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a b s t r a c t

Modelling the interaction of the urokinase plasminogen activator system with a model
for cancer cells dynamics lead to a system of five coupled partial differential equations
the solution of which, over a one-dimensional domain, can be obtained using the finite
element method. As the discretization of the integration domain is crucial, particularly
in the presence of strong variations of the domain variables, we tackle the problem
solution implementing an adaptive grid numerical technique. Our results improve previous
numerical simulations performed on uniformly discretized domains, allowing to capture
finer spatial details characterizing the interface between cancer and healthy cells, which
can be related to malignancy: low values of the cancer cells motility induce a high spatial
heterogeneity at the cancer/healthy cells interface, while the dynamical evolution over the
whole domain shows branched spatio-temporal patterns; on the contrary, higher motility
values smooth the cancer cells spatial profile, letting cancer cell concentration to evolve
according to a less heterogeneous pattern.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thedynamical evolution of cancer cells is amechanism strongly interconnectedwith phenomena occurring over different
length scales: atmicroscopic level, sub-cellularmechanisms such as DNA degradation, gene expression, nutrient absorption,
etc., influence intercellular interactions in both tumour and healthy cells; such mesoscopic phenomena determine the
evolution at the tissue level, thus the need for multiscale approaches accounting for complexes modelling arises [1–3], a
field which is fast developing together with the increasing in computational power. Schematically, at tissue level cancer
cells start to cluster in the avascular phase, building multicellular spheroids [4–8] and are possibly attacked by the immune
system; after themechanical interactionwith the surrounding tissue [9–11], tumour cells stimulate the angiogenesis process
causing the formation of new blood vessels and attracting nutrients [12–16]; at this stage the tumour enters the vascular
phase attracting much more nutrients like oxygen and glucose [17–19]: the increased speed of invasion of the healthy
cells and the vascularization allow cancer cells to break-out from the initial localization, beginning metastasis through the
vascular system [15,20–22], giving them their deadly characteristic. Recent reviews focusing on mathematical modelling of
cancer cell growth and proliferation can be found, among others, in Refs. [23–29].

Avascular tumour growth models can be grouped within three categories: continuum models expressed as systems of
Partial Differential Equations (PDEs), discrete approaches, and hybrid continuum/discrete combinations [30]. At tissue level,
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the continuum approach is appropriate, and the tumour ismodelled as a cluster of cells immersed in the extracellularmatrix
(ECM), an aqueous environment containing nutrients, like proteins, oxygen, and glucose; here, depending on chemical
signalling, cancer cells start to grow and proliferate [1]. Models based on the assumption that the cancer cells movement is
in response to chemotactic and/or haptotactic stimuli have been recently developed [31], as the coupling of the urokinase
plasminogen activator (uPA) system to a model of cancer cells invasion [32,33]. In this respect, these latter papers focus
on the role of the uPA system in the ECM degradation, which is a key process in tumour invasion of a healthy tissue: in
such process, the proteolysis of the ECM macromolecules is catalyzed by a degrading enzyme, specifically the uPA serine
protease [34,35]. Broadly speaking, the invasion starts from the degradation of the ECM components such as the vitronectin
(VN) protein; to do so, cancer cells secrete the enzymatically inactive pro-uPA, which is activated to uPA by plasmin, an
ECM degrading enzyme, being in turn an activated form of the plasminogen ubiquitous protein, and both uPA and pro-
uPA bind to the receptor uPAR, binding, in turn, to the cell surface; on the other hand, the excess of proteolysis induced
by uPA is also prevented by the plasminogen activator inhibitor type-1 (PAI-1), a specific inhibitor secreted by healthy
cells. For a detailed description of the biological mechanisms involved, see Chaplain and Lolas [32], Andasari et al. [33], in
which the uPA system is intended as constituted by the uPA itself, the plasmin, the VN protein, and the PAI-1 inhibitor.
These authors couple the cancer cell dynamics to the uPA system obtaining, in a continuum framework, a system of five
coupled PDEs solved in both one and two dimensional domains, imposing a set of model parameters, and suitable initial
and boundary conditions for times t ∈ (0, T ]. In particular, if Ω1 := (0,M), with M a positive scalar parameter, is a one
dimensional spatial domain understood as a one dimensional portion of biological tissue, whileΩ2 := (0,M) × (0,M), is
a two dimensional region of tissue, they performed the integration of the PDE system using a code based on the method of
lines, using a uniform finite volumes discretization in space, over theΩ1×(0, T ], orΩ2×(0, T ], integration domains, and an
implicitmethod for discretization in time. Themain result of such amodel, inwhich a linear stability analysis is also provided,
is the prediction that cancer invasion proceeds through spatio-temporal patterns having a degree of inhomogeneity which
depends upon themotility of the cancer cells; while 2D simulations are in qualitative agreementwith previous experimental
results [36,37].

