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Estimating Graph Robustness
Through the Randic Index

Pasquale De Meo, Fabrizio Messina , Domenico Rosaci, Giuseppe M. L. Sarné, and Athanasios V. Vasilakos

Abstract—Graph robustness—the ability of a graph to preserve
its connectivity after the loss of nodes and edges—has been
extensively studied to quantify how social, biological, physical,
and technical systems withstand to external damages. In this
paper, we prove that graph robustness can be quickly estimated
through the Randic index, a parameter introduced in chem-
istry to study organic compounds. We prove that Erdos–Renyj
(ER) graphs are a good specimen of robust graphs because
they lack of a clear modular structure; we derive an analyt-
ical expression for the Randic index of ER graphs and use
ER graphs as an effective term of comparison to decide about
graph robustness. Experiments on real datasets from different
domains (scientific collaboration networks, content-sharing sys-
tems, co-purchase networks from an e-commerce platform, and
a road network) show that real-life large graphs are more robust
than ER ones with the same number of nodes and edges. We
also observe that if node degree distribution closely follows a
power law, then few edges contribute for more than half of the
Randic index, thus indicating that the selective removal of those
edges has devastating impact on graph robustness. Finally, we
describe sampling-based algorithms to efficiently but accurately
approximate the Randic index.

Index Terms—Complex network analytics, data analytics, data-
driven complex systems modeling, Erdos–Renyj (ER) random
graphs, graph robustness, Randic index.

I. INTRODUCTION

A. Motivations

GRAPH robustness (also known as resilience) is the ability
of a graph to preserve the connectivity after the fail-

ure of some of its nodes and/or edges [1]–[4]. Due to the
ability of graphs to represent many physical, social, and bio-
logical systems, the study of graph robustness holds a widely
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recognised position in many branches of science and engi-
neering: the functioning of the Internet [4], social media [5],
trust networks [6], airline routes [7], metabolic networks [8],
and electrical power grids [9]—just to name few application
domains—may be severely impaired if some of the system
components are no longer connected.

One of the most celebrated results in the assessment of
graph robustness is reported in [3], which describes a pro-
cess where nodes are iteratively removed from a graph and
the variations of some topological properties (like the size
of the largest connected component or the diameter) are cor-
respondingly measured. One of the main findings of [3] is
that graphs displaying a heavy-tailed degree distribution are
highly resilient to the random removal of nodes but they
are extremely fragile if attacks target at deleting high degree
nodes.

The procedure described in [3] does not scale well on real-
life graphs and, therefore, we are in an urgent need of drawing
up fast methods to estimate of graph robustness.

B. Main Contributions

In this paper, we make a step toward the definition of an
index to quickly evaluate the robustness of a graph.

As already observed in [10], a good specimen of robust
graph is given by the so-called expanders, i.e., graphs
which are sparse but, simultaneously, well connected. In an
expander graph, each node has a relatively large neighbor-
hood and, then, we are forced to delete a relatively large
fraction of nodes/edges to fragment it into many separated
components.

An interesting class of expander graphs is given by
Erdos–Renyj (ER) random graphs [1]: for a fixed integer n
and p ∈ (0, 1], the symbol G(n, p) identifies a family of graphs
with n nodes and the property that two arbitrarily chosen nodes
are connected with probability p (called edge probability). If
p→ 1, an ER graph degenerates to a complete graph Kn, i.e.,
a graph in which all pair of nodes are connected. Due to the
existence of multiple backup paths between any pair of nodes,
the complete graph is the strongest example of robust graph
we can think of.

In this paper, we started studying the robustness of an arbi-
trary graph G by grounding on some well-known results from
graph theory and combinatorics [11], [12]. In agreement with
past studies, we focus on a special matrix L(G) associated
with G, called normalized Laplacian, and on the distribution
of its eigenvalues λ1, . . . , λn (also called �-eigenvalues).
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We define the spread S(G) as the average square difference
of the �-eigenvalues from their mean λ

S(G) = 1

n

n∑

i=1

(
λi − λ

)2
with λ = 1

n

n∑

i=1

λi

and we prove that 2/n ≤ S(G) ≤ 1. We also prove that
S(G) achieves its lowest value if and only if G coincides
with Kn. Consequently, the lower S(G), the more robust
G. However, the calculation of S(G) does not require to
calculate the whole spectrum of L(G), which may be pro-
hibitively time-consuming even on moderately large graphs:
in fact, we show that S(G) is proportional to the Randic index
of a graph [12]–[14], a parameter introduced in theoretical
chemistry to study organic compounds.

The calculation of the Randic index R(G) takes linear time
on the number of the edges of G and it can be easily recom-
puted in an incremental way if new edges/nodes are added or
deleted from G. Due to these features, the Randic index is a
computationally feasible tool for assessing the robustness of
large graphs.

