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where £%. is a non-local operator with singular kernel K, {2 is an open bounded
subset of RN with Lipshcitz boundary 92, M is a continuous function and f
is a Carathéodory function satisfying the Ambrosetti-Rabinowitz type condition.
We discuss the above-mentioned problem in two cases: when f satisfies sublinear
growth condition, the existence of nontrivial weak solutions is obtained by applying
the direct method in variational methods; when f satisfies suplinear growth
condition, the existence of two nontrivial weak solutions is obtained by using the
Mountain Pass Theorem.
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1. Introduction

Recently, a great attention has been focused on the study of problem involving fractional and non-
local operators. This type of problem arises in many different applications, such as, continuum mechanics,
phase transition phenomena, population dynamics and game theory, as they are the typical outcome of
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stochastically stabilization of Lévy processes, see [3,7,24,27] and the references therein. The literature on
non-local operators and their applications is very interesting and quite large, we refer the interested reader
t0 [2,5,8,9,19,21,22,28,31,42] and the references therein. For the basic properties of fractional Sobolev spaces,
we refer the interested reader to [12].

In this paper we deal with the following Kirchhoff type problem:

M( / lu(z) — u(y) P K (= — y)de dy) £0u= f(au) in Q2

R2N

(1.1)
u=0 in RV \ 2,
where N > ps with s € (0,1), £ C R¥ is an open bounded set with Lipschitz boundary 02, M : [0,00) —

(0,00) is a continuous function, f : 2 x R — R is a Carathéodory function and L% is a non-local operator
defined as follows:

Lhu() =2 lim / |u(z) — u(y)]"* (ulz) - uly)) K (x — y)dy, =eRY,
RV\B. (x)

where 1 < p < oo and K : RV \ {0} — (0, +00) is a measurable function with the following property

K € L'(RY), where v(z) = min{|z|", 1};
there exists kg > 0 such that K (z) > kolz|"™*+P*)  for any = € RN \ {0}; (1.2)
K(z)=K(—x) for any z € R™ \ {0}.

A typical example for K is given by singular kernel K (z) = |z|~(N+P%)_ In this case, problem (1.1) becomes

M( [u(@) —u@? dy> (~A)pu = f(w,u) in 2,

|z — y|NFps (1.3)
u=0 in RV \ 2,
where (—A)7 is the fractional p-Laplace operator which (up to normalization factors) may be defined as
PR |u(@) — u(y)P~>(u(z) — u(y))
(_A)pu(x) =2 El_l>%l+ / |1. _ y|N+ps dy
RN\ Be ()

for z € RY, see [16,18 20] and the references therein for further details on the fractional p-Laplacian
operator.
When p =2 and M = 1, problem (1.3) reduces to the fractional Laplacian problem:

{ (—A)u= f(z,u) in £,

u=0 in RV \ 2. (14)

One typical feature of problem (1.4) is the nonlocality, in the sense that the value of (—A)*u(x) at any point
x € £2 depends not only on {2, but actually on the entire space RY. The functional framework that takes
into account problem (1.4) with Dirichlet boundary condition was introduced in [38,39]. We refer also to
[13,14,29,30,32,40,43,44] for further details on the functional framework and its applications to the existence
of solutions for problem (1.4).

The Kirchhoff type equations arise in the description of nonlinear vibrations of an elastic string, see
Kirchhoff [23]. In recent years, much interest has grown on p-Kirchhoff type problems with Dirichlet bound-
ary data. In [11], the authors showed the existence and multiplicity of solutions to a class of p(x)-Kirchhoff
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type equations via variational methods. In [26], the author obtained the existence of infinite solutions to the
p-Kirchhoff type quasilinear elliptic equations via the fountain theorem. In [10], the authors investigated
higher order p(z)-Kirchhoff type equations via symmetric Mountain Pass Theorem, even in the degenerate
case. However, they did not consider the existence of solutions for Kirchhoff type problems in the fractional
setting. In the very recent paper [15], the authors first provided a detailed discussion about the physical
meaning underlying the fractional Kirchhoff models and their applications, see [15, Appendix A] for further
details. More precisely, the authors proposed a stationary Kirchhoff variational model, which takes into
account the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of
the string. In [34], using a three critical points theorem for non-differential functionals, the author obtained
the existence of three solutions for Kirchhoff type problems involving the nonlocal fractional Laplacian.
In [35], the authors established the existence and multiplicity of nontrivial solutions for a Kirchhoff type
eigenvalue problem in RY involving critical nonlinearity and nonlocal fractional Laplacian, see also [4,36]
for further details about this kind of nonlinearity.

Motivated by the above papers, the aim of this paper to study the existence of solutions for a Kirchhoff
type problems involving the nonlocal fractional p-Laplacian. For this, we suppose that the Kirchhoff function
M :[0,00) — (0,00) is a continuous function satisfying the following conditions:

there exists mg > 0 such that M(t) > mo for all ¢ € [0, 00); (M1)

there exists § > 0 such that M () > OM(t)t for all £ € [0, 00), (M2)

where M(t) = [ M(7)dr.

