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We study the existence and multiplicity of solutions for a parametric equation driven
by the p-Laplacian operator on unbounded intervals. Precisely, by using a recent local
minimum theorem we prove the existence of a non-trivial non-negative solution to an
equation on the real line, without assuming any asymptotic condition neither at 0
nor at ∞ on the nonlinear term. As a special case, we note the existence of a
non-trivial solution for the problem when the nonlinear term is sublinear at 0.
Moreover, under a suitable superlinear growth at ∞ on the nonlinearity we prove a
multiplicity result for such a problem.

1. Introduction

Boundary-value problems (briefly BVPs) on infinite intervals model many problems Changes to
sentence OK?

arising from physical phenomena, such as the flow of a gas through a semi-infinite
porous medium or non-Newtonian fluid flows (see [20] and references therein), and,
as a result, they are widely studied (see, for example, [15, 18, 25]). More generally,
elliptic equations on the whole space were investigated and we refer the reader
to [3, 14] and [24, ch. 6.4] for an overview on this subject; see also [12] for the
non-smooth case.

The aim of this paper is to investigate elliptic problems on the real line. To be
precise, we are interested in the existence and multiplicity of non-negative solutions
to the following problem. Find u ∈ W 1,p(R) satisfying

In order to aid
clarity, here and in
other parts of the
paper I have moved
some inline
equations to display
and also brought
out of display text
that runs on from
the preceding
paragraph. Also, in
this equation I
assume that you
refer to the variable
x and have assumed
that ‘a.e.’ means
‘almost every’: all
OK? Please mark
any instances where
‘a.e.’ means ‘almost
everywhere’.

(Pλ) (|u′(x)|p−2u′(x))′ + B|u(x)|p−2u(x) = λα(x)g(u(x)) for almost every (a.e.)
x in R,

where λ is a real positive parameter, B is a real positive number, and α, g : R → R

are two functions such that changes to display
OK?

1
c© 2014 The Royal Society of Edinburgh

Gabriele
Nota
email of corresponding author:
bonanno@unime.it

Gabriele
Nota
Ok.

Gabriele
Nota
Ok.

Gabriele
Linea

Gabriele
Matita

Gabriele
Matita

Gabriele
Nota
No new paragraph.

Gabriele
Linea

Gabriele
Linea

Gabriele
Linea

Gabriele
Linea

Gabriele
Linea

Gabriele
Linea

Gabriele
Nota
lines 4 and 5 of abstract: align to the right.

Gabriele
Nota
Ok.

Gabriele
Nota
Ok.

Gabriele
Testo inserito
4,

Gabriele
Testo inserito
and [16]

Gabriele
Nota
Write [3, 4, 14] intead of [3, 14]

Gabriele
Nota
Write "[12] and [16]" intead of "[12]".



2 G. Bonanno, G. Barletta and D. O’Regan

α ∈ L1(R), α(x) � 0 for a.e. x ∈ R, α �≡ 0,

and g is continuous and non-negative. Many authors studied BVPs (parametric Changes to
sentence OK?

or otherwise) on unbounded intervals and approached the problem using different
techniques (see, for example, [7,15,17–20,23,25]). In particular, in [18] the authors
studied the existence and uniqueness of positive solutions of a one-parameter family
of logistic equations of the type

u′′ + af(x)u − b(x)up = 0 in R or in R+.

They obtained the solution as a minimum point of the energy functional associated
with the previous equation in D1,2(R) and D1,2

0 (R+), respectively, with a ∈ (λ1, λ∗)
and they showed the non-existence of solutions for a � λ∗.

The method of upper and lower solutions was used in [15, 25] for two Sturm–
Liouville value problems in [0, +∞[. In [25] the authors looked for positive unbound-
ed solutions. They gave necessary and sufficient conditions for the existence of
positive solutions, with a sublinear growth assumption on the nonlinear term. Using
a particular cone and a fixed-point theorem they also discussed the multiplicity.
The method of unbounded upper and lower solutions of [25] was generalized in [15],
where the authors used the Schauder fixed-point theorem to show the existence of
a positive solution to their problem.

