level of 
representation 

2018 
Copernicus, Land Monitoring Service 
(https://land.copernicus.eu/ -last access 17 
February 2022) 

Land use - Urban Atlas (UA) at the 
fourth level of representation 

2018 

Digital Terrain Model (DTM) 5 x 
5m geometric resolution 

2008 
Calabria Region Cartographic Centre (CCR) 
(http://geoportale.regione.calabria.it/opendata - 
last accessed 06 March 2022) 

Multispectral imaging - Sentinel-2 
MultiSpectral Instrument (MSI), 
Level-1C 

From 2016 to 2019 

European Space Agency (ESA) 
(https://sentinel.esa.int/web/sentinel/user-
guides/sentinel-2-msi/product-types/level-1c - 
last accessed 07 March 2022) Cloudiness - Sentinel-2 Cloud 

Probability 

Different types of territory present a diverse permeability depending on the mobility of the 

various species passing through it (Battisti, 2004), so the ten focal species were selected, taking 

this factor into account as well. For instance, some reptiles’ perception of a vertical wall - in 

terms of a barrier or impediment to free mobility - differs from that of some mammals and birds. 

The decision to not consider large species such as the wolf is linked to the objective of planning 

at a detailed urban scale. Small and medium-sized species searching for resources have 

considerably less mobility (10 km on average) than the wolf’s 90 km travel capacity. 

Considering the size of the study area (35 km at the two furthest extremes), it would be more 

appropriate to conduct evaluations over larger areas for a species with high space requirements, 

such as the wolf. The assumption is that when studying the landscape and designing planning 

https://land.copernicus.eu/
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interventions within it, it is necessary to consider the scale of analysis and thus check whether 

the needs of the reference species are compatible with that level of detail (Beier et al., 2011; 

Compton et al., 2007). To capture the details and needs of certain species, it is, therefore, 

sometimes necessary to reduce the observation scale of the landscape (or vice versa to increase 

it) (Nie et al., 2021).  

The species selection was based on existing literature for the same study area (Modica et al., 

2021), prioritising species protected by national and international legislation (https:// www. 

mite.gov.it/ pagina / repertorio - della-fauna – italiana - protetta - last accessed 16 February 

2022). 

 
Figure 2.3 - National and international legislation protecting identified focal species.  

 

2.1.4. Data processing  

UA and CLC data layers were integrated into QGIS 3.22 (http://www.qgis.org - Last accessed 

05 June 2022). All class 1 geometries of the Urban Atlas were saved separately and overlaid 

with the CLC vector, obtaining the comprehensive vector data of the study area (Fig. 2.4). A 

topological check of the data obtained was then carried out, and the errors detected (points, 

broken lines, redundant features, etc.) were corrected using the GRASS toolset ‘v.clean’. In 

addition, all polygons with a surface area smaller than the MMU were merged with those 

neighboring them. The MMU for UA was retained as it was lower than that of CLC. The vector 

data was then converted to a raster to allow subsequent processing. Considering that the UA 

http://www.qgis.org/
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datum was produced by interpretation from satellite images with a resolution of 2 or 4 m (e.g., 

Pléiades, KOMPSAT, Planet, SPOT6, SuperView, etc.), the rasterization process was fixed at 

2.5 m x 2.5 m of spatial resolution.  

 

Figure 2.4: Map of the implemented dataset using Corine Land Cover (CLC) 2018 for classes 2 

(Agricultural areas), 3 (Forest and seminatural areas), 4 (Wetlands) and 5 (Water bodies), and Urban 

Atlas (UA) 2018 for class 1 (Artificial Surfaces). 

Using the FOSS Graphab 2.6 (Foltête et al., 2012; 2021), for each raster pixel, we assigned a 

value expressing the resistance that a given land use opposes to the movement of species in an 

interval ranging from 1 (lowest resistance) to 100 (highest resistance). Pixels with increasing 
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values refer to increasingly artificial areas, while pixels with low values refer to highly natural 

areas. These values express the difficulty a species has in crossing the different landscape 

elements according to the autecological needs of the focal species, identified by Boitani et al. 

(2003). Slope, derived from the 5 m DTM, was considered in identifying patches and corridors. 

In Graphab 2.6 environment, the importance of slope (p) was weighed through a coefficient (c) 

as in the following equation (Eq.1) (Tarabon et al., 2022a): 

                                                 𝑟𝑓𝑖𝑛𝑎𝑙= 𝑟 ∗ (1 + 𝑐 · 𝑝)                                                   (eq. 

1) 

Where r is the pixel resistance and 𝑟𝑓𝑖𝑛𝑎𝑙 is the pixel resistance weighted by the slope (p). 

When c=1, the resistance value is doubled for a slope of 10%, while if c=10, the resistance is 

doubled for a slope of 100% (p=1). Since in this work, we considered the value of the coefficient 

c to be 1, as the slope increases, the permeability decreases. 

Through the Code Editor of GEE, we implemented a function to calculate the area’s average 

Vegetation Fractional Coverage (VFC) index over 3 years, from 2016 to 2019, using Sentinel-

2 L1C satellite images. This indicator is widely used in remote sensing to monitor the condition 

of plant communities (Shobairi et al., 2018), making it possible to discriminate areas of higher 

naturalness falling within the study area (Shobairi et al., 2018; Yu et al., 2021). Before 

calculating the VFC index, we processed the time series, masking all pixels with a probability 

of cloud coverage.  The latter operation was developed in the GEE environment by exploiting 

the S2 Cloud:probability dataset produced by the European Commission in collaboration with 

the European Spatial Agency (ESA) and the SentinelHub service. For the production of the S2 

Cloud:probability dataset, in particular, ESA used the Sentinel2-cloud-detector (whose library 

is available in the s2cloudless python package), an algorithm based on machine learning for the 

automatic detection of clouds in Sentinel-2 images. Once processed the images of the time 

series, we calculated the average 4-band red-edge Normalized Difference Vegetation Index 

(𝑁𝐷𝑉𝐼4𝑟𝑒) (Eq. 2) using the formula proposed by Liu et al. (2022). It has been shown that the 

red edge indices can correct the underestimation of vegetation vigour when vegetation cover is 

high and mitigate its overestimation when levels of vegetation cover are low (Liu et al., 2022): 

𝑁𝐷𝑉𝐼4𝑅𝐸 =
(𝛼∗𝑅𝑅𝐸3+(1−𝛼)∗𝑅𝑅𝐸2)−(𝛽∗𝑅𝑟𝑒𝑑+(1−𝛽)∗𝑅𝑅𝐸1
(𝛼∗𝑅𝑅𝐸3+(1−𝛼)∗𝑅𝑅𝐸2)+(𝛽∗𝑅𝑟𝑒𝑑+(1−𝛽)∗𝑅𝑅𝐸1

                                   (eq. 2) 

where RRE1, RRE2, RRE3, and Rred are the four Red-Edge bands of Sentinel-2 imagery; α and β 

are weighting coefficients representing the proportion of RE3 and Red reflectance, respectively 

(Liu et al., 2022). In our proposed method, the value of both coefficients was fixed at 0.7. 

The average VFC value was then calculated (Eq. 3): 
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𝑉𝐹𝐶 =
𝑁𝐷𝑉𝐼4𝑅𝐸−𝑁𝐷𝑉𝐼4𝑅𝐸𝑚𝑖𝑛

𝑁𝐷𝑉𝐼4𝑅𝐸𝑚𝑎𝑥−𝑁𝐷𝑉𝐼4𝑅𝐸𝑚𝑖𝑛
     (eq. 3) 

VFC value ranges between 0 and 1. For our purpose, we considered only those with a VFC 

value greater than 0.6 as suitable areas. 

2.1.5. Construction of the multi-species ecological network (EN) 

Graphab 2.6 was used to construct the multi-species ecological network of the entire study area, 

using the principles of graph theory (Ersoy et al., 2019a; Foltête, 2019; Foltête, Clauzel, et al., 

2012; Godet & Clauzel, 2021). 

The maximum affinity of a species to a particular land use has been considered as a possible 

habitat. The home range was used to set a lower area threshold for habitat patches. Only habitats 

with a surface of at least 2 hectares were considered possible patches. This choice is consistent 

with Boitani’s finding that 2 hectares is the minimum home range size for each focal species 

we selected. Considering the above variables (slope less than 100%, home range ≥ 2 ha, VFC 

≥ 0.6, and excellent affinity to land use), we finally identified the EN patches. 

For the identification of ecological corridors, a crossing threshold was established to be valid 

for all focal species, understood as the maximum distance an animal can travel in a hostile 

environment to reach resources. The threshold was set at 2 km because literature and empirical 

evidence obtained through interviews with local experts indicate it as the maximum distance 

that focal species can travel with less mobility. This value will , therefore, be more than 

sufficient for species capable of spanning greater distances. 

2.1.6. Building network components: patches and ecological corridors 

The modelling process in Graphab 2.6 returns a series of nodes and arcs as graphic 

representation of patches and ecological corridors, respectively. The arcs were identified by 

considering two topological and weighting parameters of the arcs themselves. The Graphab 2.6 

software allows for two different alternatives, ‘planar topology’, in  which only the links 

forming a ‘planar graph’ are considered (i.e., in the construction of the graph, only the arcs that 

connect the nodes in the planar representation of the graph itself, and never intersect, would be 

considered), and ‘complete topology’ in which all the arcs between patches are potentially taken 

into account. In our case, the latter method was used, as it does not exclude any possible 

pathways and provides an initial linear representation of displacements, allowing for a realistic 

representation of ecological corridors (Godet & Clauzel, 2021). Taking into account the 

patches, the maximum crossing threshold, and the strength value assigned to each pixel of the 

raster relating to the land uses of the study area, it was possible to identify ecological corridors 
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and Least Cost Paths (LCPs). Ecological corridors represent potential pathways for species 

movement within patches best suited to connectivity due to their ecological characteristics. 

They are in raster in which each pixel has a value indicating the resistance to animal movement. 

These values tend to increase as one approaches the edges of the ecological corridor. 

Conversely, they decrease as one approaches the centre of the ecological corridor, in the area 

that coincides with the identified LCP. The areas where the ecological corridor shows the least 

resistance to animal movement correspond to those of maximum connectivity near LCPs 

(Theobald, 2006; Zeller et al., 2012). For this reason, to have an adequate representation of the 

most suitable ecological corridors, we defined a 100 m buffer around the LCPs and retained 

only those ecological corridors branching off within the limits of this buffer. The patches, i.e., 

surfaces elements identified by nodes, and the ecological corridors, i.e., surface elements 

identified by arcs, represent the component of the obtained EN. 

2.1.7. Network connectivity metrics and indices analysis 

Several connectivity parameters and indices were calculated to analyse the obtained EN. The 

selection of these indices is related to their ability to characterise the network, quantify its 

connectivity, and identify its elements of centrality. This was possible by calculating the 

following metrics (Tab. 2.2): Integral Index of Connectivity (IIC), Number of Components 

(NC), Harary Index (H), Betweenness Centrality (BC), Flux (F), and Probability of 

Connectivity (PC) (Saura & Pascual-Hortal, 2007). The indices described in the table were 

calculated on the entire network. 

The last phase involved a defragmentation scenario proposed to improve the connectivity of the 

areas identified at the end of the previous phase. The defragmentation scenario was developed 

considering a peculiar element of the Calabrian region, the so-called ‘fiumare’. These torrential 

watercourses were identified as crucial elements connecting the urban fabric’s green spaces 

with the rest of the network. In fact, these rivers cross the entire Calabrian territory from 

upstream to downstream, also passing through the core of the urban centre of Reggio Calabria. 

The Calabrian rivers are considered fragile and delicate elements, and hydrogeological 

constraints are imposed on them. 

 

Table 2.2 - Ecological network connectivity metrics calculated in this work. 

Connectivity 
metrics 

Ecological meaning Definition Formula References 
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Integral Index 
of 
Connectivity 

(IIC) 

The probability that 

individuals randomly located 
in the landscape within a 
patch can access each other. 

A higher value indicates 
greater connectivity. 

For the entire graph: product of 

the capacities of the patches 
divided by the number of links 
between them, the sum is 

divided by the square of the 
area of the study area. 

∑ ∑
𝑎𝑖 ∗ 𝑎𝑗
1 + 𝑛𝑙𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝐴𝐿
2  

(Freeman, 
1977) 

Number of 

Components 
(NC) 

Measure describing the 
number of isolated areas in 
the landscape. A high 
number of components in 

relation to the total number of 
patches indicates that the 
landscape is highly 
fragmented. 

Helpful in describing the level 

of isolation between groups of 
landscape patches. 

// 
(Urban, J. D., 

Keitt, 2001) 

Harary 
Index(H) 

The number of patches that 
help connect other patches 
across the landscape. A high 

value indicates a highly 

connected landscape. 

Sum of the inverse of the 
number of connections 

between all patch pairs. 

𝐻 =
1

2
∑∑

1

𝑛𝑙𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

j≠ 𝑖 

(Ricotta, 
2000) 

Betweennes 

Centrality 
(BC) 

The sum of the shortest paths 
through the focal patch i, 

each path being weighted by 
the product of the capacities 

of the connected patches and 
their probability of 
interaction. P_jk represents 

all patches traversed by the 
shortest path between 
patches j and k. 

// 

𝐵𝐶𝑖

=∑∑𝑎𝑗
𝛽

𝑘𝑖

𝑎𝑘
𝛽
𝑒−𝑎𝑑𝑗𝑘 

𝑗, 𝑘 ∈ {1. . 𝑛},𝑘 < 𝑗, 𝑖
∈ 𝑃𝑗𝑘 

(Orjan 

Bodin & 

Santiago 

Saura, 

2010) 

Flux (F) 
For the entire graph: sum of 
the potential dispersions of 

all patches. 

// 
𝐹 = ∑∑𝑎𝑗

𝛽
𝑒−𝑎𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

j≠i 

(Foltête, 
Céline 
Clauzel, et 
al., 2012a) 

Probability of 

Connectivity 
(PC) 

The probability that two 
random points in the 
landscape fall within 

interconnected habitat areas 
(i.e., reachable 
to each other). Values are 
between 0 and 1. 

Sum of the products of the 

capacities of all pairs of 

patches weighted by their 
interaction probability, divided 
by 

the square of the area of the 
study zone. This ratio is the 
equivalent of the probability 
that two points. 

randomly placed in the study 
area are connected. 

𝑃𝐶 =
∑ 𝑎𝑖𝑎𝑗𝑝𝑖𝑗

∗𝑛
𝑗=1

𝐴𝐿
2  

(Saura & 

Pascual-

Hortal, 

2007) 

2.1.8. Hypothesis of ecological defragmentation scenario 

On the one hand, the rivers are considered efficient natural ecological corridors (Bishop-Taylor 

et al., 2015; Guo & Liu, 2017a; May, 2006). These characteristics are the ideal place to focus 
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an urban defragmentation scenario (Wang et al., 2022; Wang et al., 2021). On the other hand, 

it is difficult and expensive to expropriate urbanised public or private property areas to build 

and enhance EN. For this reason, the characteristics of the rivers as environments protected by 

regional legislation and their natural tendency to connect the landscape elements offer the 

opportunity to efficiently design conservation designed around the river network (Tarabon et 

al., 2021). 

This phase of analysis aimed to connect isolated environments within the urban context through 

the re-naturalisation of the torrents, which inappropriate agricultural uses have often degraded. 

Significant portions of these riparian areas, especially in the mid-valley and valley sections, are 

characterised by no or little vegetation cover. Therefore, we proposed restoration by planting 

suitable shrubs and tree species typical of Calabrian woods with a prevalence of hygrophilous 

species. 

Starting from the vectorial data of the study area obtained from the previous operations, 

resistance values were reassigned in a buffer strip of 100 m around the river rod in the stretches 

that fall within land-use classes of category 2. Areas belonging to classes of category 1 were 

excluded from the reassignment for the reasons specified in section 1. The resistance values of 

these areas were assigned, assuming the natural vegetation of poplars, willows, and alders, 

which are commonly found in rivers affected by human activity. Once the new resistance values 

had been assigned to the areas affected by the defragmentation intervention, a new EN was 

constructed to consider the assumed improvements. Finally, the connectivity indices were 

recalculated, highlighting their quantitative and qualitative variation. 

2.2. Results 

2.2.1. Vegetation Fractional Coverage (VFC) 

The VFC index can take values from 0 to 1, extremes included and reflects the size of the plants’ 

photosynthetic area and the vegetation’s growth density. The closer it gets to zero, the more the 

stand is devoid of vegetative activity (S. Zhang et al., 2019). Four different vegetation 

categories were identified based on the VFC values: (i) high naturalness VFC > 0.7; (ii) medium 

naturalness VFC between 0.4 and 0.7; (iii) low naturalness, VFC between 0.1 and 0.4; (iv) zero 

naturalness VFC < 0.1 (Fig. 2.5). The threshold of VFC values ≥ 0.6 was used to improve the 

process of identifying possible patches, as this threshold only includes areas of medium and 

high naturalness. Overall, VFC values greater than 0.6 were found in hilly and mountainous 

areas, while progressively lower values were found as one approached sea level, falling below 

0.1 along the entire coastal strip (Fig. 2.5). 
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Figure 2.5 - Vegetation Fractional Coverage (VFC) of the study area for the period 2016-2019, 

reclassified according to four classes: high naturalness, medium naturalness, low naturalness, and 

absent naturalness. 

 

2.2.2. Ecological network (EN) spatial configuration 

We present the design of the ecological network in the study area and describe its connectivity 

indices that characterise its quality and robustness in two different situations: the one using the 

UA and CLC datasets and the other based on the defragmentation scenario. In figure 2.6, the 

two ENs are shown according to their canonical components (patches, nodes, arcs, and 

ecological corridors) in the two scenarios analysed, pre- (scenario 1, Sc1) and post- (scenario 

2, Sc2) improvement proposal. 
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Figure 2.6 - Spatial configuration of the Ecological Networks, represented according to the canonical 

components: nodes, arcs (edges), ecological corridors and patches based on 2018 data (Scenario 1) 

and the defragmentation scenario (Scenario 2). 

For the first scenario (Sc1), 724 arcs and 300 nodes were identified. The 300 patches range in 

size from 2 ha to 856 ha, with an average area of 27.04 ha. The total area occupied by the 

network (patches, ecological corridors) is 10776.93 ha (22.28 % of the surveyed area), of which 

8114.93 ha are occupied by the patches and 2662 ha by the ecological corridors. A total of 

58.71% of the ecological corridors fall within the areas occupied by wooded areas and natural 

environments (class 3), 36.86% within agricultural areas (class 2), 2.67% within the class of 

water bodies (class 5) and finally only 1.77% fall within artificial areas (class 1, mainly 

distributed on secondary roads and railways). Concerning the patches, on the other hand, 
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93.11% are occupied by wooded areas and natural environments (class 3), and 5.6% by 

agricultural areas (class 2). Figure 2.7 shows the network distribution data concerning land uses 

summarised at the first level for class 1, and the third level for classes 2, 3 and 5. 

 

 

Figure 2.7 - Area occupied (expressed as a percentage) by land uses in the study area of Scenario 1 

concerning patches (dark green) and ecological corridors (light green). Due to the low presence of 

corridors and patches within class 1, this was summarised at level 1, and classes 2, 3, and 5 were kept 

at level 3. 

For the second scenario (Sc2), 771 arcs and 328 nodes were identified. The patches range in 

size from 2 ha to 936 ha, with an average area of 26.82 ha. The total area occupied by the 

network (patches, ecological corridors) is 11237.2 ha (23.49 % of the surveyed area), of which 

patches occupy 8549.91ha and 2687.28 ha by ecological corridors (Fig. 2.8). The majority of 

the corridors is concentrated in natural land cover types, with 65.44 % in the areas occupied by 

woodlands and natural environments (class 3), 30.37 % in the areas occupied by agricultural 

land (class 2), 1.29 % in the areas occupied by artificial surfaces (class 1, of which 0.51% on 

sports green areas, and the remaining 0.78% on secondary roads and railways) and 2.67 % in 

the class referring to water bodies (class 5). 97.89% of the patches are identified in class 3, 

2.05% in class 2 and the remaining 0.06% in class 1. The increase in the area of the patches of 

+ 434.98 ha is due for 257.05 ha to the direct effect of the greening interventions and the 

remaining 177.93 ha to the incorporation of many natural areas bordering the interventions that 

were of less than 2ha in the area, and therefore not considered patches previously.  
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Regarding the indices analysed (Tab. 2.3), the NC went from 3 in Sc1 to 1 in Sc2. A general 

value increase was seen in the defragmentation scenario for the connectivity indices IIC, H, F, 

and PC. The IIC and BC indices were calculated at the level of individual nodes (Figg. 2.9 and 

2.10); the highest indices’ values were found in mountainous areas, far from the coast, and areas 

with predominantly forest land use. 

 

 

Figure 2.8 - Area occupied (expressed as a percentage) by land uses in the Scenario 2 study area 

concerning patches (dark green) and ecological corridors (light green). Due to the scarce presence of 

corridors and patches within class 1, this has been summarised at the first level and classes 2, 3, and 5 

have been maintained at the third level. 

The average values of both indices increased in the defragmentation scenario compared to the 

2018 scenario (Tab. 2.3). In correspondence with the urban centre of Reggio Calabria, we 

identified patches disconnected from the rest of the network with values of the indices 

calculated at the node level (IIC and BC) lower than the average of the entire network. 

Table 2.3 - Overall connectivity indices calculated on ecological networks in the two scenarios, data 

as of 2018 (Scenario 1) and defragmentation (Scenario 2). 

Connectivity Indices Scenario 1 Scenario 2 

Number of Patches (NP) 300 328 

Number of Connections (NL) 724 771 

Number of Components (NC) 3 1 

Integral Index of Connectivity (IIC) 0.029 0,032 

Probability of Connectivity (PC) 0.031 0,033 

Flux (F) 2.23 2.95 
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Betweenness Centrality (BC) 0.20 0.25 

Harary Index (H) 8200.50 9704.03 

 

 

 

Figure 2.9 - Integral index of connectivity (IIC) calculated at node level for the two scenarios 

analysed: scenario 1 (data as of 2018) and scenario 2 (defragmentation hypothesis). 
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Figure 2.10 – Betweenness Centrality (BC) calculated at node level for the two scenarios analysed: 

scenario 1 (data as of 2018) and scenario 2 (defragmentation hypothesis).  

2.3. Discussion 

The analysis of the existing landscape shows that the area with the most well-connected patches, 

corresponding to the strongest point of the ecological network, is located between 500 m and 

1300 m a.s.l., in the municipalities of Sant’Alessio in Aspromonte, Laganadi, and Santo Stefano 

in Aspromonte, within and close to the Aspromonte National Park boundaries, in the central-

eastern and north-eastern part of the study area. The analysis of VFC values confirms this. In 

these locations, areas of solid naturalness stretch broadly around built-up areas, and even near 

them, mean VFC values were high (VFC > 0.6), with values consistent with strictly forest stands 

(Shobairi et al., 2018). On the other hand, the most significant fragmentation problems were 

seen in the coastal municipalities, especially in correspondence with the most human-modified 
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centres, such as the municipalities of Reggio Calabria, Motta San Giovanni and Montebello 

Ionico. The territory is mainly occupied by cultivated fields, buildings, and human 

infrastructure in these places. The VFC values are consistent with this trend, averaging less than 

0.4. Analysing the results referring to both Sc1 and Sc2 scenarios, it emerges that the suggested 

defragmentation interventions showed the best results in the most altered locations. 

The proposed interventions led to an increase in the indices’ values in the area occupied by 

patches; an increase in NP from Sc1 (300) to Sc2 (328) was observed, which is consistent with 

the increase in NL from 724 (Sc1) to 771 (Sc2). The increase in NP and NL generated a partial 

change in the spatial configuration of the post-intervention network. Here, additional 

connections branch off into the degraded areas to the south and west of the study area. In 

particular, the increase in ecological corridors made it possible to connect a group of 18 patches 

that were isolated in Sc1 to the rest of the network, thus having in Sc2 only one component 

after the intervention proposal, as opposed to the 3 identified for Sc1. Recent studies have 

shown that increased node connectivity leads to higher species richness at the local scale (α-

diversity) (Liccari et al., 2022). The increase in the number of patches (+28) is related to the re-

greening interventions. These have made it possible to increase the eligible area of those areas 

bordering watercourses with fewer than 2 hectares and had therefore been considered unsuitable 

as patches in Sc1. This reveals the capacity of the interventions to restore habitat fragments that 

were excluded from connectivity even outside the intervention area itself.   

The analysis suggests that the proposed ecological corridors could create a bridge between the 

coastal and mountainous areas, leading to greater accessibility by the rest of the network to 

these patches, which, in some cases (5 patches in the municipality of Reggio Calabria), were 

dead ends of the network route, connected by a single connection and therefore at greater risk 

of disappearance. This led to an increase in the number of connections of the isolated areas and 

created new connections in Sc2, which is confirmed by the rise in the Harary Index (+1503.53 

in Sc2), where higher values of this index, such as those found in Sc2, indicate a more connected 

landscape (Harary, 1969; Pascual-Hortal & Saura, 2006; Ricotta, 2000). This evidence is 

confirmed by the variation in BC values at the node level in Sc2. Nodes with a higher BC value 

are considered stepping-stones (small areas that allow animals, which exploit their resources, 

to move from one patch to another) that increase the robustness of the network (Urban et al., 

2009). In particular, 18 nodes isolated in Sc1 had their BC value increased, contributing to a 

rise in the mean BC value of the entire network. This is due to both the rise in the number of 

connections between isolated nodes and the increase in the average area of the nodes. The 

emergence of stepping-stones allowed the connection of previously isolated urban areas, 
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confirming the findings of recent studies demonstrating the ability of these elements to provide 

favourable habitats for urban ecosystems (An et al., 2021a; Luo et al., 2021b). 

Overall, connectivity index values are higher in upland, highly naturalised areas and lower in 

coastal, highly humanised areas; these results are in line with the trend found in recent pieces 

of research (Lechner & Lefroy, 2014a; Meza-Joya et al., 2019; Mu et al., 2020; Tiang et al., 

2021b). 

The increased potential for animals to exploit stepping-stones to move from one patch to 

another in Sc2 is confirmed by increases in the F-index, which expresses the probability that 

animals can move between patches (Saura & Pascual-Hortal, 2007). An increase in this value 

is highly correlated with the rise in the PC index, which expresses the probability that two 

individuals placed at a random point in the network can access each other by moving. 

The changes in the IIC index further confirm the improved network quality in Sc2. The increase 

in IIC values measured in the entire network and the area of the 18 patches isolated in Sc1 

expresses an increase in the probability of the patches accessing each other (Pascual-Hortal & 

Saura, 2006, 2008). 

Concerning the distribution of patches and ecological corridors in the two different scenarios, 

it was found that the general trend remained unchanged; thus, the most occupied class, 

considering the adopted CLC legend, remains the third, followed by the second. There was, 

however, a redistribution of values within the classes. In particular, in Sc2, we find an increase 

in the concentration of patches and ecological corridors (+5% and + 6.7%, respectively) 

compared to class 3 in Sc1. This has resulted in the second scenario in a network developed 

more on natural areas, where the fauna movements involve the crossing of smaller portions of 

land altered by human activity. Furthermore, the slight change in the distribution of corridors 

in class 1 of Sc2, compared to Sc1, shows how the interventions allowed urban green areas to 

enter the network while they were previously excluded. The presence of corridors crossing 

secondary roads gives rise to hints about the possibility of making interventions (e.g., elevated 

green bridges, green underpasses) that allow animals to pass through while reducing the number 

of road kills (Girardet et al., 2015). On the other hand, the absence of corridors on highways 

makes it clear how these elements are barriers to species movement, making interventions on 

them valuable possibilities. This type of consideration on roads is made possible by the use of 

Urban Atlas roads elements are absent on Corine Land Cover. 

Another element of relevance is the reduction of the NC from Sc1 (3) to Sc2 (1), an indicator 

that the level of isolation between patch groups has been reduced. In Sc2, there are no longer 

any isolated patch groups and the interventions in river areas have reduced the degree of 

fragmentation of the network. This shows differences from other research, where no 
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improvement interventions were planned (i.e., Modica et al., 2021; Tarabon, et al., 2021). In 

general, what emerges from the trend in the values of the metrics analysed is that expanding 

green areas along river courses would benefit the whole EN. We have shown how these metrics 

offer information regarding the network's robustness, which can greatly support planning 

(Foltête et al., 2014; Rayfield et al., 2011). 

2.4. Conclusions 

With the present work, it was possible to analyse the connectivity of an ecological network built 

on land use data in 2018 and to evaluate the impact of a scenario intended to enhance multi-

species connectivity. We demonstrated how the level of spatial detail achieved through the 

integrated use of highly accurate data, such as CLC and UA, in conjunction with VFC index 

analyses, allows for constructing a robust EN. The defragmentation scenario focused on the 

restoration of green vegetation in the areas surrounding the torrents and demonstrated how 

incorporating small fragments of land into the constructed network improved the connectivity 

of the entire network. The high naturalness component identified in these fragments, underlined 

by the VFC analyses, demonstrated their potential in ecological terms. These isolated elements 

are, in fact, not used for anthropogenic productive activities and are too small to be considered 

patches, remaining confined to disconnected islands in the landscape. Our analysis shows the 

high value of interventions that enhance these fragments of high naturalness in their 

contribution to multi-species landscape connectivity. The proposed interventions have also 

shown how to create new corridors and patches on the edges of urban areas. 

There are limits to our analysis deriving from its development of an EN based only on land use 

maps. These could be overcome by having future empirically optimised habitat and resistance 

maps availability (Cushman, 2006; Cushman & Lewis, 2010; Mateo-Sánchez et al., 2014, 

2015b). In addition, more species could be included, adding bigger mammals, amphibians, 

reptiles, birds, and insects. Another limitation is the lack of specific studies of certain 

behavioural characteristics of species. Numerous errors are still made when evaluating an 

individual’s behaviour in the face of a land alteration, and the responses of animals to a man-

made element are not always linear (A. Rudnick et al., 2012). Some species tend to avoid 

agricultural areas, others are attracted to and even benefit from them, and others may be 

attracted or repelled by light or noise pollution.  

In terms of prospects, the use of indices calculated from multispectral satellite data shows 

promise for studying variations in connectivity. Variations in plant populations could be related 
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to the phenomena that may be causing them, urban and agricultural expansion, global warming, 

and pollution.  