Nevertheless, just the high irregularity of the spatio-temporal proliferation patterns they obtained, suggests that the
overall accuracy of the numerical procedure could be influenced by the discretization of the integration domain: in fact, as
the spatial positions at which cancer cell cluster are a priori unknown, the choice of an appropriate grid of points is crucial,
particularly in the presence of local steep gradients of the domain variables.

Recently, computer simulations of solid tumour growth have been performed in two and three dimensions implementing
adaptive meshing and multi-grid algorithms in order to improve the effectiveness of the computational techniques [38,39],
while a hybrid finite volume/finite element algorithm has been used to discretize a continuum model for a vascular
tumour growth [30]. The Finite Element Method (FEM) is used for application in several research branches, and provides
computationalmathematicswith a powerful tool to solve PDEs systems arising fromproblemmodelling [40]: the integration
domain is discretized in elements composed by nodes on which the solution of a domain variable is found, while its spatial
variation inside each element is interpolated by suitable shape functions.

In general, adaptive grid techniques can be either static (h- or p-type) or dynamic (r-type), and allow resolution
improvements and computational savings with respect to techniques based on uniform discretizations [41]. h-type
remeshing methods rely on the insertion of extra mesh points in order to satisfy tolerance requirements, while p-type
techniques keep constant the number of nodes increasing the order of the polynomial used to represent the solution within
each element. Unfortunately, static remeshing techniques can lead to an undesired huge amount of points, memory and
time consuming (h-type), or can be limited by smoothness requirements (p-type). r-type techniques, also known as moving
mesh techniques, instead, keep constant the nodal connectivity and number of mesh points inside the domain: simply, the
mesh points are moved towards regions where more details are required, with no need for external intervention.

Facing themodelling of highly frustrated dynamical system, recently we have developed a numerical technique allowing
effective and reliable numerical solutions of PDEs system over a one dimensional integration domain where relevant
temporal and/or spatial variations of some physical parameters occur [42–45]. Specifically, we have implemented the
moving mesh partial differential equations (MMPDEs) numerical technique using FEM to solve a system of six coupled non-
linear PDEs arising from the problem modelling of a nematic liquid crystal confined between plates, submitted to strong
electrical andmechanical stresses. In suchmethod, the discretization of the integration domain is not uniform, but it is driven
by the gradient of a suitable order parameter which is calculated during the solution procedure: the technique concentrates
the grid points in regions of large variations of the chosen parameter, maintaining constant the number of the nodes in
the domain, thus ensuring no waste of computational effort in areas of low spatial variability where there is no need for
finer grids, thus allowing an overall resolution improvement. The model developed in [33] predicts highly inhomogeneous
patterns for the cancer cell dynamics, suggesting that the use of an adaptive remeshing technique as a tool to improve the
model resolution in regions of the integration domain where steep gradients of the cancer cell concentration are present
could be appropriate. Following such idea, this work is concerned with the implementation of the MMPDE technique to
the model introduced in Ref. [33], aimed at demonstrating the validity of our technique applied to the one dimensional
model there presented: our numerical simulations, in fact, improve the model resolution and give a new insight about the
challenging problem of the cancer cell proliferation. The paper has the following organization: in Section 2 the theoretical
model of the uPA system coupled with the cancer cell dynamics is highlighted; the numerical technique is presented in
Section 3, while the numerical results are discussed in Section 4. Finally, we conclude in Section 5.
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2. Theoretical model

