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VARIATIONAL APPROACH TO FRACTIONAL BOUNDARY
VALUE PROBLEMS WITH TWO CONTROL PARAMETERS

MASSIMILIANO FERRARA, ARMIN HADJIAN

Abstract. This article concerns the multiplicity of solutions for a fractional
differential equation with Dirichlet boundary conditions and two control pa-

rameters. Using variational methods and three critical point theorems, we give

some new criteria to guarantee that the fractional problem has at least three
solutions.

1. Introduction

Fractional differential equations have been proved to be valuable tools in the
modeling of many phenomena in various fields of physic, chemistry, biology, en-
gineering and economics. There has been significant development in fractional
differential equations, one can see the monographs of Miller and Ross [19], Samko
et al [26], Podlubny [21], Hilfer [12], Kilbas et al [14] and the papers [1, 3, 4, 6, 7,
15, 17, 28, 29, 31] and references therein.

Critical point theory has been very useful in determining the existence of solu-
tions for integer order differential equations with some boundary conditions; see for
instance, in the vast literature on the subject, the classical books [18, 24, 27, 30]
and references therein. But until now, there are a few results for fractional bound-
ary value problems (briefly BVP) which were established exploiting this approach,
since it is often very difficult to establish a suitable space and variational functional
for fractional problems.

The aim of this article is to study the nonlinear fractional boundary value prob-
lem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ λf(t, u(t)) + µg(t, u(t)) = 0,

a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

(1.1)

where α ∈ (1/2, 1], 0D
α−1
t and tD

α−1
T are the left and right Riemann-Liouville

fractional integrals of order 1− α respectively, c0D
α
t and c

tD
α
T are the left and right

Caputo fractional derivatives of order 0 < α ≤ 1 respectively, λ and µ are positive
real parameters, and f, g : [0, T ]× R→ R are continuous functions.
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In this article, employing two three critical point theorems which we recall in the
next section (Theorems 2.1 and 2.2), we establish the exact collections of the pa-
rameters λ and µ, for which the problem (1.1) admits at least three weak solutions;
see Theorems 3.1 and 3.2.

For more information, we refer the reader to [5, 11, 20] where the existence and
multiplicity of solutions for problem (1.1), with µ = 0, using the critical point
theory is proved; see also [2, 10] where analogous variational approaches have been
developed on studying nonlinear perturbed differential equations. A special case of
Theorem 3.1 is the following theorem.

Theorem 1.1. Let f : R → R be a continuous function. Put F (ξ) :=
∫ ξ

0
f(x)dx

for each ξ ∈ R. Assume that F (d) > 0 for some d > 0 and F (ξ) ≥ 0 in [0, d) and

lim inf
ξ→0

F (ξ)
ξ2

= lim sup
|ξ|→+∞

F (ξ)
ξ2

= 0.

Then, there is λ? > 0 such that for each λ > λ? and for every continuous function
g : [0, T ]× R→ R satisfying the asymptotic condition

lim sup
|ξ|→+∞

supt∈[0,T ]

∫ ξ
0
g(t, s)ds

ξ2
< +∞,

there exists δ?λ,g > 0 such that, for each µ ∈ [0, δ?λ,g[, the problem

d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
+ λf(u(t)) + µg(t, u(t)) = 0,

a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

admits at least three solutions.

The following result is a consequence of Theorem 3.2.

Theorem 1.2. Let f : R → R be a nonnegative continuous function such that
limt→0 f(t)/t = 0 and ∫ 10

0

f(s)ds <
25
12

∫ 1

0

f(s)ds.

Then, for every

λ ∈
] 24∫ 1

0
f(s)ds

,
50∫ 10

0
f(s)ds

[
and for every nonnegative continuous function g : [0, 1]×R→ R, there exists δ? > 0
such that, for each µ ∈ [0, δ?[, the problem

2u′′(t) + λf(u(t)) + µg(t, u(t)) = 0, a.e. t ∈ [0, 1],

u(0) = u(1) = 0,

admits at least three solutions.
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2. Preliminaries

The original three critical point theorem is due to Pucci and Serrin [22, 23] and
establishes that if X is a real Banach space and a function f : X → R is of class
C1, satisfies the Palais-Smale condition, and has two local minima, then f has at
least three distinct critical points. This result has been extended in the framework
of problems depending on a real parameter by Ricceri [25], who also established
a precise range of the parameter that guarantees the existence of at least three
critical points.