Unfortunately, two major drawbacks impede us to directly
adopt the spread S(G) [and, equivalently, the corresponding
Randic index R(G)] to evaluate the robustness of G: first, in
fact, we should determine a threshold under which the gap
S(G) − S(Kn) can be classified as small but the definition of
such a threshold is hard and it critically depends on the appli-
cation domain we are working in. Second, real graphs are far
from being assimilable to complete graphs and, therefore, a
real graph could showcase a large gap S(G) − S(Kn) even if
the real system it represents has been designed to be highly
resistant to adversarial attacks.

To overcome the problems above, we suggest to use ER
graphs as reference models to evaluate graph robustness. More
specifically, given a graph G with m edges we build a family
of ER graphs with n nodes and edge probability p equal to
p = 2m/(n(n−1)). We derive the expected value of the Randic
index R(GER) associated with G(n, p) and we calculate the
ratio γ = R(G)/R(GER); intuitively, the lower γ , the more
robust G is if compared with an arbitrary graph in G(n, p). In
the light of the robustness of G(n, p), we can conclude that
G is, in its turn, robust. We study also how to extend our
procedure on very large graphs. To this purpose we made use
of sampling algorithms [15]–[18], to get a quick estimation of
the Randic index.

We experimentally test our approach on four real graphs
describing: 1) a snapshot of the friendship network in
YouTube; 2) a co-authorship network extracted from the DBLP
computer science bibliography; 3) a co-purchase network from
Amazon; and 4) the road networks associated with the State
of the California in USA.

The main findings of this paper are as follows.
1) From our experiments, real graphs were associated with

a value of γ ranging from 0.42 to 0.56, thus showcas-
ing a high level of robustness. We also showed that the
graphs with the largest value of γ (that are, of course,
the less robust graphs) also displayed a clear modular
structure.

2) We studied how edges contributed to the Randic index
in real graphs. We found that if node degree distribution

closely mirrors a power law then a small fraction of
edges (around 5%) contributed more than 55% to the
Randic index.

3) We experimentally studied the scalability of our sam-
pling algorithms to calculate the Randic index and we
found that these techniques, even on modest hardware
platforms, were able to yield an accurate Randic index
approximation in less than one minute.

C. Plan of This Paper

The plan of this paper is as follows. We start by discussing
related literature in Section II. In Section III, we illustrate
the relation between the Randic index and the spread of the
�-eigenvalues. Section IV is devoted to explain why (and
how) ER graphs can be used as proxies to evaluate network
robustness; in the same section we derive an analytical expres-
sion for the expected value of the Randic index of an ER
graph. In Section V, we describe sampling-based algorithms
to quickly approximate the Randic index of a graph, while in
Section VI we elaborate on the experiments we carried out to
test the effectiveness and efficiency of our approach. Finally,
in Section VII we draw the conclusion.

II. RELATED WORK

In this section, we review some approaches to evaluate
the robustness of a graph. We may broadly classify existing
approaches in two categories, namely approaches based on
topological analysis (see Section II-A) and approaches relying
on the eigenvalues of some matrices associated with a graph
(see Section II-B).

A. Assessing Graph Robustness via Topological Analysis

The robustness of a system (and, equivalently, of the graph
associated with that system) quantifies the ability of that
system to withstand an external damage [2]–[4].

Albert et al. [3] focused on scale-free networks, i.e., on
graphs in which node degree distribution follows a power law.
They considered two types of adversarial attacks: the first one
randomly deletes nodes along with the edges they emanate and
the second one targets at removing first high degree nodes. The
main finding of [3] is that scale-free networks are extremely
robust under random node failures, but they are highly vul-
nerable if high degree nodes are removed. Wang et al. [19]
suggested to alter the network topology by properly adding
edges (link-addition strategy). The scheme proposed in [19]
relies on the structural holes theory [20] and it only requires
the knowledge of local topology. Experiments provide evi-
dence that the manipulation of graph topology through the
clever insertion of edges positively affects graph robustness
while mitigating network congestion.

The importance of topological information to assess graph
robustness has been highlighted in many application domains
like the structural analysis of terrorist [21] and criminal orga-
nizations [22], power grid infrastructures [23], military [24],
and transportation networks [25].

This paper significantly differs from those reported in this
section. First, in fact, we do not make any assumption on the
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topology of a graph but we consider datasets spanning different
domains which induced graphs may deeply differ in terms of
their topological organization.

Second, our main goal is to define a global index to esti-
mate graph robustness instead of simulating the loss of nodes
and edges from the graph itself and measuring how these
operations affect graph connectivity.

B. Spectral Approaches to Assessing Graph Robustness

A second group of approaches—called spectrum-based—
rely on the analysis of the eigenvalues of the adjacency matrix
or the Laplacian [11] of a graph to evaluate its robustness.