In our paper the structure of the problem, as well as the assumptions on the
nonlinear term, are not comparable with the papers cited above. Our primary tool Change OK?

in proving the main result of this paper is a local minimum theorem recently estab-
lished in [5] and, in order to obtain multiple solutions, we use a two critical points
theorem presented in [6]. Our main result (theorem 3.1) ensures the existence of a
non-trivial solution without requiring any asymptotic condition on g either at 0 or
at ∞. Moreover, as a consequence, we point out a result where only the sublinear-
ity of g at 0 is required in order to obtain the existence of a non-trivial solution
(see corollary 3.4). Finally, we present a result where two non-trivial solutions are
guaranteed under a suitable growth of g at ∞ (see theorem 3.10 and remark 3.11).
Such a growth type was introduced and developed by Ambrosetti and Rabinowitz
in [1] and it is worth noting that such an assumption is usually accompanied by the
superlinearity of g at 0 to ensure the existence of only one non-trivial solution.

As an example, here we point out the following special cases of our results.

Theorem 1.1. Assume that∫ 11

0
g(t) dt < 11

∫ 1

0
g(t) dt.

Then, for each

λ ∈
]
11
π

1∫ 1
0 g(t) dt

,
11
π

11∫ 11
0 g(t) dt

[

the problem

−u′′ + u = λ
g(u)

1 + x2 , x ∈ R,

u(−∞) = u(+∞) = 0,
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admits at least one non-trivial and non-negative classical solution u0,λ such that

|u0,λ(x)| < 11

for all x ∈ R.

Theorem 1.2. Assume that α is continuous in R, g(0) > 0 and

0 < µ

∫ ξ

0
g(s) ds � ξg(ξ)

for all ξ � s and for some s > 0 and µ > p.
Then there exists λ∗ > 0 such that, for each λ ∈ ]0, λ∗[, the problem

−(|u′(x)|p−2u′(x))′ + |u(x)|p−2u(x) = λα(x)g(u(x)), x ∈ R,

u(−∞) = u(+∞) = 0,

admits at least two non-trivial and non-negative classical solutions.

In theorem 1.1, no asymptotic conditions either at 0 or at ∞ are required, while
theorem 1.2 ensures two non-trivial solutions under a suitable condition at ∞ of
Ambrosetti–Rabinowitz type.

The paper is arranged as follows. In § 2 we establish all the preliminary results
that we need, and in § 3 we present our main results.

2. Mathematical background

Let (E, | · |) be a real Banach space. We denote by E∗ the dual space of E, while
〈·, ·〉 stands for the duality pairing between E∗ and E.

We denote by |·| and by |·|t the usual norms on R and on Lt(R), for all t ∈ [1, +∞],
while W 1,p(R) indicates the closure of C∞

0 (R) with respect to the norm

‖u‖1,p := (|u′|pp + |u|pp)1/p.

When p = 2 the norm is induced by the scalar product

(u, v) = (u′, v′)L2 + (u, v)L2 .

It is well known that W 1,p(R) ≡ W 1,p
0 (R) and W 1,p(R) is embedded in Lt(R) for

any t ∈ [p, +∞].

Remark 2.1. If {un}n∈N is a bounded sequence in W 1,p(R), then it has a subse-
quence that pointwise converges to some u ∈ W 1,p(R) and also weakly converges
in L∞(R). Indeed, it can be inferred from the compact embedding W 1,p(R) ↪→
C([−R, R]), R > 0, and the continuity of W 1,p(R) → L∞(R).

In the following, we consider W 1,p(R) endowed by the norm Change OK?

‖u‖ =
( ∫

R

(|u′(x)|p + B|u(x)|p) dx

)1/p

,

which is equivalent to the usual one. We have the following proposition. Equivalent to the
usual norm? Please
clarify.
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Proposition 2.2. One has
|u|∞ � cB‖u‖ (2.1)

for all u ∈ W 1,p(R), where

cB = 2(p−2)/p

(
p − 1

p

)(p−1)/p( 1
B

)(p−1)/p2

. (2.2)

Proof. We follow the argument in [10, theorem 4, p. 138, formula (4.61)], taking
the equivalence of the norms into account. For clarity, we give a sketch of the proof.
Let v ∈ W 1,1(R). From

v(z) − v(w) =
∫ z

w

v′(t) dt,

taking into account that lim|y|→+∞ v(y) = 0, one has

v(x) =
∫ x

−∞
v′(t) dt and − v(x) =

∫ ∞

x

v′(t) dt.

Hence,

2|v(x)| �
∫ ∞

−∞
|v′(t)| dt,

that is,

|v(x)| � 1
2

∫
R

|v′(t)| dt

for all v ∈ W 1,p(R). Now, let u ∈ W 1,p(R). By choosing v(x) = B(p−1)/p|u(x)|p for
all x ∈ R, one has

B(p−1)/p|u(x)|p � 1
2

∫
R

B(p−1)/pp|u(t)|p−1|u′(t)| dt.