Our main tools are critical point theorems that we recall here in a convenient
form. The first result has been obtained in [9] and it is a more precise version of
[8, Theorem 3.2]. The second one has been established in [8].

Theorem 2.1 ([9, Theorem 3.6]). Let X be a reflexive real Banach space; Φ : X →
R be a coercive, continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse on
X∗; Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact such that Φ(0) = Ψ(0) = 0. Assume that there exist r > 0
and x ∈ X, with r < Φ(x), such that

(A1)
supΦ(x)≤r Ψ(x)

r < Ψ(x)
Φ(x) ;

(A2) for each λ ∈ Λr :=] Φ(x)
Ψ(x) ,

r
supΦ(x)≤r Ψ(x) [ the functional Iλ := Φ − λΨ is

coercive.

Then, for each λ ∈ Λr the functional Iλ has at least three distinct critical points in
X.

Theorem 2.2 ([8, Theorem 3.3]). Let X be a reflexive real Banach space; Φ :
X → R be a convex, coercive and continuously Gâteaux differentiable functional
whose derivative admits a continuous inverse on X∗; Ψ : X → R be a continuously
Gâteaux differentiable functional whose derivative is compact, such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there are two positive constants r1, r2 and x ∈ X, with 2r1 < Φ(x) <
r2/2, such that

(A3)
supΦ(x)<r1

Ψ(x)

r1
< 2

3
Ψ(x)
Φ(x) ;

(A4)
supΦ(x)<r2

Ψ(x)

r2
< 1

3
Ψ(x)
Φ(x) ;

(A5) for each λ in

Λ′ :=
]3

2
Φ(x)
Ψ(x)

, min
{ r1

supΦ(x)<r1 Ψ(x)
,

r2
2

supΦ(x)<r2 Ψ(x)

}[
and for every x1, x2 ∈ X, which are local minima for the functional Iλ :=
Φ−λΨ, and such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0 one has infs∈[0,1] Ψ(sx1 +
(1− s)x2) ≥ 0.

Then, for each λ ∈ Λ′ the functional Iλ has at least three distinct critical points
which lie in Φ−1(]−∞, r2[).

Now, we introduce some necessary definitions and properties of the fractional
calculus which are used in this article.
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Definition 2.3. Let u be a function defined on [a, b]. The left and right Riemann-
Liouville fractional integrals of order α > 0 for a function u are defined by

aD
−α
t u(t) :=

1
Γ(α)

∫ t

a

(t− s)α−1u(s)ds,

tD
−α
b u(t) :=

1
Γ(α)

∫ b

t

(s− t)α−1u(s)ds,

for every t ∈ [a, b], provided the right-hand sides are pointwise defined on [a, b],
where Γ(α) is the standard gamma function given by

Γ(α) :=
∫ +∞

0

zα−1e−zdz.

Set ACn([a, b],R) as the space of functions u : [a, b]→ R such that u belongs to
Cn−1([a, b],R) and u(n−1) belongs to AC([a, b],R). Here, as usual, Cn−1([a, b],R)
denotes the set of mappings having (n − 1) times continuously differentiable on
[a, b]. In particular we denote AC([a, b],R) := AC1([a, b],R).

Definition 2.4. Let γ ≥ 0 and n ∈ N.
(i) If γ ∈ (n − 1, n) and u ∈ ACn([a, b],R), then the left and right Caputo

fractional derivatives of order γ for function u denoted by c
aD

γ
t u(t) and c

tD
γ
b u(t),

respectively, exist almost everywhere on [a, b], caD
γ
t u(t) and c

tD
γ
b u(t) are represented

by

c
aD

γ
t u(t) =

1
Γ(n− γ)

∫ t

a

(t− s)n−γ−1u(n)(s)ds,

c
tD

γ
b u(t) =

(−1)n

Γ(n− γ)

∫ b

t

(s− t)n−γ−1u(n)(s)ds,

for every t ∈ [a, b], respectively.
(ii) If γ = n − 1 and u ∈ ACn−1([a, b],R), then c

aD
n−1
t u(t) and c

tD
n−1
b u(t) are

represented by
c
aD

n−1
t u(t) = u(n−1)(t), and c

tD
n−1
b u(t) = (−1)(n−1)u(n−1)(t),

for every t ∈ [a, b].

With these definitions, we have the rule for fractional integration by parts, and
the composition of the Riemann-Liouville fractional integration operator with the
Caputo fractional differentiation operator, which were proved in [14] and [26].