Our multi-species approach does not require long lead times for data collection and would be 

suitable for short- and medium-term planning (Lechner et al., 2015). Restoring connectivity 

requires financial actions based on concrete interventions on the ground, with the need to 

spatially identify patches and ecological corridors. This type of planning approach could be 

considered to identify areas where attention should be focused. 
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Abstract 

Today there is increasing investigation of how to succeed in land operations without damaging delicate natural 

ecosystems. Over the past century, the planning of land interventions operated without following a guideline has 

led to fragmentation of ecosystems and progressive biodiversity loss. Several strategies have emerged in this regard 

to identify corridors and protected areas on the territory. It is important to compare the many strategies in the 

scientific landscape to assess the levels of correlation present among them and to understand how to exploit the 

products of the analyses in our favour in the planning sphere on a territory threatened by pressing anthropi sation. 

The present work compared movement simulations produced by Pathwalker software and corridors identified on 

the territory by Graphab software. We took advantage of Pathwalker's ability to evaluate movement predictions 

by taking into account factors such as mortality risk, attraction and energy in the simulation. This work was 

important because it allowed to classify predictions according to scales of reliability. In particular, we classified 

the connectivity indices obtained from the elaborations in Graphab according to 4 levels of reliability ranging from 

a high degree of consistency to a low degree of consistency. Pathwalker simulations were compared to the above 

indices to assess similarities and differences. This work is important as it allows to give exploit the combination 

between different connectivity prediction models provide concrete tool to the planner at decision making time. 
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Understanding what techniques and approaches should be followed to protect the environment 

and habitat loss is one of the hottest topics of scholarly debate in the last century (Casas et al., 

2021; Guo & Liu, 2017b; Tarabon et al., 2022b). The importance of proper planning of land 

interventions to avoid fragmentation and loss of biodiversity is now well known. Scientists are 

questioning what strategies should be followed to give the planner a tool. A promising and 

recent new strategy for simulating movement patterns is Pathwalker (An et al., 2021b; Foltête, 

Céline Clauzel, et al., 2012b; Kaszta et al., 2018b; G. Wang et al., 2022b). In this work we 

decided to combine graph theory and Pathwalker simulations to evaluate the reliability of the 

predictions. Initially, we identified patches, nodes, and edges through graph theory and 

calculated several connectivity indices commonly used in the literature for evaluating network 

elements. In the second step, we divided according to four levels of consistency values of 3 

connectivity indices calculated in the Graphab environment. Finally, we divided each 

connectivity index into 4 consistency levels and used Pathwalker movement simulations to 

evaluate the response of each of the 4 levels. 

3.1. Materials and Methods 

3.1.1. Base data 

As for previous chapters, the work was carried out on the Reggio Calabria metropolitan area. 

The data used in the connectivity simulations come from databases produced in the European 

context of the Copernicus project (https://land.copernicus.eu/ - last access 30 June 2022). In 

particular, we used the same strategy as for Chapter 2 to jointly used Corine land Cover data as 

of 2018 (CLC 2018, which has a high level of thematic detail for natural and semi-natural areas) 

and Urban Atlas as of 2018 (UA 2018, which has a high level of thematic and geometric detail 

for man-made areas). 

The simulations were performed taking into consideration the requirements of 10 selected focal 

species considering the works in the same area. Autecological information on the species 

(dispersal distance, home range, habitat suitability) was retrieved from the database on Italic 

fauna produced by Boitani et al. (2003).  

3.1.2. Data processing 

For the first processing done in Graphab, we used the combined map of CLC and UA as the 

basis on which to perform the simulations. The subsequent considerations that we will list 

below regarding resistance to movement, home range and dispersal threshold were made based 
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on the autecological data collected by Boitani listed in the National Ecological Network (REN) 

sheets (Boitani et al., 2002b).  

In the simulation, we assigned a value indicating the resistance these environments offer to 

animal movement for each of the different land use codes. Specifically, the land use map was 

rasterised and resistance values were assigned to each pixel corresponding to the respective 

land use. The raster was initially at a resolution of 2.5 m x 2.5 m and later resampled to 10 m x 

10 m by a bilinear interpolation function. This operation allowed lightning processing without 

losing information about smaller elements in the map (streets and isolated buildings). The 

assigned values range from 1 (least resistance to movement) to 100 (greatest resistance to 

movement). The dispersal threshold was set at 2 km, whereas 2 km is a value that allows each 

of the 10 focal species to move from patch to patch, as seen in previous work on the same area 

(Modica et al., 2021). The minimum home range extension was set at 2 ha following the same 

assumption made for the dispersal threshold. Patches inferior to 2 ha were still considered 

suitable areas (stepping stones) for animal movement over the territory (Gurrutxaga & Saura, 

2014). Having set all these parameters within the Graphab software, we obtained a graphical 

visualisation of the network, composed of nodes, patches, edges, and links, and on it we 

calculated the Integral Index of Connectivity, Betweenness Centrality index (BC), and 

Probability of Connectivity (PC) using the Graphab 2.8 software functions. 

Starting from the raster land use data and using the graph nodes obtained in the previous 

elaborations in Graphab as source points, we formed the basis for launching the following 

operations in Pathwalker. In particular, Pathwalker allows the simulation of the movement 

considering three parameters, which are energy (mechanism 1), risk (mechanism 2) and 

attraction (mechanism 3) and four different combinations of them (mechanisms 4,5,6 and 7). 

For this work, we decided to operate with mechanism 7, which combines all three: energy, risk, 

and attraction. In addition, we used a parameter to consider in the simulation the tendency of a 

moving animal to continue the same path or to change direction. This parameter ranges from 0 

(minimum tendency to change direction) to 1 (maximum tendency to change direction); we set 

it at 0.25. Operations were produced by setting all of these parameters within the Pathwalker 

environment and launched through Anaconda's Powershell Prompt.  

We then went on to categorise the values of the connectivity indices calculated in Graphab into 

four levels of consistency for each of IIC, PC and BC. Subsequently, the level of correlation 

(using the Pearson correlation coefficient) with Pathwalker simulations was evaluated for each 

level using the RStudio environment. 
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3.2. Results 

Here, we present results regarding the network created by graph theory, obtaining predictions 

of movement patterns by Pathwalker simulations and comparing the two methods to identify 

points of affinity or disagreement. 

The network obtained by Graphab consists of 328 nodes that resulted in the same number of 

patches with an average area of 26 ha. The patches cover 8549.91ha, and the areas most 

represented are the environments classified as forested (76% of the total number of patches). 

Generally, the largest patches are located in areas far from population cent res, hilly and 

mountainous areas. In contrast, the smaller patches with greater distance between each other 

are near population centres and closer to the coast. 

Table 3.1. Overall connectivity indices are calculated on the implemented ecological network. 

Connectivity Indices 
 

Overall 

Integral Index of Connectivity (IIC) 
 

0.032 

Probability of Connectivity (PC) 
 

0.033 

Betweenness Centrality (BC) 
 

0.25 

 

The connectivity indices analysed tended to have higher values in mountainous and hilly areas 

than in flat areas and closer to the coast. The values of the connectivity indices IIC, BC and PC 

(summarised their overall values in Tab. 3.1) were divided into 4 levels ranging from lower to 

higher values (Fig. 3.1, top right, top centre and top left) and correlated with the values and of 

the Pathwalker simulation (Fig. 3.1 bottom centre). 

The correlation values (shown in Fig. 3.2) showed a negative correlation for thresholds 1,2 and 

3 of BC (BC1, BC2, and BC3), thresholds 1, 2 and 3 of PC (PC1, PC2 and PC3), and thresholds 

1 of IIC (IIC1). In contrast, a positive correlation was found for threshold 4 of BC (BC4), 

thresholds 4 of PC (PC4) and thresholds 2, 3 and 4 of IIC (IIC2, IIC3, and IIC4). 
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Figure 3.1- Pathwalker surface density (bottom left) and connectivity indices for Betweenness 

Centrality (top left), Integral Index of Connectivity (top centre) and Probability of Connectivity (top 

right) according to a 4-class division ranging from lower to higher values. 
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Figure 3.2 - Correlation values between Pathwalker simulation (Psim) and the 4 thresholds of 

Betweenness Centrality (BC1, BC2, BC3, BC4), IIC (IIC1, IIC2, IIC3, IIC4) and Probability of 

Connectivity (PC1, PC2, PC3, PC4). 

3.3. Discussions 

A greater number of high-area patches in mountainous areas is consistent, given the more 

natural feature of these areas. Indeed, the population centres and areas most occupied by 

infrastructure and agricultural activities are largely located in the low hil l and coastal areas.  

The trend in the connectivity indices IIC, PC and BC values, which were higher near 

mountainous areas, underscores the greater importance to the network of these areas. Although 

these results suggest a correct representation of connectivity predictions, correlation analysis 

with Pathwalker simulations tended to show a negative or slightly positive trend for only a few 

indices. This was expected. The Graphab indexes we used are patch-based, and the individual 

index values refer to the centroids of the patches. In Pathwalker, on the other hand, the animal's 

movement is not related to the presence of patches but exploits the mechanism of resistant 

kernels for simulations. The mechanism of resistant kernels has been shown to be more accurate 

in predictive terms than the patch-based approach (Calabrò et al., 2021; Cushman et al., 2014b; 

Spatari et al., 2022). This is, thus, the reason for the generally low level of correlation between 

Graphab and Pathwalker indices. In addition, this phenomenon was expected, considering that 

Graphab does not consider attraction and risk factors. The Pathwalker energy mechanism, 

understood as an animal’s energy budget that ends its movement when it exhausts it, is the 

parameter in common with Graphab. The attraction parameter evaluates which path is the 

lowest cost and tends to avoid paths with high resistance surrounding the walker. On the other 
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hand, the risk parameter considers the possibility that an animal, during a gradually less 

favourable path, will suddenly stop its movement, with a gradually higher probability as the 

inhospitality of the area increases. The positively trending correlation values for all category 4 

levels of the indices underscore the potential in predictive terms of the joint work of the 

attraction and risk mechanisms. Returning to the B4, PC4 and IIC4 values, the reason why the 

correlation levels are higher in these areas seems to be related to the presence of large areas 

with low levels of resistance that do not have a great effect on the risk and attraction 

mechanisms. A greater effect on the attraction and risk indices occurs instead, where patches 

become smaller and the distances between them increase. An underestimation by the IIC, PC 

and BC indices against the Pathwalker simulations emerges in these areas. We next analyse the 

effect on the simulation (and on the levels of correlation between Graphab and Pathwalker 

metrics) of using a parameter that indicates the tendency of a walker to continue along its 

direction or change path. This parameter is intended to make the animal's movement even more 

faithful to reality. In fact, in nature, animals exploring the territory may not always choose the 

path that offers the most resources (K. McGarigal et al., 2000; M. Wang et al., 2021; Wu et al., 

2023). For this reason, the effect of taking non-ideal paths in highly fragmented areas is more 

pronounced. The fact that Pathwalker considers this variable as opposed to Graphab further 

lowers the correlation levels, especially in the level 1, 2 and 3 areas located in the most 

fragmented areas. 

3.4. Conclusions 

In this work, we compared connectivity indexes and movement simulations to identify network 

weaknesses and what factors affect the predictions under certain conditions. Specifically, the 

values of the IIC, BC and PC indexes were divided into 4 levels of consistency, and for each 

level, the level of correlation with Pathwalker simulations over the same area was analysed. It 

was found that Pathwalker's ability to consider factors such as energy, attraction and mortality 

risk allows it to provide a higher level of detail in predictive terms. Especially where the natural 

areas are found to be more fragmented, considering more behavioural factors allows for a more 

realistic representation of the animal's movements, which is consistent with what is in the 

literature (Kumar et al., n.d.-a; Unnithan Kumar & Cushman, 2022b). The land use resolution 

used is undoubtedly a limitation that can be overcome in future elaborations. In particular, for 

the same study area, a habitat map could be used instead of a simple land use map (the 

implementation of which was planned under the Natura 2000 context: 

https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura - last access 20 February 

https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura%20-%20last
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2024). The use of other statistical analyses could also be considered in the future to highlight 

other network characteristics (Vizzari & Sigura, 2013). This work has given rise to new insights 

into the issues of connectivity prediction. We have shown how the reliability of predictions can 

vary within the same network in dependence on structural factors (of the network), behavioural 

factors (of the animal species) and the method used (graph theory and Pathwalker).  
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4 Comparison of two different strategies, centroid vs synoptic approach 

Adapted from 

Lumia G., Modica G., Praticò S., Cushman S.: Comparison of patch-based and synoptic 

connectivity algorithms with graph theory metrics. Under review. 
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ABSTRACT 

Predicting and mapping connectivity between habitats and populations is critical to addressing habitat 

loss and biodiversity issues. Several strategies in the literature exist to understand, restore, and preserve 

ecological connectivity. The main issue of the current research is to identify among the connectivity 

modelling strategies which are the most reliable for planning purposes. 

Our goal in this work were to compare connectivity predictions using a wide variety of commonly used 

approaches to improve the understanding of the similarities and differences in the predictions of these 

methods. Specifically, we investigated the differences in connectivity predictions related to connectivity 

algorithm, the number and distribution of source points, and threshold distance at which connectivity is 

allowed between locations. First, we separately applied different strategies and methods commonly used 

in the literature to model connectivity in the same study area. Then, going through a series of hypotheses, 

we compared the different models to confirm or disprove the initial hypotheses. Particularly, the initial 

hypothesis was that what most influences the results of connectivity models are different dispersal 

distance thresholds; differences in connectivity algorithms, especially kernel, path, and graph theory-

based approaches; differences in predictions produced by two different software tools, UNICOR and 

Graphab; use of source points derived from a synoptic or patch-based perspective. 

We proposed 4 main hypotheses and 14 combinations of them, hypothesizing that what most influences 

the results of connectivity models are: different dispersal distance thresholds; differences in connectivity 

algorithms, especially kernel, path, and graph theory-based approaches; differences in predictions 

produced by two different software tools, UNICOR and Graphab; use of source points derived from a 

synoptic or patch-based perspective.  

We found that the dominant pattern of differences in the predictions of different connectivity analyses 

was related to the method of analysis, with clear differences between kernel, path and graph -theory 

approaches, and relatively little effect due to the density and distribution of source points or the distance 

threshold used to define dispersal capability. 
This work  provides one of the first comparisons of spatial predictions of different methods, frameworks, 

and parameterizations of connectivity models. Our results support environmental planning by clarifying 
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mailto:f.solano@unitus.it
mailto:giuseppe.modica@unime.it
mailto:sam.cushman@gmail.com
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what most influences predictions of movement patterns and how the predicted connectivity networks 

differ between different analytical frameworks. 

Connectivity between populations and habitats is important for a wide range of ecological 

processes (Cushman, 2006; Huang et al., 2020; Rudnick et al., 2012). In Europe, these issues 

have been the impetus of the Natura2000 program, which aims to create a series of protected 

areas for the entire continent. To succeed in achieving a robust and effective connectivity 

network, it is necessary to use models and metrics that take into account numerous factors 

related to ecology and additional variables that make these indicators reliable (Kaszta et al., 

2020; Macdonald et al., 2013; Rudnick et al., 2012).  

To understand, preserve, and restore landscape connectivity, several methods have emerged to 

simulate movement and connectivity across the landscape. These different methods produce 

predictions of landscape connectivity (An et al., 2021; Cushman, 2006; Cushman & Lewis, 

2010; Clauzel, et al., 2012; Kevin McGarigal, 2000.) from a functional perspective. This entails 

building ecological networks based on high-natured natural areas that, as such, can sustain 

ecological functionality (Natura 2000 project, link: 

https://environment.ec.europa.eu/topics/nature-and-biodiversity/natura-2000_en; last access 

31 January 2024), reflecting the hypothesized movement of organisms across gradients of 

landscape resistance. However, few studies have compared the results from these different 

strategies and how they are related to each other, this is the reason why with our contribution 

we decided to provide further substantial knowledge on this topic. Studies have compared how 

connectivity is affected by different patch sizes, number of nodes, and topological variables (De 

Montis et al., 2019). Other approaches have compared the properties of connectivity metrics 

calculated at the level of individual landscape elements (e.g., nodes or patches) and those at the 

global level (Niquil et al., 2020). Although these studies compare indices or connectivity 

metrics belonging to a specific model, there is a lack of studies comparing metrics and indices 

from different models. In this respect, our work can make an important contribution to the 

literature. 

In this study, we focus on how connectivity predictions were affected by three different factors: 

different analysis methods, different dispersal thresholds, and different spatial frameworks for 

delineating source points or nodes for analysis. For the last  of those topics, we have 

distinguished between patch centroid based source points and spatially synoptic source points 

distributed across patches at a density proportional to habitat suitability. This topic is important, 

as little is known about the relative differences of methods or the influence of dispersal 

threshold and spatial analysis framework on the predictions of connectivity modelling. 
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A study done by Cushman et al. (2013), shown that dispersal distance and the distribution of 

source points across the landscape influence connectivity predictions, where a synoptic point 

distribution gives better results than a patch-based one, just as wider thresholds give better 

results than narrower ones. Additionally, several researchers have recently compared the 

performance of different connectivity methods (Cushman et al., 2014; de Jonge et al 2021; Fath 

et al. 2020; Unnithan Kumar & Cushman, 2022; Zeller et al., 2018). Cushman et al. (2014) 

found significant differences in prediction spatially between resistant kernel and factorial least 

cost path models and that for that analysis, the factorial least cost path had nominally better 

performance. However, the resistant kernel was more stable and generalizable. Zeller et al. 

(2018) found that cost distance approaches, like resistant kernels, were generally more robust 

and accurate than circuit theory approaches in explaining observed movement patterns. Most 

recently, Unnithan Kumar et al., (2022) simulated a large pool of dispersal processes and 

compared their congruence with the predictions of different connectivity models run on the 

same resistance surfaces and the same sets of source points. They found that resistant kernels 

were almost always the most accurate and robust predictor of functional connectivity, whereas 

factorial least cost paths were always the worst. They found circuit theory predictors were 

occasionally the best when there was a strong destination bias in animal movement and when 

those destinations were known to the observer and included in the analysis. However, none of 

these or other comparative studies of connectivity methods have formally compared the 

similarities and differences of connectivity predictions concerning the combination of the 

analysis method, dispersal threshold used, and spatial framework (patch-centroid based vs. 

synoptic).   

We used different methods to calculate connectivity metrics to fill this knowledge gap. First, 

we used the Graphab software to obtain a network composed of patches and corridors. A node 

was assigned for each patch following graph theory (patch-based approach). Different 

connectivity indices were calculated for each node. Subsequently, we used UNICOR to 

calculate and map a series of corridors based on the resistant kernels system 

(https://github.com/ComputationalEcologyLab/UNICOR. Different - last access 10 February 

2024) dispersal thresholds were used. In this system, nodes were not allocated to patches but 

generated probabilistically in a proportional suitability manner (synoptic approach).  

Subsequently, several statistical analysis techniques were used to compare them. In particular, 

we proposed four main and several combination hypotheses. We hypothesized that differences 

in the results of connectivity analyses might be mainly related to different dispersal thresholds 

(H1); synoptic vs. patch-based source points (H2); differences in methods, specifically kernel, 

path, and graph metrics (H3); and UNICOR connectivity value vs. several graph-theoretical 
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metrics calculated in Graphab environment (H4); To evaluate these hypotheses, we employed 

Principal Component Analysis (PCA), hierarchical agglomerative clustering analysis 

(McGarigal et al., 2000), and Mantel testing on model matrices (which is a multivar iate 

distance-based analysis of variance testing categorical hypotheses, e.g., Legendre, 1998). The 

main objective of this work was to evaluate the relationships among different approaches used 

for calculating landscape connectivity.  

4.1. Materials and methods 

The study area is located in southern Italy (Fig. 4.1) and includes the territory of 12 

municipalities, accounting for nearly 50,000 ha. The area includes plains along the coastal strip, 

mostly occupied by meadows and cultivated with temporary or permanent crops. In the inland 

belt, we find hilly areas, from 100 to 600 m above sea level, occupied by permanent crops or 

shrubs typical of the Mediterranean maquis.  

 

Figure 4.1: The study area (in red) located in southern Italy (within the Calabria region shown in green) 

includes the metropolitan area of Reggio Calabria and part of the Aspromonte National Park (in dashed 

yellow). 
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In the northeastern part of the study area, we find the mountainous zone, which ranges from 

600 to 1700 m above sea level and includes deciduous, coniferous, and shrub forests. This area 

includes part of the Aspromonte National Park. 

The analysis presented here was structured in three steps: (1) collection and organization and 

processing (through free and open source software) of datasets of both cartographic aspects of 

the study area and the autecological characteristics of focal species (habitat, home range 

dispersal distance, affinity level to land cover); (2) construction of an ecological network and 

calculation of connectivity metrics; (3) comparison and statistical analysis of networks and 

connectivity metrics. 

 4.1.1 Data collection and processing 

Data referring to land cover provided by the European Copernicus program, Corine Land Cover 

(CLC) 2018, and Urban Atlas (UA) 2018 were used to define landscape patterns for our analysis 

(Copernicus, Land Monitoring Service, link: https://land.copernicus.eu/-last access 

17/02/2022). CLC has a minimum mappable unit of 25 ha (where 25 ha is the area of the 

smallest polygon of the vectorial land cover map) and 25 different land cover classes; it was 

made with the aim of representing the natural areas of Europe according to 5 hierarchical class 

levels. With 27 land cover classes, UA has a minimum mappable unit of 0.25 ha for class 1 

areas (urban centers, factories, human-made areas, etc.) and 1 ha for the remaining categories 

from 2 to 5. UA was made to represent the major Urban areas of Europe. It was therefore 

decided to integrate these two data since although CLC was designed to represent natural areas, 

it completely omits highly artificial areas such as roads, highways, buildings, etc., elements that 

were instead represented with a high level of detail by the UA. Therefore, the final dataset was 

composed of class 1 from UA and classes 2-5 from CLC.  

In fig. 4.2, we reported the implemented dataset used in this study as previously described (CLC 

+ UA, same as for chapter’s two figure 2.4) and mapped using the official legend colors defined 

in the framework of the European Copernicus program. 



 

 

51 
 

 

 

Figure 4.2: Map of the implemented dataset using Corine Land Cover (CLC) 2018 for classes 2 

(Agricultural areas), 3 (Forest and seminatural areas), 4 (Wetlands) and 5 (Water bodies), and Urban 

Atlas (UA) 2018 for class 1 (Artificial Surfaces). 

Drawing on the work of Boitani et al. (2002), our analysis represents the collective central 

tendency of connectivity of 10 mammal species in terms of their habitat associations and 

movement abilities (see Table 2.3). Considering that the goal of our work is not to create an 

ecological network but to test the differences between different approaches, we decided to 

identify this set of 10 species, which would serve solely as a model for the study area across 
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life history space. We took the data from the 10 species to find a value in the middle, which 

gives a measure of the central tendency of connectivity. The decision to select only small and 

medium-sized mammals is related to their greater proximity in terms of the amount of resources 

they need, perception of their surroundings, ability to overcome obstacles (vertical walls, 

buildings, roads), and the distances they need to cross. In order to make reliable predictions, we 

relied on data collected by Boitani et al. (2002) on the behavioral and autecological properties 

of the selected species. This information gives values referring to each species’ dispersal 

distance, home range and affinity level with a given environment. The choice of the species 

was based on work already done in the same area (Lumia et al., 2023; Modica et al., 2021), and 

selection was made by giving priority to species protected by national and international laws 

(https://www.mite.gov.it/pagina/repertorio-della-fauna-italiana-protetta - last accessed 

16/02/2022). 

The integration of UA and CLC was performed in the QGIS 2.8 environment. The geometries 

coded as class 1 (artificial areas) of UA were merged into CLC. The minimum mappable unit 

of the obtained data was UA being less than CLC. See Lumia et al. (2023) for more information 

about that process. The vector layer was converted to raster with a spatial resolution of 2.5 m x 

2.5 m to allow subsequent processing. Then through a bilinear interpolation operation, the pixel 

size was increased to 10 m x 10 m. The data thus obtained were used in the subsequent analyses 

below. After carefully inspecting the 2.5 m datum, we evaluated the possibility of using bilinear 

interpolation to increase the pixel size while retaining the fundamental information of the base 

map. The choice of 10 m was considered a fair compromise, allowing us to reduce the estimated 

calculation time. This approach allowed us to have more detail than we would have had by 

starting the rasterization directly from 10 m. 

4.1.2. Graphab Implementation 

Graphab 2.6 was used to construct the multi-species ecological network of the entire study area 

(Clauzel & Godet, 2020; Clauzel et al., 2012; Ersoy et al., 2019; Foltête, 2019; Godet & 

Clauzel, 2021), it is compatible with GIS software, which makes it versatile and capable of 

providing significant support to those working in the field of cartography and planning (Clauzel 

& Godet, 2020). This software was designed for constructing and visualizing graphs, and it’s 

capable of connectivity analysis and links to external data 

(https://sourcesup.renater.fr/www/graphab/en/home.html - last accessed 22/01/2023). Before 

launching operations in Graphab, we considered the characteristics of the 10 focal species. First, 

an affinity level between the species and each different land cover class was identified (Table 

https://www.mite.gov.it/pagina/repertorio-della-fauna-italiana-protetta%20-%20last%20accessed%2016/02/2022
https://www.mite.gov.it/pagina/repertorio-della-fauna-italiana-protetta%20-%20last%20accessed%2016/02/2022
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4.1). Different land cover types show different permeability depending on the mobility of the 

species passing through them (Cushman et al., 2012; Lechner & Lefroy, 2014).  

Table 4.2: This table shows the characteristics of the 10 selected species, including land cover resistance 

values, dispersal ability, and home range. Land use codes from 11100 to 14200 refer to Urban Atlas 2018 

while codes from 21000 to 51100 to Corine Land Cover 2018. 

Urban Atlas + Corine Land Cover 

combined legend 

Martes 

foina 

Martes 

martes 

Felis 

silvestris 

Hystrix 

cristata 

Sciurus 

Vulgaris 

Eliomys 

quercinus 

Erinaceus 

europaeus 

Glis 

glis 

Mustela 

nivalis 

Muscardinus 

avellanarius 

Animal home range (ha) 10 140 124 20 2 2 2 2 8 2 

Animal dispersal threshold (m) 5000 10,000 150,000 2000 2000 2000 2000 2000 3400 2000 

Land 

use 

code 

Land use description Resistance values [ 1 = no resistance, 100 = very high resistance] 

11100 Continuous Urban fabric (S.L. > 80%) 100 100 100 100 100 100 100 100 100 100 

11210 
Discontinuous Dense Urban Fabric 

(S.L. 50% - 80%) 
100 100 100 100 100 100 100 100 100 100 

11220 
Discontinuous Medium Density 

Urban Fabric (S.L. 30% - 50%) 
100 100 100 100 100 100 100 100 100 100 

11230 
Discontinuous Low-Density Urban 

Fabric (S.L. 10% - 30%) 
100 100 100 100 100 100 100 100 100 100 

11240 
Discontinuous very Low-Density  

Urban Fabric (S.L. < 10%) 
100 100 100 100 100 100 100 100 100 100 

11300 Isolated Structures 100 100 100 100 100 50 50 50 100 100 

12100 
Industrial. Commercial, public, 

military and private units 
100 100 100 100 100 100 100 100 100 100 

12210 Fast transit roads and associated lands 100 100 100 100 100 100 100 100 100 100 

12220 Other roads and associated lands 50 50 100 70 100 100 100 100 70 100 

12230 Railways and associated lands 100 100 100 100 100 100 100 100 100 100 

12300 Port areas 100 100 100 100 100 100 100 100 100 100 

12400 Airports 100 100 100 100 100 100 100 100 100 100 

13100 Mineral extraction and dumpsites 100 100 100 100 100 100 100 100 100 100 

13300 Construction sites 100 100 100 100 100 100 100 100 100 100 

13400 Land without current use 50 50 50 50 50 50 50 50 50 50 

14100 Green urban areas 50 50 50 50 50 50 50 50 50 50 

14200 Sport and leisure facilities 100 100 100 100 100 100 100 100 100 100 

21000 Arable land 25 25 50 25 50 25 50 50 25 50 

21100 Non-irrigated arable land 25 25 50 25 50 25 50 50 25 50 

21200 Permanently irrigated land 25 25 50 25 50 25 50 50 25 50 

22100 Vineyards 75 75 75 75 75 75 75 75 75 75 

22200 Fruit trees and berry plantations 50 50 50 50 50 50 50 50 50 50 

22300 Olive groves 50 50 50 50 50 50 50 50 50 50 

23100 Pastures 25 25 50 25 50 25 50 50 25 50 

24100 
Annual crops associated with  

permanent crops 
25 25 50 25 50 25 50 50 25 50 
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24200 Complex cultivation patterns 75 75 75 75 75 75 75 75 75 75 

24300

* 

Land principally occupied by 

agriculture, with significant areas of 

natural vegetation 

1 1 1 1 1 1 1 1 1 1 

31100

* 
Broad-leaved forest 1 1 1 1 1 1 1 1 1 1 

31200

* 
Coniferous forest 1 1 1 1 1 1 1 1 1 1 

31300

* 
Mixed forest 1 1 1 1 1 1 1 1 1 1 

32000

* 

Scrub and/or herbaceous vegetation 

associations 
1 1 1 1 1 1 1 1 1 1 

32100

* 
Natural grasslands 25 25 50 25 50 25 50 50 25 50 

32200

* 
Moors and heathlands 1 1 1 1 1 1 1 1 1 1 

32300

* 
Sclerophyllous vegetation 1 1 1 1 1 1 1 1 1 1 

32400

* 
Transitional woodland-shrub 1 1 1 1 1 1 1 1 1 1 

33100 Beaches, dunes, sands 75 75 75 75 75 75 75 75 75 75 

33300

* 
Sparsely vegetated areas 25 25 50 25 50 25 50 50 25 50 

33400 Burnt areas 50 50 50 50 50 50 50 50 50 50 

42200 Salines 100 100 100 100 100 100 100 100 100 100 

51100 Water courses 1 1 1 1 1 1 1 1 1 1 

* Land use codes considered for patches. 

As explained in Lumia et al. 2023, a slope factor was also considered in constructing the 

network. In particular, areas with a slope greater than 100% were excluded from being 

considered patches. In addition, the Graphab software allows through a function related to the 

following equation to consider slope when calculating corridors:  

rfinal = r*(1 + c⋅p)                          [1] 

In equation 1, p is the importance of slope, c is the weighting coefficient, r is the pixel resistance, 

and rfinal is the pixel resistance weighted by the slope (p). When c = 1, the resistance value is 

doubled for a slope of 10%, while if c = 10, the resistance is doubled for a slope of 100% (p = 

1). Since in this work, we considered the value of the coefficient c to be 1, as the slope increases, 

the permeability decreases.  