From Hölder inequality one has ‘the Hölder
inequality’ or
‘Hölder’s
inequality’?

B(p−1)/p|u(x)|p � p

2
(B1/p|u|p)p−1|u′|p,

that is,

|u(x)| �
(

1
B

)(p−1)/p2(
p

2

)1/p

(B1/p|u|p)(p−1)/p|u′|1/p
p .

Noting that xαy1−α � αα(1 − α)(1−α)(x + y), x, y � 0, 0 < α < 1 (see [10, p. 130,
formula (4.47)]), one has

|u(x)| �
(

1
B

)(p−1)/p2(
p

2

)1/p(
p − 1

p

)(p−1)/p(1
p

)1/p

×
[( ∫

R

|u′(x)|p dx

)1/p

+
( ∫

R

B|u(x)|p dx

)1/p]
.

Therefore, taking into account the classical inequality

a1/p + b1/p � 2(p−1)/p(a + b)1/p,
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one has

|u(x)| �
(

1
B

)(p−1)/p2(
1
2

)1/p(
p − 1

p

)(p−1)/p

2(p−1)/p

×
[( ∫

R

|u′(x)|p dx

)
+

( ∫
R

B|u(x)|p dx

)]1/p

,

that is,
|u|∞ � cB‖u‖,

and the proof is complete.

We set

G(t) =
∫ t

0
g(ξ) dξ for all t ∈ R. (2.3)

Our hypotheses on g guarantee that G ∈ C1(R) and G′(t) = g(t) � 0 for all t ∈ R,
so G is non-decreasing.

Now, we put

Φ(u) =
1
p
‖u‖p, (2.4)

and we define Ψ : W 1,p(R) → R by

Ψ(u) =
∫

R

α(x)G(u(x)) dx =
∫

R

α(x)
( ∫ u(x)

0
g(ξ) dξ

)
dx, ∀u ∈ W 1,p(R). (2.5)

It is clear that the assumptions on α and g guarantee that the functional Ψ is well
defined. In fact, one sees that the following inequality holds for any u ∈ W 1,p(R).

|Ψ(u)|

�
∫

R

α(x)|G(u(x))| dx �
∫

R

α(x) max
x∈R

|G(u(x))| dx �
∫

R

α(x) max
|ξ|�|u|∞

|G(ξ)| dx

=
∫

R

α(x) max{−G(−|u|∞), G(|u|∞)} dx

= Mu|α|1.

Our main tool is a local minimum theorem proved in [5] (see [5, theorem 3.1]).
Here, we use the version as given in [6] (see theorem 2.6; see also [8,22]). Before stat-
ing it, we give some definitions. Let E be a real Banach space and let Φ, Ψ : E → R

be two continuously Gâteaux differentiable functionals, put Iλ = Φ − λΨ , λ > 0,
and fix r ∈ ] − ∞, +∞].

Definition 2.3. We say that a functional Iλ verifies the Palais–Smale condition Word added – OK?

cut-off upper at r (in short, the (PS)[r]-condition) if any sequence {un} such that

The list below has
been bullet-pointed
for clarity: OK?
Also, since PS
presumably
indicates
‘Palais–Smale’, it
has been moved to
Roman type in
order to avoid
possible confusion
with a product of
variables P and S.

• Iλ(un) is bounded,

• limn→+∞ ‖I ′
λ(un)‖∗ = 0,

• Φ(un) < r

has a convergent subsequence.
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When r = +∞ the previous definition recovers the classical definition of the
Palais–Smale condition given below.

Journal style is to
not introduce
definition (or
theorem, lemma
etc.) environments
with a fragment so
I have completed
this sentence: OK?

Definition 2.4. We say that the functional Iλ verifies the Palais–Smale condition Word added – OK?

(in short, the (PS)-condition) if any sequence {un} such that

• Iλ(un) is bounded,

• limn→+∞ ‖I ′
λ(un)‖∗ = 0

has a convergent subsequence.

Definition 2.5. We say that u ∈ E is a critical point of Iλ when I ′
λ(u) = 0E∗ ,

that is, I ′
λ(u)(v) = 0 for all v ∈ E.