Proposition 2.5. We have the following property of fractional integration∫ b

a

[aD
−γ
t u(t)]v(t)dt =

∫ b

a

[tD
−γ
b v(t)]u(t)dt, γ > 0, (2.1)

provided that u ∈ Lp([a, b],R), v ∈ Lq([a, b],R) and p ≥ 1, q ≥ 1, 1/p+ 1/q ≤ 1 + γ
or p 6= 1, q 6= 1, 1/p+ 1/q = 1 + γ.

Proposition 2.6. Let n ∈ N and n − 1 < γ ≤ n. If u ∈ ACn([a, b],R) or
u ∈ Cn([a, b],R), then

aD
−γ
t (caD

γ
t u(t)) = u(t)−

n−1∑
j=0

u(j)(a)
j!

(t− a)j ,
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tD
−γ
b (ctD

γ
b u(t)) = u(t)−

n−1∑
j=0

(−1)ju(j)(b)
j!

(b− t)j ,

for every t ∈ [a, b]. In particular, if 0 < γ ≤ 1 and u ∈ AC([a, b],R) or u ∈
C1([a, b],R), then

aD
−γ
t (caD

γ
t f(t)) = f(t)− f(a), and tD

−γ
b (ctD

γ
b f(t)) = f(t)− f(b). (2.2)

Remark 2.7. By (2.1) and Definition 2.4, it is obvious that u ∈ AC([0, T ],R) is a
solution of problem (1.1) if and only if u is a solution of the boundary value problem

d

dt

(
0D
−β
t (u′(t)) + tD

−β
T (u′(t))

)
+ λf(t, u(t)) = 0 a.e. t ∈ [0, T ]

u(0) = u(T ) = 0,
(2.3)

where β := 2(1 − α) ∈ [0, 1). Recall that a function u ∈ AC([0, T ],R) is called a
solution of BVP (2.3) if:

(i) the map t 7→ 0D
−β
t (u′(t)) + tD

−β
T (u′(t)) is differentiable for almost every

t ∈ [0, T ], and
(ii) the function u satisfies (2.3).

To establish a variational structure for the main problem, it is necessary to
construct appropriate function spaces. Following [13], we denote by C∞0 ([0, T ],R)
the set of all functions g ∈ C∞([0, T ],R) with g(0) = g(T ) = 0.

Definition 2.8. Let 0 < α ≤ 1. The fractional derivative space Eα0 is defined by
the closure of C∞0 ([0, T ],R) with respect to the norm

‖u‖ :=
(∫ T

0

|c0Dα
t u(t)|2dt+

∫ T

0

|u(t)|2dt
)1/2

,

for every u ∈ Eα0 .

Remark 2.9. It is obvious that the fractional derivative space Eα0 is the space of
functions u ∈ L2([0, T ],R) having an α-order Caputo fractional derivative c

0D
α
t u ∈

L2([0, T ],R) and u(0) = u(T ) = 0.

Proposition 2.10. Let α ∈ (0, 1]. The fractional derivative space Eα0 is reflexive
and separable Banach space.

For u ∈ Eα0 , set

‖u‖Ls :=
(∫ T

0

|u(t)|sdt
)1/s

, (s ≥ 1),

‖u‖∞ := max
t∈[0,T ]

|u(t)|.

One has the following two Lemmas.

Lemma 2.11. Let α ∈ (1/2, 1]. For all u ∈ Eα0 , we have

‖u‖L2 ≤ Tα

Γ(α+ 1)
‖c0Dα

t u‖L2 , (2.4)

‖u‖∞ ≤
Tα−1/2

Γ(α)
√

2α− 1
‖c0Dα

t u‖L2 . (2.5)
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Hence, we can consider Eα0 with respect to the (equivalent) norm

‖u‖α :=
(∫ T

0

|c0Dα
t u(t)|2dt

)1/2

= ‖c0Dα
t u‖L2 , ∀u ∈ Eα0 (2.6)

in the following analysis.