We start presenting robustness metrics derived from the
adjacency matrix A of a graph. The first metric we introduce
is the spectral radius, i.e., the largest eigenvalue of A. The
spectral radius controls the speed at which a dynamic pro-
cess, like a virus, spreads over a computer network [26], [27].
It has been employed to evaluate the robustness of a graph
in [28]–[30]. A further measure to consider is the spectral
gap, defined as the difference between the largest and the sec-
ond largest eigenvalue of A. Graphs with a large spectral gap
are also good expanders [31] and, therefore, spectral gap is a
measure of robustness in [32].

A third metric to mention is natural connectivity [33], which
is related to the number of alternative paths between any pair
of nodes in a graph. Large values of natural connectivity imply
the existence of more than one route to get from one node to
another: if some nodes/edges were deleted from a graph (thus
making the paths containing them unusable), there would exist
alternative ways to connect a source node with a target one and
this, ultimately, is an index of network robustness [34], [35].

A second group of spectrum-based robustness measures
derives from the Laplacian L of a graph, defined as L = D−A;
here D is a diagonal matrix such that Duu equals the degree
of u. Among robustness metrics based on the Laplacian we
recall the algebraic connectivity [36], which is the first nonzero
eigenvalue of the Laplacian. Large values of algebraic con-
nectivity imply higher difficulty in breaking a graph into
disconnected components and, as such, it has been used to
assess graph robustness [37].

We also cite the Kirchhoff index Kf(G) [38] which is defined
as follows: we can view a graph G as an electrical circuit in
which each node uniquely corresponds to a point in the circuit
and an edge from node u to node v corresponds to a resistor
of 1 ohm. If we connect our circuit to a voltage, the effective
resistance κ(u, v) is a measure of the difficulty of the current
to flow from u to v. Observe that effective resistance can be
calculated by means of the Kirchhoff’s law. The Kf(G) can be
written as the pairwise sum of effective resistances, that is

Kf(G) =
∑

u∈V

∑

v∈V

κ(u, v). (1)

From a spectral standpoint, Kf(G) is equal to the product of
the number n of nodes and the sum of the inverse of Laplacian
eigenvalues [39], [40]; it constitutes a valid parameter to assess
graph robustness: the smaller Kf(G), the more robust a graph
is [39], [41].

The calculation of the Kirchhoff index is an active
research field with many interesting results: for instance,
Liu et al. [42], [43] provided some bounds on the Kirchhoff
index in case of special graphs and Liu et al. [44], [45] studied
how to recalculate the Kirchhoff index if some nodes/edges are
inserted.

Starting from the metrics defined above, some authors stud-
ied how to modify graph topology with the goal of increasing
graph robustness. To this end, Chan and Akoglu [46] devel-
oped a general framework to modify an input graph by edge
rewiring in such a way as to yield the largest increase in robust-
ness under a specified budget (intended as the largest number
of allowed rewirings). Arrigo and Benzi [47] described some
heuristics to add, delete, or rewire a limited number of edges
in a sparse graph to optimize its natural connectivity.

Our approach belongs to the class spectrum-based metrics;
unlike the approaches discussed in this section we focus on
the normalized Laplacian (see Definition 1) and on the spread
S(G) of its eigenvalues around their mean. We provide tight
lower and upper bounds on S(G) which allowed us to quantify
the robustness of G.

As a further difference, the calculation of the metrics above
can be time expensive and, then, suitable approximation meth-
ods are required [32]. We do not need to resort to approximate
strategies to calculate S(G) because we proved that the calcu-
lation of S(G) is equivalent to the calculation of the Randic
index [13], which takes linear time in the number of graph
edges. As such our approach is viable also on large real graphs.
We also observed (see Section VI-A) that graphs lacking of a
clear community structure are also the most robust ones (and
showcase the lowest values of the Randic index).

III. RANDIC INDEX AND GRAPH ROBUSTNESS

In this section, we describe our approach to evaluating the
robustness of a graph. In this paper, we will concentrate on
undirected graphs (shortly, graphs). A graph G is a pair G =
〈N, E〉, where N = {1, . . . , n} is the set of nodes and E ⊆
N × N is the set of edges. Two nodes u and v are connected
if 〈u, v〉 ∈ E; the graph G is of order n if |N| = n and it has
size m if |E| = m. The degree du of a node u is equal to the
number of edges incident onto u. A graph G is connected if
there exists at least one path between any pair of nodes. In the
following, we will only consider connected graphs. A graph
is complete if any node is connected to all other nodes, which
implies du = n−1 for any node u. A complete graph of order
n is indicated as Kn and it contains ([n(n− 1)]/2) edges.