Theorem 2.6 (Bonanno [6, theorem 2.2]). Let E be a real Banach space and let
Φ, Ψ : E → R be two continuously Gâteaux differentiable functionals such that
infE Φ = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ E with
0 < Φ(ũ) < r such that

supu∈Φ−1(]−∞,r[) Ψ(u)
r

<
Ψ(ũ)
Φ(ũ)

(2.6)

and, for each

λ ∈
]

Φ(ũ)
Ψ(ũ)

,
r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
,

the functional Iλ = Φ − λΨ satisfies the (PS)[r]-condition. Then, for each

λ ∈
]

Φ(ũ)
Ψ(ũ)

,
r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
,

there is a uλ ∈ Φ−1(]0, r[) (hence, uλ �= 0) such that Iλ(uλ) � Iλ(u) for all u ∈
Φ−1(]0, r[) and I ′

λ(uλ) = 0.

We explicitly observe that, contrary to [22, theorem 2.5], in theorem 2.6 the
sequential weak lower semi-continuity of Iλ is not required and, in addition, the
local minimum is non-trivial.

Now we recall a multiple critical points result obtained in [6] that is based on
the theorem of the local minimum [5, theorem 3.1] and on the classical theorem of
Ambrosetti–Rabinowitz in [1].

Theorem 2.7 (Bonanno [6, theorem 3.2]). Let E be a real Banach space and let
Φ, Ψ : E → R be two continuously Gâteaux differentiable functionals such that Φ is
bounded from below and Φ(0) = Ψ(0) = 0. Fix r > 0 and assume that, for each

λ ∈
]
0,

r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
,

the functional Iλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded from
below.

Gabriele
Nota
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Then, for each

λ ∈
]
0,

r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
,

the functional Iλ admits two distinct critical points.

In our situation, the space E coincides with W 1,p(R), while Iλ : W 1,p(R) → R is Changes to
sentence OK?

the energy functional related to (Pλ), and is defined as

Iλ(u) = Φ(u) − λΨ(u),

where Φ, Ψ are given in (2.4) and (2.5). It is well know that Φ, Ψ are continuously
Gâteaux differentiable. If u is a critical point of Iλ, then I ′

λ(u) ≡ 0, that is,
∫

R

(|u′(x)|p−2u′(x)v′(x) + B|u(x)|p−2u(x)v(x) − λα(x)g(u(x))v(x)) dx = 0

for all v ∈ W 1,p(R), so u is a (weak) solution to (Pλ). Moreover, when α is, in
addition, a continuous function on R, the (weak) solutions of (Pλ) are actually
classical, as standard computations show.

Lemma 2.8. Let Φ and Ψ be defined as above and fix λ > 0. Then, Iλ = Φ − λΨ
satisfies the (PS)[r]-condition for any r > 0.

Proof. Let {un} ⊆ W 1,p(R) be a sequence such that {Iλ(un)} is bounded, The equation below
has been moved to
display to avoid a
bad line-break:
OK?lim

n→+∞
‖Iλ(un)‖W 1,p(R)∗ = 0

and Φ(un) < r for all n ∈ N.
From Φ(un) < r, taking into account that Φ is coercive, {un} is bounded W 1,p(R). ‘bounded in

W1,p(R)’?
Therefore, up to a subsequence, un(x) → u(x), x ∈ R, and {un} weakly converges
to u in L∞(R) (see remark 2.1).

Now, taking into account that {un} is bounded in L∞(R) (being weakly conver-
gent in L∞(R)), there is an M > 0 such that |un(x)| � M for all n ∈ N, for a.e.
x ∈ R. It follows that g(un(x)) � max|ξ|�M g(ξ) for which αg(un) ∈ L1(R) for all
n ∈ N. Since g(un(x)) → g(u(x)) for a.e. x ∈ R (g is a continuous function), from Changes to

sentence OK?
Lebesgue’s theorem one has that {αg(un)} is strongly converging to αg(u) in L1(R).
Since un ⇀ u in L∞(R), αg(un), αg(u) ∈ L1(R) ⊆ (L∞(R))∗ (see [9, p. 102]) and
αg(un) → αg(u) in L1(R), the definition of weak convergence and [9, proposition
III.5(iv)] leads to

lim
n→+∞

∫
R

α(x)g(un(x))(un(x) − u(x)) dx = 0. (2.7)

Now, from limn→+∞ ‖Iλ(un)‖W 1,p(R)∗ = 0, there exists a sequence {εn}, with
εn → 0+, such that∣∣∣∣

∫
R

(|u′
n|p−2u′

nv′ + B|un|p−2unv − λαg(un)v) dx

∣∣∣∣ � εn

for all n ∈ N, for all v ∈ W 1,p(R) such that ‖v‖ � 1.