Lemma 2.12 ([13]). Let α ∈ (1/2, 1], then for every u ∈ Eα0 , we have

| cos(πα)|‖u‖2α ≤ −
∫ T

0

c
0D

α
t u(t) · ctDα

Tu(t)dt ≤ 1
| cos(πα)|

‖u‖2α. (2.7)

In the rest of this article, f, g : [0, T ] × R → R are continuous functions, and
λ, µ > 0 are real parameters. Put

F (t, ξ) :=
∫ ξ

0

f(t, s) ds, G(t, ξ) :=
∫ ξ

0

g(t, s) ds,

for all (t, ξ) ∈ [0, T ] × R. Set Gc :=
∫ T

0
max|ξ|≤cG(t, ξ) dt for all c > 0 and Gd :=

inf [0,T ]×[0,d]G for all d > 0. Clearly, Gc ≥ 0 and Gd ≤ 0.
We consider the functional Iλ : Eα0 → R, defined by

Iλ(u) := Φ(u)− λΨ(u), u ∈ Eα0 , (2.8)

where

Φ(u) := −
∫ T

0

c
0D

α
t u(t) · ctDα

Tu(t) dt, (2.9)

Ψ(u) :=
∫ T

0

[F (t, u(t)) +
µ

λ
G(t, u(t))]dt. (2.10)

Clearly, Φ and Ψ are Gâteaux differentiable functionals whose derivatives at the
point u ∈ Eα0 are

Φ′(u)(v) = −
∫ T

0

(c0D
α
t u(t) · ctDα

T v(t) + c
tD

α
Tu(t) · c0Dα

t v(t)) dt,

Ψ′(u)(v) =
∫ T

0

[
f(t, u(t)) +

µ

λ
g(t, u(t))

]
v(t) dt

= −
∫ T

0

∫ t

0

[
f(s, u(s)) +

µ

λ
g(s, u(s))

]
ds · v′(t) dt,

for every v ∈ Eα0 . By Definition 2.4 and (2.2), we have

Φ′(u)(v) =
∫ T

0

(0D
α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))) · v′(t) dt.

Hence, Iλ = Φ−λΨ ∈ C1(Eα0 ,R). Moreover, a critical point of the functional Iλ is
a solution of (1.1). Indeed, if u? ∈ Eα0 is a critical point of Iλ, then

0 = I ′λ(u?)(v) =
∫ T

0

(
0D

α−1
t (c0D

α
t u?(t))− tD

α−1
T (ctD

α
Tu?(t))

+ λ

∫ t

0

f(s, u?(s)) ds+ µ

∫ t

0

g(s, u?(s)) ds
)
· v′(t) dt,

(2.11)

for every v ∈ Eα0 . We can choose v ∈ Eα0 such that

v(t) = sin
2kπt
T

or v(t) = 1− cos
2kπt
T

, (k = 1, 2, . . . ).
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The theory of Fourier series and (2.11) imply

0D
α−1
t (c0D

α
t u?(t))− tD

α−1
T (ctD

α
Tu?(t))

+ λ

∫ t

0

f(s, u?(s)) ds+ µ

∫ t

0

g(s, u?(s)) ds = κ
(2.12)

a.e. on [0, T ] for some κ ∈ R. By (2.12), it is easy to show that u? ∈ Eα0 is a
solution of (1.1).

To conclude this section, we cite a recent monograph by Kristály, Rădulescu and
Varga [16] as a general reference on variational methods adopted here.

3. Main results

In this section we establish our main abstract results. We put

Ω :=
Tα−

1
2

Γ(α)
√

2α− 1
,

C(T, α) :=
∫ T/4

0

t2−2α dt+
∫ 3T/4

T/4

[
t1−α −

(
t− T

4
)1−α]2

dt

+
∫ T

3T/4

[
t1−α −

(
t− T

4
)1−α +

(
t− 3T

4
)1−α]2

dt,

ωα,d :=
16d2

T 2Γ2(2− α)| cos(πα)|
C(T, α).

Fixing c, d > 0 such that

ωα,d∫ 3T/4

T/4
F (t, d) dt

<
c2| cos(πα)|

Ω2
∫ T

0
max|ξ|≤c F (t, ξ) dt

and selecting

λ ∈ Λ :=
] ωα,d∫ 3T/4

T/4
F (t, d) dt

,
c2| cos(πα)|

Ω2
∫ T

0
max|ξ|≤c F (t, ξ) dt

[
, (3.1)

put

δ := min
{c2| cos(πα)| − λΩ2

∫ T
0

max|ξ|≤c F (t, ξ) dt
Ω2Gc

,
ωα,d − λ

∫ 3T/4

T/4
F (t, d) dt

TGd

}
(3.2)

and

δ := min
{
δ,

1

max
{

0, 2TΩ2

| cos(πα)| lim sup|ξ|→+∞
supt∈[0,T ] G(t,ξ)

ξ2

}}, (3.3)

where we read r
0 = +∞ whenever this case occurs. With the above notation we

are able to prove the following result.

