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ABSTRACT The continuous wavelet transform (CWT) has been used in radar-based vital signs detection
to identify and to remove the motion artifacts from the received radar signals. Since the CWT algorithm is
computationally heavy, the processing of this algorithm typically results in long processing time and complex
hardware implementation. The algorithm in its standard form typically uses software processing tools and
is unable to support high-performance data processing. The aim of this research is to design an optimized
CWT algorithm architecture to implement it on Field Programmable Gate Array (FPGA) in order to identify
the unwanted movement introduced in the retrieved vital signs signals. The optimization approaches in
the new implementation structure are based on utilizing the frequency domain processing, optimizing the
required number of operations and implementing parallel processing of independent operations. Our design
achieves significant processing speed and logic utilization optimization. It is found that processing the
algorithm using our proposed hardware architecture is 48 times faster than processing it using MATLAB.
It also achieves an improvement of 58% in speed performance compared to alternative solutions reported in
literature. Moreover, efficient resources utilization is achieved and reported. This advanced performance of
the proposed design is due to consciously implementing comprehensive approaches of multiple optimization
techniques that results in multidimensional improvements. As a result, our achieved design is suitable for
utilization in high-performance data processing applications.

INDEX TERMS Continuous wavelet transform, FPGA implementation, radar remote sensing, motion
artifact rejection, random body movements, FFT-based CWT, parallel processing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

I. INTRODUCTION
Random body movement rejection in vital-sign detection
application is one of the main challenges faced by the
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researchers in effectively implementing indoor radars [1], [2],
[3], [4]. Moreover, there is more research directed recently
towards real-time detection applications, as such feature is
highly desirable. Real-time detection requires powerful pro-
cessing capability, which is not always affordable for every-
day use [5], [6], [7], [8], [9]. This opens opportunities of
inventing novel solutions, which are capable of processing
complex random body movements detection algorithms to
meet the real-time requirements [10].

Different approaches were used in the literature to over-
come the challenge of random bodymovements in vital signs.
Researchers in [11] tackled this issue by using the continuous
wavelet transform (CWT) algorithm to identify the contribu-
tion of the motion artifacts in the phase signal and then to
smooth it by applying a moving average filter. Meanwhile,
in [12] the features of the frequency spectrum of vital signs
while undergoing random body motions are analyzed. This
work utilized the motion modulation effect and extracted
the direction of the body motion with the new position of
the respiration peaks. Since body movements introduce fre-
quency shifts in the spectrum, the direction and amount of
this frequency shift depends on the direction and the speed
of the body motion. Thus, this feature was used to account
for the body motions in the spectrum to detect the breathing
rate accordingly. Meanwhile, the work in [13] effectively
reduced the random movement using two methods: the com-
plex signal demodulation (CSD) method and the arctangent
demodulation (AD) method, which were implemented on
Doppler radar detection of vital signs. It was targeted for sleep
monitoring and baby monitoring to eliminate false alarm
caused by random movements. The CSD resulted to be more
immune against the effects of the DC offset, whereas the AD
reduces the effect of harmonics and inter-modulation interfer-
ence and high carrier frequencies. Finally, an adaptive phase
compensation method was used for random body movements
cancellation in [14]. Tomeasure the random bodymovements
of a subject, a camera was integrated in the radar system.
The camera measurement was fed back into the system as
the phase information. The presence of large body move-
ments may result in receiver saturation. However, the use of
phase compensation avoids such a problem. A simple video
processing was also performed to extract the random body
information without using any markers.

The reported algorithm in [11] uses targets with ran-
dom body motion that affect the detection of vital signs.
It uses CWT to identify the locations of the artifacts and
then applies the moving average filter to smooth these
identified artifacts. It also uses the discrete wavelet trans-
form (DWT) to separate the heartbeat signal from the
respiration signal, which results in accurate detection. How-
ever, this innovative algorithm is computationally complex
and thus does not overcome implementation requirements
such as high speed, low resource utilization, and low-power
consumption for high-performance and potential real-time
processing scenarios. To overcome these challenges, this
algorithm needs to be employed in innovative architectures

in the processing platforms for high-performance processing
metrics.

As will be outlined in the next section, the CWT algorithm
has been used in the literature for different applications,
in different structures, and designed and implemented in
different processing platforms, see [15], [16], [17], [18], [19],
and [20]. The use of CWT for the specific application of
detection unwanted body movement was outlined in [11].
In the article, a standard desktop computer was used as the
main processing unit for the algorithm. That work focused on
proving the viability of the CWT algorithm when applied to
more practical scenario using radar for detection andmonitor-
ing of heart rate (HR) and respiration rate (RR), so accuracy
was one of the most important parameters to be reported.
However, to investigate the high-performance data process-
ing viability of the algorithm, other parameters (processing
speed, resources utilization) are yet to be investigated. Since
the algorithm was implemented in the software loaded into
the central processing unit (CPU) of a desktop for execution,
it implies that the implementation of the algorithm is per-
formed in a sequential manner. In this case, execution speed,
processing time, and the potential to apply such algorithm
in real-time applications are questionable. In summary, the
main gap in the literature is that the CWT algorithm is very
complex and in order to process this algorithm especially
when very large data samples are involved, it is important to
consider the processing speed and resources needed. Conse-
quently, it is apparent that there is a need to provide a CWT
design and implementation that can be used for vital sign
detection scenario with high-performance processing speed.

Since CWT in [11] has been validated to be successful in
identifying unwanted movements, our proposed work here
investigates the CWT use for high-performance detection
of unwanted movement. This is achieved by designing an
FPGA implementation architecture with high speed, low pro-
cessing time and optimized hardware resources. To our best
knowledge, the FPGA implementation of the CWT algorithm
proposed in [11] has not been explored yet. The proposed
solution provides a processing structure by adopting sev-
eral optimization techniques. The design utilizes the FPGA
reconfigurability and parallelism features to implement the
optimization objectives.

A. OUR CONTRIBUTION
• A new architecture implementation of CWT on FPGA
for unwanted body movement detection: we developed
a new CWT architecture implementation on FPGA to
overcome the gaps described earlier in the introduction.
This was done through several optimizations imple-
mented in the design to improve processing speed and
logic utilization:
- CWT processing speed optimization: we have been
able to implement several speed optimizations on
(i) pre-processing and modifications of the algorithm
input data (ii) the FPGA architecture design. Examples
of such optimizations are wavelet function optimization,
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wavelet scales optimization, Fast Fourier Transform
(FFT) output optimization and multiplication optimiza-
tion. The CWT processing speed was improved due to
adopting and implementing these optimizations.
- CWT resources utilization optimization: we have
been able to implement several resources optimizations
methods on (i) the algorithm input data pre-processing
and modifications (ii) the FPGA architecture design.
Examples of such optimizations are wavelet function
optimization, wavelet scales optimization, FFT output
optimization, multiplication optimization and random
access memory (RAM) requirements optimizations. The
CWT logic utilization was improved due to adopting and
implementing these optimizations.

• Applicability to high-performance data processing for
unwanted body movement detection application: we
developed the design so that it can be applied for
high-performance detection applications. This is due to
the significant improvement achieved in the processing
speed.

The hardware design optimization done in this work is not
referred to the design optimization of the primitive blocks of
functions such as the multiplier or the RAM block. The work
is done in the following:

• How the multipliers and RAMs are used.
• The connection and the control of how and when each
block is connected to other blocks to maximize speed
and minimize resources.

• The flow of data from one block to another and how that
is controlled tomaximize speed andminimize resources.

• The input signal and wavelet samples

In summary, the above points allowed the use of the FPGA
primitive blocks in the most efficient way in the design.

The rest of this paper is organized as follows: Section II
presents related works in the literature, Section III provides
brief background on CWT, Section IV provides details on
the CWT processor design features and implementation,
Section V outlines the results and comparison with the state
of the art works, Section VI provides the conclusion.