A typical example for M is given by M(t) = 1+ bt™ with m > 0, b > 0 for all ¢ > 0. In [15,34,35],
in order to obtain the existence of weak solutions the authors assume that M is a nondecreasing function
on [0, 00). However, here we suppose that M satisfies (M2). Under assumption (M2), we can also deal with
cases in which M is not monotone as M(t) = (1 +t)¥ + (1 +¢)~! with 0 < k < 1 for all t > 0.

Also, we assume that f: {2 x R — R is a Carathéodory function satisfying:

there exist @ > 0 and 1 < ¢ < p% such that

|f(z, )] <a(l+]£97") ae xzef, (R (H1)
there exist 4 > § and r > 0 such that for a.e. z € 2 and r € R, [§] >,
0 < pF(z,8) <&f(2,8), (H2)
where F(z,&) = fog f(x,7)dr and 0 is given in assumption (M2);

f(z,§)

€0 ¢t

=0 uniformly for a.e. € §2; (H3)

there exist a; > 0 and an open bounded set {2y C 2 such that
|f(@,&)| = a1]¢]*"" for ae. x € 2y and all £ € R. (H4)
Note that assumption (H2) is not the usual Ambrosetti-Rabinowitz condition, since here we suppose

that p > p/@. This difference is caused by the function M in problem (1.1).
Now, we give the definition of weak solutions for problem (1.1).
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Definition 1.1. We say that u € Wy is a weak solution of problem (1.1), if

M ([Ju()|[3.) / Ju(z) — u(y) |7 (u(z) — uly)) (p(z) — p(y)) K (z — y)dudy

2N

- / £ (z, u(@)) () de,

for any ¢ € Wy, where space Wy will be introduced in Section 2.
First, using the direct method in variational methods, we get the first main result.

Theorem 1.1. Let K : RV\{0} — (0,00) be a function satisfying (1.2). Suppose that M satisfies (M1) and
f satisfies (H1) and (H4). If 1 < g < p, then the problem (1.1) has a nontrivial weak solution in Wy.

Then, using the Mountain Pass Theorem, we obtain the second main result.

Theorem 1.2. Let K : RV\{0} — (0,00) be a function satisfying (1.2). Suppose that M satisfies (M1)
and (M2) and f satisfies (H1)—(H3). If p < q < p%, then problem (1.1) has a nontrivial weak solution in Wy.

This paper is organized as follows. In Section 2, we will present some necessary definitions and properties
of space Wy. In Section 3, using variational methods, we obtain the existence of weak solutions for problem
(1.1) in two cases: 1 < ¢ < p and p < g < pi.

2. Variational framework

In this section, we first give some basic results that will be used in the next section. Let 0 < s <1 < p < oo
be real numbers and the fractional critical exponent p% be defined as

N .
o= N_’;p if sp< N
° o0 if sp > N.

In the following, we denote @Q = RV\O, where
O =C(N2) xC(N) Cc RN,

and C(£2) = RM\2. W is a linear space of Lebesgue measurable functions from RY to R such that the
restriction to {2 of any function u in W belongs to LP({2) and

/|u(x) - u(y)|pK(x —y)dzdy < 0.
Q
The space W is equipped with the norm

T — ( Jlute) — o) x(e - y)dxdy) g
Q

It is easy to prove that || - ||w is a norm on W. We shall work in the closed linear subspace

Wo={ue W :u(z)=0ae in RN\ 2}.
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Lemma 2.1. C§°(2) C W,.

Proof. Using the same arguments as in [38], this lemma can be proved. For completeness, we give its proof.

For v € C§°(£2), we only need to check that [p.y |v(z) — v(y)|PK(z — y)dzdy < co. Since v = 0 in RV\{2,
we have

/ lo(z) — 0(y) [P K (z — y)dady = / / () — ()" K (z — y)daedy

R2N

20
+ 2/ / ‘U(J?) — v(y)’pK(x — y)dady

Q RN\

<2 [ [Jo@) - o) K (o - pdsdy.

2 RN

Notice that [v(z) — v(y)| < |V g @yylz — y| and [v(z) — v(y)| < 2[|v]| e @ny for all 2,y € RN, Thus,
|v(2) = v(y)|” < (2[lvllor @y))” min{|z - y|?, 1}.

Therefore, we obtain

/ |v(z) — v(y)|pK(:c —y)dady < (2||v|\cl(RN))p|Q| /min{|z|p, 1} K(z)dz.
RN

R2N
Assumption (1.2) implies that v € Wy. O

The Gagliardo seminorm is defined for all measurable function w : 2 — R by

[ulsp = (!Q %dmdy)i.

The fractional Sobolev space W*P?({2) is defined as
WoP(02) = {u € LP(£2) : [uls, < oo},

endowed with the norm

=

lulls.p = (llull} + [ul? ;)

For a detailed account on the properties of W*P(£2), we refer to [12]. We can define the space W*P?(R") in
the same way.