LetΩ ∈ R3 be a fixed volume domain and S its bounding surface, the variation of a cell population, having density c(x, t)
at time t ∈ (0, T ] and position x ∈ Ω , is governed by the conservation law

d
dt


V
c(x, t)dx = −


S
ϕ(x, t) · dS +


V
f (c, s) dV (1)

where ϕ(x, t) is the flux of the cells through S; f accounts for cells production and depends also on the vector valued
function s representing the concentration of the n interacting chemical species present in the simulated domain: hence,
s =(s1, . . . , sn), in which each sı = si(x, t), for i = 1, . . . , n. Using the divergence theorem, assuming the domain fixed in
time, given the arbitrary volume V , the PDE describing the evolution of the cell population c(x, t) is obtained

∂c
∂t

= −∇ · ϕ + f (c, s). (2)

With similar considerations, the evolution equations for the other species si can be obtained

∂si
∂t

= −∇ · ψi + γi(c, s), i = 1, . . . , n (3)

whereψi and γi, account for, respectively, flux and production terms for the ith species. Eq. (2) and the n Eqs. (3) constitute
a system of n + 1 coupled PDEs to be solved in order to describe the dynamics inside the domain Ω . Following Andasari
et al. [33], we denote the cancer cells concentration by c(x, t), the VN concentration by v(x, t), the uPA concentration by
u(x, t), the PAI-1 concentration by p(x, t), and the plasmin concentration bym(x, t).

Cell movement inside the ECM can be promoted by at least two distinct mechanisms, chemotaxis and haptotaxis, being
both directional motility mechanisms in response to concentration gradients of chemicals influencing cell migration: in
the first case, cancer cells sense the chemicals dissolved in solution and move eventually reaching their source; the second
mechanism rely on the adhesion of the attracting chemicals to some ECM component: cancer cells move by iteratively
making and breaking bond with such chemicals, ‘jumping’ towards growing concentration gradient of molecules adhered
to ECM. In Eq. (2), the flux vector takes into account the randommotility of cancer cells Dc , as well as chemotaxis due to the
presence of uPA and PAI-1 molecules, respectively through χu and χp, and haptotaxis due to VN, through χv . In addition,
cells proliferation is accounted for with the inclusion of a logistic growth term, through the cancer cell proliferation rateµ1.

Considering Eq. (3), as we are in presence of four different chemical species, hence n = 4, it gives the evolution equation
of, respectively, VN, uPA, PAI-1 and plasmin. ECM does not diffuse, so we put ψ = 0; on the other hand, VN is degraded by
plasmin at a rate δ and neutralized by PAI-1 inhibitor at a rate φ22, while the PAI-1-uPA interaction indirectly supports VN
growth at a rate φ21; finally, a logistic term accounting for proliferation at a rate µ2 is included.

The uPA diffuses into the system at a rate Du so ψ = Du∇u, it is degraded via the interaction with its receptor uPAR
bounded to cancer cells at a rate φ33, it is inhibited via interactions with PAI-1 at a rate φ31, while it is produced by cancer
cells at a rate α31.

Similarly, the PAI-1 inhibitor diffuses at a rate Dp, is degraded via the interactions with uPA and VN at a rate of,
respectively, φ41 and φ42, and is produced by plasmin at a rate α41.

Finally, besides the diffusion at a rate Dm, plasmin is indirectly promoted via both the binding of uPA to cancer cells, at
a rate φ53, and the binding of PAI-1 to VN at a rate φ52; in addition, plasmin degrades and is deactivated by its inhibitor
α2-antiplasmin [33], at a rate φ54.