A graph G of order n is associated with an adjacency
matrix A, with Auv = 1 if and only if 〈u, v〉 ∈ E, 0 oth-
erwise. Two further matrices, which allow to capture the
structure of a graph, are the Laplacian and the normalized
Laplacian [11], [12], [48]–[51].

Definition 1 (Laplacian and Normalized Laplacian): Let
G = 〈N, E〉 be a graph and let D be a diagonal matrix (whose
rows and columns are indexed by the nodes of G) such that
Duu = du. The Laplacian L(G) of G is

L(G) = D− A.
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The normalized Laplacian L(G) of G is defined as

L(G) = I− D−
1
2 AD−

1
2 . (2)

Here I is the identity matrix and D−(1/2) is a diagonal matrix
such that D−(1/2)

ii = (1/
√

di).
Many authors [11], [12], [48], [50], [51] studied how the

eigenvalues λ1, . . . , λn (also called �-eigenvalues) of L(G) are
related to the structure of G. Some of the most interesting facts
about �-eigenvalues are reported below.

Theorem 1 (Properties of �-Eigenvalues): Let G be a con-
nected graph of order n. The following facts hold true.

1) L is a positive semidefinite matrix.
2) Let λ1 ≤ λ2 ≤, . . . ≤ λn ≤ 2 be the �-eigenvalues sorted

in increasing order of magnitude. We have that λ1 = 0,
i.e., 0 is the lowest eigenvalue and it is associated with
the eigenvector 1.1

3)
∑n

i=1 λi = n, i.e., the sum of the �-eigenvalues equals
the order of G.

4) λ2 = . . . = λn if and only if G is the complete
graph Kn.

Proof: See [11] and [48].
From Theorem 1, we have the following result.
Corollary 1: Let G be a connected graph of order n with

n ≥ 2. Then: 1) λ = (1/n)
∑n

i=1 λi = 1 and 2) λ2 = . . . =
λn = (n/n− 1) if and only if G is the complete graph of
order n.

Proof: From Theorem 1, part 3, we have

λ = 1

n

n∑

i=1

λi = 1

n
× n = 1.

From Theorem 1, part 4 we have that λ2 = . . . = λn = λ� if
and only if G coincides with Kn. From parts 2 and 3, we get

n =
n∑

i=1

λi = λ1 +
n∑

i=2

λi =
n∑

i=2

λi = (n− 1)λ�

which ends the proof.
We now discuss how the distribution of �-eigenvalues relates

to the robustness of G. To do so, let us define the spread S(G)

of �-eigenvalues as the mean square deviation of �-eigenvalues
from their average (that, according to Corollary 1, is equal to
λ = 1)

S(G) = 1

n

n∑

i=1

(λi − 1)2 = 1

n
+ 1

n

n∑

i=2

(λi − 1)2. (3)

The following theorem provides a lower and an upper bound
on S(G).

Theorem 2: Let G be a connected graph of order n with
spread S(G). Then the following bounds hold:

2

n
≤ S(G) ≤ 1

and S(G) = (2/n) if and only if G is the complete graph with
n vertices.

Proof: First, we prove that S(G) ≤ 1. From Theorem 1,
part 2, we have 0 ≤ λi ≤ 2, we get (λi − 1)2 ≤ 1

1Here 1 is the vector with all of its entries equal to 1.

which, in combination with (3), yields the following upper
bound on S(G):

S(G) = 1

n
+ 1

n

n∑

i=2

(λi − 1)2 ≤ 1

n
+ n− 1

n
= 1.

To prove that S(G) ≥ 2/n, we observe that
n∑

i=1

(λi − 1)2 =
n∑

i=1

(
λ2

i − 2λi + 1
)

=
n∑

i=1

λ2
i − 2

n∑

i=1

λi + n =
n∑

i=1

λ2
i − 2n+ n

=
n∑

i=1

λ2
i − n

which implies

S(G) = 1

n

n∑

i=1

(λi − 1)2 = 1

n

(
n∑

i=1

λ2
i − n

)
= 1

n

n∑

i=1

λ2
i − 1.

Provided that n is fixed, the lowest value of S(G) can be
obtained by solving the following optimization problem:

minimize
λi

n∑

i=1

λ2
i subject to

n∑

i=1

λi = n. (4)

With the change of variables �i = λi/n, we get the
following optimization problem:

minimize
�i

n∑

i=1

�2
i subject to

n∑

i=1

�i = 1. (5)

If we apply the Lagrange multiplier technique [52], we
obtain that the optimal solution is �i = 1/n, i.e., λi =
n/(n − 1) for any i. Because of Corollary 1, the condition
λ2 = λ3 = · · · = λn = n/(n − 1) is valid if and only if G
coincides with Kn. In this case

S(Kn) = 1

n
+ 1

n

n∑

i=2

(
n

n− 1
− 1

)2

= 2

n
.