Lemma 2.2. Let K : RV\{0} — (0, 00) satisfy assumption (1.2). Then the following assertions hold:

(a) if ve W, then v e WP(12). Moreover,

1
[Wllwer(2) < max{1, kg * Hlvllw;
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(b) if v € Wy, then v € W*P(RYN). Moreover,

[ollwsr(2) < [vllwer@y) < max{1,ky " }vllw.

Proof. For v € W, by (1.2), we have

/ Mdd < — /‘v — ’p (x — y)dzdy < oo.

o=y

Thus, the first assertion is proved. For v € W and v = 0 a.e. in RV\ 2, we have ||v||.» @) = |[v]lzr(2) < o0
and

[ [ Rl [l v,

s |z — y|NFPs |z —y|NFPs

Q
< k:io /”U(l‘) - v(y)|pK(x —y)dzdy < oo.

Thus, v € W*P(RY) and the estimate on the norm easily follows. 0O
Lemma 2.3. Let K : RN\ {0} — (0, 00) satisfy assumption (1.2). Then

(1) there exists a positive constant Cy = Co(N,p, s) such that for any v € Wy and 1 < g < p¥

|v(x
ol < O / / )= dwdy

C
<22 [o(@) — o) K (o~ ey,
Q
(2) there exists a constant C = C(N, p, s, ko, £2) such that for any v € Wy
J1v@) = )" K = e < oty <€ [ ota) = o) K@ - y)dody.
Proof. Let v be in Wy. By Lemma 2.2, we know that v € W#P?({2). Using Theorem 6.5 in [12], we obtain
o
”UHP <C // |x_y|N+ps d dy
< 22 [Jota) - o) Ko~ )iy, 2.1)

where () is a positive constant depending only on N, s, p. Thus, we get the assertion (1). The assertion (2)
easily follows by combining the definition of norm of W with (2.1). O
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Remark 2.1. By (2), we get an equivalent norm on W, defined as
1
lvllw, = (/|v(m) - v(y)’pK(ac — y)dxdy) , for all v e Wy.
Q

Indeed, it is enough to prove that if ||v||w, = 0, then v = 0 a.e. in RY. By ||v||w, = 0, we have

/|’U(:L‘) - v(y)’pK(x —y)dxdy = 0.
Q

Thus, v(z) = v(y) a.e. (x,7) € Q. Since v = 0 a.e. in RN\ (2, we get v =0 a.e. in RY.
Lemma 2.4. (W, || - [|lw,) s a uniformly convex Banach space.

Proof. We first prove that Wy is complete with respect to the norm || - ||w,. Let {u,} be a Cauchy sequence
in Wy. Thus, for any € > 0 there exists u. such that if n,m > u., then

= llun — UmHin(g) < lun — umllyy, <e. (22)

By the completeness of LP({2), there exists u € LP({2) such that u,, — u strongly in LP({2) as n — oo. Since
u, = 0 a.e. in RV\ 2, we define u = 0 a.e. in RN\ 2. Then u,, — u strongly in LP(R™) as n — oo. So, there
exists a subsequence u,, in Wy such that u,, — u a.e. in RV (see [6], Theorem IV.9). Therefore, by the
Fatou Lemma and the second inequality in (2.2) with € = 1, we have

/|U(w) — u(y)|"K(z - y)drdy < lim inf /|unk (@) = tn, ()" K (x — y)dady
Q Q

- p
< hkrggéf(”unk = Upy HWo + ||uu1 HWO)
P
< (1 [l llwe) ™ < oo
Thus, u € Wy. Let n > p., by the second inequality in (2.2) and the Fatou Lemma, we get
[[un — u||€VO < likrggéf [un — tn, ||€V0 <6

that is, u,, — wu strongly in Wy as n — oo.

Next, we prove that (Wo, | - |lw,) is uniformly convex. Now, let u,v € Wy satisty ||ullw, = |[v|lw, = 1
and ||u — v||lw, > €, where € € (0,2).

Case p > 2. By the inequality (28) in [1], we have

u+vlP u—vl|l”  [lul@) to@)  uly) +oly) |
> ol = Q/ 5 - 5 K(x — y)dzdy
+/ u(x) ;U(ﬂ?) _u(y) ;U(ZU) K(z — y)dady

IN

Q
3 [ 1)~ uw) K (@~ y)dody + 5 [Jo@) = o) Ko~ y)dody
Q Q

1 1
Slully, + 5 lelfy, = 1. (23)
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It follows from (2.3) that || %£2[|}, < 1—&P/2P. Taking § = d() such that 1 — (¢/2)? = (1 — §)?, we obtain
that || 252w, < (1-9).
Case 1 < p < 2. First, notice that

1

loltr, = | [ () =t 2 =) ) tots] ™
Q

where p’ = p/p — 1. Using the reverse Minkowski inequality (see [1], Theorem 2.13) and the inequality (27)
in [1], we get

' {

Wo B

’
P u—"v

2

u-+v
2

Wo

1 1 Pt
gl + 3lolh, ) =1 (2.4
By (2.4), we have

P’ /
u—+v

Wo
Taking 8 = () such that 1 — (£/2)?" = (1 — 6)*', we get the desired claim. O
Remark 2.2. By Theorem 1.21 in [1], Wy is a reflexive Banach space.