Theorem 3.1. Assume that there exist positive constants c, d, with

c <
( 4Ωd
TΓ(2− α)

)√
C(T, α), (3.4)

such that
(A6) F (t, ξ) ≥ 0, for each (t, ξ) ∈ ([0, T4 ] ∪ [ 3T

4 , T ])× [0, d];
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(A7) ∫ T
0

max|ξ|≤c F (t, ξ) dt
c2

<
| cos(πα)|

Ω2

∫ 3T/4

T/4
F (t, d) dt

ωα,d
;

(A8)

lim sup
|ξ|→+∞

supt∈[0,T ] F (t, ξ)
ξ2

<

∫ T
0

max|ξ|≤c F (t, ξ) dt
2c2T

.

Then, for every λ ∈ Λ, where Λ is given by (3.1), and for every continuous
function g : [0, T ]× R→ R such that

lim sup
|ξ|→+∞

supt∈[0,T ]G(t, ξ)
ξ2

< +∞,

there exists δ > 0 given by (3.3) such that, for each µ ∈ [0, δ[, problem (1.1) admits
at least three solutions.

Proof. Fix λ, g and µ as in the conclusion. It suffices to show the functional Iλ
defined in (2.8) has at least three critical points in Eα0 . We prove this by verifying
the conditions given in Theorem 2.1. Note that Φ defined in (2.9) is a nonnegative
Gâteaux differentiable and sequentially weakly lower semicontinuous functional,
and its Gâteaux derivative admits a continuous inverse on (Eα0 )∗. Further, from
Lemma 2.12, the functional Φ is coercive. Indeed, one has

Φ(u) ≥ | cos(πα)|‖u‖2α → +∞,

as ‖u‖α → +∞. Moreover, Ψ defined in (2.10) is a continuously Gâteaux differ-
entiable functional whose Gâteaux derivative is compact. We will verify (A1) and
(A2) of Theorem 2.1.

Let w be the function defined by

w(t) :=


4d
T t, t ∈ [0, T/4),
d, t ∈ [T/4, 3T/4],
4d
T (T − t), t ∈ (3T/4, T ],

(3.5)

and put

r :=
| cos(πα)|

Ω2
c2.

It is easy to check that w(0) = w(T ) = 0 and w ∈ L2([0, T ]). Moreover, w is
Lipschitz continuous on [0, T ], and hence w is absolutely continuous on [0, T ]. By
calculations, we have

c
0D

α
t w(t) =


4d

TΓ(2−α) t
1−α, t ∈ [0, T/4),

4d
TΓ(2−α)

[
t1−α −

(
t− T

4

)1−α]
, t ∈ [T/4, 3T/4],

4d
TΓ(2−α)

[
t1−α −

(
t− T

4

)1−α +
(
t− 3T

4

)1−α]
, t ∈ (3T/4, T ].

Obviously, c0D
α
t w is continuous on [0, T ] and∫ T

0

|c0Dα
t w(t)|2 dt

=
16d2

T 2Γ2(2− α)

{∫ T/4

0

t2−2α dt+
∫ 3T/4

T/4

[
t1−α −

(
t− T

4
)1−α]2

dt
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+
∫ T

3T/4

[
t1−α −

(
t− T

4
)1−α +

(
t− 3T

4
)1−α]2

dt
}

:=
16d2

T 2Γ2(2− α)
C(T, α).

Therefore, from inequality (3.4) one has

Φ(w) ≥ | cos(πα)|‖w‖2α =
16d2| cos(πα)|
T 2Γ2(2− α)

C(T, α) > r.

Also, by using condition (A1), since 0 ≤ w(t) ≤ d for each t ∈ [0, T ], we infer

Ψ(w) =
∫ T

0

[F (t, w(t)) +
µ

λ
G(t, w(t))]dt

≥
∫ 3T/4

T/4

F (t, d) dt+
µ

λ

∫ T

0

G(t, w(t)) dt

≥
∫ 3T/4

T/4

F (t, d) dt+
µ

λ
TGd.

For all u ∈ Eα0 with Φ(u) ≤ r, by Lemma 2.12, we have

| cos(πα)|‖u‖2α ≤ Φ(u) ≤ r,

which implies

‖u‖2α ≤
1

| cos(πα)|
r.

On the other hand, by Lemma 2.11, when α > 1/2, for each u ∈ Eα0 we have

‖u‖∞ ≤ Ω
(∫ T

0

|c0Dα
t u(t)|2 dt

)1/2

= Ω‖u‖α. (3.6)

Thus, we obtain

|u(t)| ≤ Ω
√

r

| cos(πα)|
= c, ∀t ∈ [0, T ].