Gabriele
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Setting v = (un − u)/‖un − u‖, one has
∫

R

(|u′
n|p−2u′

n(u′
n − u′) + B|un|p−2un(un − u)

− λαg(un)(un − u)) dx � εn‖un − u‖ (2.8)

for all n ∈ N.
Noting that

|a|p−1|b| � p − 1
p

|a|p +
1
p
|b|p,

one has∫
R

(|u′
n|p−2u′

n(u′
n − u′) + B|un|p−2un(un − u)) dx

=
∫

R

(|u′
n|p + B|un|p) dx −

∫
R

(|u′
n|p−2u′

nu′ + B|un|p−2unu) dx

� ‖un‖p −
∫

R

(
p − 1

p
|u′

n|p +
1
p
|u′|p + B

p − 1
p

|un|p + B
1
p
|u|p

)
dx

= ‖un‖p − p − 1
p

‖un‖p − 1
p
‖u‖p

=
1
p
‖un‖p − 1

p
‖u‖p.

Thus, from (2.8), one has

1
p
‖un‖p − 1

p
‖u‖p � λ

∫
R

αg(un)(un − u) dx + εn‖un − u‖,

that is,

−εn‖un − u‖ +
1
p
‖un‖p � λ

∫
R

αg(un)(un − u) dx +
1
p
‖u‖p. (2.9)

Taking into account (2.7), from (2.9) one has

lim sup
n→+∞

1
p
‖un‖p � 1

p
‖u‖p.

Hence, [9, proposition III.30] ensures that {un} strongly converges to u ∈ W 1,p(R)
and the proof is complete.

Now, if we assume in addition that g satisfies an Ambrosetti–Rabinowitz-type
condition at ∞, then Iλ satisfies the classical (PS)-condition. To be precise, we have
the following result.

Lemma 2.9. Assume that

(AR) there are s > 0 and µ > p such that 0 < µG(ξ) � ξg(ξ) for all ξ � s.

Then, Iλ satisfies the (PS)-condition and it is unbounded from below.

Gabriele
Matita
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Proof. Let {un} be a sequence such that

|Iλ(un)| � M for some M > 0 for all n ∈ N, (2.10)

and

I ′
λ(un) → 0 in W 1,p(R)∗ as n → ∞. (2.11)

First, we claim that there is a K � 0 such that

un(x) � −K (2.12)

for a.e. x ∈ R and for all n ∈ N. To this end, setting u−
n in the usual way, we prove Changes to

sentence OK?
that {u−

n } is bounded in W 1,p(R). From (2.11) one has |I ′
λ(un)(v)| � εn‖v‖ for all

v ∈ W 1,p(R) with εn → 0+. Thus, in particular, |I ′
λ(un)(u−

n )| � εn‖u−
n ‖, that is,

∣∣∣∣
∫

R

(|u′
n|p−2u′

nu−
n

′ + B|un|p−2unu−
n ) dx − λ

∫
R

α(x)g(un(x))u−
n (x) dx

∣∣∣∣ � εn‖u−
n ‖,

hence

‖u−
n ‖p + λ

∫
R

α(x)g(un(x))u−
n (x) dx � εn‖u−

n ‖.

Therefore,

0 � ‖u−
n ‖p � ‖u−

n ‖p + λ

∫
R

α(x)g(un(x))u−
n (x) dx � εn‖u−

n ‖.

Thus, {u−
n } strongly converges to 0 in W 1,p(R), so it is bounded in W 1,p(R).

Thus, in particular, it is bounded in L∞(R) (see (2.1)) and one has 0 � u−
n (x) �

K for some K � 0 and for a.e. x ∈ R, and our claim is proved.
Now, we prove that {un} is bounded in W 1,p(R). Again, from (2.11), one has

|I ′
λ(un)(un)| � εn‖un‖. Then,

−I ′
λ(un)(un) � εn‖un‖ (2.13)

for all n ∈ N and with εn → 0+.
On the other hand, one has

I ′
λ(un)(un) = ‖un‖p − λ

∫
R

α(x)g(un(x))un(x) dx

and

1
µ

I ′
λ(un)(un) =

1
µ

‖un‖p − λ

µ

∫
R

α(x)g(un(x))un(x) dx

=
1
µ

‖un‖p − λ

µ

∫
R

α(x)[g(un(x))un(x) − µG(un(x))] dx

− λ

∫
R

α(x)G(un(x)) dx.
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10 G. Bonanno, G. Barletta and D. O’Regan

It follows that

Iλ(un) − 1
µ

I ′
λ(un)(un) =

1
p
‖un‖p − λ

∫
R

α(x)G(un(x)) dx − 1
µ

‖un‖p

+
λ

µ

∫
R

α(x)[g(un(x))un(x) − µG(un(x))] dx

+ λ

∫
R

α(x)G(un(x)) dx,

that is,

Iλ(un)− 1
µ

I ′
λ(un)(un) =

(
1
p
− 1

µ

)
‖un‖p+

λ

µ

∫
R

α(x)[g(un(x))un(x)−µG(un(x))] dx.