Lemma 2.5. Let K : RV\{0} — (0,00) satisfy assumptions (1.2) and let v; be a bounded sequence in W.
Then, there exists v € LY (RY) with v =0 a.e. in RN\ such that up to a subsequence,

v; = v strongly in LY (£2), as j — oo,
for any v € [1,p%).

Proof. Lemma 2.2-(b) implies that v; € W*P(RY) and so v; € W*P({2). Moreover, by Lemma 2.2-(b),
Lemma 2.3-(2) and the definition of Wy, we have

- 1
vjllwer2) < lvjllwer@yy < (C)r max{1, k * }vllw,.
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Hence v; is bounded in W*P?(£2). By Corollary 7.2 in [12] and our assumptions on {2, there exits v € L¥({2)
such that up to a subsequence, v; — v strongly in L” as j — oo, for any v € [1,p}). Since v; = 0 a.e. in
RN\ 2, we can define v = 0 a.e. in RV\2. O

Remark 2.3. We notice that by a similar way, the space W is defined independently in [17] and was used
to investigate the related problem. It is worth mentioning that our functional setting above is inspired by
the pioneering works of Servadei and Valdinoci in [38,39], in which the corresponding functional framework
was discussed as p = 2.

3. Proofs of Theorems 1.1 and 1.2

For u € Wy, we define

and

Obviously, the energy functional I : Wy — R associated with problem (1.1) is well defined.

Lemma 3.1. If f satisfies assumption (H1), then the functional H € C*(Wy,R) and
(H'(u),v) = /f(x,u)vdx for all u,v € Wy.
2

Proof. (i) H is Gateaux-differentiable in Wj.
Let u,v € Wy. For each x € 2 and 0 < |t| < 1, by the mean value theorem, there exits 0 < d < 1,

u+tv u
%(F(z,u—!—tv) — F(z,u) = % / f(x,s)ds — %/f(z,s)ds
0 0
u+tv
1

== / f(z,8)ds = f(z,u+ dtv)v.

u

Combing assumption (H1) with Young’s inequality, we get

| (@, u+ dtv)o| < a(lv] + |u+ 6tv]17v])
< a(2fo]? + u+ 3tv]? + 1) < a2?([ol? + [ul? + 1).

Since 1 < g < p¥, by Lemma 2.2 and Lemma 2.3 we have u,v € L(§2). Moreover, the Lebesgue Dominated
Convergence Theorem implies

t—0 t

lim 1(H(u +tv) — H(u)) = }gl’(l)/f(.’b, u + dtv)vdx
o)

/lim f(z,u+ dtv)vde = /f(ac,u)vdm.
t—0
Q Q
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(ii) The continuity of Gateaux-derivative.
Let {un},u € Wy such that w, — u strongly in Wy as n — oco. Without loss of generality, we assume
that u,, — u a.e. in RV. By assumption (H1), for any measurable subset U C 2,

/|f(:c,un)}q,dx < otgat (/ |t |2dx + |U>,
U U

where |U| denotes the N dimensional Lebesgue measure of set U. Since 1 < ¢ < p*, by Lemma 2.3 and
Holder’s inequality, we have

/meaun "o <2 (Jlual?] 2 T Lz +10)
T (U) LP3—9(U)

<c| T 1+l (3.1)

It follows from (3.1) that the sequence {|f(z,u,) — f(z,u)|?} is uniformly bounded and equi-integrable
in L1(£2). The Vitali Convergence Theorem (see Rudin [37]) implies

Thus, by Holder’s inequality and Lemma 2.3-(1), we obtain

|H (wn) - ') = sup D/U@me*ﬂLUth

PEW, [lellwy=1
e

IN

Hf(xvun) - f(l'vu)HLq’(Q)H(pHLq(Q)

O\ 7
< (k—) £ ) — G 0)] |

— 0,
as n — oo. Hence, we complete the proof of Lemma 3.1. O
Using the same strategy as in Lemma 3.1, we have

Lemma 3.2. Let (M1) hold. Then the functional J € C*(Wy,R) and

('), = M (el /w )= )" (ula) — ulw) (v(2) ~ () K (o — y)dody

for all u, v e Wy. Moreover, for each u € Wy, J'(u) € W, where W denotes the dual space of Wy.