Consequently, our evolution model for cancer cell invasion reads as the following PDE system:

∂c
∂t

= ∇ ·

Dc∇c − c


χu∇u + χp∇p + χv∇v


+ µ1c (1 − c) (4)

∂v

∂t
= −δvm + φ21up − φ22vp + µ2v (1 − v) (5)

∂u
∂t

= ∇ · (Du∇u)− φ31pu − φ33cu + α31c (6)

∂p
∂t

= ∇ ·

Dp∇p


− φ41pu − φ42pv + α41m (7)

∂m
∂t

= ∇ · (Dm∇m)+ φ52pv + φ53cu − φ54m. (8)

A schematic overview summarizing the modelled mechanism and the parameter involved is presented in Fig. 1.
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Fig. 1. Schematic overview of the modelled mechanism, evidencing the parameters involved as introduced in the text.

3. The numerical technique

Eqs. (4)–(8) constitute a system of five coupled PDEs modelling the interaction between the uPA system and the
cancer cells, to be solved over a one-dimensional spatial domain. The problem can be tackled using the equidistribution
principle [46–50], by means of which the FEM discretization is controlled equidistributing in each subinterval of Ω a
monitor function [51,52]. It results a quite efficientmethod allowing for extremely accurate representations of sharp solution
features, such as shocks or defects, while the optimal choice of the monitor function depends on the problem being solved,
the numerical discretization being used, and the norm of the error that is to be minimized [51].

Denoting by w(x, t) a solution over a physical domain Ωp = [0, 1] of a PDE system, with x the physical coordinate, we
introduce a fixed computational domainΩc = [0, 1]with ξ computational coordinate, defining a coordinate transformation
representing a one-to-one mapping at time t from computational spaceΩc × (0, T ] to physical spaceΩp × (0, T ]

x = x(ξ , t), ξ ∈ Ωc, t ∈ (0, T ] (9)

and the reverse

ξ = ξ(x, t), x ∈ Ωp, t ∈ (0, T ] (10)

from physical spaceΩp × (0, T ] to computational spaceΩc × (0, T ] holds. A uniform grid

ξi = i/N, i = 0, 1, . . . ,N (11)

imposed on computational space, corresponds to a set of nodes on physical space

0 = x0(t) < x1(t) < · · · xN(t) = 1. (12)

A mesh equidistributes a monitor functionM(w(x, t)) in each subinterval ofΩ if xi(t)

xi−1(t)
M(w(s, t))ds =

1
N

 1

0
M(w(s, t))ds (13)

and generalizing over the integration domain, we obtain the integral form of the equidistribution principle x(ξ ,t)

0
M(w(s, t))ds = ξ

 1

0
M(w(s, t))ds. (14)
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Differentiating (14) with respect to ξ , the mesh equation is obtained, allowing to determine the coordinate mapping x(ξ , t)

M(x(ξ , t))
∂

∂ξ
x(ξ , t) =

 1

0
M(w(s, t))ds = C(t) (15)

and in order to keep constant the equidistribution of the monitor function over the integration domain, at a larger monitor
function value corresponds a denser mesh.

We have demonstrated [42] that the monitor function introduced by Beckett et al. [50], based on the method proposed
by Huang et al. [53] ensures a good quality control of the mesh and the final convergence of the FEM solution [50,51], and
therefore we choose

M(w(x, t)) =

 1

0

∂w(x, t)∂x

1/2

dx +

∂w(x, t)∂x

1/2

. (16)