Therefore,

supΦ(u)≤r Ψ(u)
r

≤
∫ T

0
max|ξ|≤c F (t, ξ) dt+ µ

λ

∫ T
0

max|ξ|≤cG(t, ξ) dt
| cos(πα)|

Ω2 c2

=
Ω2

c2| cos(πα)|

(∫ T

0

max
|ξ|≤c

F (t, ξ) dt+
µ

λ
Gc
)
.

From this, if Gc = 0, it is clear that

supΦ(u)≤r Ψ(u)
r

<
1
λ
, (3.7)

while, if Gc > 0, it turns out to be true bearing in mind that

µ <
c2| cos(πα)| − λΩ2

∫ T
0

max|ξ|≤c F (t, ξ) dt
Ω2Gc

.

On the other hand, taking into account that

Φ(w) ≤ 1
| cos(πα)|

‖w‖2α = ωα,d,
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we have

Ψ(w)
Φ(w)

≥

∫ 3T/4

T/4
F (t, d) dt+ µ

λGd

ωα,d
.

Hence, if Gd = 0, we find
Ψ(w)
Φ(w)

>
1
λ
, (3.8)

while, if Gd < 0, the same relation holds since

µ <
ωα,d − λ

∫ 3T/4

T/4
F (t, d) dt

TGd
.

Therefore, from (3.7) and (3.8), condition (A1) of Theorem 2.1 is verified.
Now, to prove the coercivity of the functional Iλ, first we assume that

lim sup
|ξ|→+∞

supt∈[0,T ] F (t, ξ)
ξ2

> 0.

Therefore, fixing

lim sup
|ξ|→+∞

supt∈[0,T ] F (t, ξ)
ξ2

< ε <

∫ T
0

max|ξ|≤c F (t, ξ) dt
2c2T

,

from (A3) there is a function hε ∈ L1([0, T ]) such that F (t, ξ) ≤ εξ2 + hε(t), for
each t ∈ [0, T ] and ξ ∈ R. Taking (3.6) into account and since

λ <
c2| cos(πα)|

Ω2
∫ T

0
max|ξ|≤c F (t, ξ) dt

,

it follows that

λ

∫ T

0

F (t, u(t)) dt ≤ λ
(
ε

∫ T

0

(u(t))2dt+
∫ T

0

hε(t) dt
)

<
c2| cos(πα)|

Ω2
∫ T

0
max|ξ|≤c F (t, ξ) dt

(
εΩ2T‖u‖2α + ‖hε‖L1([0,T ])

)
,

(3.9)

for each u ∈ Eα0 . Since µ < δ, we obtain

lim sup
|ξ|→+∞

supt∈[0,T ]G(t, ξ)
ξ2

<
| cos(πα)|
2TµΩ2

;

then, there is a function hµ ∈ L1([0, T ]) such that

G(t, ξ) ≤ | cos(πα)|
2TµΩ2

ξ2 + hµ(t),

for each t ∈ [0, T ] and ξ ∈ R. Thus, taking again (3.6) into account, it follows that∫ T

0

G(t, u(t)) dt ≤ | cos(πα)|
2TµΩ2

∫ T

0

(u(t))2dt+
∫ T

0

hµ(t) dt

≤ | cos(πα)|
2µ

‖u‖2α + ‖hµ‖L1([0,T ]),

(3.10)

for each u ∈ Eα0 . Finally, putting together (3.9) and (3.10), we have

Iλ(u) = Φ(u)− λΨ(u)
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≥ | cos(πα)|‖u‖2α −
c2| cos(πα)|

Ω2
∫ T

0
max|ξ|≤c F (t, ξ) dt

(
εΩ2T‖u‖2α + ‖hε‖L1([0,T ])

)
− | cos(πα)|

2
‖u‖2α − µ‖hµ‖L1([0,T ])

= | cos(πα)|
(1

2
− c2T∫ T

0
max|ξ|≤c F (t, ξ) dt

ε
)
‖u‖2α

−
c2| cos(πα)|‖hε‖L1([0,T ])

Ω2
∫ T

0
max|ξ|≤c F (t, ξ) dt

− µ‖hµ‖L1([0,T ]).