The input data processed in Graphab consisted of a categorized raster land cover map. The 

nodes of the graph (patches) correspond to land cover classes that we defined as optimal for the 

selected species. Next, we defined a threshold of 2000 m as the maximum according to two 

types of distance, Euclidean and minimum cost. In our case, we used the minimum-cost system, 
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starting from the assignment of resistance values to each land-cover category ranging from 1, 

we used resistance values ranging from 1 (lowest impedance to movement) to 100 (barrier to 

movement). Subsequently, we identified 2000 meters as the valid dispersal distance to meet the 

minimum requirements of each of the species (Boitani et al. 2002, see also tab A1 as annex). 

Next, we defined a threshold of 2000 m as the maximum distance that each species can travel 

(Boitani et al., 2003; Santini et al., 2013; Jones et al., 2009). In fact, this is a distance that all 

ten species can walk (Tab. A1). At this point, the simulation will take place so that the animal 

can cross 2000 pixels still having resistance before stopping. 

The simulation will take place so that the animal can cross 2000 pixels having resistance 1 

before stopping. The software makes the animal move in such a way that starting from the first 

pixel, it always chooses the adjacent pixel with minimum cost. Its movement stops when the 

sum of the resistances of the crossed pixels equals the value of 2000 cost units. A species’ 

maximum affinity (land cover with resistance = 1) to a particular land cover has been considered 

a possible habitat. The home range, defined here as the extent of land large enough to contain 

the resources necessary to complete the individual’s life cycle (Boitani et al., 2003), was used 

to set a threshold of 2 ha for the inclusion of patches as nodes for the patch-based analyses since 

this value is suitable for all the selected species (Tab S1). That threshold was used for the 

inclusion of patches as nodes for the patch-based analyses. Only areas with a surface area 

greater than or equal to 2 ha were considered nodes in the graph network; remaining areas with 

an area less than 2 ha were only considered structural elements favorable to the passage of 

species.  

For the identification of the dispersal distance, a crossing threshold was established for all focal 

species, understood as the maximum distance an animal is able to travel in a hostile environment 

to reach resources.  

Starting from the 10 m x 10 m raster containing the land cover codes and minimum patch size, 

land cover resistance and maximum dispersal threshold, Graphab 2.6 was launched. It returns 

a series of nodes and arcs that are the graphic representation of patches and ecological corridors, 

respectively (Clauzel, et al., 2012a). We set up the software so that all the arcs between patches 

are potentially taken into account, even those that might intersect or partially overlap. This 

method was used, as it does not exclude any possible pathways and provides an initial linear 

representation of displacements, allowing for a realistic representation of ecological corridors 

(Godet & Clauzel, 2021).  

Graphab was then used to calculate a number of graph-theoretical metrics at the node level. 

These indices characterize the network, quantifying its connectivity and identifying its elements 

of centrality (Céline Clauzel, et al., 2012b; Orjan Bodin & Santiago Saura, 2010; Pascual-Hortal 
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& Saura, 2006; Saura & Pascual-Hortal, 2007; Urban, J. D., Keitt, 2001). This was done by 

calculating the following metrics (Table 4.2): Integral Index of Connectivity (IIC), 

Betweenness Centrality (BC), Flux (F) and Probability of Connectivity (PC). 

Table 4.2: Ecological, graph theory connectivity indices calculated in the present work. 

Connectivity 

index 

Ecological meaning Formula Reference 

Integral Index 

of Connectivity 

(IIC) 

The probability that individuals randomly 

located in the landscape within a patch can 

access each other. A higher value indicates 

greater connectivity 

∑ ∑
𝑎𝑖 ∗ 𝑎𝑗
1 + 𝑛𝑙𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝐴𝐿
2  

Freeman, 

(1977) 

Betweenness 

Centrality (BC) 

The sum of the shortest paths through the 

focal patch, each path being weighted by the 

product of the capacities of the connected 

patches and their probability of interaction. 

𝐵𝐶𝑖

=∑∑𝑎𝑗
𝛽

𝑘𝑖

𝑎𝑘
𝛽𝑒−𝑎𝑑𝑗𝑘 

𝑗, 𝑘 ∈ {1. . 𝑛},𝑘 < 𝑗, 𝑖

∈ 𝑃𝑗𝑘 

(Bodin & 

Saura, 2010) 

Flux (F) For the entire graph: sum of the potential 

dispersions of all patches. 
𝐹 =∑∑𝑎𝑗

𝛽𝑒−𝑎𝑑𝑖𝑗
𝑛

𝑗=1

𝑛

𝑖=1

 

j≠i 

(Foltête, 

Clauzel, et al., 

2012) 

Probability of 

Connectivity 

(PC) 

The probability that two random points in the 

landscape fall within interconnected habitat 

areas (i. e., reachable to each other). Values 

are between 0 and 1. 

𝑃𝐶 =
∑ 𝑎𝑖𝑎𝑗𝑝𝑖𝑗

∗𝑛
𝑗=1

𝐴𝐿
2  

(Saura & 

Pascual-Hortal, 

2007) 

4.1.3 UNICOR Implementation 

Before launching UNICOR, following the same process used for Graphab, each pixel of the 

base map raster was assigned a resistance value to movement in a range from 1 (low resistance) 

to 100 (high resistance), with resistance values tending toward unity, indicating land cover with 

higher species affinity,  lower resistance to species movement; values tending toward 100 

indicate anthropogenically modified land-cover types,  lower species affinity and higher 

resistance to movement.  

UNICOR requires two input datasets for model implementation: a raster layer representing the 

landscape resistance surface containing the locations of source points of individuals. One of the 

major strengths of UNICOR connectivity modelling is the ability to specify biologically 

realistic dispersal thresholds, specified in cost units, at which the connectivity algorithms 

(factorial least cost path and resistant kernel) terminate their spread. It is essential for 
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connectivity analyses to realistically reflect the functional dispersal capabilities of focal species, 

given that this, along with the density and distribution of source points, often dominates 

predictions of functional connectivity (e.g., Cushman et al., 2012). In our analyses, we 

evaluated a range of plausible biological capabilities (Diniz et al., 2020; Lechner et al., 2015; 

Savary et al., 2021).  

Our UNICOR analyses considered both patch-based and synoptic frameworks. We better 

specify that the ‘‘Synoptic’’ word refers to a situation where the analysis framework compares 

a patch (or node) based approach in which connectivity is measured between the centroids of 

patches, and a synoptic approach in which connectivity is measured among a large number of 

source points that are distributed proportional to the extensiveness of highly suitable and low 

resistance habitat (e.g., many points in areas of low resistance, instead of a single point in the 

centroid of a patch of low resistance). The patch-based framework used the 320 centroids of 

patches used as nodes in the Graphab analysis. The number of 320 comes from the number of 

total patches obtained by applying our criteria, that is: land cover with maximum affinity for 

species (see tab A1); minimum area of polygons to be considered patches of 2 ah; slope lower 

than 100%. We ran factorial least cost path and resistant kernel analyses for these source points 

at three dispersal distances: 50k, 100k and 150k. For the synoptic approach, we used a network 

of 3243 source points that were probabilistically generated with density proportional to habitat 

suitability and used dispersal distances of 17k and 35k cost units for resistant kernel and 

factorial least cost path, respectively, reflecting the expected cost distance to traverse 2 km in 

geographic space (17k cost distance) or twice that for factorial least cost path analysis (it is 

common to use a larger threshold for factorial least cost path analysis as it is pairwise and 

requires twice the distance threshold for points to be linked by paths as points to be overlapping 

in resistant kernel analysis; e.g., Cushman et al., 2013, 2014). The value of 3243 was obtained 

by random assignment of a series of points but with a higher probability directly proportional 

to the suitability of the study area (inverted resistance values). The approach we used to obtain 

the points is based on a series of processes. We created a raster with the same extension as the 

land cover raster but with random pixel values between 0 and 0.75. Next, the resistance values 

we had attributed to land cover were converted to suitability and then rescaled, going from 1-

100 to 0-1. Finally, we overlaid the two layers (the one with values from 0 to 0.75 and the one 

with values from 0 to 1) and performed a difference. Finally, one point was assigned for each 

pixel with a value greater than 0. 

 The values of 50k ,100k, 150k, 17k, and 35k (all expressed as meters) were taken to be applied 

to the two different approaches, synoptic and patch-based. Next lines we further specify in 

UNICOR, the simulation allows the movement simulation to be calculated based on an energy 
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budget. Thus, there is a relationship between the residual energy of the animal (the hypothetical 

animal moving in the software simulation) and the number of steps remaining. However, the 

ability of the animal to move varies with the heterogeneity of the pixel matrix (land cover 

raster). Therefore, it is possible to obtain that the total energy value of the animal is the sum 

given by the formula step*cost. This is directly related to dispersal capacity, the expected 

dispersal distance in steps (mean cost of resistance surface * the number of steps in the path) = 

energy budget, or number of steps = energy budget / mean cost of resistance surface. So, given 

the mean resistance value of the matrix that is 85, the value of 2 km (the value we have identified 

in the literature as being reachable by all the considered species) is equivalent to an energy 

budget of 17k. This is due to the mean resistance of 85 and pixel size of 10. Then, a 2 km 

distance will equal 85 average cost units per pixel * 200 pixels in 2km = 17k cost units for 2km. 

We used this value twice for the factorial least cost path, so we have the 35k value. This is 

because it has been proved that twice the dispersal distance is needed to connect two points by 

factorial least cost path to have kernels overlapping in resistant kernel analysis (Cushman et al., 

2013). 

 4.1.4. PCA, Hierarchical Agglomerative Clustering and Mantel testing of hypotheses 

The analyses described above produced 12 scenarios of predicted connectivity for comparison. 

These included: patch-based approach for factorial least cost path and resistant kernel 

connectivity, using 50k, 100k and 150k dispersal thresholds (p50k, p100k, p150k, k50, k100 

and k150 respectively), the connectivity metrics BC, F, PC and  IIC produced on these same 

source point nodes; synoptic analyses using source points synoptically distributed across the 

study area proportionally to habitat suitability to seed factorial least cost path 35k (sp35k) and 

resistant kernel 17k (sk17). 

We proposed 4 main hypotheses of relationship among the 12 different scenarios. These were: 

(1) thresh – that methods using a similar dispersal distance threshold would be more similar in 

their predicted connectivity than methods using different thresholds, (2) synoptic – that 

scenarios using a synoptic framework would be more similar to each other than to scenarios 

that used a patch-based framework, (3) kernel-path-graph – that kernel methods would be more 

similar to each other in predicted connectivity than to path methods or graph methods and the 

converse, (4) UNICOR-graph – that connectivity methods using UNICOR approaches would 

produce connectivity results more similar to each other than to graph metrics and the converse.  

We used Mantel testing with model matrices (Legendre, 1998), which is a form of multivariate, 

distance-based analysis of variance. We tested the four main hypotheses above and the additive 

combination of the various model matrices to test for joint support  of multiple hypotheses 
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simultaneously (e.g., Kyaw et al., 2021). Thus, we used the Mantel test to identify the 

correlation between the 4 hypotheses and 14 different combinations of them (Tab. 4.4). 

In addition to the hypothesis testing with Mantel model matrix analysis, we used two well -

known multivariate analysis methods to compare the 12 scenarios. Specifically, we used 

Principal Component Analysis (PCA) and hierarchical agglomerative clustering analysis on the 

12 scenarios and visually compared the results in reference to the Mantel hypothesis testing. 

The PCA was conducted on the correlation matrix and the hierarchical clustering was conducted 

using the Ward’s fusion distance method in the ‘hclus’ function in R.  

4.2. Results 

In table 4.3, we present the description of the 12 scenarios In table 4.4, we can see summarized 

the values for the standard deviation, proportion of variance and cumulative proportion of 

variance from the principal components analysis applied to the results from the 12 different 

scenarios. We present three sets of results in comparing these scenarios. First, we present the 

results of the principal components analysis, which describes the multivariate relationships 

among scenarios in an ordination framework (McGarigal et al., 2000). Second, we present 

results from agglomerative hierarchical clustering, which presents the multivariate relationships 

in a hierarchical relationship. Finally, we present the results of the hypothesis testing of the 14 

a priori hypotheses of the expected relationship among the 12 scenarios using Mantel testing 

on model matrices (Legendre and Legendre, 1998). 

Table 4.3: Description of the 12 connectivity scenarios compared in this analysis. 

Scenario Acronym Scenario Description 

p50k Patch-centroid-based factorial least cost path with 50,000 cost unit threshold 

p100k Patch-centroid-based factorial least cost path with 100,000 cost unit threshold 

p150k Patch-centroid-based factorial least cost path with 150,000 cost unit threshold 

k50k Patch-centroid based factorial resistant kernel with 50,000 cost unit threshold 

k100k 
Patch-centroid based factorial resistant kernel with 100,000 cost unit 

threshold 

k150k 
Patch-centroid based factorial resistant kernel with 150,000 cost unit 

threshold 

sp35k Synoptic factorial least cost path with 35,000 cost unit threshold 

sp17k Synoptic factorial least cost path with 17,000 cost unit threshold 

IIC Patch-centroid-based graph theory metric Integral Index of Connectivity 

PC Patch-centroid-based graph theory metric Probability of Connectivity 
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F Patch-centroid-based graph theory metric Flux 

BC Patch-centroid-based graph theory metric Betweenness Centrality 

The response variables being compared, presented in following paragraphs, were the surfaces 

of predicted connectivity for each of the different methods, scopes of analysis, etc. The analysis 

compares those surfaces based on how similar they are in their values of predicted connectivity 

and assesses how much that similarity is related to different attributes of the method and scope 

of analysis. 

4.2.1. Principal Component Analysis 

The principal component analysis revealed that variance among the connectivity scenarios was 

relatively well concentrated on a few independent orthogonal dimensions (Table 4.4). 

Specifically, about 38% of the variance among connectivity predictions was captured by the 

first PC and 63.5% by the first two. 

Table 4.4: Values of standard deviation, proportion of variance and cumulative proportion for the 12 

scenarios (PC1,…PC12). 

Importance of components PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 2,1235 1,7633 1,1445 1,01538 0,83504 0.69050 

Proportion of Variance 0.3758 0.2591 0.1092 0.08592 0.05811 0.03973 

Cumulative Proportion 0.3758 0.6349 0.7440 0.82995 0.88806 0.92779 

// PC7 PC8 PC9 PC10 PC11 PC12 

Standard deviation 0.66373  0.54153  0.28398 0.21220 0.06356 0.05454 

Proportion of Variance 0.03671  0.02444 0.00672 0.00375 0.00034 0.00025 

Cumulative Proportion 0.96450 0.98894 0.99566 0.99942  0.99975 1.00000 

The correlation matrix (Table 4.5) shows that the highest correlations were between the 

different dispersal distance thresholds among kernel and path analyses, with higher values of 

correlation found for correlations between p100k-p150k (0.99) and k100k-k150k (0.99). The 

next highest correlations were found between the patch-based path and the patch-based kernel 

(e.g., path with path and kernel with kernel) with values ranging from 0.92 to 0.99. The synoptic 

path is relatively highly correlated with the patch-based path (0.71, 0.65, 0.62). Likewise, the 

synoptic kernel is relatively highly correlated with the patch-based kernel (0.77, 0.59, 0.55). 

The metric IIC is not highly correlated with any path or kernel analyses (most correlated with 

the synoptic kernel, 0.28). The metric PC is not highly correlated with any of the kernel or path 

values except the synoptic kernel (0.41). The metric F is highly correlated with the synoptic 

kernel (0.62). The metric BC is also correlated with the synoptic kernel (0.45). 



 

 

61 
 

 

Table 4.5: Correlation matrix of the 12 different scenarios. In red values > 0.9, yellow 0.9>x>0.8, dark 

green 0.8>x>0.7 and light green 0.7>x>0.6.  

The PCA analysis show three things: (1) most importantly, the graph-theoretical metrics were 

all highly related to the resistant kernel metrics (in Fig. 4.3,  the vectors in blue were relatively 

parallel for these), (2) the factorial least cost path metrics were all quite different from the kernel 

and the graph-theoretical metrics (blue vectors for those were almost perpendicular toward the 

top from the kernel and graph-theoretical metrics), (3) the synoptic models (sk17 and sp34; e.g., 

UNICOR with many sources points proportional to suitability across the landscape instead of 

the centroid of the patches) were highly correlated with the patch-centric approach (e.g., highly 

parallel to the vectors).  

 

 p50k p100k p150k k50k k100k k150k sp35k sk17k IIC PC F BC 

p50k 1 0.96 0.92 0.22 0.21 0.2 0.71 0.15 0.09 0.05 0.15 0.06 

p100k 0.96 1 0.99 0.08 0.08 0.08 0.65 0.07 0.06 0.01 0.11 0.03 

p150k 0.92 0.99 1 0.03 0.02 0.03 0.62 0.05 0.04 0 0.09 0.02 

k50k 0.22 0.08 0.03 1 0.93 0.88 0.26 0.77 0.24 0.34 0.48 0.29 

k100k 0.21 0.08 0.02 0.93 1 0.99 0.21 0.59 0.2 0.29 0.37 0.23 

k150k 0.2 0.08 0.03 0.88 0.99 1 0.2 0.55 0.19 0.27 0.35 0.21 

sp35k 0.71 0.65 0.62 0.26 0.21 0.2 1 0.28 0.12 0.11 0.22 0.13 

sk17k 0.15 0.07 0.05 0.77 0.59 0.55 0.28 1 0.28 0.41 0.62 0.45 

IIC 0.09 0.06 0.04 0.24 0.2 0.19 0.12 0.28 1 0.52 0.19 0.13 

PC 0.05 0.01 0 0.34 0.29 0.27 0.11 0.41 0.52 1 0.23 0.21 

F 0.15 0.11 0.09 0.48 0.37 0.35 0.22 0.62 0.19 0.23 1 0.29 

BC 0.06 0.03 0.02 0.29 0.23 0.21 0.13 0.45 0.13 0.21 0.29 1 
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Figure 4.3: Biplot of the PCA analysis, a) Axis 1 vs Axis 2, b) Axis 1 vs Axis 3, c) Axis 2 vs Axis 3. 
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4.2.2. Hierarchical Agglomerative Clustering 

The hierarchical clustering (Fig. 4.4) show the same general relationships as the PCA in a 

slightly different way. Specifically, the hierarchical clustering shows that: (1) the path analyses 

were all clustered separately (to the left of the diagram), (2) the kernel analyses were clustered 

together to the right, with the metric F most similar to the synoptic kernel. The other graph-

theoretical metrics were clustered (IIC, PC, BC) and relatively similar to the kernel analyses.  

 

Figure 4.4: Clustering dendrogram of the 12 scenarios. 

4.2.3. Mantel testing of hypotheses 

Based on a significance level of 0.05 (p-value), 12 of the 14 hypotheses were supported. In 

Table 4.6, we order these hypotheses based on the strength of their Mantel r value. Hypothesis 

3, which tests for differences among kernel, path, and graph theory methods, combining other 

factors (dispersal distance, patch-based vs. synoptic), has the strongest correlation value with 

an r of -0.711. The next highest support was for H6, which is a combination of 

kernel_path_graph and dispersal threshold effects. The fact that this combined hypothesis is 

less supported (r-value ~ 0.18 lower in magnitude) suggests that adding the effect of dispersal 

threshold to the effect of the analysis method reduces the ability to explain the differences in 

the connectivity results. Likewise, the next set of most supported hypotheses combines the 

method (kernel_path_graph) with other factors such as synoptic or the combination of synoptic 

and threshold. The reduced support of these combined hypotheses suggests that the method is 
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the dominant driver of differences in predictions and threshold and synoptic vs. patch-based 

source points have relatively small influence. The least support of all hypotheses was for H2, 

synoptic vs patch-based source points. Furthermore, the 4 hypotheses with the lowest support 

in addition to H2 were composite hypotheses containing H2, suggesting that synoptic vs. patch-

based analysis has the least influence on the difference in connectivity results. 

Table 4.6: 14 different correlation hypotheses (in red the most interesting values). 

Hypotheses 
n° 

  r P 

h3 kernel_path_graph 3 -0.71196 0.001 

h6 thresh_kernel_path_graph 13 -0.57854 0.001 

h10 kernel_path_graph_unicor_graph 34 -0.57773 0.002 

h13 synoptic_kernel_path_graph_unicor_graph 234 -0.45688 0.005 

h11 thresh_synoptic_kernel_path_graph 123 -0.43879 0.003 

h14 thresh_synoptic_kernel_path_graph_synoptic_unicor_graph 1234 -0.43182 0.007 

h8 synoptic_kernel_path_graph 23 -0.40205 0.002 

h4 unicor_graph 4 -0.34138 0.006 

h7 thresh_unicor_graph 14 -0.33068 0.019 

h1 Thresh 1 -0.31747 0.021 

h12 thresh_syoptic_unicor_graph 124 -0.24275 0.033 

h9 synoptic_unicor_graph 24 -0.16499 0.082 

h5 threst_synoptic 12 -0.11937 0.162 

h2 Synoptic 2 0.141494 0.18 

4.3. Discussion 

The PCA, clustering and correlation analyses all generally supported the same conclusions. 

Namely, least cost path methods were different in their predictions and clustered and ordinated 

separately from other methods. Surprisingly, kernel and graph-theoretical metrics were 

generally closely aligned, particularly the synoptic kernel with the Flux parameter (F). Notably, 

dispersal threshold and synoptic vs. patch-based parameters did not appear to strongly separate 

results, which were highly aligned with the analysis method. This suggests that overall patterns 

of the connectivity prediction were relatively insensitive to changes in dispersal ability, at least 

across the range (50,000 to 150,000 cost units) evaluated in this study. Similarly, the 

multivariate results and correlation analysis show minimal relative effect of using patch-centric 

source points vs synoptic source points. The results suggest that resistant kernel predictions 

were highly consistent with the graph-theoretical metrics but were superior in that the resistant 

kernel produces predictions synoptically (for all locations) rather than just the centroid of the 

cells (Cushman et al., 2013; Unnithan Kumar & Cushman, 2022). The kernel analysis based on 

the centroids is similar to the synoptic kernel. However, the synoptic kernel is better since it 
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considers biologically realistic dispersal ability and the correct distribution and density of 

source points (Cushman et al., 2013). 

Analysing the results of Mantel testing of hypotheses, we found that the highest support was 

for H3, suggesting that the largest difference among connectivity predictions is related to the 

method of analysis, with kernel, path and graph theory approaches being different from each 

other.  

The second most supported hypothesis was the H6, where we combined the kernel_path_graph 

hypothesis (H3) and the dispersal threshold hypothesis. The dispersal threshold hypothesis 

proposes that the dispersal distance used in the analysis is the main factor  affecting the 

difference in results, whereas methods (kernel, path, graph theory) and framework (patch-based 

vs. synoptic) were not influential. The combination of these two hypotheses asks if the method 

(kernel, path, graph theory) and dispersal distance were both important. Observing substantially 

lower support for this joint hypothesis than for H3 confirms that the method of analysis is the 

dominant driver of differences and dispersal threshold is relatively less impactful.  

The third most highly supported hypothesis was H10, where we combined H3 and H4. This 

gives relatively more similarity weight to UNICOR methods compared to graph theory methods 

but still discriminates between kernel and least cost path approaches. The lower Mantel r value 

for this hypothesis compared to H3 suggests that the dominant difference is between kernel, 

path and graph theory metrics and that adding additional similarity weight for path and kernel 

vs graph theory metrics did not improve the explanation of the differences in predictions. 

The fourth most supported hypothesis was H13, similar to the third, except adding the additional 

factor of synoptic vs. patch-based source points. This resulted in a substantial decrease in the 

Mantel r value, suggesting adding the effect of synoptic vs. patch-based source points to the 

model matrix decreased the ability to explain differences in prediction. This, along with the 

observation that the pure synoptic vs patch-based hypothesis (H2) is the least supported of all 

hypotheses and is not statistically related to differences in connectivity predictions, suggests 

that synoptic vs. patch-based methods were relatively similar compared to the differences in 

results caused by other factors, particularly method (H3). Similarly, the fourth most supported 

hypothesis was the same as the first (H3), except including the additive model matrix effects of 

synoptic vs patch-based and dispersal threshold. The observation that this hypothesis was 

substantially less supported than the pure method hypothesis (H3) suggests that adding the 

influences of dispersal threshold and synoptic vs. patch-based analysis decreases the ability to 

statistically explain the differences among connectivity predictions. Considering the 7 most 

supported hypotheses were those in which H3 is present alone or in combination with other 
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hypotheses, we have further confirmation that differences among connectivity results were 

dominated by the analysis method. 

All four testing methods (correlation matrix, PCA, hierarchical clustering, model matrix, 

Mantel hypothesis testing) corroborate the same major interpretation. The analysis method (in 

our case, least cost path, resistant kernel and graph theory metrics) dominates differences in 

connectivity predictions. The least cost path methods produce a tight cluster or cloud in 

ordination space and were different in prediction than the other methods. Conversely, resistant 

kernel and graph theory metrics were generally highly congruent, notably the synoptic kernel 

and the Flux parameter (F) from graph theory.  

Importantly, our results clearly show that the dispersal threshold and density and distribution 

of source points have much less relative influence than the analysis method. This is very 

interesting, given that other studies, e.g., Cushman et al. (2012), found large differences in 

predictions produced by a given method (e.g., resistant kernels) based on dispersal threshold 

and density and distribution of source points. The discrepancy in these results is likely because 

this previous study compared results for a particular method (such as least cost path or resistant 

kernel) while varying dispersal threshold and source point density and distribution. Thise 

previous papers showed substantial effects of dispersal ability and source point density but did 

not formally compare the relative effects of different methods. Our study is novel in combining 

evaluation of all these factors as main effects and in interaction. Our novel finding is that 

analysis methods, in particular least cost path, kernel and graph theory approaches, produce 

dramatically different predictions whose divergence dwarfs the effects caused by differences in 

dispersal threshold or the density and distribution of source points. 

Given the predominant effect of the method and the observation that kernel and graph theory 

methods group together in clustering and ordination space, our results suggest that resistant 

kernel might be the preferred approach among those we evaluated. We conclude this partly 

based on the recent study by Unnithan Kumar et al. (2022), who showed, using a large 

simulation factorial experiment, that resistant kernel predictions had the highest similarity to 

movement patterns for a wide range of hypothetical organisms following a broad combination 

of movement rules. The similarity of the kernel and graph theory methods suggests that both 

approaches were likely robust. However, the resistant kernel is preferred in most cases as the 

graph theory approach generally produces predictions only for a smaller sample of nodes or 

centroids of patches. In contrast, the resistant kernel approach produces a fully synoptic 

prediction of movement density (incidence function, (Kaszta et al., 2020) across the full 

landscape. This provides a rich, spatially explicit mapping of movement patterns and density 

which allows the delineation of core areas, identification of barriers and prioritization of 
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corridors (Cushman et al., 2016, 2018; Cushman & Landguth, 2012; Kaszta et al., 2018, 2021; 

Macdonald et al., 2019). 

4.4. Conclusions 

In this chapter of the PhD thesis was studied the relationships between several different 

methods, parameterizations and metrics by which assessments of landscape connectivity were 

commonly made in the literature. In particular, was studied how connectivity predictions were 

influenced by different analysis methods, dispersal thresholds and spatial frameworks for 

delineating source points. It was clarified that what most influences predictions is the method 

of analysis. Specifically, was found that resistant kernel-based analysis seems to be the most 

suitable to represent movement patterns. This study provided expanded knowledge regarding 

differences and similarities in the predictions of commonly used approaches in landscape 

connectivity by demonstrating through statistical analyses (PCA, clustering, Mantel test of 

hypotheses) how strong relationships exist between some of them and major differences 

between others. While highlighting which variables most influence connectivity predictions, 

our analysis did not indicate the best methods for predicting functional connectivity to delineate 

corridors or the ideal network configuration. In those cases, species-related factors such as 

energy (Movement simulation where the animal moves randomly until it runs out of energy), 

attraction (Movement simulation where the animal moves non-randomly and follows the path 

of least resistance) and risk (Movement simulation where the animal has an increasing 

probability of stopping its movement by crossing more and more pixels with resistance values) 

should be taken into account to identify what is the best configuration of the method, dispersal 

threshold and spatial framework so as to be able to provide a tool to the intervention planner. 

Future research should explore the functional performance of these and other connectivity 

methods in predicting functional connectivity. 
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5 Comparison of connectivity metrics and predictive models of 

movements 

Adapted from 

Lumia G., Modica G., Cushman S.: Using simulation modelling to demonstrate the 

performance of graph theory metrics and connectivity algorithms. 

https://doi.org/10.1016/j.jenvman.2024.120073. 

 

One of the topics receiving the most recent attention in the ecological networks research area 

is functional connectivity modelling (S. A. Cushman, Lewis, et al., 2013; A. Rudnick et al., 

2012; Tischendorf & Fahrig, 2000), which is widely used to identify the most important areas 

for conservation planning. The scholarly literature has a long record of recruiting and evaluating 

different methods to predict, map, and assess population connectivity. The well-established 

methods in this field typically use algorithms like graph theory (Saura & Pascual-Hortal, 2007), 

resistant kernels (Compton et al., 2007), factorial least-cost paths (Cushman et al., 2009), and 

https://doi.org/10.1016/j.jenvman.2024.120073
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circuit theory (Foltête, Clauzel, et al., 2012; Kaszta et al., 2018a; Kumar et al., n.d.-a; McRae 

et al., 2008). 

Using simulation modelling to produce the implications of different pattern-process 

relationships is a cornerstone of landscape ecology science (Turner, 1989). Simulation is widely 

used, for example, in landscape genetics to explore methodological and theoretical questions 

(e.g., CDPOP (S. A. Cushman et al., 2018; S. A. Cushman & Landguth, 2012; Landguth & 

Cushman, 2010; Shirk et al., 2018). However, there have been few simulation studies to explore 

and understand the factors that drive animal movement and the performance of different 

connectivity modelling approaches (see Unnithan Kumar et al., 2022).  

Recently, Unnithan Kumar et al. (2022) developed a new agent-based movement simulation 

model that considers the landscape’s local resistance, the energetic cost of movement, 

directional bias towards a destination, autocorrelation, scale effects, and mortal ity risk. This 

new model, called Pathwalker (Unnithan Kumar et al., 2021), has proven to be highly versatile; 

its ability to implement a broad range of different processes and their interactions in governing 

movement provides the opportunity to compare different models to gain important new 

information about their performance relative to known driving relationships. Pathwalker is 

designed to simulate movement paths across heterogeneous landscapes and offers predictions 

for movement density and landscape connectivity. It runs by a command line and requires 

Python 3, together with the basic NumPy and matplotlib packages.  

