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RESONANT NEUMANN EQUATIONS WITH INDEFINITE LINEAR PART

Abstract. We consider aseminonlinear Neumann problem driven by the p-Laplacian
plus an indefinite and unbounded potential. The reaction of the problem is resonant
at ±∞ with respect to the higher parts of the spectrum. Using critical point theory,
truncation and perturbation techniques, Morse theory and the reduction method,
we prove two multiplicity theorems. One produces three nontrivial smooth solutions
and the second four nontrivial smooth solutions.

1. Introduction

Let Ω ⊆ IRN be a bounded domain with a C2-boundary ∂Ω. In this paper we
study the following semilinear Neumann problem{

−4u(z) + β(z)u(z) = f(z, u(z)) in Ω,
∂u
∂n

= 0 on ∂Ω .
(1)

Here β ∈ Ls(Ω), s > N and in general is indefinite (i.e., it is sign-changing). Also,
f(z, x) is a Carathéodory function (i.e., for all x ∈ IR, z → f(z, x) is measurable and
for a.a. z ∈ Ω, x→ f(z, x) is continuous) which asymptotically at ±∞ interacts with
the higher parts of the spectrum of u→ −4u+ βu, u ∈ H1(Ω) (resonant equation).
Finally by n(·) we denote the outward unit normal on ∂Ω. The aim of this paper is
to prove multiplicity theorems for such resonant problems when the reaction crosses
one or more eigenvalues when x moves from 0 to ±∞ (crossing nonlinearity).
Such problems where studied primarily in the context of Dirichlet equations with no
potential β(·) (i.e. β ≡ 0) and under stronger regularity conditions on the reaction f .
First Amann-Zehnder [2] proved that, if the reaction crosses at least an eigenvalue as
we move from 0 to ±∞, then a nontrivial solution exists. Their conditions on f did
not allow for resonance to occur. Subsequently, for the same Dirichlet problem there
have been some multiplicity theorems by Castro-Lazer [4] (three solutions for nonres-
onant equations), Chang-Li-Liu [5] (three solutions for nonresonant equations), Liu
[12] (four solutions for resonant equations) and Li-Zhang [14] (four solutions for res-
onant equations). As we already mentioned, all the aforementioned works deal with
Dirichlet problems with no potential β(·) (i.e. β ≡ 0) and under stronger regularity
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conditions on the reaction f . Resonant Neumann equations with β ≡ 0, were in-
vestigated by Filippakis-Papageorgiou [7], Gasinski-Papageorgiou [9], Tang [17] and
Tang-Wu [18], using different methods and different hypotheses on the reaction. In
fact in [7] resonance at infinity occurs only with respect to the principal eigenvalue
λ0 = 0 of (−4, H1(Ω)), while in [16], [17] resonance occurs only at zero. In [9], the

limit as |x| → ∞ of the quotient f(z,x)
x

exists.
Our approach combines variational methods based on the critical point theory to-
gether with suitable truncation and perturbation techniques and Morse theory (crit-
ical groups). Also,we employ the so-called reduction method, which was first devel-
oped by Amann [1], Castro-Lazer [4] and Thews [19] for C2-functionals. In the next
section, for the convenience of the reader, we recall the main mathematical tools which
we will use in this work and also develop the spectral properties of u→ −4u+ βu,
u ∈ H1(Ω).

2. Mathematical Background

Let X be a Banach space and X∗ its dual. By 〈·, ·〉 we denote the duality brackets
for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the ”Cerami condition”
(the ”C-condition” for short), if the following is true:

”Every sequence {xn}n≥1 ⊆ X such that
ϕ(xn) ⊆ IR is bounded and (1 + ‖xn‖)ϕ′(xn)→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence”.
This compactness-type condition is in general weaker than the more usual ”Palais-
Smale condition”. Nevertheless it suffices to prove a deformation theorem and from
it derive the minimax theory of certain critical values of ϕ. One such result is the so
called ”mountain pass theorem” (see, for example, Gasinski-Papageorgiou [8]).

Theorem 2.1. If ϕ ∈ C1(X) satisfies the C-condition, x0, x1 ∈ X, ‖x1−x0‖ > r > 0,

max{ϕ(x0), ϕ(x1)} < inf[ϕ(x) : ‖x− x0‖ = r] = ηr

c = infγ∈Γ max0≤t≤1 ϕ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1},
then c ≥ ηr and c is a critical value of ϕ.