Taking (AR) into account, one has The equation below
has been moved to
display to avoid a
bad line-break:
OK?

∫
un(x)�s

α(x)[g(un(x))un(x) − µG(un(x))] dx � 0.

Moreover, from (2.12), one has∣∣∣∣
∫

−K�un(x)<s

α(x)[g(un(x))un(x) − µG(un(x))] dx

∣∣∣∣
�

∫
−K�un(x)<s

α(x) max
ξ∈[−K,s]

|g(ξ)ξ − µG(ξ)| dx

� |α|1T,

where T = maxξ∈[−K,s] |g(ξ)ξ − µG(ξ)|. Hence,

Iλ(un) − 1
µ

I ′
λ(un)(un) �

(
1
p

− 1
µ

)
‖un‖p

+
λ

µ

∫
K�un(x)<s

α(x)[g(un(x))un(x) − µG(un(x))] dx

�
(

1
p

− 1
µ

)
‖un‖p − λ

µ
|α|1T.

From (2.10) and (2.13), it follows that(
1
p

− 1
µ

)
‖un‖p − λ

µ
|α|1T � M +

1
µ

εn‖un‖,

that is, (
1
p

− 1
µ

)
‖un‖p � M +

1
µ

εn‖un‖ +
λ

µ
|α|1T. (2.14)

Hence, (2.14) ensures that {un} is bounded in W 1,p(R).
Now, arguing exactly as in the proof of lemma 2.8, {un} admits a convergent

subsequence, so Iλ satisfies (PS).
Finally, standard computations show that (AR) implies that

G(ξ) � a1ξ
µ − a2
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A variational approach to multiplicity results for BVPs 11

for all ξ � 0 and some positive constants a1 and a2, and hence Iλ is unbounded
from below. The proof is complete.

3. Main results

Throughout this section we adopt the following notation for some constants that
will appear often in the following. Put

A =

∫ 1
−1 α(x) dx

|α|1
=

α0

|α|1
,

l = cB

(
22p−1 +

B

2(p + 1)
+ 2B

)1/p

,

R =
A

lp
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where cB is given in proposition 2.2.
We observe that if, for example, p = 2, B = 1 and α(x) = 1/(1 + x2), then

l = ( 61
12 )1/2 and R = 6

61 .
Our main result is the following.

Theorem 3.1. Assume that there exist two positive constants γ, κ, with κ < γ,
such that

G(γ)
γp

< R
G(κ)
κp

. (3.2)

Then, for each

λ ∈
]

1
pcp

B |α|1
1
R

κp

G(κ)
,

1
pcp

B |α|1
γp

G(γ)

[
,

problem (Pλ) admits at least one non-trivial and non-negative solution u0,λ such
that |u0,λ|∞ < γ.

Proof. Our aim is to apply theorem 2.6. To this end, we take E = W 1,p(R), and Φ,
Ψ , Iλ are as in § 2. All of the assumptions on regularity required on Φ and Ψ are Perhaps ‘all of the

assumptions on the
necessary regularity
on...’?

established and, from lemma 2.8, the functional Iλ satisfies the (PS)[r]-condition
for all r > 0. It is enough to prove (2.6). To this end, choose r = (1/pcp

B)γp and Change OK?

ũ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4κ(x + 1) + κ if x ∈ [−5/4,−1[,
κ if x ∈ [−1, 1],
4κ(1 − x) + κ if x ∈ ]1, 5/4],
0 otherwise.

Gabriele
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12 G. Bonanno, G. Barletta and D. O’Regan

Clearly, ũ ∈ W 1,p(R). Moreover, one has

Φ(ũ) =
1
p
‖ũ‖p

=
1
p

( ∫
R

|ũ′(x)|p dx + B

∫
R

|ũ(x)|p dx

)

=
1
p

(
(4κ)p

2
+ B

(
1

2(p + 1)
+ 2

)
κp

)

=
κp

p

(
22p−1 +

B

2(p + 1)
+ 2B

)

= κp 1
p

lp

cp
B

,

and

Ψ(ũ) =
∫ 5/4

−5/4
α(x)G(ũ(x)) dx �

∫ 1

−1
α(x)G(ũ(x)) dx = α0G(κ).