We are in presence of a multidimensional time-dependent problem, which FEM discretization is done via the method of
lines; the overall adaptive solution process involves an iteration in which: (i) a mesh is generated using the equidistribution
principle based on the numerical solution at the current time step; (ii) the PDEs are solved on the new generated grid and
then updated in time. The stability of the iterative updating relies on a proper selection of the updating time step∆t [54], at
which our PDE system, Eqs. (4)–(8), is numerically solved using FEM. To overcome the difficulty related to the non-linearity
we used Galerkin’s method associated to a weak formulation of the residual of the differential equations [40], discretizing
them in time via an implicit Euler method, and interpolating the local distribution in each element of our variables by
quadratic shape functions. Major details can be found in [42] and references therein. We point out that, since our problem
is modelled by five coupled PDEs solved simultaneously, at each time step we have five unknown exact solutions w(z, t),
one for each of the monitored species. The used multi-pass algorithm is:

a uniform initial grid xj(0) is generated and the corresponding initial solutionwj(0) is calculated using FEM;
a temporal loop is done in the time domain updating mesh and solution w, putting forward PDEs:
while tn < T

the mesh is redistributed in a few steps v ≥ 0:
do

themonitor function is evaluated at the current time step, the grid ismoved from xj(v) to xj(v+1) equidistributing
the monitor function in each subinterval and a solution wj(v + 1) is calculated on the new mesh, for each of the
five coupled equations (4)–(8).

until v ≤ vmax
the PDE system is put forward on the newmesh xj(v + 1) to obtain a numerical approximationwj(v + 1) at the new
time level tn+1.

end
For computational convenience, we adopt the non-dimensional system, hence default set ofmodel parameters, boundary

and initial conditions as in [33] for the one dimensional domain: consequently, distance is rescaled with L = 0.1 cm, a
distance of cancer cells at early stage of invasion; if D = 1× 10−6 cm2 s−1 is a representative chemical diffusion coefficient,
time is rescaled with τ = L2D−1, while the reference concentration values for the dependent variables are c0 = 6.7 × 107

cell cm−3, v0 = 1 nM, u0 = 1 nM, p0 = 1 nM,m0 = 0.1 nM. Finally, the complete set of the non-dimensional parameters is
deduced:Dc = 3.5×10−4,Du = 2.5×10−3,Dp = 3.5×10−3,Dm = 4.91×10−3, χu = 3.05×10−2, χp = 3.75×10−2, χv =

2.85 × 10−2, µ1 = 0.25, µ2 = 0.15, α31 = 0.215, α41 = 0.5, δ = 8.15, φ21 = 0.75, φ22 = 0.55, φ31 = 0.75, φ33 =

0.3, φ41 = 0.75, φ42 = 0.55, φ52 = 0.11, φ53 = 0.75, φ54 = 0.5. Moreover, for x ∈ Ω, if ε = 0.01, the imposed initial
conditions are c(x, 0) = exp(−|x|2ε−1), v(x, 0) = 1 − 0.5c(x, 0), u(x, 0) = 0.5c(x, 0), p(x, 0) = 0.05c(x, 0),m(x, 0) =

0 [32,33]. Such conditions, at x = 0, allow the presence of a cluster of cancer cells, while the remaining portion of the
domain is filled by ECM; the initial concentrations of uPA and PAI-1 are proportional to the cancer cells concentration while
plasmin is not yet produced. Further, all the components remain confined within the simulated portion of tissue, thus the
PDEs system satisfies zero-flux boundary conditions, with the exception of the ordinary differential equation (5).

Facing the kind of problems we treat, a difficulty is often the lack of experimental determinations of the biological
parameters involved. In this respect, an instructive discussion is given in [32]: most of the parameters available in the
literature are not univocally determined, having estimates falling in ranges, on average, two order of magnitude wide;
otherwise, they are estimated by numerical simulations on the grounds of agreementwith experimental results, if available.
Consequently, any numerical or experimental parameter errors at this stage is not relevant being adsorbed in the relative
estimate range andpossible error effects are not considered. In [33] the authors have beenperformedboth linear stability and
parameters sensitivity analyses, showing that variations of some key parameter can change the qualitative character of the
solution, leading to different invasion pattern by cancer cells; on the contrary, these latter do not seem appreciably affected
by slight fluctuations of the parameters around some average values. In particular, depending on the diffusion coefficient
for cancer cells Dc , either homogeneous or heterogeneous proliferation can arise, which we tune using the parameter set
tested in [33].