Given ϕ ∈ C1(X) and c ∈ IR, we introduce the following sets:

ϕc = {x ∈ X : ϕ(x) ≤ c}, Kϕ = {x ∈ X : ϕ′(x) = 0} andKc
ϕ = {x ∈ Kϕ : ϕ(x) = c}.

Also, let Y1, Y2 be two topological spaces such that Y2 ⊆ Y1 ⊆ X. For every integer
k ≥ 0, by Hk(Y1, Y2) we denote the kth-relative singular homology group with integer
coefficients for the pair (Y1, Y2). The critical groups of ϕ ∈ C1(X) at an isolated
critical point x ∈ X with ϕ(x) = c (i.e. x ∈ Kc

ϕ), are defined by

Ck(ϕ, x) = Hk(ϕ
c ∩ U , ϕc ∩ U \ {x}), for all k ≥ 0,

where U is a neighborhood of x such thatKϕ
⋂
ϕc
⋂U = {x}. The excision property of

singular homology, implies that the above definition of critical groups, is independent
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of the particular neighborhood U .
Assume that ϕ ∈ C1(X) satisfies the C-condition and −∞ < inf ϕ(Kϕ). Let c <
inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all k ≥ 0 .

The second deformation theorem (see, for example, Gasinski-Papageorgiou [8], p.628),
implies that the above definition of critical groups at infinity, is independent of the
particular choice of the level c < inf ϕ(Kϕ).
Suppose that Kϕ is finite. We set

M(t, x) =
∑
k≥0

rank Ck(ϕ, x)tk for all t ∈ IR, all x ∈ Kϕ

and

P (t,∞) =
∑
k≥0

rank Ck(ϕ,∞)tk for all t ∈ IR .

The Morse relation says that∑
x∈Kϕ

M(t, x) = P (t,∞) + (1 + t)Q(t) for all t ∈ IR , (2)

where Q(t) =
∑
k≥0 βkt

k is a formal series with nonnegative integer coefficients βk.
In the study of problem (1) in addition to the Sobolev space H1(Ω), we will also use
the space C1(Ω). This is an ordered Banach space with positive cone

C+ =
{
x ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has nonempty interior given by

int C+ = {x ∈ C+ : u(z) > 0 for all z ∈ Ω} .

For x ∈ IR, we set x± = max{0, ±x} and for u ∈ H1(Ω) we define u±(·) = u(·)±.
We know that

u± ∈ H1(Ω), u = u+ − u− and |u| = u+ + u− .

In the sequel by ‖ · ‖ we denote the norm of H1(Ω), i.e., ‖u‖ = (‖Du‖2
2 + ‖u‖2

2)1/2

for all u ∈ H1(Ω). Also, if h : Ω× IR→ IR is a measurable function (for example, a
Carathéodory function), then we set

Nh(u)(·) = h(·, u(·)) for all u ∈ H1(Ω)

(the Nemytski map corresponding to h). Finally by | · |N we denote the Lebesgue
measure on IRN .
Now, let us examine the spectral properties of u → −4u + βu, u ∈ H1(Ω). So, we
consider the following linear eigenvalue problem:

−4u(z) + β(z)u(z) = λu(z) in Ω,
∂u

∂n
= 0 on ∂Ω . (3)
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To analyze problem (3) it enough to assume that β ∈ LN/2(Ω) when N ≥ 3 and
β ∈ L1(Ω) for N = 1, β ∈ Lr(Ω) with r > 1 for N = 2 (by the Sobolev embedding
theorem).
In what follows σ : H1(Ω)→ IR is the C1-functional defined by

σ(u) = ‖Du‖2
2 +

∫
Ω
βu2dz for all u ∈ H1(Ω) .

Lemma 2.1. If β ∈ LN/2(Ω) when N ≥ 3, β ∈ L1(Ω) when N = 1 and β ∈ Lr(Ω),

r > 1 when N = 2, then λ̂1 = inf [σ(u) : u ∈ H1(Ω), ‖u‖2 = 1] > −∞.