II. RELATED WORKS
The CWT has been attracting researchers’ interest in the last
decades therefore multiple implementation approaches of the
algorithm are presented in the literature. In [21], a CWT
based approach was proposed to measure the voltage flicker
resulting in power systems from fast load variations. It uses
a Gaussian modulated wavelet function as the basis wavelet
in the algorithm. Based on the resulting CWT coefficients,
the flicker frequency response and the amount of system fre-
quency deviation can be evaluated. This approach calculates
the CWT coefficients in time domain and the algorithm was
implemented using LabView software. It might be accurate
in detecting flicker voltages in comparison to typical FFT
approaches. However, performing it in time domain involves
a very complex computational steps within the convolution,

increasing the time requirements for processing. Besides
that, [22] proposed a unified architectural framework for
DWT and CWT based on a reconfigurable lifting scheme to
be used in image processing application. The proposed archi-
tecture supports the use different wavelets based on the recon-
figurability of the lifting scheme. The unified scheme consists
of a reconfigurable lifting scheme array (RLSA), a reconfig-
urable address generator (RAG), two dual port static random
access memory (SRAM) and the main controller unit. The
design was implemented using very small number of scales
and very small decomposition levels (3 levels), limiting the
access and identification of various frequencies of interest.
The processing of 512 × 512 image using the three-level
decomposition was reported to be completed in 12.6 ms. The
combination of DWT and CWT in one schememight result in
better resource utilization, especially when considering large
number of scales and decomposition levels. Nonetheless,
parameters of every new wavelet function to be used in this
scheme need to be defined and then embedded in the design
to start calculating the wavelets. This step can be replaced
by precalculating the wavelet coefficients themselves, storing
them in a memory and then calling them when needed.

Another algorithm that combines the use of DWT and
CWT is presented in [23]. In this work, a hybrid method uti-
lizing DWT and CWT was implemented on FPGA for under-
water target motion estimation in sonar systems. The design
parts consist of the DWT bank filtering for signal de-noising
and the CWT convolver for target motion estimation. In the
proposed structure of the CWT, only one multiplier with one
adder were used to map the convolution process. This work
was then improved by the same authors and presented in [24].
Scale optimization block was added to this design to estimate
the sets of filters coefficients to be used by the CWT by deter-
mining the optimal scales. Despite being focused on saving
of area, this comes at the cost of its speed of computation.
In this version of the design, the CWT is implemented using
5 multipliers and 4 adders following the same principle in
the previous design flow. Despite Improving the computation
time, the convolution itself in time domain is more complex
compared to doing only multiplication in frequency domain.

Next, the researchers in [25] developed an algorithm to
detect and classify six types of electrocardiogram (ECG) sig-
nal beats using neural network classifier. Prior to inserting the
signal samples to the classifier, theywere pre-processed using
CWT and principal component analysis (PCA) algorithm.
CWT was mainly used to extract the ECG signal features
while the use of PCA was to reduce the size of the data
before being fed as input to the classifier. The combination
of CWT and PCA featured a more effective input data to the
neural network leading to better classification results. The
HAARmother wavelet was used in the CWT estimation using
ten scales via MATLAB. The performance accuracy of the
classifier in this method is very high. The speed feature of this
method was not investigated, and no results were reported.
However, it should be apparent that the use of CWT increases
the complexity and time consumption of the processing.
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The works presented in [26], [27], and [28] are multiple
improvements built on each other by the same researchers.
They presented the design and the implementation of CWT
algorithm using FPGA to detect and extract the event related
potential (ERP) signal part of the electroencephalogram
(EEG) signals. The basic idea of the implemented algorithm
is to conduct the CWT in frequency domain rather than time
domain to speed up the computation. The algorithm process-
ing steps are designed and implemented on FPGA. In addi-
tion, optimization techniques were used to further reduce the
time processing requirements as well as the logic utilization.
In this implementation, the zeroes in theMorlet wavelet were
removed from calculations. In addition, the scales used were
reduced to focus only on the scales supporting the targeted
ERP feature for extraction. The initial design computes the
CWT in 1 ms, which was improved by the optimization to
around 0.57 ms. The achieved run-time is good in this work
partially due to the moderate number of samples in the signal
(1024 points). Further investigations should be carried out for
longer lengths of the signal and how that affects the run time
and logic utilization.

The work in [29] proposed a fringe pattern recognition
method using CWT in Fourier space. This work attempted
to reduce the algorithm execution time by designing and
implementing it on FPGA. Its design consists of the wavelet
core, input and output buffermemory sized at 1KB each and a
NIOSII processor. The designwas tested on a 512×512 fringe
pattern image, which was downloaded on the external SRAM
to the FPGA. The FPGA requires around 100 ms to process
the image while using C language it needs around 1 s, and
around 650 ms if a high-end station with higher processing
capability was used. The resources utilization when using
Altera cyclone IV was 61% of logic elements, 49% of on chip
memory and 100% of embedded multipliers.

Another fringe pattern recognition and fringe phase extrac-
tion application using CWT was presented in [30]. The CWT
algorithm is implemented on an FPGA using the multipli-
cation between the two-dimensional pattern spectrum and
the two-dimensional wavelet kernel spectrum to avoid the
complex convolution operations and reduce processing time.
The Morlet function was used as the mother wavelet. The
design consists mainly of digital data acquisition module,
data buffer module, configuration module, CWT operation
module and an output module. The heart of the design is the
CWT operation. When the input signal matrix samples are
of 256 × 256 in size, the FPGA execution time is less than
10ms (using 200MHz clock) whereaswhen usingMATLAB,
it was 1 s.

The work proposed in [31] was aimed to design a hardware
description language (VHDL)module that detects the Rwave
and interval in an ECG signal to obtain the HR in real-time
using the CWT with splines. The CWT was designed to
function in time domain with the wavelet function selected as
the first derivative of a second order spline function. Among
all scales of the wavelet function, only one scale was used
in the CWT calculation, which is scale 8, and it was selected

because it contains the frequencies of interest in the passband.
The processing time requirement in this design was 20 ms
with an accuracy of 90%. The designed module was then
implemented in an FPGA prototype presented in [32]. In this
prototype, four modules were implemented: the data receiver
module, the module for obtaining the HR, module to manage
the storage of data in micro-SD card and a module to manage
the processed data visualization. The prototype was tested
with 8 files of input data with a reported accuracy of 99.5%.
The prototype design bandwidth (BW) is 200 Hz and power
consumption of 625 mW/h.

III. BACKGROUND ON CWT
CWT is a windowing technique with variable-sized regions
that allows to have different frequency and time resolutions
depending on what is needed. For example, at high frequen-
cies usually a high time resolution is necessary, but not at low
frequencies where a high time resolution causes redundancy.
With CWT, a time frequency representation of the signal is
obtained and therefore the artifacts, that typically have also
higher frequencies than the normal vital sign signals, can be
clearly seen and located in time. Using CWT, the vital signs
phase signal disturbed by the artifacts and its corresponding
CWT can be extracted. The artifacts can be identified in the
time domain exploiting the frequency information [33], [34],
[35], [36].