For our computations, we modelled the real problem simulating a one-dimensional portion of tissue of thickness
d = 7 mm. Then, the domain in the 0 < x < 7 non-dimensional thickness is discretized by a mesh of 700 grid points,
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Fig. 2. Nodes trajectories versus time for the adaptive mesh algorithm in the 0 ≤ x ≤ 7 spatial domain and in the 0 ≤ t ≤ 500 time interval where
only one grid point trajectory every twenty has been included; the horizontal and vertical axes correspond to the tissue thickness and the time scale of the
solution evolution, respectively.

Fig. 3. Surface contour plots of the cancer cells concentration evolution in the 0 ≤ x ≤ 7 spatial domain and in the 0 ≤ t ≤ 500 time interval, imposing
a random motility value Dc = 3.5 × 10−4; the concentration is linearly mapped in a grey levels scale between the black (zero concentration) and white
(maximum concentration) colours.

and the dynamical evolution of the system is monitored in the 0 < t < 500 non-dimensional time interval, corresponding
to about 58 days, with steps of size dt = 0.5. We remember that both the dimensional timescale and the tissue thickness
can be recovered multiplying, respectively, t by τ , and x by L. Besides Dc = 3.5 × 10−4, we performed our simulation also
for Dc = 4.25 × 10−3. Eqs. (4)–(8) are solved at each time step, replacing in Eq. (16) the exact solutionw(x, t)with c(x, t),
allowing the grid points on which the solution is computed to be driven by the cancer cell concentration. Such choice gives
a denser mesh according to growing ∇c.

4. Numerical results and discussion

In Fig. 2, we show the node trajectories generated by the adaptive mesh algorithm inside the simulated domain, tracing
only one grid point trajectory every twenty for plotting convenience. The parameters introduced in the previous section
have been used, in particular a random motility for cancer cells Dc = 3.5 × 10−4. The horizontal axis corresponds to the
tissue thickness in the 0 ≤ x ≤ 7 range, while the vertical axis corresponds to the time scale of the solution evolution in
the 0 ≤ t ≤ 500 time interval. At t = 0 the nodes are uniformly spaced and the cell distribution is prescribed by the initial
conditions; for t > 0 the nodes move according to the evolution of ∇c: their trajectories are smooth within few tenth of
time unit, while above t = 40 they become more and more inhomogeneous. Such behaviour reflects in Fig. 3, where we
show the proliferation pattern of cancer cells, linearly mapped in a grey level scale between the black (zero density) and
white (maximum density) colours, with horizontal and vertical axes as in Fig. 2. For t < 40, no proliferation can be de-
tected along the tissue thickness, while at increasing times cancer cells start to proliferate, building a branched and strongly
inhomogeneous spatio-temporal pattern, a behaviour which is in agreement with the results of Andasari et al. [33].

In Fig. 4(a)–(f) wemonitor the density evolution of the interacting species along the tissue thickness, at various temporal
steps, i.e. the cancer cells density c(x, t) (solid line), the VN density v(x, t) (dotted line), the uPA density u(x, t) (dash-
dotted line), the PAI-1 density p(x, t) (dashed line) and the plasmin density m(x, t) (thin dash-dotted line). The horizontal
axis corresponds to the tissue thickness in the 0 ≤ x ≤ 7 range, while the vertical axis corresponds to the concentration of
the chemical species. We focus our attention on the cancer cell concentration profile: at t = 0, Fig. 4(a), it is prescribed by
the imposed initial conditions, and up to t = 30 it is uniformly clustered close x = 0 in a progressively broad and smooth
structure. At t = 35, Fig. 4(b), the density profile starts to change: around x = 0.5 a steep and sharp front of invasion is
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Fig. 4. Plot of the concentration evolution of the different species in the simulated domain, imposing a random motility value Dc = 3.5 × 10−4: solid
line, cancer cells c; dotted line, vitronectin v; dash-dotted line, uPA u; dashed line, PAI-1 p; dash-dotted thin line, plasmin m. Each panel corresponds to a
snapshot taken during the time evolution: t = 0 (a), t = 35 (b), t = 75 (c), t = 85 (d), t = 105 (e), t = 500 (f). The upper plot in panel (b) corresponds to
the eight-fold magnification of the cancer cell profile c , in the 0 ≤ x ≤ 0.5 range.