Proof. We treat the case N ≥ 3, the cases N = 1 and N = 2 can be handled
similarly. We proceed by contradiction. So, suppose that λ̂1 = −∞, Then we can
find {un}n≥1 ⊆ H1(Ω) such that

‖un‖2 = 1 for all n ≥ 1 and σ(un)→ −∞ as n→∞ . (4)

From (4) we see that we can find n0 ≥ 1 such that

σ(un) ≤ −1 for all n ≥ n0 . (5)

Suppose that ‖un‖ → ∞ and let yn = un
‖un‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and

so we may assume that

yn ⇀ y in H1(Ω), and yn → y in L2(Ω) as n→∞ . (6)

Using the Sobolev embedding theorem, we have that {y2
n}n≥1 ⊆ L

N
N−2 (Ω) is bounded.

So, we may assume that

y2
n ⇀ y2 in L

N
N−2 (Ω), as n→∞ .

Since β ∈ LN
2 (Ω), we obtain ∫

Ω
βy2

n →
∫

Ω
βy2 . (7)

From (5) we have

σ(yn) ≤ − 1

‖un‖2
for all n ≥ n0 ,

so (see (6) and (7))

σ(y) ≤ 0 .

Note that y 6= 0, or otherwise yn → 0 in H1(Ω), which contradicts the fact that
‖yn‖ = 1 for all n ≥ 1. On the other hand, we have (see (4))

‖yn‖2 = 1 =
‖un‖2

‖un‖
=

1

‖un‖
→ 0 ,
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so y = 0, a contradiction.
This proves the boundedness of {un} ⊆ H1(Ω) and so we may assume that

un ⇀ u in H1(Ω), and
∫

Ω
βu2

ndz →
∫

Ω
βu2dz .

Hence σ(u) ≤ λ̂1 = −∞, a contradiction (since u ∈ H1(Ω)). Therefore λ̂1 > −∞. �

Using Lemma 2.1, we can find ξ̂ > max{0, −λ̂1} large such that

σ(u) + ξ̂‖u‖2
2 ≥ ĉ‖u‖2

2 for some ĉ > 0 and all u ∈ H1(Ω) . (8)

We introduce the following equivalent inner product on H1(Ω),

(u, y)∗ =
∫

Ω
(Du, Dy)IRNdz +

∫
Ω

(β(z) + ξ̂)u(z)y(z)dz for all u, y ∈ H1(Ω) .

Given g ∈ L2(Ω), by the Riesz representation theorem, we can find a unique u ∈
H1(Ω) such that

(u, y)∗ =
∫

Ω
gydz for all y ∈ H1(Ω) . (9)

So, we can define a linear map K∗ : L2(Ω) → H1(Ω) by setting K∗(g) = u. Let
i : H1(Ω)→ L2(Ω) be the embedding map. The Sobolev embedding theorem implies
that i is linear compact. We have

(K∗(i(v)), y)∗ =
∫

Ω
vydz for all y ∈ H1(Ω) (see (9)) .

The map K∗◦i is linear compact on H1(Ω), self-adjoint and positive. So, from the well
known spectral theorem for such operators (see, for example Gasinski-Papageorgiou
[8] (p.296)), we can find {µn}n≥1 the sequence of distinct eigenvalues of K∗ ◦ i such
that

µ1 > µ2 > ... > µn... > 0, µn → 0+ as n→ +∞.

Then λ̂n = 1
µn
− ξ̂ for all n ≥ 1 are the distinct eigenvalues of (3). So, we have

−∞ < λ̂1 < λ̂2 < ... < λ̂n..., λ̂n → +∞ as n→ +∞.

Also there is a corresponding sequence {ûn}n≥1 ⊆ H1(Ω) of eigenfunctions such that
{ûn}n≥1 is an orthonormal basis of L2(Ω) and an orthogonal basis of H1(Ω). If
β ∈ Ls(Ω), s > N , then using the regularity results of Wang [21], we have {ûn}n≥1 ⊆
C1(Ω). The eigenvalues have the following variational characterization (see [8]):

λ̂1 = inf

[
σ(u)

‖u‖2
2

: u ∈ H1(Ω), u 6= 0

]
(see Lemma 2.1) (10)
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λ̂k = inf

[
σ(u)

‖u‖2
2

: u ∈ ⊕i≥kE(λ̂i), u 6= 0

]

= sup

[
σ(u)

‖u‖2
2

: u ∈ ⊕ki=1E(λ̂i), u 6= 0

]
for k ≥ 2. (11)

Here E(λ̂i) denotes the eigenspace corresponding to the eigenvalue λ̂i. The infimum in