On the other hand, if

lim sup
|ξ|→+∞

supt∈[0,T ] F (t, ξ)
ξ2

≤ 0,

then there exists a function hε ∈ L1([0, T ]) such that F (t, ξ) ≤ hε(t) for each
t ∈ [0, T ] and ξ ∈ R. Arguing as before we obtain

Iλ(u) ≥ | cos(πα)|
2

‖u‖2α −
c2| cos(πα)|‖hε‖L1([0,T ])

Ω2
∫ T

0
max|ξ|≤c F (t, ξ) dt

− µ‖hµ‖L1([0,T ]) .

Both cases lead to the coercivity of Iλ and condition (a2) of Theorem 2.1 is verified.
Since, from (3.7) and (3.8),

λ ∈ Λ ⊆
]Φ(w)

Ψ(w)
,

r

supΦ(u)≤r Ψ(u)

[
,

Theorem 2.1 ensures the existence of at least three critical points for the functional
Iλ and the proof is complete. �

Now, we state a variant of Theorem 3.1 in which no asymptotic condition on g
is requested. In such a case, the functions f and g are supposed to be nonnegative.

Fixing positive constants c1, c2 and d such that

3
2

ωα,d∫ 3T/4

T/4
F (t, d) dt

<
| cos(πα)|

Ω2
min

{ c21∫ T
0
F (t, c1) dt

,
c22

2
∫ T

0
F (t, c2) dt

}
,

and selecting

λ ∈ Λ′ :=
]3

2
ωα,d∫ 3T/4

T/4
F (t, d) dt

,
| cos(πα)|

Ω2
min

{ c21∫ T
0
F (t, c1) dt

,
c22

2
∫ T

0
F (t, c2) dt

}[
,

(3.11)
we put

δ? := min
{c21| cos(πα)| − λΩ2

∫ T
0
F (t, c1) dt

Ω2Gc1
,
c22| cos(πα)| − 2λΩ2

∫ T
0
F (t, c2) dt

2Ω2Gc2

}
.

(3.12)
With the above notation we have the following multiplicity result.

Theorem 3.2. Assume that there exist three positive constants c1, c2 and d with

c1 <
2dΩ

TΓ(2− α)

√
2C(T, α) <

c2| cos(πα)|
2

, (3.13)

such that
(A9) f(t, ξ) ≥ 0 for all (t, ξ) ∈ [0, T ]× [0, c2];
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(A10)

max
{∫ T

0
F (t, c1) dt
c21

,
2
∫ T

0
F (t, c2) dt
c22

}
<

2
3

| cos(πα)|
∫ 3T/4

T/4
F (t, d) dt

ωα,dΩ2
.

Then, for each λ ∈ Λ′, where Λ′ is given by (3.11), and for every nonnegative
continuous function g : [0, T ] × R → R, there exists δ? > 0 given by (3.12) such
that, for each µ ∈ [0, δ?[, problem (1.1) admits at least three distinct solutions ui,
i = 1, 2, 3, such that

0 ≤ ui(t) < c2, ∀t ∈ [0, T ], i = 1, 2, 3.

Proof. Without loss of generality, we can assume f(t, ξ) ≥ 0 for all (t, ξ) ∈ [0, T ]×R.
Fix λ, g and µ as in the conclusion and take Φ and Ψ as in the proof of Theorem
3.1. We observe that the regularity assumptions of Theorem 2.2 on Φ and Ψ are
satisfied. Then, our aim is to verify (A3) and (A4).

To this end, put w as given in (3.5), and

r1 :=
| cos(πα)|

Ω2
c21, r2 :=

| cos(πα)|
Ω2

c22.

By using the condition (3.13), we get 2r1 < Φ(w) < r2
2 . Since µ < δ? and Gd = 0,

one has

supΦ(u)<r1 Ψ(u)
r1

=
supΦ(u)<r1

[ ∫ T
0
F (t, u(t)) dt+ µ

λ

∫ T
0
G(t, u(t)) dt

]
r1

≤
∫ T

0
F (t, c1) dt+ µ

λG
c1

| cos(πα)|
Ω2 c21

<
1
λ
<

2
3

∫ 3T/4

T/4
F (t, d) dt+ µ

λTGd

ωα,d

≤ 2
3

Ψ(w)
Φ(w)

,

and

2 supΦ(u)<r2 Ψ(u)
r2

=
2 supΦ(u)<r2

[ ∫ T
0
F (t, u(t)) dt+ µ

λ

∫ T
0
G(t, u(t)) dt

]
r2

≤
2
∫ T

0
F (t, c2) dt+ 2µλG

c2

| cos(πα)|
Ω2 c22

<
1
λ
<

2
3

∫ 3T/4

T/4
F (t, d) dt+ µ

λTGd

ωα,d

≤ 2
3

Ψ(w)
Φ(w)