present, preceded by a broad structure, both exhibiting an indented fine structure as evidenced in the eight fold magnified
upper plot of the cancer cells density c(x, t) in the 0 ≤ x ≤ 0.5 range; at the same time, the other chemical densities
evolve too, in particular the VN degrades, as a consequence of the interaction of cancer cells with the uPA system. For
t = 75, Fig. 4(c), new and sharp structures arise in the density profile superimposed on a smooth background, indicating an
inhomogeneous cancer cell clustering. In this case, the indented invading front has penetrated about x = 4, a smaller portion
of tissue with respect to the predictions in Ref. [33] where, for the same time interval, the front of invasion is around x = 5;
in our simulation, instead, such degree of invasion is reached for t = 85, see Fig. 4(d). At t = 105, Fig. 4(e), the simulated
domain is almost entirely invaded, a behaviour persisting up to t = 500, Fig. 4(f): the density profile presents repeated
sharp peaks, consequence of the inhomogeneous character of the cancer cell clusters, hence malignancy [24]. Besides the
overall agreement of our simulations with that showed in Ref. [33], our method allows capturing some fine structures not
observed otherwise: in fact, during the cancer cell invasion, the invading front is always characterized by an irregular and
spiky structure, at the boundary between cancer ad healthy cells.

Considering now the effect of an increase in cancer cell motility, as a consequence of mutations giving to cancer cells
an increased degree of malignancy, in Fig. 5 we show the surface plot of the cancer cells density in the simulated spatio-
temporal domain obtained imposing Dc = 4.25 × 10−3; once again, below t = 40 no proliferation can be detected; for
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Fig. 5. Surface contour plots of the cancer cells concentration evolution in the 0 ≤ x ≤ 7 spatial domain and in the 0 ≤ t ≤ 500 time interval, imposing
a random motility value Dc = 4.25 × 10−3; the concentration is linearly mapped in a grey levels scale between the black (zero concentration) and white
(maximum concentration) colours.

t > 40, the cancer cell concentration grows uniformly along the tissue thickness, and above t = 100 the proliferation
pattern exhibits an inhomogeneous evolution characterized by quite regularly spaced branches protruding in time.

Nevertheless, snapshots of the chemicals density taken at selected times give us a dynamical evolution smoother and
faster than in the case with Dc = 3.5 × 10−4, see Fig. 6. In fact, at t = 0, Fig. 6(a), the cancer cell concentration profile
is still prescribed by the initial conditions imposed. At t = 40 a steep and smooth front of invading cells is present near
x = 2.3, Fig. 6(b), which for t = 55 moves to x = 5.5, with an irregular fine structure superimposed, Fig. 6(c). For t = 60
the invading front is around x = 6.5 and new structures start to grow in the cancer cell concentration profile, Fig. 6(d); at
t = 70, Fig. 6(e), the tumour has penetrated the entire simulated domain, while the cancer cell clusters are clearly visible
over the smooth background. Finally, at t = 500, Fig. 6(f), the density profile presents sharp and quite regularly spaced
clusters corresponding to the branches of Fig. 5.