(10) is realized on E(λ̂1) and both the infimum and the supremum in (11) are realized

on E(λ̂k). The eigenvalue λ̂1 is simple (i.e., dimE(λ̂1) = 1) and it is clear from (10)

that the eigenfunctions corresponding to λ̂1 do not change sign. In fact λ̂1 is the
only eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have
nodal (sign-changing) eigenfunctions. In what follows, by û1 we denote the positive

L2-normalized (i.e., ‖u‖2 = 1) eigenfunction corresponding to λ̂1. If β ∈ Ls(Ω),
s > N , then û1 ∈ C+ \ {0} (see Wang [21]) and by the Harnack inequality of Pucci-
Serrin [16] (p.163) we have û1 > 0 for all z ∈ Ω. In fact if β+ ∈ L∞(Ω), then the
boundary point theorem (see Pucci-Serrin [16] (p.120)), implies that û1 ∈ intC+.

When β ∈ Ls(Ω), s > N
2

, the eigenspace E(λ̂k), k ≥ 1, have the so-called ”Unique

Continuation Property” (UCP for short) which says that, if u ∈ E(λ̂k) and u vanishes
on a set of positive Lebesgue measure, then u ≡ 0.
We can have a similar spectral analysis for a weighted version of the eigenvalue
problem:

−4u(z) + β(z)u(z) = λm(z)u(z), in Ω,
∂u

∂n |∂Ω
= 0 . (12)

as above, we can show that problem (12) admits a sequence {λ̃k(m)}k≥1 of distinct

eigenvalues such that λ̃1(m) < λ̃2(m) < ... < λ̃k(m) < ... and λ̃k(m) → +∞ as
k → ∞. These eigenvalues admit similar variational characterization using this
time the Rayleigh quotient σ(u)∫

Ω
mu2dz

for all u ∈ H1(Ω) (see (10), (11)). We have

the same properties for the corresponding eigenfunctions and eigenspaces. As an
easy consequence of the UCP of the eigenspaces, we have the following monotonicity
properties of the eigenvalues λ̃k(m), k ≥ 1.

Proposition 2.1. If m1, m2 ∈ L∞(Ω)+ \ {0}, 0,≤ m1(z) ≤ m2(z) a.e. in Ω,

m1 6= m2, then λ̃k(m2) < λ̃k(m1).

The following simple lemma will help us verify the mountain pass geometry for our
problem.

Lemma 2.2. If θ ∈ LN
2 (Ω), θ(z) ≤ λ̂1 a.e. in Ω, θ 6= λ̂1, then there exists c∗ > 0

such that

ξ(u) = σ(u)−
∫

Ω
θu2dz ≥ c∗‖u‖2 for all u ∈ H1(Ω) .
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Proof. From (10) and Lemma 2.1 we have ξ ≥ 0. We argue indirectly. So, suppose
that the Lemma is not true. Exploiting the 2-homogeneity of ξ(·), we can find a
sequence {un}n≥1 ⊆ H1(Ω) such that

‖un‖ = 1 for all n ≥ 1, and ξ(un)→ 0 as n→∞ . (13)

We may assume that

un ⇀ u in H1(Ω), and un ⇀ u in L2∗(Ω) . (14)

The sequential weak lower semicontinuity of ξ(·) and (13), (14) imply

σ(u) ≤
∫

Ω
θu2dz ≤ λ̂1‖u‖2

2, so from (10) we deduce σ(u) = λ̂1‖u‖2
2, hence

u = µû1 with µ ∈ IR . (15)

If µ = 0, then un → 0 in H1(Ω), which contradicts the fact that ‖un‖ = 1 for all
n ≥ 1 (see(13)). If µ 6= 0, then |u(z)| > 0 for a.a. z ∈ Ω (by the UCP). So, from (15)

and the hypothesis on θ, we have σ(u) < λ̂1‖u‖2
2, which contradicts (10). �

In a similar fashion exploiting the UCP, we also have the following result:

Lemma 2.3. (a) If η ∈ L∞(Ω), η(z) ≤ λ̂k a.e. in Ω (k ≥ 1) and η 6= λ̂k, then there
exists c̃ > 0 such that

σ(u)−
∫

Ω
ηu2dz ≥ c̃‖u‖2 for all u ∈ ⊕i≥kE(λ̂i) .