Proof. First, it is easy to see that

(T (), 0) = M(Jullty, /w ) — u()[" 7 (u@) — u(w)) (@) — () K (@ — y)dedy,  (3.2)

for all w, v € Wy. It follows from (3.2) that for each u € Wy, J'(u) € W{.
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Next, we prove that J € C1(Wy,R). Let {u,} C Wy, u € Wy with u,, — u strongly in Wy as n — oc.
By Lemma 2.5 there exists a subsequence of {u,,} still denoted by {u,} such that u, — u a.e. in RY. Then
the sequence

{Jun(@) = un @) (n(®) — un(y)) (K(z — )"} is bounded in L¥ (@),
as well as
() = un @) (@) — un () (K (2 — )" = Ju@) - uy) " (u(z) - u(y)) (K@ - )"

a.e. in . Thus, the Brézis—Lieb Lemma (see [6]) implies

n—oo

lim /Hun(x) - un(y)|V2 (un(2) = un(y)) — |u(z) — u(y)|pf2 (u(z) — u(y)) |p/K(x —y)dzdy
Q

= lim (‘un(x) — un(y)|pK(x —y) — ‘u(a:) — u(y)}pK(x — y))dxdy. (3.3)

n—oo

Q

The fact that u,, — u strongly in Wy yields that

lim [ (Jun(2) = un(y)["K(z — y) = Ju(z) — u(y)|"K (z — y))dedy = 0.

n— oo

Q

Moreover, the continuity of M implies that
Jim M (|[unllfy, ) = M ([[ullfy, )- (3.4)

From (3.3) it follows that

n—oo

i [} (2) = ()" () = 0 (0) (2 = ) " (ulz) = ()| K« = p)dady 0. (35)
Q

Combining (3.4), (3.5) with the Hélder inequality, we have
HJ'(un) — J'(u)” = sup |<J’(un) — J'(u),v>|
veWy, H’U”Wogl
— 0,

asn—oo. O

Combining Lemma 3.1 and Lemma 3.2, we get that I € C1(Wy, R) and

(I'(u),v) = M(||ullfy, ) /IU(x) —u(®)|"” (u(@) — u(y)) (v(@) - v(y) K (z - y)dzdy

Q
- / f(z,u)vde,
1?)

for all u,v € Wj.
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3.1. Case 1: 1 <q<p

In this subsection, we prove the existence of weak solutions of problem (1.1), where the growth exponent ¢
of function f satisfies 1 < ¢ < p.

Lemma 3.3. Let (M1) and (H1) be satisfied. Then the functional I € C*(Wy,R) is weakly lower semi-
continuous.

Proof. First, notice that the map v — |[v[|f}, is lower semi-continuous in the weak topology of Wy and M is

a nondecreasing continuous function, so that v — M (||UH€VO) is lower semi-continuous in the weak topology
of Wy. Indeed, we define a functional ¢ : Wy — R as

b(v) = / o) — v()|"K (z — y)dady.
Q

Similar to Lemma 3.2, we obtain 1 € C*(W) and
(@ ),0) = p [ Jwte) = w7 (w(e) — 0() () — 0) K &~ y)dady,
Q

for all w, v € Wy. Notice that

= /271 w(@) = wy)[ Kz = y) + 27 v(z) = o(y)|"K (@ — y)dedy
Q

1

1
= 5() + 5(0).

Thus, v is a convex functional in Wy. Further, v is subdifferentiable and the subdifferential denoted by vy
satisfies 0vY(u) = {¢'(u)} for each u € Wy (see [33], Proposition 1.1). Now, let {v,} C Wy,v € W, with
v, — v weakly in Wy as n — oo. Then it follows from the definition of subdifferential that

P(vn) —P(v) > (¥ (v), v, — V).

Hence, we obtain 9 (v) < liminf,, o ¥(v,), that is, the map v = [Jv|ly, is weakly lower semi-continuous.
Let u, — u weakly in Wy. By assumption (H1) and Lemma 2.5, up to a subsequence, u,, — u strongly
in L(£2). Without loss of generality, we assume that u,, — w a.e. in 2. Assumption (H1) implies

Fla.) < a(ltl + 7" }7) < 2a(j1)? +1).

Thus, for any measurable subset U C {2,

/|F(m,un)’dm < 2a/ |un |Td2 + 2a|U|.
U U

By 1 < ¢ < p}, Lemma 2.3 and Hélder’s inequality, we have
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/|F vowlde < 2aflual®l W gz o+ 20U
( “(U)

pE—q
< 2aC|unlliy, U] 7= + 2a|U].

Similar to the proof of Lemma 3.1, we obtain

n—oo

2 0

lim [ F(z,u,)dz = /F(x,u)d:c.

Thus, the functional H is weakly continuous. Further, we get that I is weakly lower semi-continuous. 0O

Proof of Theorem 1.1. From assumptions (M1) and (H1), we have |F(x,t)| < 2a(]t| + 1) and ]\/4\(15) > mot.
Thus, by Lemma 2.3, we get

I(u)

v

% /Mm) —u(y)|"K (z — y)daxdy — 2a/ lul9dz — 2a|92|

mg Co
0y, —2a( ) Jullty, — 2a]2].

Since g < p, we have I(u) — oo, as ||u|lw, — oo. By Lemma 3.3, I is weakly lower semi-continuous on Wj,.

v

So, functional I has a minimum point ug in Wy (see [41], Theorem 1.2) and ug € Wy is a weak solution of
problem (1.1).