The CWT of an input signal x(t) for a selected mother
wavelet function9(t) at a given time b and scale a is defined
as [37], [38], [39], [40], and [41]:

(a, b) =
1
√
a

∫
∞

−∞

x(t)9(
t − b
a

)dt. (1)

The definition of the convolution between the input signal
x (t) and a linear time invariant filter h (t) is:

(x ∗ h) (b) =
∫
∞

−∞

x(t)h(b− t)dt, (2)

if h (t) is defined in terms of the mother wavelet function as:

h(t) =
1
√
a
9(
−t
a
)dt. (3)

The CWT can be seen as the convolution process between
the input signal and the mother wavelet in time domain. This
convolution produces the CWT coefficients. This convolution
equation in a simple compact form is [28]:

C(a, b) =
∫
∞

−∞

x(t)9∗a,b(t)dt, (4)

where the sign ∗ represent complex conjugate.
If the total number of convolutions is small (this is true in

the case of small signal samples) this time domain method
can be used in practical situations. Alternatively, the CWT
algorithm is calculated in frequency domain in which the
convolution operation is replaced by multiplication operation
as follows:

g1(t) ∗ g2(t) <=> G1(ω)× G2(ω), (5)
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TABLE 1. Equations of commonly used mother wavelets.

where the lower-case g is the input signal and wavelet signal
in time domain while the upper-case G is the input signal and
wavelet signal in frequency domain. In addition, the sign ∗
represents the convolution.

By definition, processing using CWT requires the selection
and use of a wavelet function either in time domain or a
frequency domain. If the process is based on time domain,
then the most computationally complex step is the convo-
lution between the wavelet function and the input signal.
If transformation is based on frequency domain, then the
process is in the form of multiplication between the wavelet
function and the input signal.

In every CWT, the mother wavelet signal needs to be
selected. There are certain criteria for the selection of the
mother wavelet such as the finite energy and the admissibility
factor, which are elaborated in [31]. The most commonly
selected mother wavelets in the CWT algorithm are the ana-
lytic Morlet, the Mexican hat and the Paul wavelet functions
whose formulas are shown in Table 1 [28]. It summarizes
the three functions equations in time domain and their cor-
responding frequency domain equations.

One of the most widely used mother wavelets in the
biomedical applications is the Morlet function. The Morlet
wavelet consists of complex sinusoidal waves modulated by
Gaussian envelop. The Morelt function is typically selected
for biomedical applications such the vital sign detection due
to its simplicity and suitability for spectral analysis.

The Morlet wavelet used by MATLAB is defined by:

9(ω) = 2e−(ω−6)
2/2U (ω), (6)

where U (ω) is the unit step in frequency domain. if the unit
step is ignored for a while, the time domain Morlet used in
MATLAB is:

9(t) =

√
2
π
e−t

2/2ei6t . (7)

FIGURE 1. Block diagram of the CWT processor design methodology.

IV. CWT PROCESSOR DESIGN FEATURES AND
IMPLEMENTATION
Different methods and approaches are planned to optimize an
architecture for the CWT algorithm on FPGA to be used for
vital sign detection. The following approaches are among the
ones used to achieve the optimized design:

• Capitalizing on the parallelism features of FPGA.
• Reducing unnecessary calculation steps in the algorithm.
• Optimal selection of the scales fit for the application.
• Using the available IP cores.

A. CWT PROCESSOR DESIGN METHODOLOGY
The overall block diagram of the proposed CWT processor
designmethodology is shown in Fig. 1. It contains three main
parts of this work, which are:

• Input data preparation and preprocessing;
• CWT-based data processing;
• Results validation.

The first and the third ones are considered the software parts
and are processed using MATLAB while, the second one,
is the hardware part, which includes the FPGA.

Detailed description of all components of Fig. 1 is pre-
sented below.

1) EXPERIMENTAL DATA UNIT
This unit represents the experimental measurement data
matrix resulting from the experiment conducted in [11]. Each
element in the Matrix R is a complex element of a real part
and an imaginary part (I + Q) of base-band digitized signal
samples. R contains 45,572 rows representing the slow time
samples and 50 columns representing the fast time samples
or (range). The important parameters used in the experiment
which are utilized in this work are the following:

• Sampling time in slow time (across rows) ts0 =

3.072 ms.
• Sampling frequency in slow time (across rows) fs =
325.5208 Hz.

• Range resolution 1R = 0.02 m.

The above parameter values of the sampling time, sampling
frequency, and range resolution are based on the system
designed in [11].
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FIGURE 2. Block diagram of the input data preparation and
pre-processing.

2) INPUT DATA PREPARATION AND PRE-PROCESSING UNIT
Internally, this unit consists of three sequential steps as shown
in the Fig 2. The purpose of this step is to correct the data from
the offset caused by the cables in the experiment and focus on
the time and range of interest. This step is also important to
insert the correct data to the CWT processor, which contains
the target information where oscillations due to the presence
of the RR and HR of the volunteers.

a: DATA CORRECTION
To properly process the data matrix R, some correction steps
are applied to extract the part of the matrix on which subse-
quent algorithms in the FPGA is applied, these steps are:
• Starting the data processing ofR at the 21st second of the
measurement, as the first 20 seconds were preparation to
actual measurement.

• Starting the data processing ofR at the 7th sample in the
columns to account for around 1.4 m offset due to the
cables used in the experiment. This reduces the range of
interest to less than 10 m.

• Resulting matrix is G with 39,062 rows representing
slow time samples and 44 columns representing fast time
samples (range).

b: GENERATING TARGET RANGE PROFILE
• Generating slow time axis (x axis) vector using the
sampling time data in slow time.

• Generating range axis (y axis) vector using the range
resolution data.

• Finding magnitude of each element in the complex
matrix G.

• Mapping magnitudes of G data to the mesh grid having
slow time as x axis and ranges as y axis with color map
indicating the data values. The target range profile is
shown in Fig 3.

c: DOPPLER SIGNAL EXTRACTION
• From the range profile, identifying the range bin with
oscillation, which is in this case (rangebin) = 13 indi-
cating target presence at 2.6 m from the radar.

• Creating the Doppler signal by keeping all rows of G
and only one column corresponding to (rangebin) = 13.
This result is the Doppler signal complex vector of size
39,062. The magnitude of this Doppler signal is shown
in Fig. 4.

FIGURE 3. Target range profile.

FIGURE 4. Doppler signal magnitude.

The Doppler signal is used as input of the CWT processing
unit. The length of the complex test signal x(t) selected for the
processing unit is of N = 4096 samples.

3) CWT BASED DATA PROCESSING UNIT
Before starting the FPGA design, all steps of CWT in the
context of vital sign detection and using the experimental data
collected are simulated in MATLAB to ensure correctness
of the steps and to establish a comparison point later. The
algorithm steps are configured on the FPGA again to ensure
correctness of these steps and to establish another point of
reference.

There are two main CWT basic algorithm structures found
in the literature: the time domain and the frequency domain.
Because the first one involves complex convolution process,
the second one is adopted in this work. The most com-
monly used methods to move from time domain to frequency
domain are the short Fourier transform (STFT) and the FFT.
Because the latter involves lower computational complexity,
it is adopted in this work. The structure of the FFT-based
CWT algorithm is shown in Fig 5. It shows the flow chart
of the CWT algorithm, which contains the following critical
functions/steps:
• FFT;
• Multiplication;
• Inverse FFT (IFFT).

Those are the most complex and time-consuming operations
of the CWT algorithm.

To determine the size and the number of scales of
the mother wavelet, the sampling frequency and length of
the input signal needs to be known. Once the scales are
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FIGURE 5. Flowchart of the FFT-based CWT algorithm.

determined, the wavelet coefficient matrix is generated in
time domain 9(t), which has all dilated and translated ver-
sions of the mother wavelets based on the scales. To shift
from time domain to frequency space, the FFT should be
applied both on the input signal x(t) and on the wavelet
coefficients 9(t) to obtain X (ω) and 9(ω), respectively.
After that, the frequency domain signal is multiplied by the
wavelet coefficient in frequency domain at each scale. The
resulting multiplications at each scale are converted back to
time domain using the IFFT process to produce the CWT
coefficients in time domain. The algorithm is applied for the
proposed design as follows:
• The sampling frequency of the input signal is fs =
325.5 Hz and length is N = 4096.

• The mother wavelet function is selected (Morlet
wavelet) with N samples in time domain.