(a) If η ∈ L∞(Ω), η(z) ≥ λ̂k a.e. in Ω (k ≥ 1) and η 6= λ̂k, then there exists c̃0 > 0
such that

σ(u)−
∫

Ω
ηu2dz ≤ −c̃0‖u‖2 for all u ∈ ⊕ki=1E(λ̂i) .

3. constant Sign Solutions

In this section using variational methods based on the critical point theory, together
with truncation and perturbation techniques, we produce two nontrivial constant sign
solutions for problem (1).

In what follows by m0 ≥ 1 we denote the first integer such that λ̂m0 ≥ 0 (i.e., is the
first nonnegative eigenvalue). Evidently, if β ≥ 0, then m0 = 1.
The hypotheses on the data of (1) are the following:

H(β) : β ∈ Ls(Ω) with s > N and β+ ∈ L∞(Ω).

H(f)1 f : Ω × IR → IR is a Carathéodory function such that f(z, 0) = 0 for a.a.
z ∈ Ω and

(i) |f(z, x)| ≤ α(z)(1 + |x|) for a.a. z ∈ Ω, all x ∈ IR, with α ∈ L∞(Ω)+;
(ii) there exists an integer m ≥ max{m0, 2} such that

λ̂m ≤ lim inf
x→±∞

f(z, x)

x
≤ lim sup

x→±∞

f(z, x)

x
≤ λ̂m+1 uniformly for a.a. z ∈ Ω ;
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(iii) if F (z, x) =
∫ x

0 f(z, s)ds, then there exist τ ∈ (0, 2) and ζ ∈ L∞(Ω), ζ(s) ≤ 0
a.e. in Ω, ζ 6= 0 such that

lim sup
x→±∞

f(z, x)x− 2F (z, x)

|x|τ
≤ ζ(z) uniformly for a.a. z ∈ Ω ;

(iv) there exists a function θ ∈ L∞(Ω) such that

θ ≤ λ̂1 for a.a. z ∈ Ω, θ 6= λ̂1

and lim sup
x→0

f(z, x)

x
≤ θ(z) uniformly for a.a. z ∈ Ω ;

(v) for every ρ > 0 we can find ξρ > 0 such that

f(z, x)x+ ξρx
2 ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ .

Remark 1. Hypothesis H(f)1(ii) implies that asymptotically at ±∞, the quotient
f(z,x)
x

is in the spectral interval [λ̂m, λ̂m+1] with possible interaction with both end-
points (double resonance). Hypothesis H(f)1(iv) implies that at the origin we have

non uniform nonresonance with respect to the principal eigenvalue λ̂1 > 0.

We also consider the following perturbations-truncations of f(z, ·):

f̂+(z, x) =

{
0 if x ≤ 0

f(z, x) + ξ̂x if x > 0
and

f̂−(z, x) =

{
f(z, x) + ξ̂x if x < 0

0 if x ≥ 0
. (16)

Here ξ̂ > 0 is as in (8). Both f̂±(z, x) are Carathéodory functions and we set

F̂±(z, x) =
∫ x

0 f̂±(z, s)ds. We consider the C1-functionals ϕ̂± : H1(Ω) → IR defined
by

ϕ̂±(u) =
1

2
σ(u) +

ξ̂

2
‖u‖2

2 −
∫

Ω
F̂±(z, u(z))dz for all u ∈ H1(Ω) .

Also, let ϕ : H1(Ω)→ IR be the C1-energy functional for problem (1) defined by

ϕ(u) =
1

2
σ(u)−

∫
Ω
F (z, u(z))dz for all u ∈ H1(Ω) .

Proposition 3.1. If hypotheses H(β) and H(f)1 hold, then the functionals ϕ̂± satisfy
the C-condition.

Proof. We do the proof for the functional ϕ̂+, the proof for ϕ̂− being similar. Let
{un}n≥1 ⊆ H1(Ω) be a sequence such that

|ϕ̂+(un)| ≤M1 for some M1 > 0, all n ≥ 1 (17)

and (1 + ‖un‖)ϕ̂′+(un)→ 0 in H1(Ω)∗, as n→∞ . (18)
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From (18) we have∣∣∣∣〈A(un), h〉+
∫

Ω
(β(z) + ξ̂)unhdz −

∫
Ω
f̂+(z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(19)

for all h ∈ H1(Ω), with εn → 0+ ,

where A ∈ L(H1(Ω), , H1(Ω)∗) is defined by

〈A(u), v〉 =
∫

Ω
(Du, Dv)IRNdz for all u, v ∈ H1(Ω).