Next we need to verify that ug is nontrivial. Let 29 € 29,0 < R < 1 satisfy Bag(x¢) C 29, where Bag(x¢)
is the ball of radius 2R with center at the point o in RY. Let ¢ € C§°(Bag(zo)) satisfies 0 < ¢ < 1 and
¢ =1 in Br(zo). Lemma 3.1 implies that ||¢|lw, < oco. Then for 0 < ¢ < 1, by the mean value theorem
and (H4), we have

1166) = S5 (It0lfy,) ~ [ Plato)ds

0]
It
M(r)dr — | “|té|d
T
M)l — 2t [ folrdo

20

<Cr - —tq / ||z,

where v € [0, [[¢[lfy,) and C' is a positive constant. Since p > ¢ and [, |¢|?dz > 0, we have I(to¢) < 0 for
to € (0, 1) sufficiently small. Hence, the critical point uq of functional I satisfies I(ug) < I(tgp) < 0 = I(0),
that isug #0. O

Now, we consider the following nonlinear eigenvalue problem

u=0 on RM\ (2.

Please cite this article in press as: M. Xiang et al., Existence of solutions for Kirchhoff type problem involving the non-local
fractional p-Laplacian, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2014.11.055

{ (—A)su= AulP"%u in 02,




Doctopic: Partial Differential Equations YJMAA:19044

14 M. Xiang et al. /' J. Math. Anal. Appl. e e e (66 ee) o0 e—0ee
We already know that the first eigenvalue A\; of (—A); defined as

el Ty,
inf o
u€Wo\{0} ”u”LP(Q)

A =

lies in (0, 00), see [16,25]. Using the same method as in Theorem 1.1, we can get the following result:

Corollary 3.1. Let K : RM\{0} — (0,00) be a function satisfying (1.2) and suppose that M satisfies (M1)
and f satisfies (H1). If ¢ = p and a < (mokoX1)/(2p), then the problem (1.1) admits a weak solution in Wy.

Proof. In view of the proof of Theorem 1.1, we only need to check that I'(u) — oo as ||ullw, — oo. Since
p=qand a < (mokoA1)/(2p), by assumption (H1) and the definition of first eigenvalue of (—A)7, we have

I(u) > % Q/|u(z) - u(y)|pK(x —y)dzdy — 2a! |u|Pdz — 2a| 2|

mo 2a
> —|ullf, — ——||ul||f, — 2al2
= ||u||W0 kO)\l HUHWO CL| |
mg 2a »
= [ — — — 2a|f?
(p kOAl)uunWO al2|
— 00,

as ||ullw, = oc0. O
Remark 3.1. Evidently, if f(x,0) # 0 a.e. in {2, then the weak solution obtained in Corollary 3.1 is nontrivial.
3.2. Case 2: p < q < p:

In this subsection, we consider the case p < ¢ < pZ.

Lemma 3.4. Let K : RV\{0} — (0,00) be a function satisfying (1.2) and suppose that M satisfies (M1) and
(M2) and f satisfies (H1)-(H3). If p < q < p%, then there exist p > 0 and o > 0 such that

I(u) > a >0,
for any u € Wy with ||ullw, = p-

Proof. By assumptions (H1) and (H3), for any € > 0, there exists C(¢) > 0 such that for any £ € R and
a.e. x € (2, we have

|f(2, )] < peléP~" +qCle)le]. (3.6)
It follows from (3.6) that
|F(x,€)| < el + C(e)lg]”. (3.7)

Let u € Wy. By (3.7), (M1) and Lemma 2.3, we obtain
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I(u) > %M(/W(x) - u(y)|pK(x — y)dxdy) — 5/|u(m)|pdm —Cle) /|u(x)|qu
Q 7] 2

mo CO %
> "2y,  eColluly, ~ @) 5) Nl 39

Choosing € = mo/(2pCy), by (3.8), we have

mo mo _
1) > 2l - Clully, > lulfy, (2p - c|u||%vf),

where C is a constant only depending on N, s, p, A, ko. Now, let |lul|lw, = p > 0. Since ¢ > p, we can choose
p sufficiently small such that mg/(2p) — Cp?~? > 0, so that

I(u) > pp(?_; - C’pq_p) =a>0.

Thus, the lemma is proved. O

Lemma 3.5. Let K : RNV\{0} — (0,00) be a function satisfying (1.2) that let M satisfies (M1)-(M2) and f
satisfies (H1)—(H3). If p < q < p%, then there exists e € C°(£2) such that |e|lw, > p and I(p) < a, where
p and « are given in Lemma 3.4.