• The total number of scales S = 89. This is determined
based on the input signal considering two factors: 1) the
sampling frequency of the input signal and 2) the number
of samples of the input signal. These two factors are used
as input to MATLAB to determine the number of scales.

• Generating the wavelet coefficient matrix in time
domain9(t) of sizeN×S where each column represents
the wavelet function in time domain at each scale.

• Applying the FFT on 9(t) at each scale to get the fre-
quency domain wavelet coefficients9(ω) of size N×S,
where FFT(9(t)) = 9(ω). The FFT requires S N logN
operations.

• Applying the FFT on x(t) to get the frequency domain
vector signal x(ω) of size N samples. FFT (x(t)) =
x(ω), where x(ω) is a complex vector of data. The FFT
requires N logN operations.

• Applying point by point multiplication between each
point in the column vector x(ω) and the corresponding
points in the first column of the wavelet coefficient
matrix9(ω) already calculated, then repeat the multipli-
cation operation between the points of x(ω) with the cor-
responding points of the second column of the wavelet
coefficients matrix9(ω), and then the third column until
reaching to the last column no. S. The output of this step
is a matrix let us call it Mx(ω) = x(ω) × 9(ω). The
number of multiplication operations here is 2 × N × S

FIGURE 6. Block diagram of result validation process.

operations (since there is real part and imaginary part in
each sample of x(ω)).

• Applying the IFFT onMx(ω) column wise. The result of
this operation is the matrix Wx(t) containing the CWT
coefficients results, which has N rows and S columns.
IFFT (Mx(ω)) =Wx(t).

To better optimize the algorithm, several observations on
the CWT algorithm steps are as follow:
• From the input signal sampling frequency and the
number of samples, the number of scales of the
selected mother wavelet is determined prior to algorithm
computation.

• The algorithm implementation is optimized by directly
calculating the wavelet coefficients matrix in the fre-
quency domain9(ω). This is done instead of calculating
it in time domain and then applying the FFT to obtain
the frequency domain coefficients. This optimization
significantly reduces computation time of applying the
FFT on 9(t), which is of complexity around N SlogN .

• The algorithm implementation is optimized by pre-
calculating the wavelet coefficients and storing them
instead of synthesizing the wavelet equation in fre-
quency domain. This approach reduces resources when
implementing the wavelet equation in FPGA as well
as the computational time. This optimization approach
makes the algorithm design and FPGA architecture
implementation more modular and reusable for other
wavelets without drastically modifying the design.

• The IFFT can be optimized by having it start once
enough input is available from the output of the multipli-
cation. It does not have to wait until full completion of
the multiplication. This makes these steps overlapping
in time, which improves the speed of the calculation.

4) RESULTS VALIDATION UNIT
The purpose of this unit is to validate the resulting CWT
coefficients to ensure that design accurately identifies the
artifacts’ locations, which are then suppressed. The block
diagram of this step is shown in Fig. 6.

a: SCALES SELECTION (APPLICATION DEPENDENT)
The resulting CWT coefficient matrix contain profiling
of the signal components on which CWT was applied.
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The lower scale numbers such as 1,2,3, etc. contain the
highest frequency components of the signal while the high-
est scales such as S, S-1, S-2, etc. contain the lowest fre-
quency components of the signal. In the vital signs signal,
the maximum mechanical displacements of lungs and heart
have typical amplitudes of 1 mm and 0.1 mm, respectively.
Depending on the subject activity and health condition, the
vital signs frequencies range between 0.1 Hz to 3 Hz. Besides
that, there exists certain frequency ranges in the target signal
which need investigation to identify the unwanted movement
corrupting the vital signal. These artifacts typically have
higher frequencies and amplitude than the typical vital signs.
The range of frequencies of 4 Hz to 20 Hz is selected, which
corresponds to scales between 26 and 50. Thus, these scales
are used to represent the range of frequencies of interest on
which binary masking is applied.

b: BINARY MASKING
• The binary masking is applied on the CWT coefficients
from scales 26 up to scale 50, therefore it is applied on
Ŝ = 25 scales only and not all the S scales.

• This is done by creating new vectors containing themax-
imum magnitudes of the CWT coefficients at the fre-
quency range of interest (to locate artifacts of unwanted
movements). To be specific, it is achieved by finding the
maximum magnitude of the columns from Wx(t) at the
Ŝ scales resulting in s1 of Ŝ samples size.

• Then, setting up threshold TRS1 for binary masking.
All values below TRS1 are zero and all values above
TRS1 are one, so that:
If s1 ≤ TRS1 then s1 = 0 else s1 = 1.

• The resulting vector where values are 1’s are the artifacts
locations where moving average is applied.

c: MOVING AVERAGE
• This is applied on Doppler signal at the artifacts
locations.

• This is done by first setting up the number of moving
average points: pts = 101. This value is selected due to
the unsatisfactory level of artifact reductions produced
by other values (e.g. 21 and 51 points). Instead, the
choice of 101 points performed well in attenuating the
artifacts.

• Find indices of the artifacts in the binary masking where
to apply moving average ind1.

• Apply moving average on x(t) at the indices where the
artifacts are found, as:
x(ind1(i)) = 1/pts(v(i−50)+v(i−49)+v(i−48) . . . . . .+vi+
v(i+1) + . . .+ v(i+50)).
where x(ind1(i)) is the value of x at index ind1 of (i); (i)
is any integer value starting from 1 until length(ind1) and
v is the sample value at certain location.

d: COMPARISON
After the moving average is applied at the artifact’s locations,
the resulting signal is compared with the original x(t) to
observe the level of improvement.

B. CWT PROCESSOR ARCHITECTURE AND FPGA
IMPLEMENTATION
1) BASIC IMPLEMENTATION ARCHITECTURE
The input signal x(t) is separated into two parts, one contain-
ing the real part I (t) and the other containing the imaginary
Q(t), with each part consisting of N samples. I (t) is used
as the input test signal in the FPGA design. The CWT steps
identified are mapped from the hardware point of view, with
Fig. 7 presenting the basic block diagram of the operations
and architecture of the FFT-based CWT algorithm. It shows
the hardware implementation of the FFT-based CWT algo-
rithm of Fig. 5. Therefore, it represents the second part of
Fig. 1 (i.e., CWT-based data processing). The main functions/
steps, such as FFT, multiplication, IFFT, are designed and
implemented. In addition, the ‘‘control module’’ is used to
control the data flow, to synchronize the processes, and to
establish/define the relation between all the design blocks and
modules.Moreover, since some data needs to be stored during
the process, different RAMs are introduced to the design.
In this work, VHDL was used for FPGA design coding and
implementation. Quartus prime 15.1 software was used in all
the stages of the FPGA design. The processing steps of this
design are as follow:

• Storing I (t) in RAM1 at one sample per clock cycle. The
memory size is of N locations each of 20 bits width.

• Reading I (t), which is of 20 bits width from RAM1 to the
N points FFT. This FFT is of fixed-point representation
of the data.

• Store the output of the real part of the FFT operation
at RAM2, while the imaginary part at RAM3. These two
memories are of size N locations each of 20 bits width.

• Calculating the Morlet wavelet values via MATLAB
using the input signal length N and the sampling period
ts0. This results in a huge matrix of sizeN×S containing
all the frequency domain values of the wavelet function
for S scales. Each value is represented with 8 bits.

• Writing theMorlet wavelet coefficients form thewavelet
input interface to RAM0, which is of sizeN×S locations
each of 8 bits width.

• Synchronized reading from RAM0 and RAM2 to the
inputs of the multiplier module at a rate of one sample
per clock cycle. This reading from RAM2 starts from 0 to
N − 1 and then the process is repeated S times. While
the reading from RAM0 starts from 0 to N − 1 and then
continues from N to 2N − 1 and so on to go over all the
values of RAM0.