Our goal was to apply the simulation paradigm to evaluate the performance of various widely 

used connectivity algorithms and different analytical frameworks (patch-based vs. synoptic). 

The synoptic connectivity modelling approach seeks to produce spatially explicit predictions 

of movement rates for every location across the landscape rather than for a few source or 

destination patches (as in the patch-based approach (Khosravi et al., 2018)). Were simulated 

seven different movement mechanisms in Pathwalker software: energy, attraction, risk, energy-

attraction, energy-risk, attraction-risk, and energy-attraction-risk. Starting from these seven 

mechanisms, it was launched a series of 28 simulations combining different dispersal path 

lengths, path correlation, and source point configurations. Then, the predictions of the resistant 

kernels were compared, factorial least-cost paths, and graph theory connectivity modelling 

algorithms to these simulated movements. Considering the results of past research on related 

topics (Cushman et al., 2014, 2013, Unnithan Kumar & Cushman, 2022, Zeller et al., 2018), it 

we expected to find that, among the parameters varied in the simulation analysis, the choice of 

connectivity method would have the most significant impact on prediction accuracy, and that 

resistant kernel algorithms would have the highest correlation to simulated movement patterns 

(following Unnithan Kumar & Cushman, 2022). 
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5.1. Materials and Methods 

An implementation of three major steps of analysis were carried out: (1) development of a 

resistance surface and landscape map for modelling the movement of species across space; (2) 

connectivity calculation according to three different model predictions and calculation of 28 

simulation patterns of animal movement in Pathwalker software; (3) comparison of the 

connectivity metrics of the three models to the 28 simulated patterns of animal movement 

produced by the agent-based movement model Pathwalker (Github, last access 24/03/2023 - 

https://github.com/siddharth-unnithankumar/pathwalker). 

5.1.2. Base data 

The study area for these analyses was a region of 47,822.63 ha in Calabria (southern Italy, fig. 

5.1). A datasets provided by the European Union were used (Urban Atlas and Corine Land 

Cover) as base data. In brief, CLC and UA for 2018 were merged (most recent data available 

on 03.03.2023 link: https: // land.copernicus.eu) to obtain the highest level of detail for both 

https://github.com/siddharth-unnithankumar/pathwalker
https://land.copernicus.eu/


 

 

71 
 

 

urban areas and natural and semi-natural areas. See Lumia et al. (2023a) for more details on the 

study area and the base data preparation.  

 

Figure 5.2: In red are the boundaries of the study area, in green is the border of the Aspromonte National 
Park, which partially falls within the study area. 

For focal species, was selected a set of 10 small and medium-sized mammals that serve as 

umbrella species in a multispecies approach (Clauzel & Godet, 2020; Ersoy et al., 2019; 

Lechner & Lefroy, 2014; Opdam et al., 2006). The species were chosen considering past studies 

in the area (Modica et al., 2021; Lumia et al. 2023), paying particular attention to those 

protected by regional, national, and international laws (species list and laws protecting them, 

Tab. 2.1). However, there is a fundamental difference between these cited works, which aimed 

to identify a strategy to build a multi-species ecological network, and the work presented here. 

The construction of a multi-species ecological network is not the centre of gravity of this work. 

Therefore, it was not intended to use parameters that were directly referable to any particular 

species of the study area. What were done was to exploit the data on the 10 species to model 

one hypothetical species that had characteristics in the middle of the range of these 10 species, 
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which provides a measure of the central tendency of connectivity across life history space. With 

this approach, the hypothetical specie was used as a model for all subsequent tests. 

Data referring to the autecological characteristics of the species were obtained from the 

database produced by Boitani et al. (2002), which contains valuable information referring to: 

the maximum dispersal distance of each species moving in search of resources, the home range 

(minimum and maximum optimum values) and the level of affinity of the species with different 

land uses (Fichera et al., 2015; Modica et al., 2021; Lumia et al., 2023a; 2023b). Different 

weights were given to different infrastructures in terms of resistance to animal movement. 

Particularly, in the study area, the infrastructures are divided into: Fast transit roads and 

associated land (code 12210 Urban Athlas); Other roads and associated land (code 12220 Urban 

Athlas); Railways and associated land (code 12230 Urban Athlas). 

5.1.3. Pathwalker simulations 

It was applied a simulation framework to evaluate the predictions of the different analytical 

approaches and connectivity models against a range of known pattern-process relationships 

implemented in the Pathwalker agent-based model (Unnithan Kumar et al., 2022a). Pathwalker 

is designed to simulate animal movements using a relatively low number of inputs. It uses 

resistance surfaces in its calculations, as other models do (McRae et al. 2008; Landguth et al. 

2011; Foltête et al. 2021; Unnithan Kumar et al. 2021a), but its algorithm takes into account 

parameters such as energy, attraction, risk, different autocorrelation thresholds, and movements 

directed to a destination (Unnithan Kumar et al., 2022a). In addition, Pathwalker takes into 

account the response of simulations at a multi-scale level on a given resistance surface. The 

algorithm calculates a set of paths by allowing the movement mechanisms to be functions of 

landscape resistance at different spatial extents around a focal point; density maps can obtained 

by aggregating these paths. In addition, Pathwalker was designed explicitly to operate in 

contexts similar to those in which models such as Circuitscape or models based on factorial 

least-cost paths and resistance kernels operate and thus be used to test the performance of these 

models, as was demonstrated in Unnithan Kumar et al., 2022b. Our analysis framework used 

the Pathwalker agent-based simulation model to produce a large number of instances of 

organism movement across the study area based on a range of parameters that then were 

compared to the predictions of graph theory, resistant kernel and factorial least cost path 

connectivity models. Various statistical analysis strategies were used such as analysis of 

variance and measured the levels of correlation between the models. 
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Using Pathwalker, were simulated movement patterns as a function of 7 different mechanisms 

(summarized in Table 5.1), which reflect different functional responses of movement to 

landscape resistance. 

Table 5.1: Pathwalker’s seven-movement simulation mechanisms summary. 

Mechanism n° Mechanism meaning 

1 

Energy: The random walk is unbiased, but the cumulative cost of 

movement across the resistance surface is measured, and the walk ends 

when a specified total cost has been reached. 

2 
Attraction: The walk responds probabilistically to the resistance surface 

values, with movement biased towards areas of lower resistance.  

3 

Risk: The random walk is unbiased but has a chance of ending at each tile, 

with a higher chance of ending at tiles with higher risk values (which are 

either derived from the resistance surface or provided by a separate risk 

surface). 

4 Combination of energy + attraction 

5 Combination of energy + risk 

6 Combination of attraction + risk 

7 Combination of energy + attraction + risk 

As for the mechanism, 1 energy, it simulates the movement of an animal in an unfamiliar area, 

exploring.  

When an animal is searching for resources, it is exploring a new area to find resources; 

therefore, it moves through the territory in a completely random manner. By choosing a path 

with little affinity, it will continue to expend energy until it runs out without achieving its goal. 

The mechanism simulates a probability based on the maximum dispersal distance an animal 

tends to reach during dispersal. Consider, for example, a dispersal distance of 2 km (as in our 

case) ascribed by wildlife expert (Boitani et al. 2003). The energy cap that was used is that 

which is required on average in our pixel matrix to travel 2 km (considering the distribution of 

resistances in the matrix). When the energy cap is reached, the animal’s movement stops, 

indicating that, considering that the animal has expended energy and has not satisfied its needs 

(i.e., eating), it chooses to stop exploring and return to the area of origin. 

Mechanism2, attraction, on the other hand, considers whether an animal can distinguish which 

way is more convenient and, therefore, has the capacity to perceive convenience or danger. In 
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this case, the movement will still be random, but the walker’s choice to continue in a less costly 

direction will be more likely.  

The correlation factor, on the other hand, takes into account whether the animal tends to be 

more or less habituated, i.e., to follow the same path. 

Mechanism 3 is risk; it takes into account the increasing danger of death that an animal has by 

walking through certain areas rather than others. The walker who walks, for example, 2 m along 

a road will have a low probability of stopping his movement and thus dying. The walker who 

instead follows the path of the road for kilometres will have an increasing road kill probability. 

Risk can be derived from the resistance surface or provided by a separate risk surface; in this 

analysis, were used the resistance surface to provide the risk values. In fact, the concept of using 

risk only for certain spatial elements was criticized in Kumar. et al. 2022. In particular, a 

limitation in the approach used by standard connectivity models such as Circuitscape, resistant 

kernels, and factorial least-cost paths was highlighted. These do not account for many key 

drivers of animal movement. In addition, they consider the mortality risk to remain unchanged 

through different regions of the landscape and movement choice to occur at a single spatial 

scale. Therefore, the decision to use resistance as a risk surface comes from the need to consider 

this factor in any region of our examination area The remaining four mechanisms implement 

different combinations of the first 3 to implement more complex kinds of movement resulting 

from multiple mechanisms acting simultaneously. Specifically, mechanism 4 is a combination 

of energy and attraction, mechanism 5 is a combination of energy and risk, mechanism 6 of 

attraction and risk, and mechanism 7 of energy, attraction and risk. The possibility of combining 

these mechanisms with each other is a major strength of this work, it allows simulation of 

movement based on resistance, energy (distance limited by cost but not direction) and risk 

(mortality risk is spatially explicit). All three are likely to affect real animal movement and 

being able to model each and in combination is a major advantage of the Pathwalker model and 

a strength of the simulation experiment presented here. 

These seven mechanisms were used to conduct the simulations, but were considered three other 

factors before launching the process. The first is the distribution of source points. Were 

simulated all mechanisms using the 320 points identified by Graphab (patch-based approach) 

and the 3640 that were probabilistically generated with density proportional to habitat 

suitability (synoptic approach).  

The second element were taken into account was directionality (Unnithan Kumar et al., 2022a). 

In particular, Pathwalker provides an autocorrelation parameter for determining the directional 

bias of the movement. This parameter ranges from 0 to 1 and is a factor that determines the 
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tendency of the simulation’s walker to continue along its present direction. The default value is 

0, an uncorrelated random walk. Suppose we increase the value of the autocorrelation 

parameter. In that case, our walk becomes more correlated, with the extreme case of 

autocorrelation = 1 resulting in a straight line (a path in which the walker continues in the same 

direction). We used 0 and 0.25 as autocorrelation values for our simulations. In this case, since 

we have an autocorrelation value = 0.25, the nine movement probabilities are scaled to sum to 1 

− 0.25 =0.75 instead of calculating to 1, and there will now be an added probability of 0.25 for 

continuing in the same direction as the previous step. Changing this parameter has an effect on 

the distance travelled, we bring as an example the results of the Pathwalker simulation launched 

on mechanism 1 with an energy value of 100,000 for both scenarios of 0 and 0.25 

autocorrelation values. We obtained that in the simulation with a 0.25 autocorrelation value, 

the distance travelled is 3198.08 ha, superior to the simulation with a 0-autocorrelation value. 

This is expected considering that the higher the autocorrelation value, the greater the chance 

that the animal will cover a route that is not the shortest (the one with the lowest cost) in its 

movements. Were therefore concluded that increasing the autocorrelation factor affects the 

distance covered, leading to an increase. 

The third element were considered was the energy factor, which refers to the total used energy 

accumulated from the walk in the simulation. Were used 100,000 and 1,000,000 as energy 

values. Energy is only for one of the mechanisms. This combination of mechanisms, 

directionality and energy parameters produced 14 different simulations for the patch-based 

approach and 14 simulations for the synoptic approach. In total, were obtained 28 different 

movement simulations in the same study area. Pathwalker’s output is a density map of the entire 

study area. The simulation originates not from patches but from source points. In the patch-

based approach, there is a source point within the patch for each patch. In the synoptic source, 

points are located across the landscape with a density and distribution proportional to suitability. 

The simulation will start independently of each individual source point and will be repeated a 

certain number of times (steps), 1000 in our case. Repeating the 1000 steps for each source 

point will give the density map. In total, we have a density map for each of the mechanisms 1 

to 7. In fig. 5.2 we see as an example mechanism 7 density surface map produced by Pathwalker, 

this map indicates where the probability of species movements its more likely to happen, and 

where is less likely to. 

A raster correlation analysis was then used to compute the pixel-wise correlation between each 

of the 28 simulations with the predictions of Graphab and UNICOR metrics (IIC, BC, PC, F, 

patch-based kernels 50km, 100km,150km threshold, path 50km, 100km, 150km threshold, 



 

 

76 
 

 

synoptic kernels 17km threshold and synoptic path 35 km threshold). The decision to use these 

threshold values derives from a number of considerations which will be explained below.  

In Pathwalker, energy is the budget of movement. It is related to the number of steps, but not 

all are equally costly given the heterogeneous resistance layer. The energy of the path is the 

sum (step*cost). This is directly linked to dispersal capacity, which is the expected dispersal 

distance in steps (mean cost of resistance surface * the number of steps in the path) = energy 

budget, or number of steps = energy budget / mean cost of resistance surface. The value of 2 

km is equivalent to an energy budget of 17k given a mean resistance of 85. This is true since 

mean resistance is 85, and pixel size is 10, then a 2km distance will equal 85 cost units average 

per pixel * 200 pixels in 2km = 17k cost units for 2km. We used 2 times this amount, so 35k, 

for factorial least cost paths (fcp) given that it has been shown that twice the dispersal distance 

is needed to connect two points by fcp to have kernels overlapping in resistant kernel analysis . 
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Figure 5.3: Representation of the Pathwalker density surface map for mechanism 7. Shades of light blue 
indicate areas where movement is more likely to occur, and dark blue shades areas where movement is less 
likely.  

The 50, 100, and 150k thresholds were used for the centroid-based analyses, and not for 

synoptic analyses. For centroid-based analyses, a more significant movement threshold is 

needed to reflect that organisms are not limited to a single animal per patch that starts from the 

centre. A higher dispersal threshold reflects that connectivity is broader than movement limited 

to the biological dispersal limits from a centroid location (given realistically animals move from 

all the locations they exist in and not just from a centroid of a patch, this is one of the reasons 
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why we strongly favour the synoptic approach, but given the centroid approach is widely used 

in applied conservation science we needed to evaluate and compare). We chose the three 

thresholds of 50, 100, and 150 to reflect a range of uncertainty in how movement from centroids 

would translate to patterns related to movement synoptically from occupied locations with the 

biologically based dispersal threshold. 

5.1.4. Graphab analysis 

The next model prediction we used was based on graph theory (Urban and Keitt 2001), 

implemented in the Graphab software (Foltête et al. 2021), which models the ecological system 

as a network constituting a series of nodes and arcs. Before the graph network modelling, we 

first developed a resistance model based on the10 focal species. Specifically, by referring to the 

data collected by Boitani et al. (2007), we assigned resistance values to each land use category, 

a dispersal distance, and a minimum patch size (see Lumia et al. 2023a). The resistance values 

were scaled to range from 1 (minimum resistance to movement) to 100 (maximum resistance) 

while the dispersal distance was specified as 2 km, taking into consideration the minimum 

dispersal distance of each of the 10 species. The minimum patch size of 2 ha was based on the 

concept of the home range (Boitani et al., 2002), defined as the minimum portion of territory 

needed for an animal to fully perform its vital functions (availability of resources, finding 

shelter, etc.). Areas with a surface area greater than or equal to 2 ha were considered nodes in 

the graph network; remaining areas with a surface less than 2 ha were only regarded as structural 

elements influencing the passage of species. We considered possible patches only as areas with 

maximum affinity (resistance level = 1) and an area equal to or greater than 2 ha (fig. 5.3). 

Areas with high affinity but less than 2 ha were not chosen as patches for the graph theory 

analysis but were considered stepping stones useful for species movement (Lynch, 2019; Saura 

et al., 2014). Then we calculated the connectivity metrics (table 2) Integral Index of 

Connectivity (IIC), Probability of Connectivity (PC), Flux (F), and Betweenness Centrality 

(BC) (Foltête et al., 2012; Freeman, 1977; Orjan Bodin & Santiago Saura, 2010; Saura & 

Pascual-Hortal, 2007). To enable comparisons in subsequent steps, we sampled the values of 

each graph theory index at the node level. In this manner, we constructed the multispecies 

ecological network of the entire study area among the nodes represented by these patches. 
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Figure 5.4: Patches within the study area, identified with a minimum area of 2 ha with the support of the 
Graphab software. 

Table 5.2: Connectivity metrics calculated in this work. 

Connectivity metrics Ecological meaning References 

Integral Index of 

Connectivity 

The probability that individuals 

randomly located in the landscape 

within a patch can access each 

other. A higher value indicates 

greater connectivity. 

(Freeman, 1977) 
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Probability of 

Connectivity 

The probability that two random 

points in the landscape fall within 

interconnected habitat areas (i. e., 

reachableto each other). Values 

are between 0 and 1. 

(Saura & Pascual-Hortal, 

2007) 

Flux 

For the focal patch i : sum of the 

capacity of patches other than i 

and weighted according to their 

minimum distance to the focal 

patch through the graph. This sum 

indicates the potential dispersion 

from the patch i or, conversely, to 

the patch i. 

(Foltete et al., 2012a, Foltete 

et al., 2012b) 

Betweenness Centrality 

The sum of the shortest paths 

through the focal patch, each path 

being weighted by the product of 

the connected patches’ capacities 

and their interaction probability.  

(Bodin & Saura, 2010) 

5.1.5. UNICOR analysis 

We used UNICOR (Landguth et al. 2012) to implement factorial least-cost paths (Cushman et 

al. 2009) and resistant kernels (Compton et al. 2007) analyses of connectivity across the study 

area. For the operations in UNICOR, we used the same focal species data used in the previous 

computations. Therefore, we used the same resistance surface as in the Graphab analysis, with 

resistance values ranging from 1 to 100 (high landscape permeability and barrier to movement, 

respectively).  

It was necessary to indicate source points for analysis, understood as the points at which animals 

initiated their movements. To explore the sensitivity of results to different paradigms of 

connectivity analysis, we defined two different sets of source points. In the first case (patch-

based approach), we used as source points the same nodes that made up the network in Graphab, 

using these as source points to compute both the factorial least-cost paths and the resistant 

kernels analysis. For the patch-based factorial least cost path and resistant kernel analyses, we 

chose a range of dispersal distances (50 km, 100 km, and 150 km) to reflect the range of 

mobility in native species and the uncertainty in this mobility. In the second case (synoptic 

approach), we used a 10 times higher number of points (320 for patch-based, 3640 for synoptic) 

that were probabilistically generated with density proportional to habitat suitability. For the 

synoptic UNICOR analysis, we used two different dispersal thresholds. The first threshold was 

set at 17 km (cost units) for kernels analysis since this is the value expected considering the 

cost distance needed to traverse 2 km in geographic space (threshold consistent with that used 

in Graphab) based on median resistance in the landscape. The second threshold was 35 km (cost 
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units) for the factorial least-cost paths. We used a wider threshold since, as Cushman et al. 

(2013b, 2014) demonstrated, the factorial least-cost paths calculation is pairwise and requires 

twice the distance threshold for points to be linked by paths as points to be overlapping in 

resistant kernels analysis. 

5.2. Results 

5.2.1 Analysis of Variance 

In table 5.3 we present the analysis of variance for the different simulations approaches .  

Table 5.3: Analysis of variance. For the different simulations approaches, in the table, we present the values 
of Degrees of Freedom (Df), Deviance (Sum Sq), Variance (Mean Sq), F-test for explained variance/residual 
variance (F value), F-test for statistical significance (Pr(>F)). 

Simulations Df Sum Sq Mean Sq F value Pr(>F) 

Mechanism 1 0.386 0.386 60.171 3.56e-14 *** 

Model 11 16.098 1.463 227.975 < 2e-16 *** 

Synoptic 1 6.737 6.737 1049.463 < 2e-16 *** 

Mechanism Model 11 0.726 0.066 10.283 < 2e-16 *** 

Mechanism:Synoptic 1 0.004 0.004 0.618 0.432 

Model:Synoptic 11 4.994 0.454 70.723 < 2e-16 *** 

Mechanism:Model:Synoptic 11 0.035 0.003 0.502 0.903 

As we can see the interactions between mechanism:model and model:synoptic are highly 

significant, while those between mechanism:synoptic and the three-way interaction of 

mechanism:model:synoptic are not statistically significant . 

5.2.2 Main effect model boxplot 

The boxplot for the choice of connectivity model across all levels of other factors (Fig. 5.5) 

shows that the resistant kernel analyses have the highest correlation with the simulated 

movement patterns, with the synoptic kernels and the kernel50 having the highest median 

correlation. The synoptic factorial least-cost paths have a modestly positive correlation. 

The other path analyses have a median correlation close to zero. The connectivity metrics we 

calculated through Graphab environment all have median correlations less than zero, indicating 

these metrics’ generally poor predictive ability in explaining simulated movement patterns. The 

graph theory flux metric (F) has a wide range of values, which indicates that some combinations 

of other parameters lead to this metric having a stronger positive correlation with simulated 

movement density. 
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Figure 5.5: Boxplot for model across all levels of other factors 

The boxplot for the synoptic main effect compares correlations between simulated and 

predicted connectivity, across patch-centroid source points and 3640 source points located 

synoptically across the landscape with a density and distribution proportional to suitability. It 

shows that the synoptic source point analysis produces a higher average correlation with 

simulated movement across the levels of the other factors than the patch-based approach. This 

suggests that a synoptic distribution of source points in connectivity analysis produces more 

accurate predictions relative to the simulated movement processes. 

The boxplot of the main effect mechanism, which is the Pathwalker movement function 

parameter, shows little clear difference in the correlation strength with all medians in the same 

range. The upper quartile range of movement mechanism 1 (energy) is much higher than the 

other mechanisms, suggesting that some parameter combinations lead to higher correlations 

between Pathwalker simulations using movement mechanism 1 and predicted connectivity 

patterns. 

The boxplot for the bivariate interaction between synoptic and model shows substantial 

differences in the strength of correlation between simulated and predicted connectivity among 

models, depending on whether source points are based on patch-centroids or are synoptically 

located with a distribution and density proportional to suitability. In all cases, the correlation 

for the synoptic analysis is higher than that for the patch-based analysis. In some cases, this 

difference is very large, such as for flux (F) metric (change from negative median correlation 

to a positive median correlation of ~0.2), and also for the resistant kernel analyses, which 
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increase substantially, notably the synoptic kernels which uses the same large number of source 

points located synoptically proportional to suitability. 

From the analysis of the bivariate interaction between mechanism and model  we can ascertain 

differences in the strength of correlation between simulated and predicted connectivity across 

model types for each level of the Pathwalker movement type. The main result is that there is a 

strong difference in the performance of connectivity models, with resistant kernel analyses 

consistently producing higher correlations with the simulated movement patterns than other 

methods and with a much higher correlation between resistant kernel predictions and 

simulations produced using the Pathwalker movement mechanism 1 (Energy). Additionally, 

there is a substantially higher correlation for the flux metric for Pathwalker movement 

mechanisms 3 and 5 than the others. 

The analyses produced five main patterns of results. First and most importantly, the strongest 

correlations between simulated movement and connectivity predictions are for predictions 

made by resistant kernel methods (Fig. 5.6).  

 

Figure 5.6. Correlation between simulated movement density from Pathwalker (PW1 – movement mechanism 
1, PW2 - movement mechanism 2, PW3 - movement mechanism 3, PW4 - movement mechanism 4, PW5 - 
movement mechanism 5, PW6 - movement mechanism 5, PW7 - movement mechanism7) and predictions of 
different connectivity algorithms (PC – graph theory 3640, F – graph theory flux, IIC – graph theory 3640, 
BC – graph theory betweenness centrality, synoptic kernels – UNICOR resistant kernels with 3640 source 
points distributed proportionally to inverse of resistance with 17,000 cost distance threshold, synoptic path 
– UNICOR factorial least-cost paths with 3640 source points distributed proportionally to inverse of 
resistance with 34,000 cost distance threshold, kernel50 – UNICOR resistant kernels with 240 source points 
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at the centroid of patches used in the Graphab analyses with 50,000 cost unit dispersal threshold, kernel100 
– same as kernel50 but with a 100,000 cost distance threshold, kernel150 – same as kernel50 but with 
150,000 cost distance dispersal threshold, path50 – UNICOR factorial least-cost paths among 240 source 
points at the centroid of patches used in the Graphab analyses with 50,000 cost distance threshold, path100 
– same as path50 but with 100,000 cost distance threshold, path150 – same as path50 but with a 150,000 
cost distance dispersal threshold. These correlations are for Pathwalker settings 1 and 0 correlation of 
directionality. 

Second, the resistant kernel results were much more strongly correlated to the Pathwalker 

results for Pathwalker movement mechanism 1 than the other six movement types (Fig. 5.6). 

The other Pathwalker mechanisms have lower correlations. Third, the resistant kernel analysis 

using the same source points used as origin locations for the Pathwalker simulations 

outperformed those based on the synoptic distribution of source points placed in a density 

proportional to the inverse of resistance (Figure 5.6). Conversely, the analysis using the 

synoptic source points (3640 source points located in distribution and density proportional to 

suitability) had much higher correlations with the synoptic kernels and much higher correlations 

with all the kernels analyses generally than the “patch-centric” analyses (Fig. 5.7). 

 

Figure 5.7. Correlation between simulated movement density from Pathwalker (PW1 – movement mechanism 

1, PW2 - movement mechanism 2, PW3 - movement mechanism 3, PW4 - movement mechanism 4, PW5 - 

movement mechanism 5, PW6 - movement mechanism 5, PW7 - movement mechanism7) and predictions of 

different connectivity algorithms (PC – graph theory 3640, F – graph theory flux, IIC – graph theory, BC – 

graph theory betweenness centrality, synoptic kernels – UNICOR resistant kernels with 3640 source points 

distributed proportionally to inverse of resistance with 17,000 cost distance threshold, synoptic path – 

UNICOR factorial least-cost paths with 3640 source points distributed proportionally to inverse of resistance 

with 34,000 cost distance threshold, kernel50 – UNICOR resistant kernel with 3xxx source points distributed 

proportional to suitability with 50,000 cost unit dispersal threshold, kernel100 – same as kernel50 but with 
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a 100,000 cost distance threshold, kernel150 – same as kernel50 but with 150,000 cost distance dispersal 

threshold, path50 – UNICOR factorial least-cost paths among 240 source points at the centroid of patches 

used in the Graphab analyses with 50,000 cost distance threshold, path100 – same as path50 but with 

100,000 cost distance threshold, path150 – same as path50 but with a 150,000 cost distance dispersal 

threshold. These correlations are for Pathwalker settings 100 and 0.25 correlation of directionality.  

Fourth, the factorial least-cost path analyses produced correlations with the Pathwalker 

simulations that were much lower than any resistant kernels parameterizations. We found that 

the factorial least-cost path analyses have a low correlation with these simulated movement 

patterns. Finally, the results of our simulation study show that the graph theory metrics 

produced for patches using Graphab software had the lowest association with patterns of 

movement simulated with Pathwalker across all parameterizations tested in this study. Indeed, 

the correlations between graph theory metrics and simulated movement density were negative 

for nearly all graph metrics across almost all the combinations of parameterization. The 

synoptic Pathwalker analysis (3640 source points located in distribution and density 

proportional to suitability) changed somewhat with the Flux parameter from Graphab 

increasing to a significant positive correlation in many of the movement mechanisms (in 

particular, mechanisms 3 and 5). 

5.3. Discussion 

The most striking result of our simulation study is the consistently high performance of resistant 

kernel methods as predictors of patterns of simulated organism movements in comparison to 

the factorial least-cost paths and graph theory metrics. The kernel method was superior across 

all modelling mechanisms, correlations, and other parameters. It has the highest association for 

mechanism 1 which is an energy kernel, but the pattern is consistent across the other 

mechanisms which are not algorithmically similar to the resistant kernel approach. We expected 

this result because past empirical (Cushman et al., 2012; Zeller et al., 2018) and simulation 

(Unnithan Kumar et al., 2022) studies have found that resistant kernel methods are generally 

superior as predictors of organism movement patterns. This is likely because resistant kernel 

models are intended to represent the spatial incidence function (expected movement density) of 

movement rates and patterns for organisms starting the movement at the specified source points 

and moving up to a specified cost distance from that source point. This result suggests that 

studies that aim to predict the patterns of animal movement across the landscape as a function 

of landscape resistance should use resistant kernels analyses given their consistently higher 

performance than factorial least-cost paths (the present work and Unnithan Kumar et al. 2022) 

and graph theory (this work), and because they produce more accurate predictions of movement 
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density than circuit theory in all cases except when movement is strongly directed toward 

known destinations (Unnithan Kumar et al. 2022).  

The simulation approaches used in Unnithan Kumar et al. (2022) and in the present work 

provide a rigorous assessment of the performance of these various connectivity models across 

an extensive range of known movement relationships that collectively span much of the 

potential range of real organism movement. We believe the consistent superiority of resistant 

kernel predictions across this wide range of simulated movement characteristics should guide 

best practices in connectivity modelling work in the future. 

 The second important result we wish to highlight is that the resistant kernel results were much 

more strongly correlated to the Pathwalker results for Pathwalker movement mechanism 1. 

Positive correlation values towards Pathwalker mechanisms indicate good reliability in 

predictive terms of the analysed metrics, in contrast negative values indicate poor reliability. 

This is expected given that Pathwalker mechanism 1 is “energy,” in which the walker moves 

randomly and ends its walk once it reaches a limit of a specified energy budget. This is 

algorithmically analogous to the movement mechanism implemented in resistant kernels, which 

describe the probability distribution of movement from source points as a function of 

cumulative cost, which is conceptually and algorithmically very similar to the energy budget 

mechanism in Pathwalker. All other mechanisms of movement simulated in Pathwalker have a 

lower correlation with the resistant kernel predictions because they implement movement types 

that respond to landscape features differently than resistant kernels do. For example, the 

“attraction” mechanism (Pathwalker mechanism 2) simulates movement biased toward areas of 

lower resistance and away from high resistance in the neighbourhood surrounding the walker. 

This is a realistic mechanism for actual animal movement but is different from resistant kernels, 

which are purely energy attenuation kernels as a function of cumulative cost. 

Similarly, the risk mechanism (Pathwalker mechanism 3) correlates relatively less with 

resistant kernel predictions than the energy mechanism. This is expected since the risk 

mechanism is a spatially random walk with a stochastic termination as a function of the 

mortality risk (taken as the scaled inverse of resistance). One would imagine this would produce 

a movement-density surface similar to that produced by the energy mechanism. Still, the much 

weaker correlation suggests that this is not the case, likely because of the binary termination as 

a probabilistic function rather than a walker that continues until an energy budget is exhausted.  