In (19) we choose h = −u−n ∈ H1(Ω). Then

σ(u−n ) + ξ̂‖u−n ‖2
2 ≤ εn for all n ≥ 1 (see (16)).

If we choose θ = −ξ̂ in Lemma 2.2, we obtain

c∗‖u−n ‖2 ≤ εn for all n ≥ 1, hence

u−n → 0 in H1(Ω). (20)

Then from (19) and (20), we have∣∣∣∣〈A(u+
n ), h〉+

∫
Ω
β(z)u+

nhdz −
∫

Ω
f(z, u+

n )hdz
∣∣∣∣ ≤ ε′n‖h‖ with ε′n → 0+ asn→∞ .(21)

Suppose that ‖u+
n ‖ → +∞ and let yn = u+

n

‖u+
n ‖

, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1

and so we may assume that

yn ⇀ y in H1(Ω) and yn → y in Ls
′
(Ω)

(
1

s
+

1

s′
= 1

)
as n→∞ . (22)

From (21) we have∣∣∣∣∣〈A(yn), h〉+
∫

Ω
β(z)ynhdz −

∫
Ω

f(z, u+
n )

‖u+
n ‖

hdz

∣∣∣∣∣ ≤ ε′n‖h‖
‖un‖

for all n ≥ 1 . (23)

By virtue of hypothesis H(f)1(i), we see that
Nf (u+

n )

‖u+
n ‖
⊆ L2(Ω) is bounded. So, by

passing to a subsequence if necessary and using hypothesis H(f)1(ii), we have

Nf (u
+
n )

‖u+
n ‖

⇀ ξy in L2(Ω) with λ̂m ≤ ξ(z) ≤ λ̂m+1 a.e. in Ω . (24)

Also, if in (23) we choose h = yn − y ∈ H1(Ω), pass to the limit as n→∞, use (22)
and (24), we obtain

lim
n→∞
〈A(yn), yn − y〉 = 0, so ‖Dyn‖2 → ‖Dy‖2 .

By the Kadec-Klee property of Hilbert spaces we have yn → y in H1(Ω), so

‖y‖ = 1 . (25)
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Now we pass to the limit as n→∞ in (23) and use (24), then

〈A(y), h〉+
∫

Ω
β(z)yhdz =

∫
Ω
ξ(z)yhdy, for all h ∈ H1(Ω) , that is

A(y) + βy = ξy, so

−4y(z) + β(z)y(z) = ξ(z)y(z) a.e. in Ω,
∂y

∂n
= 0 on ∂Ω . (26)

If ξ 6= λ̂m and ξ(z) 6= λm+1, then using Proposition 2.1 we have

λ̃m(ξ) < λ̃m(λ̂m) = 1, and 1 = λ̃m+1(λ̂m++1) < λ̃m+1(ξ) . (27)

From (26) and (27) we infer that y = 0, which contradicts (25).

Now assume that ξ = λ̂m or ξ = λ̂m+1. Then y ∈ E(λ̂m)\{0} or y ∈ E(λ̂m+1)\{0} (see
(25) and (26)). The UCP implies that y(z) > 0 for a.a. z ∈ Ω and so u+

n (z) → +∞
for a.a. z ∈ Ω. By virtue of hypothesis H(f)1(iii) and Fatou’s lemma, we have

lim sup
n→∞

1

‖u+
n ‖τ

∫
Ω

[
f(z, u+

n )u+
n − 2F (z, u+

n )
]
dz ≤

∫
Ω
ξ(s)y(s)ds < 0 . (28)

From (19) with h = u+
n ∈ H1(Ω), we have

− σ(u+
n ) +

∫
Ω
f(z, u+

n )u+
n dz ≥ −εn for all n ≥ 1 . (29)

Also from (17) and (20) we have

σ(u+
n )−

∫
Ω

2F (z, u+
n )dz ≥ −M1 for all n ≥ 1 . (30)

Adding (29) and (30) and dividing by ‖u+
n ‖τ , we obtain

1

‖u+
n ‖τ

∫
Ω

[
f(z, u+

n )u+
n − 2F (z, u+

n )
]
dz ≥ − M2

‖u+
n ‖τ

for some M2 > 0, alln ≥ 1 .
(31)

Comparing (28) and (31) we reach a contradiction. This proves that {u+
n }n≥1 ⊆

H1(Ω) is bounded (see (20)). We may assume that

un ⇀ u in H1(Ω) and un → u in Ls
′
(Ω) . (32)

In (19) we choose h = un − u ∈ H1(Ω). Passing to the limit as n → ∞ and using
(32), we obtain

lim
n→∞
〈A(un), un − u〉 = 0, so by the Kadec-Klee property of Hilbert spaces

un → u in H1(Ω) .