• Multiplying RAM2 and RAM0 samples at latency of one
clock cycle and storing the output in RAM4 of sizeN×S
locations each of 28 bits width,

• Synchronized reading from RAM0 and RAM3 to the
inputs of the multiplier module at a rate of one sample
per clock cycle for N cycles. Then, repeated reading
of RAM3 values for S times while the reading from
RAM0 continues to go over all the values corresponding
to all S scales.
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FIGURE 7. Basic FFT-based CWT processor architecture.

• Using the same multiplier, multiplying RAM3 and
RAM0 samples at latency of one clock cycle and storing
the output inRAM5 of sizeN×S locations each of 28 bits
width.

• Reading from RAM4 and RAM5 to the N points IFFT.
This IFFT is of fixed point representation of the data.

• Obtaining the IFFT results, which represent the WI
values.

• Using the control module as the brain sending and
receiving of control signals to the different modules
of the design. It generates all memory addresses,
readenable and writeenable signals, in addition to con-
trolling and synchronizing the operation of FFT, Multi-
plier and the IFFT.

The green outlined boxes in Fig. 7 are the input and output
modules of the system while the numbers inside the arrows
represent the sequence of the process. In addition, the red
lines connecting the control module to all other modules in
the system represent all the control interface and signals.

2) OPTIMIZED IMPLEMENTATION ARCHITECTURE
Several approaches are proposed in this part of the paper
to advance the performance of the algorithm. Based on the
previously presented block diagram in Fig. 7, optimizations
in the following areas are proposed:

a: WAVELET FUNCTION OPTIMIZATION
Since the Morlet values in frequency domain are needed in
this work, precalculating theMorlet frequency domain values
and storing them in a memory to be used in the design is the
approach adopted in this work for the following reasons. First,
Previous approaches synthesized the Morlet time domain
function (then applied the FFT) or synthesized the Morlet
equation in frequency domain to obtain the required values in
the frequency domain. However, this process is complex and
consumes excessive resources given the complex nature of
the Morlet equation. Second, this time domain to frequency
domain conversion adds more computational steps that are
avoidable. Third, the adopted approach in this work makes
the design more modular. If the wavelet selection is changed
then only the memory needs to be reloaded with the new

values of the new wavelet. On the contrary, if the function
is synthesized, it requires redesigning the whole wavelet
circuitry. Using the proposed method, a large amount of
the FPGA resources are saved for use in other processing
steps, resulting in a simpler design for possible implementa-
tion on inexpensive FPGAs. Moreover, a memory initialized
with.mif file containing the precalculated wavelet values is
used instead of writing the samples one by one to thememory.

b: WAVELET SCALES OPTIMIZATION
The optimization in the wavelet scales is conducted as
follows:
• Eliminating unneeded scales: the required wavelet val-
ues consist of N × S × 8 = 2, 916, 352 bits. If the
required number of scales is reduced, then there can be
an excellent reduction in the number of samples as well.
Each wavelet scale represents a bandpass filter (BPF)
with specific center frequency. Based on knowledge of
the input signal and the expected range of frequency
components, only selected scales of interest with the
possible frequency components of the input signal are
kept, while all other scales can be removed. It is expected
that the unwanted movements causing artifacts are of
higher frequency than the typical vital signs. Due to
the nature of these artifacts originating from unwanted
movements (moving limbs, crossing legs, waving hands
etc.), the range of frequencies of interest falls between
around 4 Hz to 20 Hz. This corresponds to the scales
between 26 and 50, whereas the remaining scales are not
needed. Eliminating these unneeded scales is performed
specifically for this application to reduce the required
memory size and the number of multiplication cycles.
Reduction of S − Ŝ = 64 scales is obtained in this step.
The reduction obtained in this step by only selecting the
needed scales is:
- Total bits in S scales: S × N × 8 = 2, 916, 352 bits.
- Total bits in selected Ŝ scales: Ŝ × N × 8 =
819, 200 bits.
- Total Reduced bits from S scales: 64 × N × 8 =
2, 097, 152 bit.

• Eliminating unneeded samples: in addition, another
optimization level on scales is done by removing
unneeded samples. By closely looking at the structure of
each wavelet scale, it is noticeable the BPF have many
leading zeros and trailing zeros, the non-zero values are
concentrated in the middle of each scale. Moreover, the
wavelet scale shape gets narrower as we move from
scale 1 to scale S, resulting in the increase of zero values
in each scale samples. The idea here is to keep track of
the index of nonzero values rather than storing, reading,
and multiplying the whole scale samples (zeros and non-
zeros). This is because storing the zero values is not
useful and its result in multiplication is already known.
Table 2 presents all the wavelet at each scale with the
indices of non-zero values. The Ŝ selected scales of
interest are also presented in the table starting from scale
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26 to scale 50. Since the number of zeros constitute large
number of samples, this reduces the memory needed to
store the precalculated wavelet values and reduce the
number of cycles needed for the multiplication process.
This also reduces thememory requirements for the RAM
needed to store the multiplication results.
Based on the proposed reduction of scales and zeros,
total number of non-zero points needed to be stored
is 6220 points (locations). To standarize the RAM
size needed, these points are reduced to 6144 points
by removing 76 points from either scale 26 or 50 to
minimize the effect on the results. The exact memory
size needed is 6144 × 8 = 6 KB. As a result, only
6144wavelet samples are read from the RAM to perform
6144 multiplications.
The reduction obtained in this step by removing zeros
from selected scales is:
- Total bits in Ŝ scales: Ŝ × N × 8 = 819, 200 bits.
- Non-zero bits in Ŝ scales: 6144× 8 = 49, 152 bits.
- Reduced bits from Ŝ scales: 819, 200 − 49, 152 =
770, 048 bits.
This results in huge improvements in three dimensions:
- RAM needed to store the wavelet values.
- Number of multiplication cycles needed (one cycle per
sample).
- RAM needed to store the multiplication outputs.

c: FFT OUTPUT OPTIMIZATION
This FFT module is adopted from OpenCores in Quartus
Prime. The input signal to the system I (t) is read by the FFT
as N samples each sample is 20 bits, the output of the FFT is
again N samples while each sample is 20 bits. This means
a RAM of N × 20 = 81, 920 bits is needed to store the
real part of the FFT output (RAM1). A similar RAM is also
needed to store the imaginary part of the FFT output (RAM2).
However, RAM1 and RAM2 locations are reduced based on
the following:

• Since zero reduction is applied to the wavelet scales, the
corresponding index containing non-zero values at the
output samples from the FFT are of no use.

• As a result, these corresponding values in the FFT output
do not need to be stored in RAM1 and RAM2, hence
further memory reduction as well as reduction in the
number of multiplication cycles is achieved.

• According to Table 2, the lowest index used from the
wavelet values is index 40 while the highest index is
709, therefore only 670 samples are needed from the
FFT output rather than N samples.

The reduction obtained in RAM1 and RAM2 by considering
the FFT output optimization is:

• Total bits size of RAM1 and RAM2 prior to considering
the FFT output optimization: 2×N×20 = 163, 840 bits.

• Total bits size of RAM1 and RAM2 post considering the
FFT output optimization: 2× 670× 20 = 26, 800 bits.

• Reduced bits size in RAM1 and RAM2: 137,040 bits.