The third interesting insight that emerged from our results is that the simulation that was based 

on a synoptic distribution of source points placed across the landscape in a density proportional 

to overall suitability (reflected by the inverse of suitability in this model) produced much higher 

correlations with resistant kernel connectivity predictions than Pathwalker simulations that used 
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the centroids of patches as source locations. Furthermore, the resistant kernel analyses using 

the synoptic source points had a much higher correlation with the Pathwalker simulations 

overall and with the simulations that used the same large pool of synoptic source points. This 

result tests the effect of the distribution and density of source points on connectivity analysis. 

Often past connectivity research has adopted a patch-based approach that has been criticized 

(e.g., Cushman et al., 2013b; Cushman & Landguth, 2012) as it does not reflect the functional 

connectivity of populations, which is driven by the combination of density and distribution of 

source points, the resistance of the landscape, and the dispersal ability of the species. Our results 

confirm this, showing a much stronger correlation between simulated movement and predicted 

connectivity in analyses that incorporated a “realistic” distribution of source points reflecting 

the gradients of habitat suitability (which are expected to be positively associated with 

occurrence probabilities and densities). This follows the observations of Cushman et al. (2012), 

who found that the location and density of source points have a strong influence on the 

predictions of connectivity models and suggested that analyses that  intend to reflect the 

functional connectivity of organisms must consider biologically realistic patterns of source 

point distribution and density, as well as realistic dispersal abilities and well -parameterized 

landscape resistance models. Indeed, some recent papers have suggested that the density and 

distribution of source points and dispersal ability often have a much larger influence on 

connectivity predictions than variation in resistance surfaces themselves (e.g., Ash et al., 2022). 

Another interesting element emerging from the results is that the correlations created between 

the factorial least-cost path analyses and Pathwalker simulations are much lower than any of 

the resistant kernel parameterizations. This is consistent with Unnithan Kumar et al. (2022), 

who also found much lower correlations between simulated movement patterns and the 

predictions of factorial least-cost paths than those of resistant kernels. The factorial least-cost 

path analysis maps the density of optimal (least-cost) routes among the network of source points 

following least-cost routes. Thus, it is explicitly destination directed and limited to optimal 

routes connecting the network of destinations. The Pathwalker model simulates realistic 

movement patterns incorporating energy, attraction, risk, interactions, and directional and 

destination bias. This provides a realistic and rich variety of movement patterns. The low 

correlation of factorial least-cost path analyses with these simulated movement patterns 

suggests that they do not accurately describe actual movement patterns, at least as represented 

in our broad agent-based simulations. However, factorial least-cost path analyses may still be 

helpful in localizing or optimizing movement corridors for conservation prioritization (e.g., 

Kaszta et al., 2018; Zeller et al., 2018b) or for predicting the location of movement through 



 

 

88 
 

 

narrowly constricted features such as locations where animal’s cross highways (e.g., Cushman 

et al. 2013a; 2014). 

Finally, the negative correlation values of Graphab calculated metrics found for almost all the 

combinations of parameters suggest that these metrics are very poor predictors of the actual 

movement density of organisms, at least when implemented in the patch centroid approach used 

here. Given the frequent and widespread use of graph theory metrics for connectivity and 

conservation planning, this is a significant result. Our results found that graph metrics 

calculated for patches across the landscape were poor predictors of the actual movement 

patterns across that landscape, simulated with an extensive range of realistic movement 

processes. This result should be confirmed and explored more fully with additional research to 

understand the full reasons for the observed poor performance of the graph theory metrics and 

conditions in which they may produce more accurate and robust results. We suspect that the 

main reason that the Graphab calculated metrics performed poorly in our analysis is that they 

are patch-based. At the same time, Pathwalker simulates functional patterns of movement 

across a landscape as a function of the density and distribution of source points, landscape 

resistance, and the dispersal ability of the organism. Thus, it produces a spatially varying 

prediction of functional connectivity through movement density in each pixel. The graph theory 

metrics are explicitly tied to a patch-centric perspective on landscape pattern and connectivity 

which is inconsistent with the gradient and scale-dependent processes that drive functional 

connectivity (Cushman & Lewis, 2010; McGarigal & Cushman, 2005). 

From the results as a whole, correlations with resistant kernel analyses and simulations were 

consistently higher than other connectivity approaches. We compared these relatively. This 

result is already important in itself, as it shows that the resistance kernel is the best of those we 

evaluated, across a broad combination of simulated comparisons. Indeed, our results are in line 

with the work of others that have also found strong relationships of resistant kernel to genetic 

diversity (Atzeni et al., 2020; Macdonald et al., 2019), and patterns of animal movement 

(Cushman et al., 2014). However, in some cases the best method did not have exceptionally 

strong similarity to simulated movement. This suggests that other factors may need to be 

included that are not in any of the connectivity algorithms we tested. These factors likely are in 

part included in how Pathwalker simulates movement and therefore we suggest the agent-based 

modelling approach also as an alternative to the algorithmic methods commonly used.  

However, the present work has some limitations, such as using simple land use maps. From a 

future perspective, we should start modelling connectivity using habitat maps since having 

information on land ecology that is as accurate as possible is crucial for the reliability of 

predictions. 
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5.4. Conclusions 

In work, we studied the relationships between different methods, parameterizations and metrics 

commonly used to assess landscape connectivity. We used simulation modelling to evaluate the 

reliability of movement pattern predictions obtained from different landscape connectivity 

models and strategies. Specifically, we used Pathwalker to simulate movements as a function 

of spatially varying mortality risk, energy, attraction and their combinations across different 

dispersal thresholds, different path correlation values and different energetic cost of movement. 

Using an extensive agent-based simulation, we confirmed that what most influences prediction 

accuracy is the choice of connectivity model used. Specifically, we found that resistant kernel -

based analysis using synoptic source point distributions is the most effective method tested in 

predicting simulated movement patterns, which is consistent with recent literature (Cushman et 

al. 2012; Zeller et al. 2018; Unnithan Kumar et al. 2022). Importantly, we found that graph 

theory metrics were poor predictors of the simulated patterns of organism movement. Another 

important implication of our study is that the agent-based simulation approach itself may often 

be the best analytical framework to map functional connectivity for ecological research and 

conservation applications, given its biological realism and flexibility to implement 

combinations of movement mechanism, dispersal threshold, directional bias, destination bias 

and spatial composition of source locations for analysis. 
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6 A proposal for a Multispecies Ecological Network for the Reggio Calabria 

metropolitan area 

6.1. Introduction 

This final chapter presents a method for implementing an ecological network of the study area 

based on fully exploiting the strengths of circuit theory, graph theory, resistant kernels, and 

Pathwalker simulations. In fact, from what has been pointed out in the previous chapters, each 

approach has strengths and weaknesses. For example, circuit theory, resistant kernels , and 

Pathwalker simulations explicate their effectiveness by providing maps that highlight in the 

form of higher or lower intensity of movement flow the tendency of animals to cross different 

areas of the landscape (Foltête, Clauzel, et al., 2012; McRae et al., 2008; Unnithan Kumar & 

Cushman, 2022b). On the other hand, graph theory, which lacks this potential, nevertheless 

provides the possibility of assigning weight to patches and corridors (assuming them as nodes 

and links), thanks to a whole range of connectivity indices, which is lacking in the previously 

described approaches. 

Moreover, two additional aspects were analysed and put into practice to define an effective 

multispecies ecological network of the study area. In the first aspect, a detailed habitat map was 

defined and implemented based on direct surveys and spatial analyses. This approach made it 

possible to have an accurate and current view of biodiversity in the study area. This was done 

to overcome the limitations of using a land use map (e.g., CLC and UA) with insufficient 

geometry and thematic resolution. As stated by several studies, LULC maps are one of the 

common input data to build ecological networks (An et al., 2021c; Gurrutxaga et al., 2010; 

Mackovčin, 2000). However, using these maps is less effective than habitat maps in conserving 

biodiversity (Tomaselli et al., 2013). Since ecological networks are implemented with the 

primary purpose of biodiversity conservation (Tillmann, 2005; Žák et al., 2020; R. Zhang et al., 

2021), the use of habitat maps improves our output and adds high value in achieving the 

purpose. 

On the second aspect, an in-depth examination of the faunal species occurring in the study area 

and their autecological requirements was provided. The selection of the faunal species was 

carried out with the help of a local wildlife expert. A species-by-species analysis was carried 

out to determine each species' needs and then isolate a set of requirements that can meet the 

necessities of all the species in the group. More details on this aspect will be presented in section 

6.2.2. 
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6.2. Materials and Methods 

The study area analysed in this chapter, falling within the boundaries of UA 2018, includes 13 

municipalities in the metropolitan city of Reggio Calabria, as described in previous chapters  2-

5. The approach we used to implement the Multispecies Ecological Network, which we present 

here, was divided into 5 phases: 1) Habitat mapping through field trips and direct data collection 

organised as phytosociological and vegetational surveys. 2) Collection of information on the 

autecological characteristics of focal species (as discussed in Chapter 1) through the 

involvement of an expert of the local wildlife (direct surveys in the study area) and literature 

search (Boitani et al., 2002b, 2003; Ciofi & Chelazzi, 1991; Gent H., 1993; Glandt D., 1986; 

Griffiths R.A., 1995; Lelièvre et al., 2012; Schulte et al., 2007). 3) Implementation of the 

Multispecies Ecological Network and calculation of connectivity indices. 4) Improvement of 

the network according to a defragmentation scenario aimed at upgrading the connections 

between the different ecological network components to achieve a more robust network. 5) 

Analysis of the geometric and ecological characteristics of the implemented networks by 

comparing the indices calculated in the previous steps. 

6.2.1. Habitat mapping 

The habitat mapping has been implemented in the framework of a research project  involving 

the Department of Environment and Territory of the Regione Calabria, the Department of 

Agriculture of the University of "Mediterranea" Reggio Calabria, and the Department of 

Biology, Ecology and Earth Sciences of the University of Calabria, as part of the Action 

Programme Axis 6 (Protection and Enhancement of the Cultural Environmental Heritage) of 

the Region of Calabria. The project has aimed to implement a "Nature Map System" for the 

entire territory of the Calabria region https://www.isprambiente.gov.it/it/servizi/sistema-carta-

della-natura/cartografia/carta-della-natura-alla-scala-1-50.000/calabria). The "Nature Map 

System" project moves from a previously shared activity between the same entities aimed at 

monitoring species and habitats of the Natura 2000 Network of the Region of Calabria 

(https://www.eea.europa.eu/t hemes/biodiversity/natura-2000, last access 10 November 2023). 

Among its objectives is creating a Habitat Map, which Calabria currently lacks, as a critical 

knowledge tool to highlight the natural values and territorial vulnerability. 

The goal of creating the habitat map was pursued ranging from strategic planning to the final 

construction of the habitat map in Calabria. The work was organised as follows:  

1) Participation in practical field training with the research project group to identify a 

modus operandi unique to the entire work group. 

https://www.eea.europa.eu/t%20hemes/biodiversity/natura-2000


 

 

92 
 

 

2) Field trips and phytosociological, photographic, and vegetation surveys.  

3) Creation of a database for each of the surveyed habitat areas. 

4) Photointerpretation of satellite images, polygonisation, and habitat map code 

assignment (see annex 1). This phase made it possible to identify habitats by photo-

interpretation where it was not possible to carry out a field survey. 

5) Identify among the software tools available in the literature the best set to catalog, 

process, and organise data collected in the field. We chose to use Qgis and ArcGisPro 

to polygonise the new habitat map and assign a habitat code to each polygon. The 

attribution of habitat codes was based on a new legend, purposely created for this map. 

In this context, the EUNIS legend was of great help in the attribution of habitat codes, 

from which we took our cue, modifying it where necessary in order to truthfully 

represent the habitats of Calabria. Codes were assigned to polygons by reference to data 

collected in the field and those deduced by photointerpretation. 

The minimum mapping unit (MMU) was assigned at 1 ha, in order to include small but 

important habitats in the analysed area. 

A range of software was reviewed, including Google Earth Pro (GEp), Google Maps, Google 

Photo, QGIS, ArcGisPro, and Excel, to organise, visualise, and process the data necessary for 

the realisation of the habitat map. At first, by analysing satellite images in GEp environment, 

we attributed georeferenced points in KML format containing the habitat code according to the 

habitat map legend. The legend consists of 134 habitats (134 For the entire territory of the 

Calabria region, southern Italy) divided into 8 macro-categories; our study area contains 72 

habitats that fall into 7 of these categories (see annex 1). To make the habitat identification 

process more effective, we performed a diachronic analysis on GEp satellite images through 

the Historical Imagery tool (https://support.google.com/ earth/answer/148094?hl=en - last 

access on 13 November 2023). This tool allows the user to go through a time series of satellite 

images that helped us to detect vegetation characteristics such as leaf fall or wildfire occurrence, 

enhancing the ability of habitat identification. 

After this first step, a congruous number of field surveys (at least one for each detected habitat) 

were performed to validate the data and to check areas that highlighted criticism during the 

previous step. Phytosociological survey according to the Braun-Blanquet numbering system 

(Braun-Blanquet, 1921), collection of samples of dubious plant species for herbarium analysis, 

and photographic habitat survey by geo-referenced photos were performed during the field 

surveys (Figg. 6.1-6.2). Here, data were collected referring to each species present in the survey 

area, the area occupied as a percentage of each species, the primary habitat , elevation, slope, 

aspect, land cover, coordinates, survey number, survey surface area, height of the different 



 

 

93 
 

 

layers (Trees, shrub and or herbaceous layers) (Fig. 6.3, see also annex 2).  The photographic 

surveys were entered into the Google Photos library and later viewed on Google Maps to check 

for errors in the placement of GNSS coordinates (Fig. 6.2). 

 

 

Figure 6.1- Topside, some moments of compiling phytosociological sheets on coastal habitats. At the 

bottom are some helpful detailed observations for species recognition in hilly (left) and mountain 

(right) environments. 
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Figure 6.2 – Projection on Google Maps of geo-referenced photographic surveys to check the 

reliability of coordinates in frames 575, 576, and 577. 

Polygonation of the territory falling in the study area was carried out, considering the points 

attributed through the photointerpretation and the field surveys. The processing phase was 

carried out in the QGIS and ArcGisPro environments. In addition, based on the ground truth 

obtained through field surveys, we organised the attribute table of the vector data, which 

contains primary habitat, secondary habitat, and percentage occupied by the latter concerning 

the former.  
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Figure 6.3 – Example of a field sheet used to collect phytosociological survey data. 

6.2.2. The Multispecies Ecological Network 

In the following paragraphs, we present the work that led to the construction of the ecological 

network. This went through a series of three steps. The first step aimed to build a network by 

exploiting graph theory and thus obtain a set of connectivity indices and spatialisation into its 

canonical components of patches and corridors. In the second step, we used Pathwalker 

simulations to obtain a surface density map that spatialises different degrees of probability of 

species movements within the study area. This process allows to exploit the movement model 

of resistant kernels and, in addition, to consider further factors such as auto-correlation factor, 

energy, risk and attraction (see chapter 5 for more information on these factors). In the final 

step, we put together the strengths of the first two to obtain the final network, describing all the 
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work that was done to make the predictions as realistic and accurate as possible. The ecological 

network that we present here has been implemented, bringing together the strengths of the 

models we studied in the previous chapters. The first major limitation we wanted to overcome 

was related to the use of land use maps. For this reason, as said in the previous paragraph, we 

decided to use a habitat map and take full advantage of its potential. In fact, building the network 

started from realising the habitat map, where the features would have been carefully considered. 

We, therefore, decided to produce the habitat map at the detail scale, with an MMU of 1ha. The 

choice to consider the above-mentioned MMU is due to the need to protect habitats that often 

occupy areas of about 1 ha and are of fundamental importance for the biodiversity of these 

places (Di Sabatino et al, 2013; Keijl et al., 1991). In fact, the field surveys carried out to create 

the habitat map enabled us to identify small habitats such as those included in code 22.4, 

freshwater lakes and ponds with vegetation (see annex 1). We have therefore observed that even 

very small habitats, such as ponds, have high importance for some species of amphibians (e.g., 

Rana dalmatina). This amphibian, which is one of those that spends less time in watercourses, 

only needs them in the phase of its life when it needs to reproduce, and for this purpose even 

pools of water smaller than 1 ha are sufficient (Sun life, Rana dalmatina: 

http://vnr.unipg.it/sunlife/specie_animale-dettagli.php?id=31). Other species, such as 

Bombinia pachypus, are often associated with watering holes found with high frequency in sub 

nitrophilous grassland or extensive crop habitats (habitat map codes 34.8m and 82.3, 

respectively), and spend entire generations in these places (Glandt et al., 1986; Steinfartz et al, 

2007). The choice of parameters like dispersion, affinity, and home range is a step of extreme 

importance for the realisation of a robust ecological network. These were identified, evaluating 

each habitat on a case-by-case basis concerning each single species. For each habitat, one to 

two representative species have been chosen as focal species. A total of 18 species have been 

selected (see annex 3, values of resistance were assigned with a combination of literature and 

expert opinion; Ciofi & Chelazzi, 1991; Gent, 1993; Glandt, 1986; Lelièvre et al., 2012; 

Griffiths et al., 1995; Steinfartz et al., 2007), and their autecological characteristics have been 

used to build the EN. First of all, we consider the affinity of each selected species with all the 

habitats of the study area. A scale of 5 class values, ranging from a minimum of 0 and a 

maximum of 100, has been provided based on an expert opinion as follows:  

I. 0 → no resistance;  

II. 25→ low resistance;  

III. 50 → medium resistance;  

IV. 75 → high resistance;  

http://vnr/


 

 

97 
 

 

V. 100 → maximum resistance (the barrier).  

For the assignment of the resistance class ‘’0’’ similarly to what we did in Chapter 2, we also 

considered a factor expressing vegetation vigour, the VFC index. This was obtained from 

multispectral Sentinel-2 images, data, which are constantly updated over time with intervals of 

1-2 days. At this point, for each land use to which the expert had given resistance 0, and which 

also had a VFC value greater than 0.6, the resistance value of 0 was retained, where instead the 

VFC value is less than 0.6 a value of 25 was assigned. Each habitat with a value of 0 for at least 

one species has been selected as a patch. 

The approach we used was based on a multi-species ecological network. What we did was to 

identify the needs of all species in the study area to create a network, weighted in such a way 

as to meet the needs or at least the minimum needs of all the selected species. We therefore did 

not create many networks for each individual species and then join them together, but rather 

created a single network from the beginning. Since the one proposed in this research is an 

effective multispecies approach, we assigned a resistance value for each habitat identified and 

with reference to all focal species considered. That means each habitat can assume one or all of 

the five provided R-values, comparing them to the focal species’ requirements. To ensure that 

all potential species were considered for each habitat, the minimum resistance value was 

selected from among all the suggested R-values to build the EN’s connection. Therefore, each 

identified habitat received the minimum R-value according to the matching requirements with 

all the considered focal species. 

The approach we used can be better understood in the following example, taking Habitat 25.4 

(see annex 3) as a reference. Following the species requirements, we have minimum resistance 

for Bufo bufo (R = 0), medium resistance for Salamandrina terdigitata (R=50), and maximum 

resistance for Hierophis virdiflavus (R=100). The resistance value we will select is the 

minimum, corresponding to 0 for Bufo bufo. With this approach, we ensure that all habitats that 

have maximum relevance for even one species are considered, none excluded. This approach 

was applied to each habitat we mapped in the study area until all resistance values were 

assigned. 

To establish the maximum dispersion value, we went through a number of considerations. The 

maximum dispersion value was set at 1000m. According to what we have specified above, some 

species tend to spend their entire life cycle, and entire generations of individuals, without 

moving from the patch where they were born (Ciofi & Chelazzi, 1991; Gent, 1993; Glandt, 

1986; Lelièvre et al., 2012). Of the species that we selected, all the amphibian and reptile species 

(e.g., Hierophis virdiflavus, Ealphe quatuorlineata, Rana italica) that have a maximum 
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dispersal distance of 100 m, have this stationary behaviour within patches. On the other hand, 

the different species we considered (e.g., Mustela putorius, Sciurus meridionalis, Martes 

martes) have dispersal distances of 1000 m or more; therefore, using 1000 m will set a threshold 

that will be possible to cross for each species. All these considerations were of key importance 

in setting parameters and application graph theory and Pathwalker simulations that we will 

describe in the following steps. 

6.2.2.1. Graph theory network analysis 

Once we fixed the number of species, the minimum patch size, the maximum dispersal 

threshold, and the resistance to the movement of each habitat, we used Graphab 2.8 software to 

exploit the principles of graph theory and perform an analysis that will serve as the first step 

for the final network described in the following section (§ 6.2.2.3). In order to apply graph 

theory to landscape ecology, we had to make a number of evaluations on previously acquired 

data. First, the resistance values, identified as described in the previous paragraph, have been 

added to the attribute table of habitat map vector type data. Finally, a rasterization allowed us 

to obtain a resistance surface as raster-type data. This step was performed using a square pixel 

of 2.5m to maintain a high level of detail and not lose the information of smaller elements such 

as roads. Each pixel was assigned a resistance value, expressed on a scale of 5 resistance levels  

(see annex 3), as explained in the previous paragraph. This input was entered into Graphab, 

which simulates the possible movements of the selected animal by exploiting circuit theory (An 

et al., 2021; McRae et al., 2008). In order to run the simulation, we had to indicate the habitat 

considered as patches, the resistance to the movement of each habitat  (see previous paragraph) 

and the energy budget (as explained in chapter 5) available for the walker. The simulation starts 

with the pixels we classified as patches. From there, the movement continues following the 

principle of the least coast path (Wang et al., 2022). This implies that the walker in the 

movement follows the adjacent pixels with the least resistance value. At each step from one 

pixel to another, depending on the resistance cost of the pixel itself, the walker consumes energy 

and the movement stops when the given energy cap is exhausted or when a patch is reached 

(Foltête et al., 2021a). A connection (as a poly-line type vector file) is identified using the least 

cost path technique in the latter case (Foltête, 2019). For the reasons we explained in the 

previous section, we considered a maximum dispersal distance of 1000m.  

Obtained patches and least cos paths, we calculated a set of connectivity indices. This operation 

was performed within the Graphab 2.8 software environment, which exploits graph theory to 

assimilate node patches and least cost paths to graph links. We calculated the indices IIC, H, 

BC, F and PC, whose meaning and description we reported in Chapter 2 (Tab. 2.2). 
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6.2.2.2. Pathwalker simulations 

In the second step, carried out during the period abroad in the U.S. with the collaboration of the 

School of Forestry Department of Northern Arizona University, we used the Pathwalker 

software (Kumar et al. 2022) to recreate a simulation of animal movements in the network. In 

this work, as outlined in Chapter 5, we have demonstrated the validity and versatility of this 

software when it comes to simulating movements by taking into account a large number of 

variables (Lumia et al., 2023; Unnithan Kumar & Cushman, 2022). Pathwalker, using the same 

input raster data that we used for Graphab, similarly allows us to simulate movements using the 

walker’s energy mechanisms and the least cost path principle but, in addition, allows us to 

consider other variables such as attraction, risk, and autocorrelation factor (Kumar & Cushman, 

2022b). The result of this operation produces a density surface map (Fig. 6.5) that expresses the 

probability of an animal crossing a specific portion of the territory (as explained in Chapter 4). 

As an example, considering only the energy mechanism, we will have a symmetrical movement 

probability between two adjacent pixels, so movement from an area of higher resistance to one 

of lower resistance or the opposite will be considered neglected. Instead, this variable is 

considered in the simulation by including the attraction mechanism, where a higher probability 

will be given for the animal to move from an area of higher resistance to one of lower resistance, 

as explained in Unnithan Kumar & Cushman (2022). In addition, by including the risk 

mechanism, we consider another variable, so with each additional step that the animal moves, 

the probability that its movement will stop increases relative to the risk surface crossed. In 

addition, considering risk in the calculation allows us to overcome a limitation present in most 

common energy-based simulation models; they assume the mortality risk to remain unchanged 

through different regions of the landscape and movement choice to occur at a single spatial 

scale. 

Last, we considered an autocorrelation factor. This parameter expresses the tendency of the 

walker in the simulation to either proceed along a straight line or to change direction. This adds 

a realistic factor considering that animals in nature tend to fol low the same path most 

conveniently, in a habitual manner, and to change direction to explore new areas (Dray et al., 

2010; Gibbs, 1998; Zeller et al., 2014).  

We then set the parameters for the simulation. The maximum dispersal distance was set at 1000 

m for the reasons explained in the previous section. However, unlike Graphab, where the 

walker’s movement starts from patches established a priori, the starting data for the movement 

is a vector file of points. We used a synoptic approach, using a number of points 10 times higher 

than the number of patches, which were probabilistically generated with density proportional 

to habitat suitability. This approach, as explained in Chapter 3, was used because it gives more 
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realistic predictions of animal movement patterns.  Following when found in studies (Dray et 

al., 2010; Gibbs, 1998; Zeller et al., 2014), the autocorrelation value, which can be set between 

0 and 1, was set to 0.5, so the animal at each step will have a 50% chance of continuing along 

the same direction or changing. The density surface map obtained, showing the areas that are 

most likely to be travelled by the Pathwalker, will be used to obtain the corridors of the final 

ecological network, as we will explain in the following paragraph. 

6.2.2.3. Ecological Network implementation 

In the final step, we put together the strengths of the first two. First, we kept Graphab’s network 

of nodes, LCPs and connectivity indexes. Next, we used the Pathwalker density surface map to 

identify corridors. In fact, as we showed in Chapter 4, Pathwalker is superior in producing maps 

that indicate the probability of species movements. However, this does not return a spatial 

distribution of network elements in its canonical components of patches and corridors. For this 

reason, the patches identified in the previous section (§ 6.2.2.1) via Graphab were retained. 

Conversely, to obtain corridors a 100m buffer was created around Graphab LCPs and used to 

crop the Pathwalker density surface map (Fig. 6.5). In this way we obtained a final network 

(Fig. 6.6) composed of patches on which it was possible to make quality considerations thanks 

to a series of connectivity indices (Fig. 6.7-6.8) and corridors that do not simply express the 

least-cost pathway but, thanks to Pathwalker simulations, it is possible to determine which of 

these are highly effective in promoting movement and which merely meet the minimum 

requirements to allow movement. 

Once the network elements and connectivity indices were identified, all operations were 

repeated a second time within a defragmentation scenario in a way similar to what was done in 

the defragmentation scenario in Chapter 2. Here we analysed the first network obtained, and 

where connectivity problems were found, we assumed planning interventions through green 

bridges over roads, renaturation over areas altered by agricultural activities or abandoned, green 

tree lines in areas near urban parks or gardens, and green underpasses near elevated roads. These 

types of interventions are recognised in the literature for their ability to create connections 

where man-made areas meet natural ones (Carr, 1998; Clevenger & Wierzchowski, 2006; 

Gurrutxaga & Saura, 2014; Huck et al., 2010; Yu et al., 2012). This has the result of reducing 

the effects of fragmentation, increasing genetic and resource exchanges, and allowing animals 

to cross what may otherwise be barriers. The benefits of these interventions are in terms of 

protecting biodiversity and having long-term positive effects on the economy and safety of both 

animals and humans (Tarabon et al., 2022a). Indeed, interventions such as green bridges and 
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green underpasses, for example, allow animals to cross roads safely, reducing roadkill and 

damage to people, infrastructures and vehicles. 

6.3. Results 

Here, we present the main results obtained from implementing the ecological network (EN1) 

and the same EN after the defragmentation interventions (EN2). 

In both the scenarios (i.e., EN1 and EN2), a total number of 1909 patches were identified. This 

is expected since our defragmentation interventions aimed not to add new patches but to connect 

the existing ones. In Tab.6.1, we summarised the main properties of the patches.  

These vary in extent from the selected minimum area of 1ha to a maximum of 437 ha, with a 

mean area of 10.36 ha and a standard deviation of 28.68. Overall, the area occupied by patches 

is 23,947 ha out of a total study area surface area of 48,082 ha. The habitat most represented by 

patches is Mediterranean oak forests with downy oak (22.3% of the total area), while those less 

present are Mediterranean riparian forests of willow trees and Larch pine forests (0.2% of the 

total area). In the second EN2 scenario, we have an increase in the most 101nthropized area in 

the number of corridors, which increased from 1291 to 1338. Connectivity index calculations 

on both scenarios also showed variations. The number of components (Fig. 6.4) in EN1 was 60, 

with a large number of small components near urban or cultivated areas. These were reduced 

to 20 in EN2, where many components were eliminated or merged with each other. 

Table 6.1- Table with the main properties of habitats classified as patches in the network. The first two 

columns contain the habitat code of the original Habitat Map nomenclature, and the correspondence 

with the EUNIS code. 

Habitat 

Map Code 

Eunis code 

corrispondence 

Number of 

Patches 

Mean area 

(ha) 

Standard 

Deviation 
Min (ha) Max (ha) 

24.1_m C3.5 1 4186.00    

24.225_m C3.553 92 6.76 9.73 1 58.27 

24.4 C2.3 4 1.75 1.75 1.45 2.17 

34.8_m E1.6 275 5.92 7.24 1.08 69.98 

41.18 G1.67 43 59.02 97.73 1.29 428.54 

41.732 G1.732 480 10.86 24.55 24.57 319.07 

41.7511 G1.7511 2 12.94 6.30 8.48 17.40 

41.9 G3.55 153 34.90 58.95 1.01 437.82 

42.65 G3.55 1 5.20    

42.67 G3.57 12 21.10 20.06 2.41 69.58 

44.12 G1.112 23 3.97 2.37 2.37 11.64 

44.14 G1.1121 3 5.13 3.54 1.71 8.77 

45.21 G2.11 3 91.89 75.81 8.90 157.49 

45.31 G2.121A 27 20.55 16.74 1.86 57.14 

45.32 G2.122 9 34.31 39.92 2.15 120.34 
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82.3 I1.3 25 5.59 4.41 1.03 15.28 

84 I1.2 648 3.86 4.27 1 43.66 

85 X11 108 2.39 1.38 1 7.31 

Total  1909 10.36 28.68 1 437.82 

 

 

 

Figure 6.4 - Representation of network components before (left) and after (right) the defragmentation 

interventions. 

The trend is also confirmed by the movement suitability map produced by Pathwalker (Fig. 

6.5), showing that coastal areas have significantly lower suitability to species movement than 

hilly or mountainous areas. By categorising the Pathwalker suitability map into 5 different equal 

and continuous ranges of values, we have better emphasised which areas are ideal for corridors, 

i.e. high affinity areas and very high affinity areas (Fig. 6.6). 
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Figure 6.5 - Representation of the Pathwalker density surface map. Shades of yellow indicate areas 

where movement is more likely to occur, and blue shades areas where movement is less likely. 