Proof. First, by assumption (M1), we get that

—

M(t) < M(1)tv, (3.9)
for any ¢ > 1. From assumption (H2) it follows that

F(x, &) >r# min{F(x,r),F(a:, 77’)}|§|“, (3.10)
for all || > r and a.e. € £2. Thus, by (3.10) and F(z,&) < max¢|<, F'(z,§) for all || <7, we obtain

wa,f)EiT‘“Hﬁn{FYxﬂﬂ7PY$,—T)H€V‘—TE§XPY$,§)—-Hﬁn{Fxxﬂﬂ,FYx7—*)}v (3.11)
for any £ € R and a.e. x € (2.
By Lemma 2.1, we can fix ug € C§°(§2) such that |jugllw,2) = 1. Now, let ¢ > 1. Combining (3.9)
with (3.11), we have

um@:%ﬁmmﬂ%)—/F@mmﬂmx
(93
117 § —Hgt [ min T, T 2, —r) Yug(2) |V dz
< M - t! [F(,7), F(, —r)}uo(x)["d

+ [ max F(z,£) +min{F(z,r), F(z, —r) }dz.

|gl<r

From assumptions (H1) and (H2), we get that 0 < F(z,€) < a(|r| + |r]|9) for || < r a.e. z € £2. Thus,
0 < min{F(z,r), F(z,—r)} < a(|r| + |r]?) a.e. z € £2. Since p > p/6 by assumption (H2), passing to the
limit as t — oo, we obtain that I(tug) — —oo. Thus, the assertion follows by taking e = Tuy with T
sufficiently large. O
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Definition 3.1. We say that I satisfies (PS) condition in Wy, if for any sequence {u,} C Wy such that I(u,,)
is bounded and I’(u,) — 0 as n — oo, there exists a convergent subsequence of {uy }.

Lemma 3.6. Let K : RV\{0} — (0,00) be a function satisfying (1.2) and suppose that M satisfies (M1) and
(M2) and f satisfies (H1)—(H3). If p < q < p%, then the functional I satisfies (PS) condition.

Proof. For any sequence {u,} C Wy such that I(uy) is bounded and I'(u,) — 0 as n — oo, there exits
C > 0 such that [(I'(un), un)| < Cllun|lw, and |I(u,)| < C. By assumption (H1), we have

(F(2,un) — p (@ up)un ) de| < (a+pb) (r+r7)[02] < C, (3.12)
Qﬂ{‘un‘gr}

where {|u,| <r} ={x € 2:|u,(z)| <r}. Thus, by (M1), (M2), (H2) and (3.12), we get

1
C+ Cllunllw, = I(un) - ;<I’(un),un>
1 1\— B
> (p - @)M(Hunﬂi’,vo) - / (F(z,un) — p ' f (@, un)up,)dz
2 N{lun|<r}
1 1\~
> == — | M(|lun]l¥y.) = C
> (5 - g5 ) ¥l

1 1
> — T a0 n e — Ca
Z mo(p 9M>||“ HWO

where C' denote various positive constants. Hence, {u,} is bounded in Wy. Since Wy is a reflexive Banach
space, up to a subsequence, still denoted by {u,,} such that u,, — u weakly in Wy. Then (I’ (uy), u, —u) — 0.
Thus, we obtain

(I'(un),up —u)y = M</‘un(x) —up () [P K (z — y)dxdy)
Q
1m0~ ) a0 0) 0 0) () (2 — a0) + ) K o — )y
Q

- /f(x,un)(un —u)dz
Q
0

N (3.13)

as n — co. Moreover, by Lemma 2.5, up to a subsequence,
u, — u strongly in L(f2) and a.e. in (2.

Thus, f(z,un)(un —u) — 0 a.e. in 2 as n — oo. It is easy to check that sequence {f(x,u,)(u, —u)} is
uniformly bounded and equi-integrable in L!(2). Hence, the Vitali Convergence Theorem (see Rudin [37])
implies

lim [ f(z,un)(u, —u)dx = 0.

n— 00
0
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Therefore, by (3.13), we have
M( [lunte) = unl) P Kz - y)dxdy)
Q

< @) = n @ 10 ) = 00 (0)) (i 0) ~ 0(a) = 00 (0) + u(o)) K (o~ y)dody
Q
— 0,
as n — oo. Further, assumption (M1) implies

/lun(l‘) —un @) (un (@) = wn () (1 (@) = u(@) = un(y) +u(y)) K (@ - y)dedy — 0,
Q

as n — oo. Thus, by the weak convergence of {u,} in Wy, we get

[ 1ln(@) = )™ 10(0) = 0 0)) (o) = ) (u(z) = )]
Q
< (1 (2) = () = n(y) + ) K (& — )dady

— 0,
as n — oo. Using the well-known vector inequalities:
(P26 = nlP=2n) - (€ —m) = Cpl€ =P, p>2;

- _ 2
(IE/P=2€ — [nP~2n) - (€ — ) = Gy L=

5 T 1<p<2,
(€] + )2 P

for all £,n € RY, where C), ép are constants depending only on p. From which we obtain for p > 2