TABLE 2. Wavelet scales of non-zero components and their
corresponding frequencies.

d: MULTIPLICATION OPTIMIZATION
The multiplication module is adopted from OpenCores in
Quartus Prime.The optimization in the multiplication process
is conducted as follows:
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• Starting Time of the Multiplication Process: typically,
once the FFT completes its operation and produces all
the values to RAM1 and RAM2, then the multiplication
process commence. However, when closely examining
the design, the multiplication process related to values
of scale 26 needs the sample number 204 from the FFT
output, and the index is incremented until it arrives to
the last value (709) corresponding to scale 26 as shown
in Table 2. After that, the multiplication of the values
from scale 27 onwards starts with index 191 and so on.
As shown in Table 2, it is observed that the starting
indexes decrease from one scale to another. This is due
to the fact that each scale moves across the frequency
axis towards the lower center frequencies. As a result,
parallel reading and writing operations are constructed,
i.e. the writing operation is activated at the output sample
number 40 from the FFT while the reading is activated
once sample number 204 is produced from the FFT to
RAM1 and RAM2 for 6144 cycles. There is no need
to wait until all the 670 samples from the FFT are
produced.

• Parallel Multipliers: this is considered since there are
real and imaginary output samples from the FFT. Since
the multiplication is done one sample per cycle, utiliz-
ing the parallelism feature via synthesizing two parallel
multiplier (one each for handling the real and imaginary
samples, respectively) reduces the number of cycles by
50%. Increasing the number of multipliers will have
positive impact on reducing the required multiplication
cycles. However, increasing the number of multipliers
above 2 does not reduce the required number of multi-
plications in a linear manner. The optimal impact occurs
when using 2 parallel multipliers (which is adopted
in our design). Nonetheless, adopting higher number
of parallel multipliers is possible at the expense of
extra logic utilization while not improving the speed
significantly.

• Number of Required Multiplications: originally, the
number of multiplications is based on the original num-
ber of scales and number of samples in each scale. As a
result, 2 × N × S = 729, 088 cycles are needed. Since
only selected scales are used, only non-zero values per
scale are used and parallel multipliers are used. As a
result, the number of cycles needed for multiplication
are also reduced to only 6144 clock cycles.

e: RAM OPTIMIZATION
The optimization in the RAM usage is performed as follows:

• Storing Multiplication Outputs: the needed size to store
the multiplication results is reduced due to several rea-
sons. Firstly, the optimization reduced the number of
scales. Secondly, zero values from the selected scales are
now eliminated. Finally, the unnecessary FFT outputs
are now eliminated. The reduction obtained inRAM3 and
RAM4 to store the multiplication outputs is:

- Total bits size of RAM3 and RAM4 prior to consid-
ering the RAM optimization: 2 × N × S × 28 =
20, 414, 464 bits.
- Total bits size of RAM3 and RAM4 post considering the
RAM optimization: 2× 6144× 28 = 344, 064 bits.
- Reduced bits size in RAM3 and RAM4: 20,070,400 bits.

• Storing the Wavelet Scales Values: the need for a ded-
icated memory initialized with the wavelet values in
RAM0 is completely eliminated. Instead, RAM4 is ini-
tialized with the wavelet values and is also used to
store the output of the multiplication. This is possible
as RAM4 is utilized only at the beginning of multiplica-
tion process. Therefore, a write during read operation is
incepted at RAM4. This is conducted to read the wavelet
values initialized at RAM4 to the input of the multiplier.
At the same time, the output of the multiplier is saved
again in RAM4 in the addresses from which values have
already been read. A careful control process is designed
to separate the read and write operation from the same
address by at least 3 cycles. In addition to that, a careful
address generation of readenable and writeenable signals
is performed.

f: IFFT OPTIMIZATION
The IFFT module is adopted from OpenCores in Quartus
Prime.Given all previous optimizations conducted over the
FFT process, multiplication process, zeros and scales opti-
mizations, inserting the correct values in the IFFT module
is vital to ensure a correct IFFT process. A precise control
module is designed to insert the leading and trailing zeros to
the input IFFT signal at the correct locations. This requires
careful design of the reading operation from RAM3 and
RAM4 where the multiplication outputs are stored.
The block diagram in Fig. 8 depicts the optimized algo-

rithm implementation on the FPGA. In this optimized design,
the input I (t) is fed to the FFT directly upon reading from an
external input interface. Besides that, the wavelet coefficients
are precalculated directly in the frequency domain and initial-
ized at RAM4, which is also used to store the multiplication
outputs. In this design, only non-zero values from scale 26 to
scale 50 are saved and used. Only 670 samples of the FFT out-
puts are needed and stored in RAM1 and RAM2. Furthermore,
it is seen in Fig. 8 that two parallel multipliers are introduced
(Mult1 and Mult2). The outputs of the two multipliers are
stored in parallel into the optimized RAM3 and RAM4, which
are then read into the IFFT.

The green outlined boxes in Fig. 8 are the input and output
modules of the system while the numbers inside the arrows
represent the sequence of the process. Besides that, the red
lines connecting the control module to all other modules in
the system represent all the control interface and signals.

The timeline of the different operations of the proposed
optimized FFT-based CWT processor of Fig. 8 is shown in
Fig. 9. This timeline shows the three major operations in the
process each with a different color: 1) FFT operation is shown
in cream color 2) multiplication operation is shown in green
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FIGURE 8. Proposed optimized FFT-based CWT processor architecture.

color 3) IFFT operation is shown in pale-blue color. Besides
that, it shows the related steps with each major operation
in the same color. It can be observed that there are several
parallel steps running on the same time. Moreover, the IFFT
operation is launched once the complete multiplication steps
are performed.

3) CONTROL MODULE
The control module functions as the brain of the proposed
optimized design, generating and synchronizing all control
signals from one central module, as follows:
• FFT operation:
Generates and controls the timing of the sinkvalid ,
sinkstart , sinkend and reset signals.

• Control of the clock cycle counter:
Starts from the first activation of the FFT representing
the point at which the design starts actual processing.
This counter values are used at different places in the
design to trigger specific signals and deactivate others.
It is also used at later stage to calculate the number of
cycles needed from the start of processing until the end.

• Multiplication:
Generates and manages the control signals needed
for the multiplication. This includes the multiplication
clockenable signal, and the selection and synchronization
of the two input signals to the multiplier. This is criti-
cal in terms of timing, so synchronization needs to be
performed correctly.

• IFFT:
Controls the operation of the IFFT by generating and
controlling the timing of the sinkvalid , sinkstart , sinkend
and reset signals of the IFFT.

• Memory operations:
Generates and controls the timing and address count-
ing signals. These are used to generate and control the
timing of the read-write operation to RAM1, RAM2,
RAM3 and RAM4. These operations are also controlled
in conjunction with the readenable and writeenable signals
of the these RAMs.

4) TIMING AND LATENCY ANALYSIS
The block diagram of Fig. 10 shows the time analysis and
clock cycles requirements of the design illustrated in Fig. 7.

FIGURE 9. Operation timeline of the optimized FPGA design.

The blue filled boxes represent the number of cycles needed
for the specific operation. The letters (L) inside the arrows
represent data loading process, whereas the red dashed arrows
represent a wait/no operation until the specified location of
the other arrow end is reached. It is apparent that the most
time-consuming steps in the design are the multiplication
stage and the IFFT. This is because these stages need to be
repeated for the different scales of the wavelet. It is expected
that the reduction in the number of scales required and the
reduction of the samples in each scale strongly impact the
calculation speed improvement as well as the logic utilization
reduction.

In addition to that, the block diagram of Fig. 11 shows the
time analysis and clock cycles requirements of the design in
Fig. 8. Similar to the previous figure, the blue filled boxes rep-
resent the number of cycles required. The arrows filled with
(L) represent loading process, whereas the red dashed arrows
represent a wait/no operation until the specified location of
the other arrow end is reached. It is also apparent that themost
time-consuming steps in the design are the multiplication
stage and the IFFT. This is because these stages need to be
repeated for the different scales of the wavelet. The following
equation shows how the total number of cycles needed to
complete the algorithm processing is calculated:

TC = N + (N + 84)+ 39+ 203+ 6144+ N

+ (N + 84)+ (N × Ŝ), (8)

where TC is the total required cycles.