Interventions are mostly located in agricultural or urban areas; tab 6.2 summarises the main 

types of interventions carried out and their impact on the network. Renaturation interventions 

in agricultural areas benefitted the network the most, with 119.55 ha connected. In Figure 6.7, 

we can see the final network obtained because of the defragmentation interventions, it is 

represented according to the canonical components of patches and corridors. By comparing the 

area occupied by corridors in the network obtained in fig. 6.7. (corridors) occupying 705 ha, 

and the area suitable for corridors in fig. 6.6 (high and very high affinity areas, excluding areas 

that would fall within the boundaries of patches) occupying 3155 ah, we see that in the latter 

case there is a significantly higher value of potential corridor areas. 
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Figure 6.6: Pathwalker’s habitat affinity map, The different colour gradations indicate a progressive 

increase from a very low affinity with the habitat (red, unsuitable to be a corridor) to a very high affinity 

with the habitat (darker shade of green, very suitable to be corridor). 

Tab 6.2 - The table lists the different types of interventions and their respective impact in terms of area 

occupied and new links created. 

Defragmentation 

intervention 

Interventions 

number 

Total area covered 

 by intervention [ha] 

Surface of the new patches 

included in the network 

[ha] 

 Greened bridges 
 

51 4.34 19.33 

Renaturalised areas 
 

48 59.17 119.55 

Tree-lined paths 
 

15 4.25 18.60 

Greened underpasses 
 

2 0.20 5.33 

Total 116 67.96 162.81 
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Figure 6.7 - Representation of ecological network obtained with patches (in green) and corridors (in 

colour shades as per fig. 6.5 according to Pathwalker density surface map). On the right, we see three 

network details in semi-natural (down), heavily anthropised (centre), and high-natural (top) areas. 

The results regarding the connectivity indices (Summarised in tab 6.3) showed a positive 

change in the indices from EN1 to EN2. In the IIC and BC indices, which were calculated at 

the node level (Fig. 6.8-6.9) we found an increase in values in coastal areas as a result of the 

defragmentation interventions. Overall, the value of both indices was higher in inland areas 

distant from large urban centres. 
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Table 6.3 - Average values of connectivity indices calculated. 

Connectivity Indices EN1 EN2 

Number of Components (NC) 60 20 

Integral Index of Connectivity (IIC) 0.029 0.032 

Probability of Connectivity (PC) 0.095 0.11 

Flux (F) 1.88 2.55 

Betweenness Centrality (BC) 0.098 0.21 

Harary Index (H) 5075.28 7852.24 

 

 

Figure 6.8 - Betweenness Centrality was calculated at the node level before (left) and after (right) 

defragmentation interventions. Lighter shades of blue indicate low connectivity and darker shades 

indicate high connectivity. 
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Figure 6.9 - Integral Index of Connectivity calculated at node level before (left) and after (right) 

defragmentation interventions. Lighter shades of blue indicate low connectivity and darker shades 

indicate high connectivity. 

6.4. Discussion 

Analysis of the results obtained on the Ecological Network and its defragmentation scenario 

showed in both cases that the best-connected areas those far from population centres. Coastal 

areas near Reggio Calabria show a high number of patches, especially of habitat code categories 

84 and 85. Analysing the results in tab. 6.1, we see that these two habitats have a number of 

patches approaching half of the total for the entire network. The high number of patches with a 

small mean area, combined with low standard deviation values, confirms the high fragmentation 

character of these environments. In these patches, we will have a high content of edge habitats 

at the expense of core habitats, which is detrimental to the ecological qualities of these places 

(Gascon et al., 2000; Gignac & Dale, 2007). In contrast, we find high standard deviation values 

in habitats mostly located east of the study area. In hilly or mountainous areas, habitats such as 

4.18, 45.21 and 41.9 are mostly forested in character. This leads us to observe that although 
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these environments often possess large patches of good quality, some small patches are 

separated from the large patches due to anthropogenic activities. 

The connectivity indices also confirm this trend. Fig. 6.5 shows us Pathwalker's density surface 

map, with high probability areas for the animal in mountainous areas, while the values drop in 

coastal areas. This result is expected, considering the work done by Unnithan Kumar & 

Cushman, 2022 and the results obtained in Chapter 4. Indeed, in urbanised areas, the ability to 

also consider factors such as risk and attraction plays a key role in the realistic nature of 

predictions. Network areas where there is a high concentration of roads result in increased 

roadkill mortalities (Coffin, 2007; Filius et al., 2020; Russo et al., 2020; Schwartz et al., 2020). 

For this reason, in the corridors (Fig. 6.7) obtained around the LCPs, we see a difference in the 

quality of corridors crossing heavily man-made areas (low quality) compared to those crossing 

natural areas (high quality). The greater number of suitable corridors found by the analysis on 

the Pathwalker affinity map (Fig. 6.6) compared to the corridors obtained in the final network 

(Fig. 6.7) is expected, considering that the corridors were constructed from a least-coast path. 

However, the presence of these corridors not included in the network may provide an important 

structural element of the network. These areas could be considered as stepping stones or as 

transition areas of the network. 

The defragmentation interventions increased the connectivity of areas close to population 

centres, connecting 162 hectares of patches to the rest of the network. In particular, from Tab. 

6.2 we see that the most remarkable results were obtained with the renaturation interventions. 

This is due to the type of areas that this intervention has reconnected, mostly agricultural areas 

or old cultivated areas now abandoned, on the edge of the city, of large extension (around 120 

ha). In contrast, interventions such as green bridges and underpasses have connected smaller 

patch areas to the network (around 25ha). However, this does not denote a lower effectiveness 

of the latter, having a performance in terms of intervention occupied area/new patches occupied 

area of +445 % for green bridges, +437 % for green trees and +2265 % for green subways. The 

lower value of the total area reconnected to the ecological network is found in patches’ nature. 

Urban green areas, gardens, urban parks, were found to be smaller in size, located in areas 

strongly influenced by anthropogenic elements, more suitable for this type of capillary 

intervention (Cameron et al., 2012; Cannas et al., 2018; Wu et al., 2023; Wuit Yee Kyaw et al., 

2023). 

The interventions had a positive effect on the network as confirmed by the connectivity indices 

(Tab. 6.3). The increase in the Harary index value in EN2 indicates a better-connected network 

(Harary, 1969), as well as the increase in BC calculated at the node level in areas that were 

disconnected in EN1 shows that they have become more important to the network in EN2, 
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acting as stepping stones for other patches of the ecological network (Urban et al., 2009). This 

is in line with the increase in connections that have occurred in these areas with 47 new 

corridors, which, by increasing the likelihood of species moving between patches in this air, 

finds justification for the increase in the Flux index, which expresses precisely this likelihood 

(Saura & Pascual-Hortal, 2007). The increase in the number of corridors reduced the number 

of network components from 60 to 20, significantly reducing the number of isolated areas in 

the ecological network. The increase in the IIC index calculated at the node level underscores 

an increase in the spatial continuity of the ecological network, where defragmentation 

interventions have played a key role in enabling this (Pascual-Hortal & Saura, 2006, 2008). The 

VFC values are also in line with the rest of the indices, so we have higher values in the mountain 

area, mainly occupied by coniferous and broadleaf forests, while the lowest values are recorded 

in the coastal area. This is to be expected considering that the VFC index is able to identify the 

areas of highest vegetation vigour, which is lost as the land becomes more anthropised. 

6.5. Conclusions 

In this work were applied some of the most commonly used connectivity modelling strategies 

to create a multi-species ecological network, and a second network to create a defragmentation 

scenario in a Mediterranean climate metropolitan area. Specifically, we first used graph theory 

to identify some of the canonical network elements (patches, nodes and LCPs), studying their 

characteristics through different connectivity indices (IIC, F, PC, BC). We then used 

Pathwalker's movement simulations to identify a suitability map showing the places where 

animals are most likely to pass through and use it in conjunction with the LCPs to determine 

the corridors of the ecological network. The starting data for this work were a habitat map, 

specifically created for this purpose, data on the slopes of the study area, multispectral satellite 

images for calculating the VFC index, data on the autecological characteristics of the animal 

species in the study area. The use of a habitat map and species data provided by a local fauna 

expert made it possible to improve the value of this work. The study area before the 

defragmentation scenario were extremely fragmented, especially in the coastal area. This 

problem was considerably reduced as a result of the defragmentation measures (assumption of 

bridges, green subways, tree-lined avenues). The combined use of graph theory and movement 

simulations made it possible to exploit the strengths of the two models. In particular, the ability 

to give a precise spatialisation of the elements of graph theory (patches and LCP), and the 

greater accuracy in identifying animal passage areas (corridors) of Pathwalker  (movement 

simulation software). The final network, following the defragmentation interventions, shows 
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itself to be robust, greatly improved with respect to the starting situation and with good spatial 

continuity in the study area. This work has given new insights for research, being the first work 

to use a habitat map instead of a land use map, and to exploit two different connectivity 

modelling models to obtain a single network. In addition, the use of satellite data and indices 

such as the VFC are of great inspiration for the future, making it possible to overcome the 

limitation of land use maps or habitat maps that are updated in some cases every several years. 
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7. General Conclusions 

All over the world, the emergence of large cities, villages, road networks, railways, and 

numerous other man-made interventions have resulted in fragmentation, isolation, and loss of 

natural habitats. These interferences between natural and artificial environments cause the 

reduction in the area of natural surfaces, the progressive spacing between residual fragments, 

and the consequent habitat loss. There is an increasing awareness of this issue among 

governments and the scientific community. In this scenario, for sustainable spatial planning, 

ecological networks are themselves the object of spatial planning. Their implementation can 

counteract landscape fragmentation, create and strengthen relationships, and promote 

exchanges between otherwise isolated elements. 

In this Ph.D. thesis, the goal was to implement, through cartographic representation, an 

ecological network within a Mediterranean ecosystem in the Calabria region. We analysed 

different connectivity modelling strategies such as circuit theory, graph theory, resistant 

kernels, least-cost paths, and innovative movement simulation models to achieve our goal . In 

addition, in two separate steps, we first took advantage of the most up-to-date map data 

provided by the European Union through Copernicus, and in a second step, we produced new 

original map data as part of the international Natura 2000 project. Among the goals we set, 

many were achieved: 

✓ Outline an ecological network considering the need for space for both sides, natural and 

anthropogenic, by capturing maximum detail from two Copernicus datasets created to 

represent the two sides, respectively. 

✓ To identify which model is more reliable, compare different connectivity modelling 

strategies based on casual sub distribution of individuals in the network or stable 

position within patches. 

✓ Compare different movement simulation models, movement strategies, source point 

assignments, dispersal distances, and connectivity indices to understand which variables 

most influence connectivity. 

✓ Constructing a habitat map that allowed the levels of affinity with animal species to be 

captured in maximum detail. 

✓ Implement an innovative method of ecological network construction based not on a land 

use map but on a habitat map. Implemented by exploiting the strengths of the most 

modern landscape connectivity simulation strategies. 

The obtained results provided a useful contribution to the topic, emphasising the importance of 

the decision process not focusing on a single strategy, considering the complexity of ecological 
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dynamics. In addition, ecological network production on a habitat map is currently lacking in 

the literature, and this work has contributed to this field. 

We have also performed numerous simulations to show how the network responds differently 

to each variable change. The advantage of this approach is that it allows connectivity 

predictions to be made over areas where data on actual animal movements are not available, 

and it allows this to be done at a low cost and in a short time. On the other hand, this limitation 

does not allow the exact degree of reliability of the predictions to be assessed on actual data. 

This gives rise to insights into the possibility of applying these models to natural animal 

movement patterns data, used as a test to increasingly perfect these models. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

113 
 

 

8 Bibliography 

An, Y., Liu, S., Sun, Y., Shi, F., & Beazley, R. (2021a). Construction and optimization of an 

ecological network based on morphological spatial pattern analysis and circuit theory. 

Landscape Ecology, 36(7), 2059–2076. https://doi.org/10.1007/s10980-020-01027-3 

An, Y., Liu, S., Sun, Y., Shi, F., & Beazley, R. (2021b). Construction and optimization of an 

ecological network based on morphological spatial pattern analysis and circuit theory. 

Landscape Ecology, 36(7), 2059–2076. https://doi.org/10.1007/S10980-020-01027-

3/FIGURES/8 

An, Y., Liu, S., Sun, Y., Shi, F., & Beazley, R. (2021c). Construction and optimization of an 

ecological network based on morphological spatial pattern analysis and circuit theory. 

Landscape Ecology, 36(7), 2059–2076. https://doi.org/10.1007/s10980-020-01027-3 

Ash, E., Cushman, S. A., Redford, T., Macdonald, D. W., & Kaszta, Ż. (2022). Tigers on the 

edge: mortality and landscape change dominate individual-based spatially-explicit 

simulations of a small tiger population. Landscape Ecology, 37(12), 3079–3102. 

https://doi.org/10.1007/s10980-022-01494-w 

Balbi, M., Petit, E. J., Croci, S., Nabucet, J., Georges, R., Madec, L., & Ernoult, A. (2019a). 

Title : Ecological relevance of least cost path analysis : An easy implementation method 

for landscape urban planning. Journal of Environmental Management, 244(January), 61–

68. https://doi.org/10.1016/j.jenvman.2019.04.124 

Balbi, M., Petit, E. J., Croci, S., Nabucet, J., Georges, R., Madec, L., & Ernoult, A. (2019b). 

Title: Ecological relevance of least cost path analysis: An easy implementation method 

for landscape urban planning. Journal of Environmental Management, 244, 61–68. 

https://doi.org/10.1016/J.JENVMAN.2019.04.124 

Battisti, C. (2004). Frammentazione ambientale connettività reti ecologiche. 

http://dau.ing.univaq.it/planeco/battisti.pdf 

Beier, P., Spencer, W., Baldwin, R. F., & Mcrae, B. H. (2011). Toward Best Practices for 

Developing Regional Connectivity Maps. Conservation Biology, 25(5), 879–892. 

https://doi.org/10.1111/j.1523-1739.2011.01716.x 

Bender, D. J., Contreras, T. A., & Fahrig, L. (1998). Habitat Loss and Population Decline: A 

Meta-Analysis of the Patch Size Effect. Ecology, 79(2), 517. 

https://doi.org/10.2307/176950 

Bennet, G. (n.d.). Bennett, G. (ed.), Towards a European Ecological Network. Insitute for 

European Environmental Policy/Ministry of Agriculture, Nature Manage- ment and 

Fisheries, the Netherlands, 1991, 80pp. 

Beyer, H. L., Gurarie, E., Börger, L., Panzacchi, M., Basille, M., Herfindal, I., Van Moorter, 

B., R. Lele, S., & Matthiopoulos, J. (2016). ‘You shall not pass!’: quantifying barrier 

permeability and proximity avoidance by animals. Journal of Animal Ecology, 85(1), 

43–53. https://doi.org/10.1111/1365-2656.12275 

Bishop-Taylor, R., Tulbure, M. G., & Broich, M. (2015). Surface water network structure, 

landscape resistance to movement and flooding vital for maintaining ecological 

connectivity across Australia’s largest river basin. Landscape Ecology, 30(10), 2045–

2065. https://doi.org/10.1007/s10980-015-0230-4 

Boitani, L., Corsi, F., Falcucci, A., Marzetti, I., Masi, M., Montemaggiori, A., Ottaviani, D., 

Reggiani, G., & Rondinini, C. (2002a). Rete Ecologica Nazionale. Un approccio alla 

conservazione dei vertebrati italiani. . in. Università di Roma “La Sapienza”, 

Dipartimento di Biologia Animale e dell’Uomo; Ministero dell’Ambiente, Direzione per 

la Conservazione della Natura; Istituto di Ecologia Applicata. 

Boitani, L., Corsi, F., Falcucci, A., Marzetti, I., Masi, M., Montemaggiori, A., Ottaviani, D., 

Reggiani, G., & Rondinini, C. (2002b). Rete Ecologica Nazionale. Un approccio alla 

conservazione dei vertebrati italiani. in. Università di Roma “La Sapienza”, 



 

 

114 
 

 

Dipartimento di Biologia Animale e dell’Uomo; Ministero dell’Ambiente, Direzione per 

la Conservazione della Natura; Istituto di Ecologia Applicata. 

Boitani, L., Falcucci, A., Maiorano, L., & Montemaggiori, A. (2003). Italian Ecological 

Network: the Role of Protected Areas in the Conservation of Vertebrates  (I. of A. E. 

Animal and Human Biology Department, University of Rome “La Sapienza”, Nature 

Conservation Directorate of the Italian Ministry of Environment, Ed.). 

Boitani, L., FALCUCCI, A., MAIORANO, L., & RONDININI, C. (2007a). Ecological 

Networks as Conceptual Frameworks or Operational Tools in Conservation. 

Conservation Biology, 21(6), 1414–1422. https://doi.org/10.1111/j.1523-

1739.2007.00828.x 

Boitani, L., FALCUCCI, A., MAIORANO, L., & RONDININI, C. (2007b). Ecological 

Networks as Conceptual Frameworks or Operational Tools in Conservation. 

Conservation Biology, 21(6), 1414–1422. https://doi.org/10.1111/j.1523-

1739.2007.00828.x 

Bonnin, M. (2007). Le Réseau écologique paneuropéen: état d’avancement, Strasbourg, 

Éditions du Conseil de l’Europe, Sauvegarde de la nature, no 146. 

Bourdouxhe, A., Duflot, R., Radoux, J., & Dufrêne, M. (2020). Comparison of methods to 

model species habitat networks for decision-making in nature conservation: The case of 

the wildcat in southern Belgium. Journal for Nature Conservation, 58, 125901. 

https://doi.org/10.1016/j.jnc.2020.125901 

Bourgeois, M., & Sahraoui, Y. (2020). Modelling in the Context of an Environmental 

Mobilisation: A Graph-Based Approach for Assessing the Landscape Ecological Impacts 

of a Highway Project. Ekológia (Bratislava), 39(1), 88–100. https://doi.org/10.2478/eko-

2020-0007 

Braun-Blanquet, J. (1921). Prinzipien einer Systematik der Pflanzengesellschaften auf 

floristischer Grundlage.- Jahrb. St. Gallischen Naturwiss. Ges. 57(2): 305-351. 

Cafaro, P., Hansson, P., & Götmark, F. (2022). Overpopulation is a major cause of 

biodiversity loss and smaller human populations are necessary to preserve what is left. 

Biological Conservation, 272, 109646. https://doi.org/10.1016/j.biocon.2022.109646 

Calabrò, F., Iannone, L., & Pellicanò, R. (2021). The Historical and Environmental Heritage 

for the Attractiveness of Cities. The Case of the Umbertine Forts of Pentimele in Reggio 

Calabria, Italy (pp. 1990–2004). https://doi.org/10.1007/978-3-030-48279-4_188 

Carr, M. H. , Z. P. D. , H. T. , H. W. , G. A. & B. B. (1998). Using GIS for identifying the 

interfacebetween ecological greenways and roadway systems at the state andsub-state 

scales. In: Proceedings of the 1998 International Conferenceon Wildlife Ecology and 

Transportation, ed. G.L. Evink, P. Garrett,D. Zeigler & J. Berry, pp. 68–77, 

Tallahassee, USA: FloridaDepartment of Transportation. 

Casas, E., Fernandez, M., Gil, A., Yesson, C., Prestes, A., Moreu‐Badia, I., Neto, A., & 

Arbelo, M. (2021). Macroalgae niche modelling: a two-step approach using remote 

sensing and in situ observations of a native and an invasive Asparagopsis. Biological 

Invasions, 23(10). https://doi.org/10.1007/s10530-021-02554-z 

Ciofi, C., & Chelazzi, G. (1991). Radiotracking of Coluber viridiflavus Using External 

Transmitters. Journal of Herpetology, 25(1), 37. https://doi.org/10.2307/1564792 

Clark, W. R. (2010). Principles of Landscape Ecology. In Nature Education Knowledge (Vol. 

3, Issue 10). http://www.nature.com/scitable/knowledge/library/principles-of-... 

Clauzel, C., & Godet, C. (2020). Combining spatial modeling tools and biological data for 

improved multispecies assessment in restoration areas. Biological Conservation, 250, 

108713. https://doi.org/10.1016/J.BIOCON.2020.108713 

Clevenger, A. P., & Wierzchowski, J. (2006). Maintaining and restoring connectivity in 

landscapes fragmented by roads. In Connectivity Conservation (pp. 502–535). 

Cambridge University Press. https://doi.org/10.1017/CBO9780511754821.023 



 

 

115 
 

 

Coffin, A. W. (2007). From roadkill to road ecology: A review of the ecological effects of 

roads. Journal of Transport Geography, 15(5), 396–406. 

https://doi.org/10.1016/j.jtrangeo.2006.11.006 

COMPTON, B. W., McGARIGAL, K., CUSHMAN, S. A., & GAMBLE, L. R. (2007). A 

Resistant‐Kernel Model of Connectivity for Amphibians that Breed in Vernal Pools. 

Conservation Biology, 21(3), 788–799. https://doi.org/10.1111/j.1523-

1739.2007.00674.x 

Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: A review 

and prospectus. Biological Conservation, 128(2), 231–240. 

https://doi.org/10.1016/j.biocon.2005.09.031 

Cushman, S. A., Elliot, N. B., Macdonald, D. W., & Loveridge, A. J. (2016). A multi-scale 

assessment of population connectivity in African lions (Panthera leo) in response to 

landscape change. Landscape Ecology, 31(6), 1337–1353. 

https://doi.org/10.1007/s10980-015-0292-3 

Cushman, S. A., & Landguth, E. L. (2012). Multi-taxa population connectivity in the 

Northern Rocky Mountains. Ecological Modelling, 231, 101–112. 

https://doi.org/10.1016/j.ecolmodel.2012.02.011 

Cushman, S. A., Landguth, E. L., & Flather, C. H. (2012a). Evaluating the sufficiency of 

protected lands for maintaining wildlife population connectivity in the U.S. northern 

Rocky Mountains. Diversity and Distributions, 18(9), 873–884. 

https://doi.org/10.1111/j.1472-4642.2012.00895.x 

Cushman, S. A., Landguth, E. L., & Flather, C. H. (2012b). Evaluating the sufficiency of 

protected lands for maintaining wildlife population connectivity in the U.S. northern 

Rocky Mountains. Diversity and Distributions, 18(9), 873–884. 

https://doi.org/10.1111/j.1472-4642.2012.00895.x 

Cushman, S. A., Landguth, E. L., & Flather, C. H. (2013). Evaluating population connectivity 

for species of conservation concern in the American Great Plains. Biodiversity and 

Conservation, 22(11), 2583–2605. https://doi.org/10.1007/s10531-013-0541-1 

Cushman, S. A., & Lewis, J. S. (2010). Movement behavior explains genetic differentiation in 

American black bears. Landscape Ecology, 25(10), 1613–1625. 

https://doi.org/10.1007/s10980-010-9534-6 

Cushman, S. A., Lewis, J. S., & Landguth, E. L. (2013). Evaluating the intersection of a 

regional wildlife connectivity network with highways. Movement Ecology, 1(1), 12. 

https://doi.org/10.1186/2051-3933-1-12 

Cushman, S. A., Macdonald, D. W., Willis, K. J., McRae, B., Adriaensen, F., Beier, P., 

Shirley, M., & Zeller, K. (2013). Biological corridors and connectivity [Chapter 21]. 

Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene Flow in 

Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The 

American Naturalist, 168(4), 486–499. https://doi.org/10.1086/506976 

CUSHMAN, S. A., McKELVEY, K. S., & SCHWARTZ, M. K. (2009). Use of Empirically 

Derived Source-Destination Models to Map Regional Conservation Corridors. 

Conservation Biology, 23(2), 368–376. https://doi.org/10.1111/j.1523-

1739.2008.01111.x 

Cushman, S. A., Shirk, A. J., Howe, G. T., Murphy, M. A., Dyer, R. J., & Joost, S. (2018). 

Editorial: The Least Cost Path From Landscape Genetics to Landscape Genomics: 

Challenges and Opportunities to Explore NGS Data in a Spatially Explicit Context. 

Frontiers in Genetics, 9. https://doi.org/10.3389/fgene.2018.00215 

Cushman, S., Lewis, J., & Landguth, E. (2014a). Why Did the Bear Cross the Road? 

Comparing the Performance of Multiple Resistance Surfaces and Connectivity Modeling 

Methods. Diversity, 6(4), 844–854. https://doi.org/10.3390/d6040844 



 

 

116 
 

 

Cushman, S., Lewis, J., & Landguth, E. (2014b). Why Did the Bear Cross the Road? 

Comparing the Performance of Multiple Resistance Surfaces and Connectivity Modeling 

Methods. Diversity, 6(4), 844–854. https://doi.org/10.3390/d6040844 

De Montis, A., Caschili, S., Mulas, M., Modica, G., Ganciu, A., Bardi, A., Ledda, A., 

Dessena, L., Laudari, L., & Fichera, C. R. (2016). Urban–rural ecological networks for 

landscape planning. Land Use Policy, 50, 312–327. 

https://doi.org/10.1016/j.landusepol.2015.10.004 

Diaz, N., & Apostol, D. (1992). No Title. “Forest la. 

Diniz, M. F., Cushman, S. A., Machado, R. B., & De Marco Júnior, P. (2020a). Landscape 

connectivity modeling from the perspective of animal dispersal. Landscape Ecology, 

35(1), 41–58. https://doi.org/10.1007/s10980-019-00935-3 

Diniz, M. F., Cushman, S. A., Machado, R. B., & De Marco Júnior, P. (2020b). Landscape 

connectivity modeling from the perspective of animal dispersal. Landscape Ecology, 

35(1), 41–58. https://doi.org/10.1007/s10980-019-00935-3 

Diniz, M. F., Machado, R. B., Bispo, A. A., & De M. Júnior, P. (2018). Can we face different 

types of storms under the same umbrella? Efficiency and consistency of connectivity 

umbrellas across different patchy landscape patterns. Landscape Ecology, 33(11), 1911–

1923. https://doi.org/10.1007/S10980-018-0720-2/FIGURES/2 

Dong, J., Peng, J., Liu, Y., Qiu, S., & Han, Y. (2020). Integrating spatial continuous wavelet 

transform and kernel density estimation to identify ecological corridors in megacities. 

Landscape and Urban Planning, 199, 103815. 

https://doi.org/10.1016/j.landurbplan.2020.103815 

Dray, S., Royer‐Carenzi, M., & Calenge, C. (2010). The exploratory analysis of 

autocorrelation in animal‐movement studies. Ecological Research, 25(3), 673–681. 

https://doi.org/10.1007/s11284-010-0701-7 

Dugatkin, L. A. (2020). Principles of animal behavior. 

Dunn, C. P., & Loehle, C. (1988). Species-Area Parameter Estimation: Testing the Null 

Model of Lack of Relationship. Journal of Biogeography, 15(5/6), 721. 

https://doi.org/10.2307/2845335 

Elsen, P. R., Monahan, W. B., & Merenlender, A. M. (2018). Global patterns of protection of 

elevational gradients in mountain ranges. Proceedings of the National Academy of 

Sciences, 115(23), 6004–6009. https://doi.org/10.1073/pnas.1720141115 

Ersoy, E., Jorgensen, A., & Warren, P. H. (2019a). Identifying multispecies connectivity 

corridors and the spatial pattern of the landscape. Urban Forestry & Urban Greening, 

40, 308–322. https://doi.org/10.1016/J.UFUG.2018.08.001 

Ersoy, E., Jorgensen, A., & Warren, P. H. (2019b). Urban Forestry & Urban Greening 

Identifying multispecies connectivity corridors and the spatial pattern of the. Urban 

Forestry & Urban Greening, 40(June 2018), 308–322. 

https://doi.org/10.1016/j.ufug.2018.08.001 

Erwin, T. L. (2007). Applying Nature’s Design: Corridors as a Strategy for Biodiversity 

Conservation. Issues, Cases, and Methods in Biodiversity Conservation. By Anthony B 

Anderson and , Clinton N Jenkins. New York: Columbia University Press . $74.50 

(hardcover); $34.50 (pape. The Quarterly Review of Biology, 82(1), 72–72. 

https://doi.org/10.1086/513391 

Ewers, R. M., Stephen, T., & Raphael, K. D. (2007). No Title. “Synergist. 

Fichera, C. R., Laudari, L., & Modica, G. (2015). Application, validation and comparison in 

different geographical contexts of an integrated model for the design of ecological 

networks. Journal of Agricultural Engineering, 46(2), 52. 

https://doi.org/10.4081/jae.2015.459 

Filius, J., van der Hoek, Y., Jarrín‐V, P., & van Hooft, P. (2020). Wildlife roadkill patterns in 

a fragmented landscape of the Western Amazon. Ecology and Evolution, 10(13), 6623–

6635. https://doi.org/10.1002/ece3.6394 



 

 

117 
 

 

Fletcher, Jr., R. J., Ries, L., Battin, J., & Chalfoun, A. D. (2007). The role of habitat area and 

edge in fragmented landscapes: definitively distinct or inevitably intertwined?This 

review is one of a series dealing with some aspects of the impact of habitat fragmentation 

on animals and plants. This series is one of severa. Canadian Journal of Zoology, 85(10), 

1017–1030. https://doi.org/10.1139/Z07-100 

Foltête, J.-C. (2019). How ecological networks could benefit from landscape graphs: A 

response to the paper by Spartaco Gippoliti and Corrado Battisti. Land Use Policy, 

80(February 2018), 391–394. https://doi.org/10.1016/j.landusepol.2018.04.020 

Foltête, J.-C., Céline Clauzel, Gilles Vuidel, & Pierline Tournant. (2012a). Integrating graph-

based connectivity metrics into species distribution models. Landscape Ecology, 27(4), 

557–569. 

Foltête, J.-C., Céline Clauzel, Gilles Vuidel, & Pierline Tournant. (2012b). Integrating graph-

based connectivity metrics into species distribution models. Landscape Ecology, 27(4), 

557–569. 

Foltête, J.-C., Clauzel, C., & Vuidel, G. (2012). A software tool dedicated to the modelling of 

landscape networks. Environmental Modelling & Software, 38, 316–327. 

https://doi.org/10.1016/j.envsoft.2012.07.002 

Foltête, J.-C., Girardet, X., & Clauzel, C. (2014). A methodological framework for the use of 

landscape graphs in land-use planning. Landscape and Urban Planning, 124, 140–150. 

https://doi.org/10.1016/j.landurbplan.2013.12.012 

Foltête, J.-C., Vuidel, G., Savary, P., Clauzel, C., Sahraoui, Y., Girardet, X., & Bourgeois, M. 