The spread S(G) achieves its lower bound if G coincides
with Kn, which is the most robust graph we can think of.
Consequently, the gap S(G) − S(Kn) specifies how S(G) is
robust if compared to Kn.

Unfortunately, calculating S(G) implies the calculation of
the �-eigenvalues and such a procedure is computationally
expensive on even moderate size graphs. In practice, the com-
putation of S(G) is equivalent to the calculation of the Randic
index [13], [14], a parameter widely used in theoretical chem-
istry to study organic compounds. The Randic index R(G) of
G is defined as follows.

Definition 2 (Randic Index): Let G be a connected graph of
order n. The Randic index R(G) associated with G is defined as

R(G) =
∑

〈u,v〉∈E

1

dudv
. (6)

The Randic index R(G) is related to the �-eigenvalues, as
specified in the next theorem.
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Theorem 3: Let G be a connected graph of order n. Let
0 = λ1 ≤ λ2 . . . ≤ λn be the �-eigenvalues sorted in increasing
order of magnitude. The Randic index R(G) of G verifies the
following equality:

n∑

i=1

λ2
i = n+ 2R(G). (7)

Proof: See [12].
Now, we use the above Theorem 3 to prove Theorem 4,

which says us that there exists a relation between S(G) and
the Randic index.

Theorem 4: Let G be a connected graph of order n. The
Randic index R(G) and the spread S(G) verify the following
equality:

S(G) = R(G)

n
. (8)

Proof: From the definition of S(G), we get

S(G) = 1

n

n∑

i=1

(λi − 1)2 = 1

n

(
n∑

i=1

λ2
i − n

)
= 2

n
R(G).

Here, we rely on the equality
∑n

i=1 λ2
i −2n+n =∑n

i=1 λ2
i −

n already established in Theorem 2.
By Theorem 4, we can calculate the spread of G by com-

puting its Randic index. Such a procedure takes O(m) steps,
where m is the number of edges of the graph G, and, there-
fore, it is suitable also on large graphs. The Randic index will
vary from 1 (in case of Kn) to n and the lower R(G), the more
robust G is.

IV. USING RANDOM GRAPHS AS PROXIES

TO MEASURE ROBUSTNESS

A. Why ER Graphs Are Effective in Estimating
Graph Robustness

Our procedure to assess the robustness of a graph G of order
n requires to calculate the gap R(G) − R(Kn) = R(G) − 1
(see Theorems 2 and 4; the smaller the gap, the better G
will resemble Kn and, then, the more robust G. However,
graphs describing real-life systems are far from being assim-
ilable to complete graphs because they have much less edges
than a complete graph. Therefore, the graph associated with
a real-system may showcase a large Randic index despite the
underlying system has been designed to be robust to node
and edge failures. As such, comparing G with Kn may be
ineffective to decide about the robustness of G.

To overcome this problem, we suggest to take Erdos-Renyi
(ER) random graphs [1] as term of comparison.

Given an integer n > 0 and a real number p ∈ (0, 1] an ER
graph G(n, p) is a family of graphs of order n in which nodes
are connected independently and uniformly at random with
probability p. In an ER graph G(n, p), the expected number m
of edges is m = (n

2

)
p. Random graphs display good expansion

properties [10]: roughly speaking, a graph is said to be a good
expander if it is sparse and well connected. In words, in an
expander, any subset of nodes has a relatively large number
of neighbors and, then, if we would remove a relatively large

fraction of edges we are expected to not fragment G into dis-
joint components. Expansion properties are closely related to
robustness [32] and then, we can take ER graphs as a reference
to evaluate graph robustness.

Based on the considerations above, our strategy to evaluate
the robustness of a graph G requires to calculate the ratio
γG,GER = R(G)/R(GER), i.e., the ratio of the Randic index of
G to the expected value of the Randic index of an ER graph of
the same order and size of G. The parameter γG,GER quantifies
the gain, in terms of the Randic index, of selecting G rather
than drawing a specimen from G(n, p) at random; of course,
the lower γG,GER , the more robust G.

In what follows, we provide an analytical expression for
the expected value of the Randic index of an ER graph with
n nodes and edge probability equal to p.

B. Randic Index of ER Graph

In this section, we derive an analytical expression for the
Randic index of ER graphs.

Let M be the binomial random variable defining the number
of edges in an ER graph G(n, p); it is easy to check that
E(M) = (n

2

)
p [1]. The Randic index of an ER graph is a

random variable, whose expected value is as follows.
Theorem 5: Let G be an ER graph of order n and edge prob-

ability p ∈ (0, 1]. The expected value E(R(G)) of its Randic
index is

E(R(G)) =
(
1− (1− p)n+1

)2

p
. (9)

Theorem 5 tells us that the Randic index of an ER graph
diverges if p → 0, independently of n. If p → 1, then R(G)

approaches 0 as quick as (1/p).
We provide a proof of Theorem 5 in the supplementary

material.