5) DATA SOURCES AND DATA COLLECTION TECHNIQUES
The main sources of data are obtained from recently con-
ducted radar-based human vital sign detection experiments by
a group of researchers from IMEC - Netherlands, Maastricht
University - Netherlands, and IMEC - Belgium [11]. This
data is comprised of reflected signals from target objects in
practical experimental setups. The experiment was conducted
in a ‘brainstorming’ office area that mimics a typical room
setting. These settings contain furniture, metal shelves and
objects, metal walls, personal computers (PCs), instruments,
tables, sofas, a big screen, and chairs. Wi-Fi repeater stations
were also active in the environments where the measurements
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FIGURE 10. Processing clock cycles of the basic FPGA design.

were performed. The two radar antennas, which were hori-
zontally separated by 10 cm, were placed at 1.25 m height
above a reinforced concrete floor [11].

The experimental radar set-up includes a radar mod-
ule, a digital signal processor/field-programmable gate array
(DSP/FPGA) board, an analog-to-digital converter (ADC)
and a laptop, see Fig. 12. The radar block consists of a
waveform generator based on a programmable phase-locked
loop (PLL), a power divider, a low noise amplifier (LNA),
a gain block, a radiofrequency (RF) mixer, a base-band fil-
ter and an amplifier. The radar waveform is generated by
a PLL that is configured by the DSP/FPGA board. This
signal feeds a power divider that splits it into two branches.
The first output is connected to the transmitter antenna. The
signal reflected from the target is received, amplified, and
then mixed with a copy of the transmitted signal. On the
receiving path, the signal is amplified by the LNA and gain
block and then fed into the RF input of the mixer. The local
oscillator (LO) input of the mixer is connected to the second
output of the power divider. The baseband signal produced
by the mixer is amplified, filtered, and digitized by the ADC.
The DSP/FPGA manages both waveform generation and
acquisition. The radar sensor is based on a linear frequency-
modulated continuous-wave (FMCW) architecture. It trans-
mits a series of chirps, separated from each other by an off
interval, where no signal is transmitted. The radar sensor was
designed using commercial off-the-shelf components [11].

Using described set-up, eight experiments each of two
minutes were conducted. In each measurement, a volunteer
is invited to breathe normally and avoid any other move-
ments when seated on an ‘acoustic sofa’, hidden behind the
high sound-absorbing back panels. Two different absolute
distances of 2.6 m and 5.4 m were evaluated. These mea-
surements were then repeated at the same distance, but now
with the addition of moderate random body movements. The
volunteers were instructed to perform four or five moderate
random body movements (moderate limb movements, cross-
ing the legs, and so on) per measurement at 11, 50, 69 and
98 s [11].

The process of taking the input data from the MATLAB
and storing it in the RAMs, and of taking the output data from

FIGURE 11. Processing clock cycles of the optimized FPGA design.

FPGA to MATLAB is performed via co-simulation between
MATLAB and FPGA. The data transfer synchronization is
controlled using a process built specifically for this purpose
in our control module.

V. RESULTS AND COMPARISON
A. CWT MATLAB SIMULATION
An artificially generated input test signal with imposed noise
in the signal is used as the input signal to observe the effectiv-
ness of the algorithm in detecting the unwanted movements
(noise) in the signal. This signal was generated with 700 sam-
ples and a sampling period of 0.1 s. As shown in Fig 13, the
signal contains four artifacts at different times. The Morlet
function was used as the mother wavelet in this simulation.
The filter banks were calculated using a signal length of
700 points with a sampling period of 0.1 s. The Morlet
wavelet coefficients were then calculated and 66 scales was
identified as the needed number of scales. Fig. 14 shows the
used Morlet wavelets in frequency domain at different scales
with normalized amplitude at 2. As observed from the graph,
the lower scale number represents a wavelet at higher center
frequency. Besides that, the shape of the wavelet becomes
narrower when moving from a lower scale to a higher scale.

Utilizing the Morlet wavelet coefficients, CWT algorithm
was applied on the input signal. The CWT complex coef-
ficient matrix was generated for all the 66 scales. Using
the CWT coefficients at selected scales, the locations of
the unwanted artifacts in the input signal can be identified.
In Fig 15, maximum magnitudes of the coefficients were
plotted over time. These coefficients clearly contain infor-
mation related to the noise in the signal. The figure shows
the four distinct locations of the artifacts in the input signal.
To locate these locations accurately, a binary mask was gen-
erated and shown in Fig 16. These identified locations in the
input signal corrupted with unwanted artifacts were applied
with the moving average filter. Fig 17 shows the input signal
before and after the moving average was implemented on the
identified artifacts locations using CWT. Clear improvement
in the input signal can be seen after removing the high fre-
quency components artifacts in the signal. This simulation
case shows that the CWT can identify the locations of random
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FIGURE 12. Radar components set up in [11].

movements in the signal, and hence applying moving average
on these location rejects these artifacts from the signal.

After successfully using the CWT algorithm on the arti-
ficially generated signal (with noise), it is then applied on
experimental radar data to further verify the algorithm results
usingMATLAB. The graph in Fig. 18 shows the Doppler sig-
nal of a person with unwanted random movement introduced
in the signal at four locations. The experimental input signal
spans time of 120 seconds with 39062 samples. This signal
was segmented into individual segments with a time span
of around 11 seconds each. The part of the Doppler signal
with the unwanted random movement utilized in this work is
shown in Fig 19. This segmentation is performed as a quick
test of smaller parts of the long original signal. Fig. 20 shows
the Morlet wavelet at different scales in frequency domain.
These wavelets are used for implementing the CWT on the
experimental test signals. As can be seen, each wavelet scale
is a BPF with different center frequency. The first scales are
very wide, but as the wavelet scale number increase, the BPF
moves to lower frequencies and becomes narrower.

After applying CWT algorithm, the complex matrix
coefficients of the CWT were generated. The maximum
magnitudes of these coefficientswith scales of between
26 and 50 were calculated. These values reveal information
of the location of the unwanted random movement at each
location in the signal as shown in Fig. 21. It also shows
the maximum magnitudes of the coefficients of the selected
scales, which shows some areas with much higher values
than the rest. A binary mask is then generated to identify the
unwanted random movements in the Doppler signal as seen
in Fig. 22. The moving average filter was then applied on
the signal at the identified locations resulting in the signal
presented in Fig. 23. The unwanted random movement and
with high frequency components were successfully removed
from the identified artifacts locations.

To further validate these results, the CWT was applied on
another segment of the experimental signal where unwanted
artifacts were not present. The new input signal is shown in
Fig. 24 with no presence of artifacts. The algorithm was suc-
cessful in building an all-zero binary mask based on the CWT

FIGURE 13. Input signal with unwanted random movements.

FIGURE 14. Morlet wavelet at different scales.

output coefficients. As a result, unwanted random movement
was not detected, as shown in Fig. 25 and hence the moving
average filter was not applied on any part of the input signal.
This demonstrates that the algorithm is capable of detecting
the presence of the artifacts while not generating erroneous
behavior in their absence.

Furthermore, another segment of the Doppler test signal
with unwanted movement at a different location was injected
in the system to test its validity. This test input signal is shown
in Fig. 26. The system successfully identified the location of
these artifacts and applied the moving average to improve
it. Fig. 27 shows very clear identification of the artifacts
in the signal through the binary mask. It also shows the
improvement in the signal after applying the moving average
at the identified location.

The execution time of the MATLAB algorithm is around
82 ms when using a computer running on Windows10 with
Intel(R) Core (TM) i7 CPU @ 1.80 GHz 1.99 GHz and
16 GB RAM.