/ [t () — () — u(@) + u(y)|"K (z — y)dzdy
Q

<o / [t () = () [P (1 () — 1 (1)) — ) — )"~ (ulz) — u(w))]
Q
X (un(2) = u(@) = un(y) + u(y)) K (z — y)dady
—0, (3.14)

asn — oo. For 1 < p < 2 we have

[ (@) = a(0) = ) + u)|" K &~ y)dody
Q

< p Q{Q/Uun(m) - Un(y)|p_2 ('U:n($) - un(y)) - }u(.l?) - u(y)|p_2 (U(Qf) - u(y))]

p/2
(i)~ ) = () + () Ko = )y
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(2—p)/2
[ (unta) = a0+ Jute) = ()" o ~ oy}
Q
{ [ ) = 0 ) n) = a0) = [) — )~ (u(2) ~ ()]
Q

p/2
% (1 () — () — un(y) + u(y)) K (x — y)dxdy}
— 0, (3.15)

as n — 0o. Combing (3.14) with (3.15), we get that u,, — u strongly in Wy as n — oo. Therefore, I satisfies
(PS) condition. O

Proof of Theorem 1.2. Since Lemma 3.4-Lemma 3.6 hold, the Mountain Pass Theorem (see [41], Theo-
rem 6.1) gives that there exists a critical point u € Wy of I. Moreover,

Thus, u #0. O

Corollary 3.2. Suppose that all the assumptions of Theorem 1.2 are satisfied. Then problem (1.1) at least
exists two nontrivial weak solutions in which one is non-negative and another is non-positive.

Proof. First, for v € Wy, we have v € Wy, where v = max{v,0} = I”‘% Indeed,

P
[ 0461 o P~ oty = [P
Q Q
_ _ P
[ o)
Q
< [lote) = o) " K@ - y)dody
Similarly, v~ = max{—wv,0} € Wy. Thus, we can take e > 0 or e < 0 in Lemma 3.5.

Now, we define

&

F(z,6) = / fE (@, 7)dr,

0
where

N [ f(=,8) ifE>0, _ _{f(w,f) if £ <0,
/ (x’g){o if £ <0, Jo(@s) = 0 if € > 0.

It is easy to check that f* satisfies assumptions (H1)(H3). We define functional I : Wy — R as follows

+ —lAup — (2, u)dx
I = N (Julfy,) !F (2, w)d.
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Then, I* is well defined on Wy and

(IE (), ) = M(J|ullty,) /\u(ﬂs) —u(y) " (u(x) — uy)) (p(z) — o)) K (x — y)dedy
o

- /fi(x,u)goda:. (3.16)
7}

Obviously, I* satisfies Lemma 3.4, Lemma 3.6 and I*(0) = 0. For functional I*, we can take e > 0 in
Lemma 3.5. Then I satisfies Lemma 3.5. Similarly, functional I~ satisfies Lemma 3.5 by taking e < 0.
Therefore, by the Mountain Pass Theorem, there exist two nontrivial critical points uy, u_ € Wy of IT, 17,
respectively. Next, we prove that u; > 0 and u_ < 0 a.e. in RV. Since uy € Wy, we have (uy)~ € Wp.
Considering (3.16) with respect to I'™ and taking ¢ = (uy)™, we get

(T () ()™ = M(fug [,) / ey (2) — s ()72 (1 () — 4 (1))
Q

X ((ug)” () = (ug) ™ (y)) K (z — y)dady

—/f+(x,u+)(u+)_dx:0. (3.17)

]

The definition of f* and (3.17) imply

M([lu]fyr,) /|U+($) —us )] (ug (@) =y () ()~ (@) = (u3) ™ (1)) K (@ — y)dady = 0.
Q

Then the assumption (M1) yields

/| ug)” (x) — (uy) (y)’pK(x —y)dady = 0.

Hence, (uy)~(z) = (uy)~(y) a.e. (x,9) € Q. Since (uy)~(z) = 0 a.e. in RV \ {2, we obtain that (uy )~ (z) =0
a.e. in RV, that is, uy > 0 a.e. in RV,

Using the same arguments, we get that u_ < 0 a.e. in RN. 0O
Now, we consider the following example which is a direct application of the main results.

Example 3.1. Let 0 < s < 1 < p < 00, ps < N and 2 be an open bounded set of RV with Lipschitz
boundary. We consider problem

p m
(ao +bo < / [ulz N+ps| dxdy) )(—A);u = AMu|T 2y in £,

u=0, in RM\ 2,

(3.18)

where ag, bg, m, A are positive constants. It is easy to see that
M(t) = ag + bot™ > ag >0 for all t > 0,

and
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1
m+1

t
M(t) = /M(T)dT > M(t)t forall t > 0.
0

Let f(x,€) = M\¢|772¢ and F(z,€) = %|€|q. Obviously, f satisfies (H1) and F satisfies
0 < qF(x,&) = f(z,8)¢ forall x € 2 and |¢] > 0.

If 1 < ¢ < p, by Theorem 1.1, problem (3.18) admits a nontrivial weak solution in Wj.
When p < ¢, we have

_ M(x,s) o As|its
lim =1
s—0 |S|p71 s—0 |S|P*1

=0 uniformly in x € £2.

If (m+ 1)p < g < pk, then by Corollary 3.2, problem (3.18) exists two nontrivial weak solutions in which
one is non-negative and another is non-positive.
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