V. FAST COMPUTATION OF THE RANDIC INDEX

In this section, we describe a fast procedure to approximate
the Randic index of a graph.

As said before, the computation of the Randic index
scales linearly with the graph size; however, many real-world
systems are described through gigantic graphs, thus mak-
ing the calculation of the Randic index infeasible. Many
algorithms are available to sample subgraphs from large
graphs [15]–[18], [53]–[57]. Sampled subgraphs can be used
to get a fast (but often realistic) estimation of the graph proper-
ties (like degree distribution or diameter) as well as to quantify
the strengths and limitations of an algorithm before deploying
it on the market [17], [53].

Given sampling algorithm S , we define the relative error ε

of S as follows.
Definition 3: Let G = 〈N, E〉 be a graph and let S be a

sampling algorithm which, if applied to G, generates the graph
G� = 〈N�, E�〉. Let R(G) and R(G�) be the Randic indices of
G and G�, respectively. The relative error ε of S is defined
as follows:

ε = |R(G)− R(G�)|
max{R(G), R(G�)} . (10)
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Algorithm 1 Induced Edge Sampling Algorithm
1: procedure INDUCED_EDGE_SAMPLING

2: Require: G: a graph, φ�: a real number in [0, 1]
3: Ensure: A graph G� = 〈N�, E�〉, subgraph of G
4: G�← EDGE_SAMPLING(G, φ�)

5: N�← NODES(G�)

6: E�← EDGES(G�)

7: G′ ← SUBGRAPH(G, N�) with G′ = 〈N′, E′〉
8: for e ∈ E′ − E� do
9: ADD_EDGE(G�, e)

10: end for
11: return G�

12: end procedure

Observe that 0 ≤ ε ≤ 1 and the lower ε, the more
accurate S .

A popular strategy to sample large graphs is based on ran-
dom walks [15], [16], [53], [57]. Methods based on random
walks have been successfully applied in many application
domains like the Internet but they may fail to produce accurate
results in other ones: for instance, in case of Twitter, it is a
well-known fact that samples collected via random walks are
biased toward users with a large number of followers or users
who frequently tweets [58]–[61].

In many real-life systems, uniformly sampling edges/nodes
is conducive to surprisingly effective results [62]; therefore,
we applied node and edge sampling algorithms to efficiently
calculate R(G).

The NODE_SAMPLING procedure takes a graph G = 〈N, E〉
and a real number φ� ∈ [0, 1]. Here, φ�—called sam-
ple rate—specifies the fraction of nodes to sample from G.
NODE_SAMPLING consists of two steps.

Step 1: Select, uniformly at random, φ�×|N|� nodes from
N and let N� be the set of sampled nodes. Each
node u ∈ N will uniquely correspond to a node
u� ∈ N�.

Step 2: Draw an edge between two nodes u� and v� if and
only if there is an edge from u to v in E and inserts
it in E�.

NODE_SAMPLING returns G� = 〈N�, E�〉 as output.
The procedure for edge sampling is defined in a sim-

ilar way. We assume that a primitive procedure—called
EDGE_SAMPLING—is available. As in node sampling, the
EDGE_SAMPLING procedure takes a graph G = 〈N, E〉
and a real number φ� ∈ [0, 1] and it produces a graph
G� = 〈N�, E�〉 (with |N�| of order φ�×|N|� nodes) as output.
The EDGE_SAMPLING operator chooses, uniformly at ran-
dom, an edge e = 〈u, v〉 from E and inserts it in E�; nodes u
and v are inserted into N� too.

The EDGE_SAMPLING procedure preferentially selects
nodes with large degree (which are those ones contribut-
ing the less to the value of the Randic index) and this
may cause an underestimation of the Randic index. To
overcome this problem, we implemented a slight modifica-
tion of the EDGE_SAMPLING procedure, which is called
INDUCED_EDGE_SAMPLING and sketched in Algorithm 1.

The INDUCED_EDGE_SAMPLING procedure builds a sub-
graph G� = 〈N�, E�〉 from G by calling the EDGE_SAMPLING

procedure. Then, it calls the procedure SUBGRAPH (line 7),
which returns the subgraph G′ of G induced by the nodes in
N�. Finally, edges present in E′ but absent in E� are inserted
in G�.

The time complexity of the INDUCED_EDGE_SAMPLING

procedure is parametric in φ� and, to this extent, we will
experimentally investigate its efficiency in Section VI-C. By
construction, the INDUCED_EDGE_SAMPLING procedure will
build up a graph of order |N�| = φ� × |N|� and size vary-
ing from |N�| to |N�|2. Therefore, the time complexity of
INDUCED_EDGE_SAMPLING procedure ranges from O(|N�|)
(in case of sparse induced subgraphs) to O(|N�|2) (in case of
dense induced subgraphs). This implies that the smaller |N�|
(or, equivalently, the closer φ� to 0), the faster our sampling
approach.