B. CWT FPGA IMPLEMENTATION RESULTS
From the previous MATLAB simulation results, it is con-
firmed that the proposed algorithm is capable of locating the
unwanted movements and artifacts in the Doppler signal used
in the system. In this section, the results from the algorithm
implementation on the FPGA are examined and validated.
Fig. 28 shows the Doppler signal used in the FPGA as the
input signal containing unwanted artifacts. Note that theMor-
let wavelet function used in the FPGA is the one used in the
MATLAB simulation from Fig.20.

Utilizing the Morlet wavelet to conduct the CWT process
on the input signal, the output of the FPGA is expected to be
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FIGURE 15. CWT coefficients maximum magnitude.

FIGURE 16. Binary masking.

FIGURE 17. Binary masked signal and filtered signal after applying
moving average.

FIGURE 18. Complete Doppler signal with unwanted random movement.

FIGURE 19. Input Doppler signal with unwanted random movement.

the CWT complex coefficients matrix of size Ŝ × N . Since
our design used the scales from 26 to 50, the related CWT
coefficients are presented in Fig. 29. It can be seen that these
scale samples do contain information about the locations of
the artifacts in the input signal. However, the information
of the overall unwanted movement is scattered across the

FIGURE 20. Morlet wavelet as different scales.

FIGURE 21. Maximum values of CWT at selected scales.

FIGURE 22. Binary masking.

FIGURE 23. Binary masking and filtered signal after applying CWT and
moving average.

FIGURE 24. Input Doppler signal with no artifacts.

different scales. Thus the maximum values of this CWT coef-
ficients matrix were calculated, this clustering the artifacts
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FIGURE 25. Result of binary masking and filtered signal after applying
CWT and moving average.

FIGURE 26. Input Doppler signal with unwanted movement.

FIGURE 27. Result of binary masking and filtered signal after applying
CWT and moving average.

FIGURE 28. Input Doppler signal to the FPGA CWT processor.

information in one graph as shown in Fig. 30. In order to
exactly extract the artifacts location in the signal, the binary
mask shown in Fig. 31 was generated. It shows clearly that
it locates the places where unwanted random movement is
present in the signal. Utilizing this binary mask to apply the
moving average filter on the identified locations, results in the
improved signal at the unwanted randommovement locations
in Fig. 32.

It is clear that the output from the FPGA is capable of
identifying the artifacts in the signal indicating successful
implementation of the proposed optimized algorithm. Table 3
outlines the different attributes in the proposed CWT proces-
sor FPGA architecture pre and post optimization. One of the
main attributes is the number of scales, which was reduced
from S to Ŝ. Moreover, the memory bit requirement was

FIGURE 29. Samples of CWT output coefficients for selected scales.

FIGURE 30. Maximum values of CWT matrix.

FIGURE 31. Binary mask generated from the CWT complex matrix.

FIGURE 32. Binary masking and filtered signal after applying CWT and
moving average.

reduced from 23,576,576 bits to 3,708,646 bits indicating
major speed and resources improvement. For example, the
required multiplication cycles were reduced from 729,088 to
N and the total processing cycles needed were reduced from
1, 478, 824 to 125, 307.

Results of the optimized FPGA implementation are tabu-
lated in Table 4. It shows that the maximum frequency the
design can achieve based on the critical path is 74.1 MHz
and therefore a processing time of 1.69 ms is achieved.
Besides that, the proposed design utilizes 42% of the FPGA
logic elements and 72% of RAM bit locations on an Altera
Max10 FPGA, specifically the 10M50DAF484C7G device.
The power consumption of the optimized FPGA design is
measured using the power analyzer tool in Quartus prime and
is found to be 363 mW.

The details of the processing cycles performance related to
each operation in the design pre optimization are presented
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TABLE 3. Summary of design attributes pre and post optimization.

TABLE 4. FPGA results of optimized CWT processor architecture.

TABLE 5. Details of design timing performance pre optimizations.

TABLE 6. Details of design timing performance post optimizations.

in Table 5, whereas Table 6 summarizes the details of the
processing cycles performance related to each operation in
the optimized design. From Table 3, 4, 5 and 6, it is clear
that there is significant (91.53%) reduction in the number of

clock cycles required for processing the design. This is due
to the collective implementation of the multiple optimization
approaches outlined in this paper. In addition to that, the
significant reduction in the memory resources in the opti-
mized design is also due to the same reason. A total of 98.4%
reduction in the memory bits requirements is achieved when
comparing the basic architecture to the optimized one.

Table 7 compares the proposed optimized work in this
article and other state-of-the-art works found in the litera-
ture. It is very difficult to establish fair comparison as each
design uses different processing platform, CWT algorithm
structure, signal length and number of scales in the wavelet
function. Nonetheless, performance comparison of state-of-
the-art designs with our proposed work is done considering
these different factors. Firstly, the work in [32] implements
CWT algorithm on FPGA to detect the R signal from the ECG
signal. The focus of this work was to prove the concept of
utilizing the CWT for such application and to achieve higher
accuracy. Therefore, the processing time and speed, and the
resources utilized to implement the algorithm on FPGA were
not explicitly reported. Next, the work in [28] is the most
similar design with the proposed work. This work was devel-
oped for feature extraction of ERP from EEG signal. When
comparing the number of cycles required for [28] with the
proposed design, we find that it needs 76,012 cycles while
our design needs 125,307 cycles. However, it is important
to note that the application presented in [28] is different
form this work, and therefore different signal length and
scales are required. The input signal length used in [28] is
N/4 and our input signal length is N , which is four times
longer than the input signal of [28]. This indicates that if N
length was used in [28] it would require more or less 4 times
the current number of cycles required while using a signal
with N/4 length. Yet, the proposed design required less than
double the cycles needed in [28]. To be more specific, if the
proposed design used a signal length of N/4, it would require
around 31,326 cycles, which is 58.8% faster than [28]. As a
result, the proposed design would have a processing time
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TABLE 7. Comparison with other works.

of 0.42 ms compared to 0.57ms achieved by [28]. This is
largely due to the various optimizations implemented in the
design to eliminate unnecessary calculation cycles, conduct
parallel processing and to focus on optimizing the most com-
putationally intensive parts of the algorithm. In addition, the
design in [30] implemented 2D FFT based CWT to analyze
fringe patterns. It achieved very good processing time of 8 ms
compared to the length of the signal. The reason of this is due
to the use of only one scale in the wavelet, compared to Ŝ
scales in the proposed design. As aforementioned, the factor
determining the selection of scales to be used is application
dependent. In our case, 25 scales were required to be used
to cover wider range of expected unwanted frequencies in
the Doppler signal. However, when the application requires
narrow range of frequencies, it is suitable to use few scales
that cover the specific frequency range.

It is not easy to compare the utilization of resources in each
FPGA design unless the same FPGA is used. However, this
work performed advanced optimizations on the resources to
ensure it is implemented on low-end, cost-effective FPGA
such as the Max 10 from Altera. Among these optimizations,
eliminating the need of the dedicated memory to store the
wavelet values. This was done by re-utilizing RAM4 for
that purpose and also for storing the multiplication results.
Besides that, resource optimization was performed by reduc-
ing the memory required to store the outputs of the FFT
from N to only 670 locations. In addition, reduction of the
memory requirements to store the multiplication results was
also part of the resources optimization. It is believed that these
techniques position the proposed work to be competitive with
other works from the prospective of resource utilization.

VI. CONCLUSION
This work realizes CWT processor on FPGA architecture
implemented with several optimization approaches to make
it suitable for high-performance data processing applications.
It is demonstrated in the results that the proposed FPGA

design achieves high calculation speed performance com-
pared to state of the art designs as well as reduced resource
utilization. In addition, there is significant improvement of
the hardware execution time over MATLAB execution time
(48 times faster). This signifies the importance of and benefit
of utilizing optimized hardware processing implementations
on platforms such as FPGA to process complex algorithms.
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