(2021a). Graphab: An application for modeling and managing ecological habitat 

networks. Software Impacts, 8, 100065. https://doi.org/10.1016/j.simpa.2021.100065 

Foltête, J.-C., Vuidel, G., Savary, P., Clauzel, C., Sahraoui, Y., Girardet, X., & Bourgeois, M. 

(2021b). Graphab: An application for modeling and managing ecological habitat 

networks. Software Impacts, 8, 100065. https://doi.org/10.1016/j.simpa.2021.100065 

Formica, V. A., Augat, M. E., Barnard, M. E., Butterfield, R. E., Wood, C. W., & Brodie, E. 

D. (2010). Using home range estimates to construct social networks for species with 

indirect behavioral interactions. Behavioral Ecology and Sociobiology, 64(7), 1199–

1208. https://doi.org/10.1007/s00265-010-0957-5 

Franco, D. (2004). No Title. Ecological. 

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 

40(1). 

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social 

Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7 

Fricke, E. C., & Svenning, J.-C. (2020). Accelerating homogenization of the global plant–

frugivore meta-network. Nature, 585(7823), 74–78. https://doi.org/10.1038/s41586-020-

2640-y 

Gascon, C., Williamson, G. B., & da Fonseca, G. A. B. (2000). Receding Forest Edges and 

Vanishing Reserves. Science, 288(5470), 1356–1358. 

https://doi.org/10.1126/science.288.5470.1356 

Gent H., A. S. F. (1993). MOVEMENT RATES OF THE SMOOTH SNAKE CORONELLA A 

USTRIACA (COLUBRIDAE) : A RADIO-TELEMETRIC STUDY. Herp. Jour. Vol. 3, pp. 

140-146. 

Gibbs, J. P. (1998). Amphibian Movements in Response to Forest Edges, Roads, and 

Streambeds in Southern New England. The Journal of Wildlife Management, 62(2), 584. 

https://doi.org/10.2307/3802333 

Gignac, L. D., & Dale, M. R. T. (2007). Effects of size, shape, and edge on vegetation in 

remnants of the upland boreal mixed-wood forest in agro-environments of Alberta, 

Canada. Canadian Journal of Botany, 85(3), 273–284. https://doi.org/10.1139/B07-018 



 

 

118 
 

 

Girardet, X., Conruyt-Rogeon, G., & Foltête, J.-C. (2015). Does regional landscape 

connectivity influence the location of roe deer roadkill hotspots? European Journal of 

Wildlife Research, 61(5), 731–742. https://doi.org/10.1007/s10344-015-0950-4 

Glandt D. (1986). Die saisonalen Wanderungen der mittleuropäischen Amphibien. Bonner 

Zoologische Beiträge 37, 211-228. 

Godet, C., & Clauzel, C. (2021). Comparison of landscape graph modelling methods for 

analysing pond network connectivity. Landscape Ecology, 36(3), 735–748. 

https://doi.org/10.1007/s10980-020-01164-9 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). 

Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing 

of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 

Griffiths R.A. (1995). Newts and Salamanders of Europe. Poyser Natural History, London. - 

Schulte . 

Gross, J. L., & Yellen, J. (2005). Graph Theory and Its Applications. Chapman and 

Hall/CRC. https://doi.org/10.1201/9781420057140 

Guimarães, P. R. (2020). The Structure of Ecological Networks Across Levels of 

Organization. Annual Review of Ecology, Evolution, and Systematics, 51(1), 433–460. 

https://doi.org/10.1146/annurev-ecolsys-012220-120819 

Guo, Y., & Liu, Y. (2017a). Connecting regional landscapes by ecological networks in the 

Greater Pearl River Delta. Landscape and Ecological Engineering, 13(2), 265–278. 

https://doi.org/10.1007/S11355-016-0318-2/FIGURES/8 

Guo, Y., & Liu, Y. (2017b). Connecting regional landscapes by ecological networks in the 

Greater Pearl River Delta. Landscape and Ecological Engineering, 13(2), 265–278. 

https://doi.org/10.1007/S11355-016-0318-2/FIGURES/8 

Gurrutxaga, M., Lozano, P. J., & del Barrio, G. (2010). GIS-based approach for incorporating 

the connectivity of ecological networks into regional planning. Journal for Nature 

Conservation, 18(4), 318–326. https://doi.org/10.1016/j.jnc.2010.01.005 

GURRUTXAGA, M., & SAURA, S. (2014). Prioritizing highway defragmentation locations 

for restoring landscape connectivity. Environmental Conservation, 41(2), 157–164. 

https://doi.org/10.1017/S0376892913000325 

Gustafson, E. J., & Gardner, R. H. (1996). The Effect of Landscape Heterogeneity on the 

Probability of Patch Colonization. Ecology, 77(1), 94–107. 

https://doi.org/10.2307/2265659 

Hanski, I. (1999). Habitat Connectivity , Habitat Continuity , and Metapopulations in 

Dynamic Landscapes Author ( s ): Ilkka Hanski Published by : Wiley on behalf of Nordic 

Society Oikos Stable URL : https://www.jstor.org/stable/3546736 REFERENCES Linked 

references are avai. 87(2), 209–219. 

Harary, F. (1969). Graph Theory. CRC Press. 

https://www.taylorfrancis.com/books/9780429493768. 

Hardion, L., Pouvreau, M., Schwoertzig, E., Hoff, M., Nguefack, J., & Combroux, I. (2019). 

Performance, genetic and ecological insights for the conservation of the endangered 

large pink, Dianthus superbus L. (Caryophyllaceae) in semi-natural grassland. Botany 

Letters, 166(1), 104–112. https://doi.org/10.1080/23818107.2018.1544506 

Harper, K. A., MACDONALD, S. E., BURTON, P. J., CHEN, J., BROSOFSKE, K. D., 

SAUNDERS, S. C., EUSKIRCHEN, E. S., ROBERTS, D., JAITEH, M. S., & ESSEEN, 

P. (2005). Edge Influence on Forest Structure and Composition in Fragmented 

Landscapes. Conservation Biology, 19(3), 768–782. https://doi.org/10.1111/j.1523-

1739.2005.00045.x 

Heller, N. E., & Zavaleta, E. S. (2009). Biodiversity management in the face of climate 

change: A review of 22 years of recommendations. Biological Conservation, 142(1), 14–

32. https://doi.org/10.1016/j.biocon.2008.10.006 

https://doi.org/10.2307/2265659


 

 

119 
 

 

Hilty, J., Worboys, G. L., Keeley, A., Woodley, S., Lausche, B. J., Locke, H., Carr, M., 

Pulsford, I., Pittock, J., White, J. W., Theobald, D. M., Levine, J., Reuling, M., Watson, 

J. E. M., Ament, R., & Tabor, G. M. (2020). Guidelines for conserving connectivity 

through ecological networks and corridors (C. Groves, Ed.). IUCN, International Union 

for Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2020.PAG.30.en  

Hu, J., Liu, Y., & Fang, J. (2021). Ecological Corridor Construction Based on Least-Cost 

Modeling Using Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light 

Data and Normalized Difference Vegetation Index. Land, 10(8), 782. 

https://doi.org/10.3390/land10080782 

Huck, M., Jędrzejewski, W., Borowik, T., Miłosz-Cielma, M., Schmidt, K., Jędrzejewska, B., 

Nowak, S., & Mysłajek, R. W. (2010). Habitat suitability, corridors and dispersal 

barriers for large carnivores in Poland. Acta Theriologica, 55(2), 177–192. 

https://doi.org/10.4098/j.at.0001-7051.114.2009 

Hudson, W. E. . (1991a). Landscape Linkages and Biodiversity. Island Press. 

Hudson, W. E. . (1991b). Landscape Linkages and Biodiversity. Island Press. 

Isaac, N. J. B., Brotherton, P. N. M., Bullock, J. M., Gregory, R. D., Boehning‐Gaese, K., 

Connor, B., Crick, H. Q. P., Freckleton, R. P., Gill, J. A., Hails, R. S., Hartikainen, M., 

Hester, A. J., Milner‐Gulland, E. J., Oliver, T. H., Pearson, R. G., Sutherland, W. J., 

Thomas, C. D., Travis, J. M. J., Turnbull, L. A., … Mace, G. M. (2018). Defining and 

delivering resilient ecological networks: Nature conservation in England. Journal of 

Applied Ecology, 55(6), 2537–2543. https://doi.org/10.1111/1365-2664.13196 

Jones, K. R., Venter, O., Fuller, R. A., Allan, J. R., Maxwell, S. L., Negret, P. J., & Watson, J. 

E. M. (2018). One-third of global protected land is under intense human pressure. 

Science, 360(6390), 788–791. https://doi.org/10.1126/science.aap9565 

Keijl, G. (1991). The network of wetlands for waterbird migration in the eastern 

Mediterranean. https://www.researchgate.net/publication/273595717  

Kaszta, Ż., Cushman, S. A., & Macdonald, D. W. (2020). Prioritizing habitat core areas and 

corridors for a large carnivore across its range. Animal Conservation, 23(5), 607–616. 

https://doi.org/10.1111/acv.12575  

Kaszta, Ż., Cushman, S. A., Sillero-Zubiri, C., Wolff, E., & Marino, J. (2018a). Where 

buffalo and cattle meet: modelling interspecific contact risk using cumulative resistant 

kernels. Ecography, 41(10), 1616–1626. https://doi.org/10.1111/ecog.03039  

Kaszta, Ż., Cushman, S. A., Sillero-Zubiri, C., Wolff, E., & Marino, J. (2018b). Where 

buffalo and cattle meet: modelling interspecific contact risk using cumulative resistant 

kernels. Ecography, 41(10), 1616–1626. https://doi.org/10.1111/ecog.03039  

Kaszta, Ż., Cushman, S. A., & Slotow, R. (2021). Temporal Non-stationarity of Path-

Selection Movement Models and Connectivity: An Example of African Elephants in 

Kruger National Park. Frontiers in Ecology and Evolution, 9. 

https://doi.org/10.3389/fevo.2021.553263  

Keeley, A. T. H., Beier, P., & Jenness, J. S. (2021). Connectivity metrics for conservation 

planning and monitoring. Biological Conservation, 255, 109008. 

https://doi.org/10.1016/J.BIOCON.2021.109008  

Kevin McGarigal, S. A. C. S. S. (2000). Multivariate Statistics for Wildlife and Ecology 

Research. Springer-Verlag New York, Inc.  

Kheirkhah Ghehi, N., MalekMohammadi, B., & Jafari, H. (2020). Integrating habitat risk 

assessment and connectivity analysis in ranking habitat patches for conservation in 

protected areas. Journal for Nature Conservation, 56, 125867. 

https://doi.org/10.1016/j.jnc.2020.125867  

Khosravi, R., Hemami, M.-R., & Cushman, S. A. (2018). Multispecies assessment of core 

areas and connectivity of desert carnivores in central Iran. Diversity and Distributions, 

24(2), 193–207. https://doi.org/10.1111/ddi.12672  

https://doi.org/10.2305/IUCN.CH.2020.PAG.30.en
https://www.researchgate.net/publication/273595717
https://doi.org/10.1111/acv.12575
https://doi.org/10.1111/ecog.03039
https://doi.org/10.1111/ecog.03039
https://doi.org/10.3389/fevo.2021.553263
https://doi.org/10.1016/J.BIOCON.2021.109008
https://doi.org/10.1016/j.jnc.2020.125867
https://doi.org/10.1111/ddi.12672


 

 

120 
 

 

Kumar, S. U., Kaszta, Ż., & Cushman, S. A. (n.d.-a). PATHWALKER: USER GUIDE. 

https://github.com/siddharth-unnithankumar/pathwalker.  

Kumar, S. U., Kaszta, Ż., & Cushman, S. A. (n.d.-b). PATHWALKER: USER GUIDE. 

https://github.com/siddharth-unnithankumar/pathwalker. 

Kyaw, P. P., Macdonald, D. W., Penjor, U., Htun, S., Naing, H., Burnham, D., Kaszta, Ż., & 

Cushman, S. A. (2021). Investigating Carnivore Guild Structure: Spatial and Temporal 

Relationships amongst Threatened Felids in Myanmar. ISPRS International Journal of 

Geo-Information, 10(12), 808. https://doi.org/10.3390/ijgi10120808 

Lambeck, R. J. (2002). Focal Species and Restoration Ecology: Response to Lindenmayer et 

al. Conservation Biology, 16(2), 549–551. https://doi.org/10.1046/j.1523-

1739.2002.02007.x 

LANDGUTH, E. L., & CUSHMAN, S. A. (2010). <scp>cdpop</scp> : A spatially explicit 

cost distance population genetics program. Molecular Ecology Resources, 10(1), 156–

161. https://doi.org/10.1111/j.1755-0998.2009.02719.x 

Landguth, E. L., Hand, B. K., Glassy, J. M., Cushman, S. A., & Carlson, R. T. (2011). 

UNICOR USER MANUAL 2011. 

Lechner, A. M., Doerr, V., Harris, R. M. B., Doerr, E., & Lefroy, E. C. (2015). A framework 

for incorporating fine-scale dispersal behaviour into biodiversity conservation planning. 

Landscape and Urban Planning, 141, 11–23. 

https://doi.org/10.1016/j.landurbplan.2015.04.008 

Lechner, A. M., & Lefroy, E. C. (2014a). General Approach to Planning Connectivity from 

LOcal Scales to Regional (GAP CLoSR): combining multi-criteria analysis and 

connectivity science to enhance conservation outcomes at regional scale (Issue March). 

Lechner, A. M., & Lefroy, E. C. (2014b). General Approach to Planning Connectivity from 

LOcal Scales to Regional (GAP CLoSR): combining multi-criteria analysis and 

connectivity science to enhance conservation outcomes at regional scale (Issue March). 

Legendre P., L. L. (1998). Numerical ecology. Elsevier Science & Technology, 20, 853. 

Lelièvre, H., Moreau, C., Blouin-Demers, G., Bonnet, X., & Lourdais, O. (2012). Two 

Syntopic Colubrid Snakes Differ In Their Energetic Requirements and In Their Use of 

Space. Herpetologica, 68(3), 358–364. https://doi.org/10.1655/HERPETOLOGICA-D-

12-00007.1 

Levins, R. (1969). No Title. Some demog. 

Li, D., Yang, Y., Xia, F., Sun, W., Li, X., & Xie, Y. (2022). Exploring the influences of 

different processes of habitat fragmentation on ecosystem services. Landscape and 

Urban Planning, 227, 104544. https://doi.org/10.1016/j.landurbplan.2022.104544 

Liccari, F., Boscutti, F., Bacaro, G., & Sigura, M. (2022). Connectivity, landscape structure, 

and plant diversity across agricultural landscapes: novel insight into effective ecological 

network planning. Journal of Environmental Management, 317, 115358. 

https://doi.org/10.1016/j.jenvman.2022.115358 

Liu, J., Fan, J., Yang, C., Xu, F., & Zhang, X. (2022). Novel vegetation indices for estimating 

photosynthetic and non-photosynthetic fractional vegetation cover from Sentinel data. 

International Journal of Applied Earth Observation and Geoinformation, 109, 102793. 

https://doi.org/10.1016/j.jag.2022.102793 

Lumia G., M. G. , C. S. (2023). Using simulation modeling to demonstrate the performance of 

graph theory metrics and connectivity algorithms. 

Luo, Y., Wu, J., Wang, X., & Peng, J. (2021a). Using stepping-stone theory to evaluate the 

maintenance of landscape connectivity under China’s ecological control line policy. 

Journal of Cleaner Production, 296, 126356. 

https://doi.org/10.1016/j.jclepro.2021.126356 

Luo, Y., Wu, J., Wang, X., & Peng, J. (2021b). Using stepping-stone theory to evaluate the 

maintenance of landscape connectivity under China’s ecological control line policy. 

https://github.com/siddharth-unnithankumar/pathwalker


 

 

121 
 

 

Journal of Cleaner Production, 296, 126356. 

https://doi.org/10.1016/j.jclepro.2021.126356 

MacArthur, R. H., & Wilson, E. O. (1963). AN EQUILIBRIUM THEORY OF INSULAR 

ZOOGEOGRAPHY. Evolution, 17(4), 373–387. https://doi.org/10.1111/j.1558-

5646.1963.tb03295.x 

Macdonald, D. W., Bothwell, H. M., Kaszta, Ż., Ash, E., Bolongon, G., Burnham, D., Can, Ö. 

E., Campos‐Arceiz, A., Channa, P., Clements, G. R., Hearn, A. J., Hedges, L., Htun, S., 

Kamler, J. F., Kawanishi, K., Macdonald, E. A., Mohamad, S. W., Moore, J., Naing, H., 

… Cushman, S. A. (2019). Multi‐scale habitat modelling identifies spatial conservation 

priorities for mainland clouded leopards ( Neofelis nebulosa ). Diversity and 

Distributions, 25(10), 1639–1654. https://doi.org/10.1111/ddi.12967 

Mackovčin, P. (2000). A multi-level ecological network in the Czech Republic: 

Implementating the territorial system of ecological stability. GeoJournal, 51(3), 211–

220. https://doi.org/10.1023/A:1017518529210 

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 

405(6783), 243–253. https://doi.org/10.1038/35012251 

Mateo-Sánchez, M. C., Balkenhol, N., Cushman, S., Pérez, T., Domínguez, A., & Saura, S. 

(2015a). Estimating effective landscape distances and movement corridors: comparison 

of habitat and genetic data. Ecosphere, 6(4), 1–16. https://doi.org/10.1890/ES14-00387.1 

Mateo-Sánchez, M. C., Balkenhol, N., Cushman, S., Pérez, T., Domínguez, A., & Saura, S. 

(2015b). Estimating effective landscape distances and movement corridors: comparison 

of habitat and genetic data. Ecosphere, 6(4), 1–16. https://doi.org/10.1890/ES14-00387.1 

Mateo-Sánchez, M. C., Cushman, S. A., & Saura, S. (2014). Connecting endangered brown 

bear subpopulations in the Cantabrian Range (north-western Spain). Animal 

Conservation, 17(5), 430–440. https://doi.org/10.1111/acv.12109 

May, R. (2006). “Connectivity” in urban rivers: Conflict and convergence between ecology 

and design. Technology in Society, 28(4), 477–488. 

https://doi.org/10.1016/j.techsoc.2006.09.004 

McCullough. (1996). No Title. Metapopula. 

McGarigal, K., Stafford, S., & Cushman, S. (2000). Multivariate Statistics for Wildlife and 

Ecology Research. Springer New York. https://doi.org/10.1007/978-1-4612-1288-1 

McGarigal, Kevin. , C. S. A. (2005). The gradient concept of landscape structure. Issues and 

perspectives in landscape ecology. 

McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). USING CIRCUIT 

THEORY TO MODEL CONNECTIVITY IN ECOLOGY, EVOLUTION, AND 

CONSERVATION. Ecology, 89(10), 2712–2724. https://doi.org/10.1890/07-1861.1 

Meza-Joya, F. L., Ramos, E., & Cardona, D. (2019). SPATIO-TEMPORAL PATTERNS OF 

MAMMAL ROAD MORTALITY IN MIDDLE MAGDALENA VALLEY, 

COLOMBIA. Oecologia Australis, 23(03), 575–588. 

https://doi.org/10.4257/oeco.2019.2303.15 

Modica, G., Praticò, S., Laudari, L., Ledda, A., Di Fazio, S., & De Montis, A. (2021). 

Implementation of multispecies ecological networks at the regional scale: analysis and 

multi-temporal assessment. Journal of Environmental Management, 289(April). 

https://doi.org/10.1016/j.jenvman.2021.112494 

Mu, B., Liu, C., Tian, G., Xu, Y., Zhang, Y., Mayer, A. L., Lv, R., He, R., & Kim, G. (2020). 

Conceptual Planning of Urban–Rural Green Space from a Multidimensional Perspective: 

A Case Study of Zhengzhou, China. Sustainability, 12(7), 2863. 

https://doi.org/10.3390/su12072863 

Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends 

in Ecology & Evolution, 10(2), 58–62. https://doi.org/10.1016/S0169-5347(00)88977-6 

Nevřelová, M., & Novota, M. (2020). Functionality of the Ecological Network Elements from 

the Point of View of Mammal Migrations in the Contact Zone of the Forest and 



 

 

122 
 

 

Agricultural Landscape. Ekológia (Bratislava), 39(1), 45–57. 

https://doi.org/10.2478/eko-2020-0004 

Newman, M. E. J. (2004). Detecting community structure in networks. The European 

Physical Journal B - Condensed Matter, 38(2), 321–330. 

https://doi.org/10.1140/epjb/e2004-00124-y 

Newmark, W. D. (1995). Extinction of Mammal Populations in Western North American 

National Parks. Conservation Biology, 9(3), 512–526. https://doi.org/10.1046/j.1523-

1739.1995.09030512.x 

Newmark, W. D. (2008). Isolation of African protected areas. Frontiers in Ecology and the 

Environment, 6(6), 321–328. https://doi.org/10.1890/070003 

Nie, W., Shi, Y., Siaw, M. J., Yang, F., Wu, R., Wu, X., Zheng, X., & Bao, Z. (2021). 

Constructing and optimizing ecological network at county and town Scale: The case of 

Anji County, China. Ecological Indicators, 132, 108294. 

https://doi.org/10.1016/j.ecolind.2021.108294 

Orjan Bodin, & Santiago Saura. (2010). Ranking individual habitat patches as connectivity 

providers: Integrating network analysis and patch removal experiments. Ecological 

Modelling, 221(19), 2393–2405. 

Pascual-Hortal, L., & Saura, S. (2006). Comparison and development of new graph-based 

landscape connectivity indices: towards the priorization of habitat patches and corridors 

for conservation. Landscape Ecology, 21(7), 959–967. https://doi.org/10.1007/s10980-

006-0013-z 

Pascual-Hortal, L., & Saura, S. (2008). Integrating landscape connectivity in broad-scale 

forest planning through a new graph-based habitat availability methodology: application 

to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). European Journal of Forest 

Research, 127(1), 23–31. https://doi.org/10.1007/s10342-006-0165-z 

Poisot, T., Bergeron, G., Cazelles, K., Dallas, T., Gravel, D., MacDonald, A., Mercier, B., 

Violet, C., & Vissault, S. (2021). Global knowledge gaps in species interaction networks 

data. Journal of Biogeography, 48(7), 1552–1563. https://doi.org/10.1111/jbi.14127  

Prăvălie, R., Sîrodoev, I., Nita, I.-A., Patriche, C., Dumitraşcu, M., Roşca, B., Tişcovschi, A., 

Bandoc, G., Săvulescu, I., Mănoiu, V., & Birsan, M.-V. (2022). NDVI-based ecological 

dynamics of forest vegetation and its relationship to climate change in Romania during 

1987–2018. Ecological Indicators, 136, 108629. 

https://doi.org/10.1016/j.ecolind.2022.108629 

Prugh, L. R., Hodges, K. E., Sinclair, A. R. E., & Brashares, J. S. (2008). Effect of habitat 

area and isolation on fragmented animal populations. Proceedings of the National 

Academy of Sciences, 105(52), 20770–20775. https://doi.org/10.1073/pnas.0806080105 

Rayfield, B., Fortin, M.-J., & Fall, A. (2011). Connectivity for conservation: a framework to 

classify network measures. Ecology, 92(4), 847–858. https://doi.org/10.1890/09-2190.1 

Ribeiro, M. P., de Mello, K., & Valente, R. A. (2022). How can forest fragments support 

protected areas connectivity in an urban landscape in Brazil? Urban Forestry & Urban 

Greening, 74, 127683. https://doi.org/10.1016/j.ufug.2022.127683 

Ricketts, T. H. (2001). The Matrix Matters: Effective Isolation in Fragmented Landscapes. 

The American Naturalist, 158(1), 87–99. https://doi.org/10.1086/320863 

Ricotta, C. (2000). Quantifying the network connectivity of landscape mosaics: a graph-

theoretical approach. Community Ecol., 1(1), 89–94. 

https://doi.org/10.1556/ComEc.1.2000.1.12 

Ries, L., Fletcher, R. J., Battin, J., & Sisk, T. D. (2004). Ecological Responses to Habitat 

Edges: Mechanisms, Models, and Variability Explained. Annual Review of Ecology, 

Evolution, and Systematics, 35(1), 491–522. 

https://doi.org/10.1146/annurev.ecolsys.35.112202.130148 

Rudnick, A., Rudnick, D., A., E., Ryan, S. J., Beier, P., Cushman, S. A., Dieffenbach, F., 

Epps, C. W., Gerber, L. R., Hartter, J., Jenness, J. S., Kintsch, J., Merenlender, A. M., 

https://doi.org/10.1111/jbi.14127


 

 

123 
 

 

Perkl, R. M., Preziosi, D. V., & Trombulak, Stephen C.Rudnick, D. (2012). The role of 

landscape connectivity in planning and implementing conservation and restoration 

priorities. Issues in Ecology, 16(16), 1–23. 

Rudnick, D., A., E., Ryan, S. J., Beier, P., Cushman, S. A., Dieffenbach, F., Epps, C. W., 

Gerber, L. R., Hartter, J., Jenness, J. S., Kintsch, J., Merenlender, A. M., Perkl, R. M., 

Preziosi, D. V., Trombulak, Stephen C.Rudnick, D., & Rudnick, A. (2012). The role of 

landscape connectivity in planning and implementing conservation and restoration 

priorities. Ecological Society of America, 16(16), 1–23. 

Ruiz, L., Parikh, N., Heintzman, L. J., Collins, S. D., Starr, S. M., Wright, C. K., Henebry, G. 

M., van Gestel, N., & McIntyre, N. E. (2014). Dynamic connectivity of temporary 

wetlands in the southern Great Plains. Landscape Ecology, 29(3), 507–516. 

https://doi.org/10.1007/s10980-013-9980-z 

Russo, L. F., Barrientos, R., Fabrizio, M., Di Febbraro, M., & Loy, A. (2020). Prioritizing 

road‐kill mitigation areas: A spatially explicit national‐scale model for an elusive 

carnivore. Diversity and Distributions, 26(9), 1093–1103. 

https://doi.org/10.1111/ddi.13064 

Sáez, D., Spina, F., Margalida, A., Serra, L., Volponi, S., & Nadal, J. (2023). Reconstructing 

migratory network nodes to improve environmental management and conservation 

decisions: A case study of the common quail Coturnix coturnix as a biosensor. Science of 

The Total Environment, 893, 164913. https://doi.org/10.1016/j.scitotenv.2023.164913 

Samways, M. J., & Pryke, J. S. (2016). Large-scale ecological networks do work in an 

ecologically complex biodiversity hotspot. Ambio, 45(2), 161–172. 

https://doi.org/10.1007/s13280-015-0697-x 

Saura, S., & de la Fuente, B. (2017). Connectivity as the Amount of Reachable Habitat: 

Conservation Priorities and the Roles of Habitat Patches in Landscape Networks. In 

Learning Landscape Ecology (pp. 229–254). Springer New York. 

https://doi.org/10.1007/978-1-4939-6374-4_14 

Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate 

connectivity in landscape conservation planning: Comparison with existing indices and 

application to a case study. Landscape and Urban Planning, 83(2–3), 91–103. 

https://doi.org/10.1016/j.landurbplan.2007.03.005 

Sauter, I., Kienast, F., Bolliger, J., Winter, B., & Pazúr, R. (2019). Changes in demand and 

supply of ecosystem services under scenarios of future land use in Vorarlberg, Austria. 

Journal of Mountain Science, 16(12), 2793–2809. https://doi.org/10.1007/s11629-018-

5124-x 

Savary, P., Foltête, J., Moal, H., Vuidel, G., & Garnier, S. (2021). Analysing landscape 

effects on dispersal networks and gene flow with genetic graphs. Molecular Ecology 

Resources, 21(4), 1167–1185. https://doi.org/10.1111/1755-0998.13333 

Schulte, U., Küsters, D., & Steinfartz, S. (2007). A PIT tag based analysis of annual 

movement patterns of adult fire salamanders (Salamandra salamandra) in a Middle 

European habitat. Amphibia-Reptilia, 28(4), 531–536. 

https://doi.org/10.1163/156853807782152543 

Schwartz, A. L. W., Shilling, F. M., & Perkins, S. E. (2020). The value of monitoring wildlife 

roadkill. European Journal of Wildlife Research, 66(1), 18. 

https://doi.org/10.1007/s10344-019-1357-4 

Shirk, A. J., Landguth, E. L., & Cushman, S. A. (2018). A comparison of regression methods 

for model selection in individual‐based landscape genetic analysis. Molecular Ecology 

Resources, 18(1), 55–67. https://doi.org/10.1111/1755-0998.12709 

Shobairi, S. O. R., Usoltsev, V. A., & Chasovskikh, V. P. (2018). Vegetation Fractional 

Coverage (VFC) Estimation of Planted and Natural Zones Based on Remote Sensing. 

American Journal of Environmental Policy and Management, 4(1), 21–31. 



 

 

124 
 

 

Silverman, B. W. (2018). Density Estimation for Statistics and Data Analysis. Routledge. 

https://doi.org/10.1201/9781315140919 

Spatari, G., Lorè, I., Viglianisi, A., & Calabrò, F. (2022). Economic Feasibility of an 

Integrated Program for the Enhancement of the Byzantine Heritage in the Aspromonte 

National Park. The Case of Staiti (pp. 313–323). https://doi.org/10.1007/978-3-031-

06825-6_30 

Tarabon, S., Calvet, C., Delbar, V., Dutoit, T., & Isselin-Nondedeu, F. (2020). Integrating a 

landscape connectivity approach into mitigation hierarchy planning by anticipating urban 

dynamics. Landscape and Urban Planning, 202. 

https://doi.org/10.1016/j.landurbplan.2020.103871 

Tarabon, S., Dutoit, T., & Isselin-Nondedeu, F. (2021). Pooling biodiversity offsets to 

improve habitat connectivity and species conservation. Journal of Environmental 

Management, 277, 111425. https://doi.org/10.1016/j.jenvman.2020.111425 

Tarabon, S., Godet, C., Coskun, T., & Clauzel, C. (2022a). Coupling spatial modeling with 

expert opinion approaches to restore multispecies connectivity of major transportation 

infrastructure. Landscape and Urban Planning, 221, 104371. 

https://doi.org/10.1016/j.landurbplan.2022.104371 

Tarabon, S., Godet, C., Coskun, T., & Clauzel, C. (2022b). Coupling spatial modeling with 

expert opinion approaches to restore multispecies connectivity of major transportation 

infrastructure. Landscape and Urban Planning, 221, 104371. 

https://doi.org/10.1016/j.landurbplan.2022.104371 

Theobald, D. M. (2006). Exploring the functional connectivity of landscapes using landscape 

networks. In: Crooks KR, Sanjayan M, eds. Connectivity Conservation. New York, NY: 

Cambridge University Press, 2006, Chapter 17, pp. 416-444. 