Hence,

Ψ(ũ)
Φ(ũ)

� |α|1pcp
B

A

lp
G(κ)
κp

. (3.3)

Moreover, from κ < γ one has κl < γ. In fact, arguing by contradiction, if we
assume that κ < γ � lκ, one has R(G(κ)/κp) = A(G(κ)/lpκp) � A(G(κ)/γp) �
G(κ)/γp � G(γ)/γp, which contradicts (3.2). Thus, from κl < γ, one has

Φ(ũ) = κp 1
p

lp

cp
B

<
1

pcp
B

γp = r,

so 0 < Φ(ũ) < r.
Moreover, for all u ∈ W 1,p(R) such that ‖u‖ < (pr)1/p, taking proposition 2.2

into account, one has

|u|∞ � cB‖u‖ < cB(pr)1/p = γ. (3.4)

Hence,

sup
Φ(u)<r

Ψ(u) = sup
‖u‖<(pr)1/p

∫
R

α(x)G(u(x)) dx

�
∫

R

α(x) sup
|ξ|<γ

G(ξ) dx

� |α|1G(γ).

From this we deduce that

supΦ(u)<r Ψ(u)
r

� |α|1G(γ)
(1/pcp

B)γp
= |α|1pcp

B

G(γ)
γp

. (3.5)
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Hence, from assumption (3.2), owing to (3.3) and (3.5), one has

supΦ(u)<r Ψ(u)
r

<
Ψ(ũ)
Φ(ũ)

and (2.6) is proved. Moreover, taking into account that, again owing to (3.3) and
(3.5), one has]

Φ(ũ)
Ψ(ũ)

,
r

supu∈Φ−1(]−∞,r[) Ψ(u)

[
⊇

]
1

pcp
B |α|1

1
R

κp

G(κ)
,

1
pcp

B |α|1
γp

G(γ)

[
.

Therefore, theorem 2.6 ensures that, for all Word added – OK?

λ ∈
]

1
pcp

B |α|1
1
R

κp

G(κ)
,

1
pcp

B |α|1
γp

G(γ)

[
,

there is a u0,λ ∈ Φ−1(]0, r[) (hence, u0,λ �= 0) such that Iλ(u0,λ) � Iλ(u) for all
u ∈ Φ−1(]0, r[) and I ′

λ(u0,λ) = 0. It follows that u0,λ is a non-zero solution of
problem (Pλ) and, from (3.4), one has |u0,λ|∞ < γ.

Finally, by standard computations, we have u0,λ � 0. In fact, from I ′
λ(u0,λ)(v) = Changes to

sentence OK?

0 for all v ∈ W 1,p(R), by choosing v = u−
0,λ � 0, one has

−‖u−
0,λ‖p = λ

∫
R

α(x)g(u0,λ(x))u−
0,λ(x) dx � 0, (3.6)

hence ‖u−
0,λ‖ = 0. The proof is complete.

Remark 3.2. Theorem 3.1 ensures the existence of one non-trivial solution without
requiring asymptotic conditions either at 0 or at ∞. Theorem 1.1 is an immediate
consequence.

Example 3.3. Put

g̃(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u2 if u � 1,

1
u

if 1 < u < 11,

h(u) if u � 11,

where h : R → R is a completely arbitrary function. From theorem 1.1 the problem

−u′′ + u =
4π

1 + x2 g̃(u), x ∈ R,

u(−∞) = u(+∞) = 0,

admits at least one non-trivial and non-negative classical solution. Indeed, it is
enough to apply theorem 1.1 to the continuous function

g∗(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2 if u � 1,

1
u

if 1 < u < 11,

1
11

if u � 11,
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14 G. Bonanno, G. Barletta and D. O’Regan

so that the solution ū relative to g∗, with |ū|∞ < 11, is also a solution to our
problem; we note that

∫ 11

0
g∗(t) dt =

1
3

+ ln 11 <
11
3

= 11
∫ 1

0
g∗(t) dt

and
11
π

1∫ 1
0 g∗(t) dt

=
33
π

< 4π <
121
π

1
(1/3) + ln 11

=
11
π

11∫ 11
0 g∗(t) dt

.

We now point out some consequences of theorem 3.1.

Corollary 3.4. Assume that

lim
t→0+

g(t)
tp−1 = +∞.

Then, for each γ > 0 and for each

λ ∈
]
0,

1
pcp

B |α|1
γp

G(γ)

[
,

problem (Pλ) admits at least one non-trivial and non-negative solution u0,λ such
that |u0,λ|∞ < γ.