VI. EXPERIMENTAL EVALUATION

In this section, we report on the experiments we carried
out to test the effectiveness of Randic index in assessing
graph robustness. We designed our experiments to answer the
following questions.
Q1: How robust—in term of Randic index—are real graphs

if compared with ER graphs of the same order and size?
Q2: What are the edges influencing the most the Randic

index of real graphs?
Q3: Are the sampling techniques described in Section V

effective and efficient in approximating the Randic
index?

We used four real-life datasets (all datasets have been taken
from http://konect.uni-koblenz.de/) to perform our experimen-
tal analysis. The first dataset (Amazon) is a co-purchase
network extracted from Amazon: nodes identify products and
edges specify that two products have been frequently bought
together. The second dataset (California) describes the
road network of the State of California in USA: nodes of
the network are the intersections between roads and road
endpoints, and the edges are road segments between inter-
sections and road endpoints. The third dataset (DBLP) is
a co-authorship network extracted from the DBLP archive:
nodes are authors and two nodes are connected if the corre-
sponding authors have published at least one paper together.
The fourth dataset (Youtube) is the friendship network
extracted from Youtube: nodes identify users and two nodes
are connected through an edge if the corresponding users are
friends. Table I lists the order n and the size m of each of these
graphs. Experiments were performed on a machine equipped
with a CPU Intel Xeon, model E31220 @ 3.10 GHz and 4 GB
of RAM.

A. Comparing Real Graphs With Artificial Ones

In this section, we describe the experiments to answer Q1.
For each graph G in our dataset we calculated the ratio

γG,GER introduced in Section IV. In Table I, we report the
edge probability p of the corresponding ER graphs (fourth
column) as well as the value of γG,GER (fifth column).
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TABLE I
DATASETS EMPLOYED IN THIS PAPER AND VALUES OF γ

Fig. 1. Horizontal axis: percentage of top k edges, sorted on the basis of
their inverse product connectivity. Vertical axis: how these edges contribute
to the whole Randic index.

From our tests, we can observe that γG,GER varies from 0.42
to 0.56, which implies that the Randic index of each of the
input graphs is less than the average value of the expected
value of the Randic index of an ER graph of the same order
and size. Because of the lower the Randic index the more
robust a graph and because ER graphs are good specimen of
robust graphs, we may conclude that real system display a
high level of robustness.

To get an explanation about the robustness of graphs asso-
ciated with real-life systems, we inspected the community
structure of our input graph. A community (or cluster or
module) in a graph [63] is a group of nodes displaying a
high intracommunity edge density and a low intercommu-
nity edge density. A clear community structure is respon-
sible for low level of robustness [32]: in fact, if a graph
would display a clear community structure, we could frag-
ment it into many disjoint components by deleting edges
running from a community to another one. In the light of
these observations, we applied the label propagation algo-
rithm (LPA) [64] to find out communities. We ended up
deciding on LPA because of its accuracy and running time
which is linear in the graph size, thus making LPA suitable to
quickly process even large graphs. We used the Q modularity
score [63], [65] to evaluate the quality of the obtained parti-
tioning. The Q modularity score ranges from −(1/2) to 1 [66],
and the higher Q, the stronger the division of a graph in
communities is.

We observe that Q varies from 0.66 to 0.79 (see Table I,
third column); values of Q appear to be directly related to
those of γG,GER , thus signalling that the most robust graphs
are also those graphs showcasing the lowest values of Q.

B. Contribution of Edges to Randic Index

Many studies in complex network theory witness the
unequal contribution that nodes and edges have on graph topol-
ogy: for instance, in the World Wide Web graph, node degree
follows a power law distribution because only few nodes
collects most of the edges [67], [68].

Our second question is, therefore, on the contribution that
edges have on the Randic index: because node degrees are
unevenly distributed, we hypothesize that some edges have a
bigger impact on R(G) than others. To run our analysis, we
sorted edges 〈u, v〉 in decreasing order of the factor—called
inverse product connectivity—1/(dudv). We evaluated the con-
tribution that the fraction formed by the k% of edges with the
largest inverse product connectivity had on R(G) (see Fig. 1).

We notice that, in all graphs under inquiry, a small fraction
of edges significantly impacted on the overall Randic index:
for instance, in case of YouTube, the top 5% edges con-
tributed for about 55% of the Randic index. A less evident
impact was recorded in case of California: the top 20%
vertices contributed slightly more than 40% to the Randic
index. To explain the differences emerging across different
graphs, we studied the node degree distribution in each of
these graphs. We used the method described in [69] to check
if the probability P(x) that a node has degree equal to x is
shaped as P(x) ∝ xα , being α a suitable coefficient to esti-
mate from empirical data. In general α should vary from 1.8
to 3.5 to claim that node degree actually follows a power law
distribution.