Tiang, D. C. F., Morris, A., Bell, M., Gibbins, C. N., Azhar, B., & Lechner, A. M. (2021a). 

Ecological connectivity in fragmented agricultural landscapes and the importance of 

scattered trees and small patches. Ecological Processes, 10(1), 20. 

https://doi.org/10.1186/s13717-021-00284-7 

Tiang, D. C. F., Morris, A., Bell, M., Gibbins, C. N., Azhar, B., & Lechner, A. M. (2021b). 

Ecological connectivity in fragmented agricultural landscapes and the importance of 

scattered trees and small patches. Ecological Processes, 10(1), 1–16. 

https://doi.org/10.1186/S13717-021-00284-7/FIGURES/9 

Tiang, D. C. F., Morris, A., Bell, M., Gibbins, C. N., Azhar, B., & Lechner, A. M. (2021c). 

Ecological connectivity in fragmented agricultural landscapes and the importance of 

scattered trees and small patches. Ecological Processes, 10(1), 20. 

https://doi.org/10.1186/s13717-021-00284-7 

Tillmann, J. E. (2005). Habitat Fragmentation and Ecological Networks in Europe. GAIA - 

Ecological Perspectives for Science and Society, 14(2), 119–123. 

https://doi.org/10.14512/gaia.14.2.11 

Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape 

connectivity. Oikos, 90(1), 7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x 

Tomaselli, V., Dimopoulos, P., Marangi, C., Kallimanis, A. S., Adamo, M., Tarantino, C., 

Panitsa, M., Terzi, M., Veronico, G., Lovergine, F., Nagendra, H., Lucas, R., Mairota, P., 

Mücher, C. A., & Blonda, P. (2013). Translating land cover/land use classifications to 

habitat taxonomies for landscape monitoring: a Mediterranean assessment. Landscape 

Ecology, 28(5), 905–930. https://doi.org/10.1007/s10980-013-9863-3 

Turner, M. G. (1989). Landscape Ecology: The Effect of Pattern on Process. Annual Review 

of Ecology and Systematics, 20(1), 171–197. 

https://doi.org/10.1146/annurev.es.20.110189.001131 

Unnithan Kumar, S., & Cushman, S. A. (2022a). Connectivity modelling in conservation 

science: a comparative evaluation. Scientific Reports, 12(1), 16680. 

https://doi.org/10.1038/s41598-022-20370-w 



 

 

125 
 

 

Unnithan Kumar, S., & Cushman, S. A. (2022b). Connectivity modelling in conservation 

science: a comparative evaluation. Scientific Reports, 12(1), 16680. 

https://doi.org/10.1038/s41598-022-20370-w 

Urban, J. D., Keitt, T. (2001). Landscape Connectivity : A Graph-Theoretic Perspective. 

Wiley on Behalf of the Ecological Society of America Stable, 82(5), 1205–1218. 

Urban, J. D., Tachovsky, J. A., Haws, L. C., Wikoff Staskal, D., & Harris, M. A. (2009). 

Assessment of human health risks posed by consumption of fish from the Lower Passaic 

River, New Jersey. Science of the Total Environment, 408(2), 209–224. 

https://doi.org/10.1016/j.scitotenv.2009.03.004 

Venter, O., Magrach, A., Outram, N., Klein, C. J., Possingham, H. P., Di Marco, M., & 

Watson, J. E. M. (2018). Bias in protected‐area location and its effects on long‐term 

aspirations of biodiversity conventions. Conservation Biology, 32(1), 127–134. 

https://doi.org/10.1111/cobi.12970 

Vizzari, M., & Sigura, M. (2013). Urban-rural gradient detection using multivariate spatial 

analysis and landscape metrics. Journal of Agricultural Engineering, 44(2s). 

https://doi.org/10.4081/jae.2013.333 

Wang, G., Cushman, S. A., Wan, H. Y., Liu, M., & Jombach, S. (2022a). Comparison of 

Least-cost Path and UNICOR Cumulative Resistant Kernel Analyses in Mapping 

Ecological Connectivity Networks in Luohe Region, China. Journal of Digital 

Landscape Architecture, 2022(7), 176–190. https://doi.org/10.14627/537724018 

Wang, G., Cushman, S. A., Wan, H. Y., Liu, M., & Jombach, S. (2022b). Comparison of 

Least-cost Path and UNICOR Cumulative Resistant Kernel Analyses in Mapping 

Ecological Connectivity Networks in Luohe Region, China. Journal of Digital 

Landscape Architecture, 2022(7), 176–190. https://doi.org/10.14627/537724018 

Wang, M., Ma, Y., & You, X. (2021). An innovative approach to identify environmental 

variables with conservation priorities in habitat patches. Journal of Environmental 

Management, 292, 112788. https://doi.org/10.1016/j.jenvman.2021.112788 

Worton, B. J. (1989). Kernel Methods for Estimating the Utilization Distribution in Home-

Range Studies. Ecology, 70(1), 164–168. https://doi.org/10.2307/1938423 

Wu, B., Bao, Y., Wang, Z., Chen, X., & Wei, W. (2023). Multi-temporal evaluation and 

optimization of ecological network in multi-mountainous city. Ecological Indicators, 

146, 109794. https://doi.org/10.1016/j.ecolind.2022.109794 

Xing, S., & Fayle, T. M. (2021). The rise of ecological network meta-analyses: Problems and 

prospects. Global Ecology and Conservation, 30, e01805. 

https://doi.org/10.1016/j.gecco.2021.e01805 

Xu, M., Jia, X., Pickering, M., & Jia, S. (2019). Thin cloud removal from optical remote 

sensing images using the noise-adjusted principal components transform. ISPRS Journal 

of Photogrammetry and Remote Sensing, 149, 215–225. 

https://doi.org/10.1016/j.isprsjprs.2019.01.025 

Xu, W., Dejid, N., Herrmann, V., Sawyer, H., & Middleton, A. D. (2021). Barrier Behaviour 

Analysis (BaBA) reveals extensive effects of fencing on wide‐ranging ungulates. Journal 

of Applied Ecology, 58(4), 690–698. https://doi.org/10.1111/1365-2664.13806 

Xu, Y., Si, Y., Wang, Y., Zhang, Y., Prins, H. H. T., Cao, L., & de Boer, W. F. (2019). Loss 

of functional connectivity in migration networks induces population decline in migratory 

birds. Ecological Applications, 29(7). https://doi.org/10.1002/eap.1960 

Yavartanoo, F., Song, Y., & Kang, J. (2023). Performance of wildlife fence systems under 

animal impact load. Heliyon, 9(11), e21026. 

https://doi.org/10.1016/j.heliyon.2023.e21026 

Yu, D., Xun, B., Shi, P., Shao, H., & Liu, Y. (2012). Ecological restoration planning based on 

connectivity in an urban area. Ecological Engineering, 46, 24–33. 

https://doi.org/10.1016/j.ecoleng.2012.04.033 



 

 

126 
 

 

Žák, J., Kraus, M., Machová, P., & Plachý, J. (2020). Smart Green Bridge - Wildlife Crossing 

Bridges of New Generation. IOP Conference Series: Materials Science and Engineering, 

728(1), 012010. https://doi.org/10.1088/1757-899X/728/1/012010 

Zeller, K. A., Jennings, M. K., Vickers, T. W., Ernest, H. B., Cushman, S. A., & Boyce, W. 

M. (2018a). Are all data types and connectivity models created equal? Validating 

common connectivity approaches with dispersal data. Diversity and Distributions, 24(7), 

868–879. https://doi.org/10.1111/ddi.12742 

Zeller, K. A., Jennings, M. K., Vickers, T. W., Ernest, H. B., Cushman, S. A., & Boyce, W. 

M. (2018b). Are all data types and connectivity models created equal? Validating 

common connectivity approaches with dispersal data. Diversity and Distributions, 24(7), 

868–879. https://doi.org/10.1111/ddi.12742 

Zeller, K. A., McGarigal, K., Beier, P., Cushman, S. A., Vickers, T. W., & Boyce, W. M. 

(2014). Sensitivity of landscape resistance estimates based on point selection functions to 

scale and behavioral state: pumas as a case study. Landscape Ecology, 29(3), 541–557. 

https://doi.org/10.1007/s10980-014-9991-4 

Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating landscape resistance to 

movement: a review. Landscape Ecology, 27(6), 777–797. 

https://doi.org/10.1007/s10980-012-9737-0  

Zelený, J., Mercado-Bettín, D., & Müller, F. (2021). Towards the evaluation of regional 

ecosystem integrity using NDVI, brightness temperature and surface heterogeneity. 

Science of The Total Environment, 796, 148994. 

https://doi.org/10.1016/j.scitotenv.2021.148994 

Zhang, R., Zhang, L., Zhong, Q., Zhang, Q., Ji, Y., Song, P., & Wang, Q. (2021). An 

optimized evaluation method of an urban ecological network: The case of the Minhang 

District of Shanghai. Urban Forestry & Urban Greening, 62, 127158. 

https://doi.org/10.1016/j.ufug.2021.127158 

Zhang, S., Chen, H., Fu, Y., Niu, H., Yang, Y., & Zhang, B. (2019). Fractional vegetation 

cover estimation of different vegetation types in the Qaidam Basin. Sustainability 

(Switzerland), 11(3). https://doi.org/10.3390/su11030864 

Zheng, R., Wu, G., Yan, C., Zhang, R., Luo, Z., & Yan, B. (2018). Exploration in Mapping 

Kernel-Based Home Range Models from Remote Sensing Imagery with Conditional 

Adversarial Networks. Remote Sensing, 10(11), 1722. 

https://doi.org/10.3390/rs10111722 

Zurita, G., Pe’er, G., Bellocq, M. I., & Hansbauer, M. M. (2012). Edge effects and their 

influence on habitat suitability calculations: a continuous approach applied to birds of the 

Atlantic forest. Journal of Applied Ecology, 49(2), 503–512. 

https://doi.org/10.1111/j.1365-2664.2011.02104.x 

  

 

  

https://doi.org/10.1007/s10980-012-9737-0


 

 

127 
 

 

9. Websites 
 

o Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA: 

https://www.isprambiente.gov.it/en/projects/biodiversity/ecological-network-and-

terrritorial-planning. Last access on 10 November 2023 

o European Commission website. last access 30 October 2023: https://environment.ec. 

europa.eu/topics/nature-and-biodiversity/habitats-directive_en 

o Copernicus, Land Monitoring Service: Website: https://land.copernicus.eu/ -last 

access 11 November 2023 

o Calabria Region Cartographic Centre (CCR). Website: 

http://geoportale.regione.calabria.it/opendata - last accessed 06 March 2023 

o European Space Agency (ESA). Website: https://sentinel.esa.int/web/sentinel/user-

guides/sentinel-2-msi/product-types/level-1c - last accessed 10 March 2023 

o Italian Ministero dell’Ambiente e della Sicurezza Energetica. Website: 

https://www.mite.gov.it/pagina/repertorio-della-fauna–italiana-protetta- last accessed 

16 February 2023 

o QGIS.org (2023). QGIS Geographic Information System. Open Source Geospatial 

Foundation Project. Website: http://qgis.org 

o Pathwalker software. Github, last access 24 March 2023 - 

https://github.com/siddharth-unnithankumar/pathwalker 

o ISPRA. Carta della Natura Project. Website: 

https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura - last access 17 

May 2023 

o European Environment Agency. Nature 2000 project. Website: 

https://www.eea.europa.eu/themes/biodiversity/natura-2000 

o Sun life Rana dalmatina: http://vnr.unipg.it/sunlife/specie_animale-dettagli.php?id=31 

o Google. Historical Imagery tool. Website: https://support.google.com/ 

earth/answer/148094?hl=en - last access on 13 November 2023. 

 

https://www.isprambiente.gov.it/en/projects/biodiversity/ecological-network-and-terrritorial-planning
https://www.isprambiente.gov.it/en/projects/biodiversity/ecological-network-and-terrritorial-planning
https://land.copernicus.eu/
https://www.mite.gov.it/pagina/repertorio-della-fauna–italiana-protetta-%20last%20accessed%2016%20February%202023
https://www.mite.gov.it/pagina/repertorio-della-fauna–italiana-protetta-%20last%20accessed%2016%20February%202023
http://qgis.org/
https://github.com/siddharth-unnithankumar/pathwalker
https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura%20-%20last
https://www.eea.europa.eu/themes/biodiversity/natura-2000


ANNEX 1: Habitat map codes included in 7 macro-categories and the corresponding EUNIS classification. 

Habitat  

macro-categories 

Habitat 

map 

code 

EUNIS 

 code 
Habitat map code description 

EUNIS Code 

 description 

COASTAL  

ENVIRONMENTS 

15.6  A2.526 
Mediterranean brackish environments with perennial woody halophilic 

vegetation 
Mediterranean saltmarsh scrubs  

15.72 F6.8 Mediterranean alo-nitrophilous shrubs Xero-halophile scrubs  

15.83   Clay areas with accelerated erosion   

16.1 B1.21+B1.13 Sandy beaches Unvegetated sand beaches above the driftline + Tethyan sand beach driftline communities  

16.21 B1.3 Mobile dunes Shifting coastal dunes  

16.22 B1.4 Stable dunes with herbaceous vegetation  Coastal stable dune grassland (grey dunes)  

17.1 A2.1 Pebbly and pebbly beaches devoid of vegetation Littoral coarse sediment  

RIVER, LAKE 

AND  

LAGOON 

ENVIRONMENTS  

22.4 C1.2 Freshwater lakes and ponds with vegetation Permanent mesotrophic lakes, ponds and pools  

24.4 C2.3 Waterways with vegetation Permanent non-tidal, smooth-flowing watercourses  

21_m X02  Coastal lagoons and brackish lakes Saline coastal lagoons 

24.1_m C3.5 Watercourses with little or no vegetation Periodically inundated shores with pioneer and ephemeral vegetation 

24.255_m C3.553 Mediterranean river greens Mediterranean river gravel habitats  

MEADOW AND 

 SHRUB 

ENVIRONMENTS 

31.77 F7.4 
Thorny shrub heathlands of the central and southern Apennines and 

Madonie Mountains 
Hedgehog-heaths  

31.844 F3.2 Italian hill and mountain gorse thickets Submediterranean deciduous thickets and brushes  

31.863 E5.3 Fields in Pteridium aquilinum Pteridium aquilinum fields  

31.87   Areas recently cleared by fire, avalanche, or extreme weather events   

32.12 F5.12 Matorral to olive tree and mastic tree Olea europaea and Pistacia lentiscus matorral  

32.215 F5.515 Macchia a Cytisus laniger, Cytisus spinosus, Cytisus infestus [Calicotome] brush 

32.22 F5.52 Euphorbia dendroides stain Euphorbia dendroides formations 

32.23 F5.53 Heron to Ampelodesmos mauritanicus Ampelodesmos mauritanica -dominated garrigues  

38.1* E2.1 Grazed mesophyll grasslands Permanent mesotrophic pastures and aftermath-grazed meadows 

31.863 E5.3 Fields in Ptiridium aquilinum Pteridium aquilinum fields  

31.8A F3.2 Brambles F3.2: Submediterranean deciduous thickets and brushes  

32.A* F5.4 Spartium Junceum Broom. Spanish-broom ([Spartium junceum]) fields 

34.6_B E1.422 Steppes of tall Mediterranean grasses in Hyparrhenia hirta Central Mediterranean esparto steppes 

34.6A E1.434 
Steppes of tall Mediterranean grasses  

in Lygeum spartum 
Andropogonid grass steppes  

34.8_m E1.6 Subnitrophilous grasslands Subnitrophilous annual grassland 

37.A_n E1.44 Grasslands in Arundo plinii Cane steppes 

WOODLAND AND  

FOREST 

ENVIRONMENTS 

41.18* G1.67 Beech forests of southern Italy Southern medio-European Fagus forests  

41.732  G1.732 Mediterranean oak forests with downy oak Italo-Sicilian Quercus pubescens woods  

41.7511 G1.7511 Mediterranean turkey oak groves Southern Italic Quercus cerris woods  

41.9 G1.7D Castanea sativa forest Castanea sativa woodland  

42.15 G3.15 Abetes of the central and southern Apennines Southern Apennine Abies alba forests  

42.65 G3.55 Larch pine forests Calabrian Pinus laricio forests  

42.67 G3.57 Pinus nigra reforestations Pinus nigra reforestation  

42.83 G3.737 Natural and cultivated lodgepole pine (Pinus pinea) forests Italic stone pine forests 

42.84 G3.747 Aleppo pine forests Italic Pinus halepensis forests  

44.12 G1.112 Mediterranean riparian shrub willows Mediterranean tall Salix galleries 

44.14 G1.1121 Mediterranean riparian forests of willow trees Mediterranean white willow galleries  

44.61 G1.314 Riparian forests with poplars Italic poplar galleries   

44.81  F9.31 Riparian thickets of tamarisk, oleander, agnocaste Nerium oleander, Vitex agnus-castus and Tamarix galleries  

45.21 G2.11 Tyrrhenian cork oaks Quercus suber woodland  

45.31 G2.121A Thermo- and mesomediterranean ilexes  Southern Italian holm-oak forests  

45.32 G2.122 Supramediterranean ilexes Supra-Mediterranean holm-oak forests 

 MARSHY 

ENVIRONMENTS,  

PEAT BOGS AND 

SPRINGS 

53.1   Reed beds with Phragmites australis and other heliophytes Water-fringing beds of tall canes Reedbeds normally without free-standing water  

53.62 C3.32 Formations in Arundo donax Arundo donax beds  

ROCKY, 

DETRITAL, 

GLACIAL 

 AND VOLCANIC 

ENVIRONMENTS 

62.11 H3.215 Reed beds with Phragmites australis and other heliophytes Sicilo-Italic [Dianthus] cliffs 

62.7_n H5.3 Terrigen slope in landslide Sparsely- or un-vegetated habitats on mineral substrates not resulting from recent ice activity  

ANTHROPIC  

ENVIRONMENTS 

81 E2.6 Anthropogenic meadows Agriculturally-improved, re-seeded and heavily fertilised grassland, including sports fields and grass lawns 

82.1 I1.1 Intensive crops  Intensive unmixed crops  

82.3 I1.3 Extensive crops Arable land with unmixed crops grown by low-intensity agricultural methods  

83.11 G2.91 Olive groves Olea europaea groves  

83.12 G1.D1 Chestnut groves for fruit Castanea sativa plantations  

83.15_m G1.D4 Orchards Fruit orchards  

83.16 G2.92 Citrus groves Citrus orchards  

83.21 FB.4 Vineyards Vineyards  

83.325_m G1.C4 Eucalyptus plantations Other broadleaved deciduous plantations  

84  I1.2 Vegetable gardens and complex agricultural systems Mixed crops of market gardens and horticulture  

85 X11 Parks, gardens and green areas Large parks 

86.31 J3.2  Quarries, earthworks and landfills Active opencast mineral extraction sites, including quarries  

86.32  J1.4 Manufacturing and commercial sites and major infrastructure nodes Urban and suburban industrial and commercial sites still in active use  

86.6 X21 Archaeological sites and ruins Archaeological sites  

89.2 J5 Freshwater canals and reservoirs Highly artificial man-made waters and associated structures  

83.31_m G3.F Conifer plantations Highly artificial coniferous plantations  

83.324_A G1.C3  robinia's tree Robinia plantations  

83.324_B   ailanthetes   

83.324_C   Areas invaded by Opuntia sp. pl.   

83.325_m G1.C4 Broadleaf plantations Other broadleaved deciduous plantations  

83.326_m   Hardwood and conifer plantations   

86.1_m J1 Population centers  Residential buildings of villages and urban peripheries 

86.1_s   J4 Road and rail infrastructure  Transport networks and other constructed hard-surfaced areas  

86.41_m 
H3.1C 
H3.2F 

Decommissioned quarries and waste debris deposits Disused siliceous quarries,Disused chalk and limestone quarries  



ANNEX 2:Phytosociological table containing vegetation and site information. The classification of the cover classes was done according to Braun Blanquet's numbering system. 

  
CALABRIA REGION - NATURE MAP SYSTEM - HABITAT 
SURVEY SHEET 

  

  Survey no. 17_o 

  Date 27/07/2021 

  Autor/s Laface, Lumia, Mei, Spampinato 

Station data Habitat  32.4 Garrigue and mesomediterranean calcicolous scrubland 

  Habitat Dir. CEE 43/92 - 

  Physionomy Garrigue 

  Administrative Region Calabria 

  Province Reggio Calabria 

  Municipality Reggio Calabria 

  Location Grado 

  Inclusion in the Natura 2000 Network - 

  Coordinate N 38°5'21'' 

  Coordinate E 15°42'38'' 

  Quote (m) 224 

  Exposure S 

  Slope (°) 50 

  Geology Sands with layers of soft sandstones 

  Pedology (U.C.) 9.9 

  Pedology (Classif. USDA) Typic Hapludolls, coarse loamy, mixed, mesic 

  Survey area (mq) 20 

  Integrated area (in the case of fragmented areas) - 

Structure Total coverage (%) 70 

  Outcropping rock (%) 30 

  Vegetation layer coverage A (%) - 

  Vegetation layer coverage a (%) - 

  Vegetation layer coverage e (%) 70 

  Average height of the vegetation layer A (m) - 

  Average height of the vegetation layer a (m) - 

  Average height of the vegetation layer e (m) 0.7 

Conservation Pressure 1 H04 - Vandalism or arson 

  Pressure importance 1 M 

  Pressure 2 
L01 - Abiotic natural processes (e.g. erosion, silting up, drying out, submersion, 

salinization) 

  Pressure importance 2 H 

  Pressure M05 - Collapse of terrain, landslide 

  Pressure importance 3 M 

  Threat 1 A01 - Conversion into agricultural land (excluding drainage and burning) 

  Threat significance 1 L  

  Threat 2 F09 - Deposition and treatment of waste/garbage from household/recreational facilities  

  Threat significance 2 L 

  Conservation measure 1 
CA01 - Prevent conversion of natural and semi-natural habitats, and habitats of species 

into agricultural land 

  Target pressure of conservation measure 1 A01   

  Conservation measure 2 
CF02 - Habitat restoration of areas impacted by residential, 

 commercial, industrial and recreational infrastructures, operations and activities 

  Target pressure of conservation measure 2 F09   

  Conservation measure 3 CH03 - Reduce impact of other specific human actions 

  Target pressure of conservation measure 3 H04 

  Conservation measure 4 
CL01 - Management of habitats (others than agriculture and forest) to slow, stop or 

reverse natural processes 

  Target pressure of conservation measure 4 L01   

  Conservation measure 5 CL03 - Restore habitats following geological and natural catastrophes 

  Target pressure of conservation measure 5 M05   

Layer Specie Coverage 

e Thymbra capitata (L.) Cav. 4 

e Cistus creticus L. subsp. creticus 3 

e Cistus salviifolius L. 2a 

e Dianthus longicaulis Ten. 2a 

e Micromeria graeca (L.) Benth. ex Rchb. subsp. graeca 2a 

e Artemisia campestris L. subsp. variabilis (Ten.) Greuter 2a 

e Helichrysum italicum (Roth) G.Don subsp. italicum 1 

e Ampelodesmos mauritanicus (Poir.) T.Durand & Schinz 1 

e Fumana thymifolia (L.) Spach ex Webb 1 

e Euphorbia rigida M.Bieb. 1 

e Petrosedum sediforme (Jacq.) Grulich subsp. sediforme 1 

e Seseli tortuosum L. subsp. tortuosum + 

e Allium sp. + 

e Phagnalon rupestre (L.) DC. subsp. rupestre + 



Specie's autoecological data 
in red species with a dispersal threshold lower than 100m

in yellow species with not available data
Hierophis virdiflavus Elaphe quatuorlineata Coronella austriaca Podarcis siculus Lacerta bilineata Zamenis lineatus Rana dalmatina Rana italica Bufo bufo Salamandra salamandra 

gligliolii Salamandrina terdigitata Bombina pachypus Dryomys aspromontis Felis silvestris Canis lupus Martes martes Muscardinus avellanarius Mustela putorius Sciurus meridionalis

Animal home range  [ha] 0.05 N.A. 0.005 0.015 0.002 N.A. 0.002 0.002 N.A. 5 N.A. N.A. N.A. 124 8000 140 N.A. 8 2
 Animal dispersal threshold  (m) 100 50 30 10 300 50 50 100 1000 100 100 50 N.A. N.A. 38000 10000 1000 3400 1500

Habitat description

15.6 Mediterranean brackish environments with perennial woody halophilic vegetation 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

15.72 Mediterranean alo-nitrophilous shrubs 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

15.83 Clay areas with accelerated erosion 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

16.1 Sandy beaches 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

16.21 Mobile dunes 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

16.25 Stable dunes with herbaceous vegetation 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

17.1 Pebbly and pebbly beaches devoid of vegetation 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

25.4* Freshwater lakes and ponds with vegetation 100 100 100 100 100 100 0 75 0 100 50 25 100 100 100 100 100 100 100

24.4* Waterways with vegetation 100 100 100 100 100 100 75 0 0 0 0 100 100 100 100 100 100 25 100

31.77* Thorny shrub heathlands of the central and southern Apennines and Madonie Mountains 50 100 25 100 75 100 100 100 100 100 100 100 100 75 75 100 100 100 100

31.844 Italian hill and mountain gorse thickets 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

31.863 Fields in Pteridium aquilinum 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

31.87 Areas recently cleared by fire, avalanche, or extreme weather events 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

32.12 Matorral to olive tree and mastic tree 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

32.215 Macchia a Cytisus laniger, Cytisus spinosus, Cytisus infestus 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

32.25 Euphorbia dendroides stain 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

32.23 Heron to Ampelodesmos mauritanicus 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

38.1* Grazed mesophyll grasslands 75 75 75 75 50 75 100 100 75 100 75 75 100 100 50 100 100 100 100

38.16 Grazed mesophyll grasslands 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

41.18* Beech forests of southern Italy 100 100 75 100 100 100 0 0 50 0 50 75 25 0 0 0 25 75 100

41.732* Mediterranean oak forests with downy oak 75 50 75 100 100 0 0 75 75 100 50 75 100 25 25 25 75 75 100

41.7511* Mediterranean turkey oak groves 75 50 75 100 100 25 0 75 75 100 75 100 100 50 25 50 75 75 100

41.9* Castanea sativa forest 75 75 75 100 100 25 0 50 75 75 75 75 100 25 25 50 25 100 100

42.15* Abetes of the central and southern Apennines 100 50 75 100 100 100 75 100 75 100 100 100 50 25 0 0 50 100 100

42.65* Larch pine forests 75 75 50 100 75 75 75 75 75 75 75 75 75 25 25 0 75 100 0

42.67 Pinus nigra reforestations 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

42.83 Natural and cultivated lodgepole pine (Pinus pinea) forests 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

42.84 Aleppo pine forests 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

44.12* Mediterranean riparian shrub willows 50 75 100 75 75 75 25 75 0 100 75 75 100 100 75 100 100 50 100

44.14* Mediterranean riparian forests of willow trees 75 75 100 100 75 75 25 75 0 100 75 75 100 100 75 100 75 25 100

44.61 Riparian forests with poplars 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

44.81* Riparian thickets of tamarisk, oleander, agnocaste 50 75 100 75 50 75 75 100 0 100 75 75 100 100 75 100 100 75 100

45.21* Tyrrhenian cork oaks 75 25 75 100 100 0 0 50 75 100 50 75 100 50 25 25 25 50 100

45.31* Thermo- and mesomediterranean ilexes 75 25 75 100 100 0 0 25 75 100 0 50 100 25 0 25 25 25 100

45.32* Supramediterranean ilexes 75 75 75 100 100 75 0 25 75 100 25 50 100 25 0 25 25 25 100

53.1* Reed beds with Phragmites australis and other heliophytes 50 75 100 75 100 75 75 100 0 100 100 100 100 100 100 100 100 100 100

62.11 Reed beds with Phragmites australis and other heliophytes 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

81 Anthropogenic meadows 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

31.863 Fields in Ptiridium aquilinum 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

82.1 Intensive crops 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

82.3* Extensive crops 0 25 75 0 0 50 50 100 50 100 75 0 100 100 75 100 75 100 100

83.11 Olive groves 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

83.12 Chestnut groves for fruit 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

83.15 Orchards 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

83.16 Citrus groves 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

83.21 Vineyards 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

83.325 Eucalyptus plantations 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

84 Vegetable gardens and complex agricultural systems 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

85 Parks, gardens and green areas 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

86.31 Quarries, earthworks and landfills 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

86.32 Manufacturing and commercial sites and major infrastructure nodes 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

86.6 Archaeological sites and ruins 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

89.2 Freshwater canals and reservoirs 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

21_m Coastal lagoons and brackish lakes 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

25.1_m Freshwater lakes with little or no vegetation 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

24.1_m* Watercourses with little or no vegetation 75 100 100 75 75 100 75 0 0 100 75 50 100 100 100 100 100 75 100

24.255_m* Mediterranean river greens 50 75 75 25 50 75 75 25 0 100 75 50 100 100 100 100 100 75 100

31.8A Brambles 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

32.A* Spartium Junceum Broom. 50 50 50 75 25 75 100 100 100 100 100 100 100 75 75 100 75 100 100

34.6_B Steppes of tall Mediterranean grasses in Hyparrhenia hirta 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

34.6A Steppes of tall Mediterranean grasses 
in Lygeum spartum 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

34.8_m* Subnitrophilous grasslands 25 0 50 25 25 50 100 100 100 100 100 0 100 100 100 100 100 100 100

37.A_n* Grasslands in Arundo plinii 50 25 100 50 75 100 100 100 100 100 100 100 100 100 50 100 100 100 100

53.6B Formations in Arundo donax 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

62.7_n Terrigen slope in landslide 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

83.31_m Conifer plantations 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

83.324_A robinia's tree 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

83.324_B ailanthetes 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

83.324_C Areas invaded by Opuntia sp. pl. 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

83.325_m Broadleaf plantations 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

83.326_m Hardwood and conifer plantations 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

86.1_m Population centers 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

86.1_s Road and rail infrastructure 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

86.41_m Decommissioned quarries and waste debris deposits 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

Resistance values [ 0 = no resistance, 25 = low resistance, 50 = medium resistance, 75 = high resistance, 100 = very high resistance]

Habitat code
( * for the habitat 

considered as 
patches)

Reptiles Amphibians Mammals

ANNEX 3: In the table, dispersal threshold, home range and resistance values for each species are given for each habitat (resistence value goes from 0 to 100, in intervals of 25). 
In red species with a dispersal threshold lower than 100m, in yellow species with not available data. * for habitats considered as patches