,

Therefore, (A3) and (A4) of Theorem 2.2 are satisfied.
Finally, we verify that Iλ satisfies the assumption (A5) of Theorem 2.2. Let u1

and u2 be two local minima for Iλ. Then u1 and u2 are critical points for Iλ, and
so, they are solutions for problem (1.1). We claim that the solutions obtained are
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nonnegative. Indeed, if ū is a solution of problem (1.1), then one has

−
∫ T

0

(c0D
α
t ū(t) · ctDα

T v(t) + c
tD

α
T ū(t) · c0Dα

t v(t)) dt

= λ

∫ T

0

f(t, ū(t))v(t) dt+ µ

∫ T

0

g(t, ū(t))v(t) dt

for all v ∈ Eα0 . Arguing by a contradiction, assume that the set A := {t ∈ [0, T ] :
ū(t) < 0} is non-empty and of positive measure. Put v̄ := min{ū, 0}. Clearly,
v̄ ∈ Eα0 . So, taking into account that ū is a solution and by choosing v = v̄, from
our sign assumptions on the data, one has

−
∫
A

(c0D
α
t ū(t) · ctDα

T ū(t) + c
tD

α
T ū(t) · c0Dα

t ū(t)) dt

= λ

∫
A

f(t, ū(t))ū(t) dt+ µ

∫
A

g(t, ū(t))ū(t) dt ≤ 0.

On the other hand, by Lemma 2.12, we have

2| cos(πα)|‖ū‖2Eα0 (A) ≤ −
∫
A

(c0D
α
t ū(t) · ctDα

T ū(t) + c
tD

α
T ū(t) · c0Dα

t ū(t)) dt

Hence, ū ≡ 0 on A which is absurd. Then, we deduce u1(t) ≥ 0 and u2(t) ≥ 0 for
every t ∈ [0, T ]. Thus, it follows that su1 + (1− s)u2 ≥ 0 for all s ∈ [0, 1], and that

(λf + µg)(t, su1 + (1− s)u2) ≥ 0,

and consequently, Ψ(su1 + (1− s)u2) ≥ 0, for every s ∈ [0, 1]. So, also (A5) holds.
From Theorem 2.2, for every

λ ∈
]3

2
Φ(w)
Ψ(w)

, min
{ r1

supΦ(u)<r1 Ψ(u)
,

r2
2

supΦ(u)<r2 Ψ(u)

}[
,

the functional Iλ has at least three distinct critical points which are the solutions
of problem (1.1) and the conclusion is achieved. �

Proof of Theorem 1.1. Fix λ > λ? := 2ωα,d
TF (d) for some d > 0 such that F (d) > 0.

Recalling that

lim inf
ξ→0

F (ξ)
ξ2

= 0,

there is a sequence {cn} ⊂]0,+∞[ such that limn→+∞ cn = 0 and

lim
n→+∞

max|ξ|≤cn F (ξ)
c2n

= 0.

Indeed, one has

lim
n→+∞

max|ξ|≤cn F (ξ)
c2n

= lim
n→+∞

F (ξcn)
ξ2
cn

ξ2
cn

c2n
= 0,

where F (ξcn) = max|ξ|≤cn F (ξ). Therefore, there exists c > 0 such that

max|ξ|≤c F (ξ)
c2

<
| cos(πα)|

Ω2
min

{ F (d)
2ωα,d

,
1
Tλ

}
and c < 4Ωd

TΓ(2−α)

√
C(T, α). Hence, the conclusion follows from Theorem 3.1 �
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Proof of Theorem 1.2. Our aim is to apply Theorem 3.2 by choosing c2 = 10 and
d = 1. Therefore, taking into account that α = T = 1, one has

3
2

ωα,d∫ 3T/4

T/4
F (t, d)dt

=
24∫ 1

0
f(s)ds

,

| cos(πα)|
Ω2

c22

2
∫ T

0
F (t, c2)dt

=
50∫ 10

0
f(s)ds

.

Since limt→0 f(t)/t = 0, one has

lim
t→0

∫ t
0
f(s)ds
t2

= 0.

Then, there exists a positive constant c1 < 2 such that∫ c1
0
f(s)ds
c21

<
1
24

∫ 1

0

f(s)ds,

c21∫ c1
0
f(s)ds

>
50∫ 10

0
f(s)ds

.

Hence, a simple computation shows that all assumptions of Theorem 3.2 are satis-
fied, and the conclusion follows. �
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