From our test, only node degree distribution in YouTube
can be classified as a power law (α = 2.14); this depends
on the fact that in YouTube there are few users collecting
most of the friendship relationships while the vast majority
of user has very few connections. If we would cut from the
YouTube social graph those edges linking low degree nodes,
we would disconnect the social graph into several components
and this would exert a big variation on the Randic index. As
an opposite case, let us consider the case of California
dataset: here node degree distribution does not follow a power
law (α = 8.99) and, as expected, the impact of the edges with
the largest inverse product connectivity factor on the Randic
index is much softer than that observed in YouTube. This is
likely to depend on the mechanism underlying the design of
a road network: any point in the network should be well con-
nected to the others to avoid congestion, improve environment
conditions and ensure alternative routes in case of incidents.

These requirements often conflict with budget constraints
which limit the number and extension of roads we are allowed
to build. Node degree distribution in a road network is more
regular than in YouTube and, then, there are less critical
edges which significantly contribute to the Randic index. An
intermediate configuration occurs in case of DBLP (α = 3.26)
and Amazon (α = 3.58).

C. Accuracy and Efficiency of Sampling Techniques

In this section, we analyze the effectiveness and efficiency
of the sampling algorithms described in Section V.
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Fig. 2. Left: relative error ε versus φ� for NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on Amazon graph. Right: relative error ε versus φ�

for NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on California graph.

Fig. 3. Left: relative error ε versus φ� for NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on DBLP graph. Right: relative error ε versus φ�

for NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on YouTube graph.

Fig. 4. Left: running time versus φ� for NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on Amazon graph. Right: running time versus φ� for
NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on California graph.

We considered a sample rate φ� varying from 0.01 to 0.3
and we measured the relative error ε [see (10)] for both
NODE_SAMPLING and INDUCED_EDGE_SAMPLING proce-
dures. The obtained results are reported in Figs. 2 and 3. First,
observe that INDUCED_EDGE_SAMPLING always outper-
forms NODE_SAMPLING in terms of accuracy; in addition, as
φ� gets larger and larger, ε for INDUCED_EDGE_SAMPLING

decays faster than in NODE_SAMPLING. Under the same
sample rate φ�, the NODE_SAMPLING procedure fails to
catch many of the edges that, instead, are sampled by the

INDUCED_EDGE_SAMPLING procedure; differences in sam-
pled subgraphs have a clear impact on the estimated Randic
index, as Figs. 2 and 3 show. Independently of φ�, the lowest
relative error ε is observed on YouTube dataset.

We also measured the running time needed for
a single run of procedures NODE_SAMPLING and
INDUCED_EDGE_SAMPLING by averaging over a total
of ten runs (see Figs. 4 and 5).

NODE_SAMPLING is 4–20 times faster than
INDUCED_EDGE_SAMPLING for small values of φ�.
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Fig. 5. Left: running time versus φ� for NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on DBLP graph. Right: running time versus φ� for
NODE_SAMPLING/INDUCED_EDGE_SAMPLING procedures on YouTube graph.

The largest gap is observed in DBLP and YouTube, i.e., on
graphs best resembling power law networks. In this case, if
we would select few high degree nodes we would be able to
collect a large fraction of edges and the graph sampled by
the INDUCED_EDGE_SAMPLING procedure would contain
much more edges than that generated by NODE_SAMPLING.
This explains observed differences in running times.

VII. CONCLUSION

In this paper, we describe an approach to estimating the
robustness of large graphs through the Randic index, a param-
eter introduced in chemistry to study organic compounds. We
proved that graph robustness can be measured through the
spread of the eigenvalues of normalized Laplacian associated
with the graph around their mean. We showed that the calcu-
lation of the spread is equivalent to calculate the Randic index
of a graph. Then, we observed that, due to their good expan-
sion properties, ER graphs are good specimen of robust graphs
and we derived an analytical expression of the expected Randic
index of an ER graph of given order and size. We described
efficient sampling-based algorithms to get a quick estimation
of the Randic index on large graphs.

A main takeaway of our analysis is that graphs lacking of
a clear community structure are also the most robust ones. In
addition, if node degree distribution approximates well a power
law distribution, then a small fraction of the edges account for
more than half of the Randic index.

As for our future work, we plan to study the relation
between the modular structure of a graph and its robustness
and we target at designing novel community detection algo-
rithms based on the notion of Randic index, also in case of
graphs in which nodes are equipped with labels [70]. We also
plan to study in detail the relationship between Randic index
and other graph robustness metrics.
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