Once again, the dynamical density profile of the species present in the simulated domain, obtained using the adaptive
grid, is in agreement with that computed in Ref. [33], whose Figs. 4 (t = 75) and 6 (Dn = 0.00425) can be compared to ours
4(c) and (e). Apart from slight discrepancies arising regarding the speed of propagation of the invading front, our results
indicate that, imposing a motility value Dc = 3.5 × 10−4, the invasion proceeds at a lower speed, on the contrary with a
value of Dc = 4.25 × 10−3. Further, from the comparison of Figs. 4 and 6 we observe that an increase of the cancer cell
motility causes an obvious increase in the speed of invasion; not obvious, instead, is the irregular and spiky density profile
at the boundary between cancer and healthy cells, a behaviour which can be associated to the border irregularity of tumour
clusters, a hallmark of malignancy. Also intriguing appears the smoothness of the profiles shown in Fig. 6, compared to that
of Fig. 4: in fact, it seems that on going towards malignant mutations of cancer cells characterized by higher Dc values, the
irregularity of the invasion front diminishes while increasing its propagation speed, thus suggesting that a reduced border
irregularity of the tumour cluster is compensated by an increased speed of invasion of the healthy tissue. Once the invasion
is completed, Figs. 4(f) and 6(f), the cancer cell density profile shows the sharp features associated to the inhomogeneous
spatio-temporal proliferation pattern of Figs. 3 and 5, respectively, even if at higherDc , Fig. 6(f), they appear regularly spaced.
A study performed on a one-dimensional test problem [55], in particular on a spatial region of thickness 10 µm discretized
via both uniform and adaptive grids with 256 grid points, puts in evidence that in the case of the adaptive grid, with respect
to the uniform one, minimum grid size and numerical error are, respectively, three order of magnitude and one order of
magnitude smaller; moreover, given a required tolerance, the computational cost is always smaller for the adaptive grid. As
we have demonstrated [42] that the used monitor function results in a more reliable, effective and efficient method than
that used in [55], an overall improvement of our MMPDE method is expected, particularly with respect to uniform grids
methods, and suggest that during the early stage of tumour formation a high degree of malignancy is associated to a low
speed of invasion; once a portion of tissue has been invaded by tumour, malignancy rely on the highly non homogeneous
proliferation patterns, see Fig. 3. On the other hand, mutations leading to an increased cell motility are associated to a
faster but smoother density dynamics: as before, once a portion of tissue has been invaded by tumour, the inhomogeneous
proliferation patterns shown in Fig. 4 characterize an overall malignancy of the cancer proliferation.

5. Conclusions

In this work, we have implemented theMMPDE numerical technique using FEM, in order to solve the PDE systemderived
by Andasari et al. [33], as arising from a mathematical modelling of the interaction of the uPA system with cancer cell
proliferation. Variations in cancer cell motility as a consequence of malignant cell mutations lead to increased speed of
the invasion front. Although the present work deal with a somewhat simplified 1D model problem, the obtained numerical
results confirm the validity of the used technique;moreover, due to the improved spatial resolution providedwith respect to
computations performed on uniformly discretized domains, add more realistic predictions about the early stage of tumour
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Fig. 6. Plot of the concentration evolution of the different species in the simulated domain, imposing a random motility value Dc = 4.25 × 10−3: solid
line, cancer cells c; dotted line, vitronectin v; dash-dotted line, uPA u; dashed line, PAI-1 p; dash-dotted thin line, plasmin m. Each panel corresponds to a
snapshot taken during the time evolution: t = 0 (a), t = 40 (b), t = 55 (c), t = 60 (d), t = 70 (e), t = 500 (f).

dynamics. In fact, at low Dc values, our simulations put in evidence a fine and irregular structure of the tumour invading
front which can be associated to an increased degree of malignancy; a higher motility value causes an increase in the
invasion speed with a smoothing of the invasion front, thus evidencing the interplay between cancer cells motility and
their heterogeneous proliferation. We believe such predictions can be useful from a clinical and surgical point of view, and
work is in progress to include in the model the effect of nutrients like oxygen and/or glucose, as well as extension in two
and three dimensions.
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