Proof. Let γ be an arbitrary positive real number and let

λ ∈
]
0,

1
pcp

B |α|1
γp

G(γ)

[
.

From our assumption, one has limt→0+ pcp
B |α|1R(G(t)/tp) = +∞. Thus, corre-

sponding to M > 1/λ there exists κ∗ > 0 such that for any κ ∈ ]0, κ∗[ one has
pcp

B |α|1R(G(κ)/κp) > M . Therefore, by choosing κ < min{κ∗, γ}, we can apply
theorem 3.1 and we obtain the conclusion.

Remark 3.5. We explicitly observe that corollary 3.4 ensures the existence of a
non-trivial solution under the condition that g is sublinear at 0, without requiring
any condition at ∞. Easy examples that satisfy this assumption can be constructed,
for example, g(u) =

√
|u|. We recall that in order to apply the mountain pass

theorem, the superlinearity of g at 0 must be required as well as a suitable condition
at ∞.

Corollary 3.6. Assume that

lim
t→+∞

g(t)
tp−1 = 0.

Then, for each κ > 0 and for each

λ ∈
]

1
pcp

B |α|1
1
R

κp

G(κ)
, +∞

[
,

the problem (Pλ) admits at least one non-trivial and non-negative solution u0,λ.
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Proof. Let κ be an arbitrary positive real number and let Word added – OK?

λ ∈
]

1
pcp

B |α|1
1
R

κp

G(κ)
, +∞

[
.

From our assumption one has limt→+∞ pcp
B |α|1(G(t)/tp) = 0. Thus, corresponding

to ε > 0 such that ε < 1/λ, there exists γ∗ > 0 such that for any γ > γ∗ one
has pcp

B |α|1(G(γ)/γp) < ε. Therefore, by choosing γ > max{γ∗, κ}, we can apply
theorem 3.1 and the conclusion follows.

Remark 3.7. We explicitly observe that the solution guaranteed by corollary 3.6
is non-trivial.

Corollary 3.8. Assume that

lim
t→0+

g(t)
tp−1 = +∞ and lim

t→+∞

g(t)
tp−1 = 0.

Then, for any λ > 0, (Pλ) admits at least one non-trivial and non-negative solu-
tion u0,λ.

Proof. It follows by arguing as in the proofs of corollaries 3.4 and 3.6.

Remark 3.9. Clearly, the conclusion of corollary 3.4 holds under the assumption
that

lim sup
t→0+

G(t)
tp

= +∞,

and corollary 3.6 holds under the assumption Word added – OK?

lim inf
t→+∞

G(t)
tp

= 0.

Now we point out a multiplicity result, where only a condition at ∞ on g is
required.

Theorem 3.10. Assume that

(AR) there are s > 0 and µ > p such that 0 < µG(ξ) � ξg(ξ) for all ξ � s.

Then, for each

λ ∈
]
0,

1
pcp

B |α|1
sup
γ>0

γp

G(γ)

[
,

problem (Pλ) admits at least two distinct non-negative solutions u0,λ and u1,λ.

Proof. Our aim is to apply theorem 2.7. To this end, we take E = W 1,p(R), and
Φ, Ψ , Iλ are as in § 2. All the assumptions on regularity required on Φ and Ψ are See earlier comment

regarding this.
established and, from lemma 2.9, the functional Iλ satisfies the (PS)-condition and
it is unbounded from below. Moreover, for a fixed λ as in the conclusion and γ such I’m unsure what

conclusion this
refers to. Please
clarify.

that

λ <
1

pcp
B |α|1

γp

G(γ)
,
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arguing as in the proof of theorem 3.1 (see (3.5)), one has

1
pcp

B |α|1
γp

G(γ)
� r

supu∈Φ−1(]−∞,r[) Ψ(u)
.

Hence, from theorem 2.7, the functional Iλ admits at least two distinct critical
points, which are, as seen in the proof of theorem 3.1, non-negative solutions of (Pλ),
and the conclusion follows.

Remark 3.11. If g(0) �= 0, both the solutions guaranteed by theorem 3.10 are non-
trivial. It follows that theorem 1.2 is an immediate consequence of theorem 3.10.

Example 3.12. From theorem 3.10, the problem

−u′′ + u =
1
4

1 + u4

1 + x2 ,

u(−∞) = u(+∞) = 0,

admits at least two non-trivial and non-negative classical solutions. Indeed, it is
enough to verify that 0 < 3(ξ + (ξ5/5)) � ξ(1 + ξ4) for all ξ � 51/4 and

1
4

<
1

2c2
B |α|1

1
G(1)

.
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