This proves that ϕ̂+ satisfies the C-condition. Similarly for the functional ϕ̂−. �

Minor changes in that above proof, lead to the following similar result for the func-
tional ϕ.
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Proposition 3.2. If hypotheses H(β) and H(f)1 hold, then the functional ϕ satisfies
the C-condition.

The next two propositions will verify the mountain pass geometry for the function-
als ϕ̂± (see Theorem 2.1).

Proposition 3.3. If hypotheses H(β) and H(f)1 hold, then ϕ̂±(tû1) → −∞ as
t→ ±∞.

Proof. By virtue of hypothesis H(f)1(ii) given ε ∈ (0, λ̂m − λ̂1), we can find c1 =
c1(ε) > 0 such that

F (z, x) ≥ 1

2
(λ̂m − ε)x2 + c1 for a.a. z ∈ Ω, all x ∈ IR. (33)

Then for t > 0, we have

ϕ̂+(tû1) =
t2

2
σ(û1) +

ξ̂t2

2
‖û1‖2

2 −
∫

Ω
F̂+(z, tû1)dz ≤ t2

2

[
λ̂1 − λ̂m + ε

]
− c1|Ω|N

(see (33) and recall that û1 ∈ int C+, ‖û1‖2 = 1). Since ε ∈ (0, λ̂m − λ̂1), we infer
that

ϕ̂+(tû1)→ −∞ as t→ +∞ .

Similarly for the functional ϕ̂−. �

Proposition 3.4. If hypotheses H(β) and H(f)1 hold, then u = 0 is a local minimizer
for the functionals ϕ̂± and ϕ.

Proof. By virtue of hypothesis H(f)1(i), (iv), given ε > 0 and r > 2, we can find
c2 = c2(ε, r) > 0 such that

F (z, x) ≤ 1

2
(θ(z) + ε)x2 + c2|x|r for a.a. z ∈ Ω, all x ∈ IR . (34)

Then for every u ∈ H1(Ω) we have

ϕ̂+(u) =
1

2
σ(u) +

ξ̂

2
‖u‖2

2 −
∫

Ω
F̂+(z, u)dz ≥ 1

2

[
σ(u)−

∫
Ω
θu2dz

]
− ε

2
‖u‖2

2 − c3‖u‖r

≥ c∗ − ε
2
‖u‖2 − c3‖u‖r, for some c3, c∗ > 0 (see (34) and (16)) .

Choosing ε ∈ (0, c∗), we have

ϕ̂+(u) ≥ c4‖u‖2 − c3‖u‖r with c4 = c∗ − ε > 0 . (35)

Since r > 2, we ca find ρ ∈ (0, 1) small such that ϕ̂+(u) > 0 for all u ∈ H1(Ω), with
0 < ‖u‖ ≤ ρ, so u = 0 is a strict local minimizer of ϕ̂+. Similarly for the functionals
ϕ̂− and ϕ. �

Now we are ready to produce nontrivial constant sign solutions.
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Proposition 3.5. If hypotheses H(β) and H(f)1 hold, then problem (1) has at least
two nontrivial constant sign solutions

u0 ∈ int C+ and v0 ∈ −int C+ .

Proof. From Proposition 3.4 and its proof, we know that we can find ρ ∈ (0, 1) small
such that

ϕ̂+(0) = 0 < inf[ϕ̂+(u) : ‖u‖ = ρ] = η̂+
ρ . (36)

Then (36) combined with Proposition 3.1 and 3.3, permit the use of Theorem 2.1.
so, we can find u0 ∈ H1(Ω) such that

ϕ̂′+(u0) = 0 and η̂+
ρ ≤ ϕ̂+(u0) . (37)

From (36) and (37), we see that u0 6= 0. From (37) we also have

A(u0) + (β + ξ̂)u0 = N
f̂+

(u0) . (38)

On (38) we act with −u−0 ∈ H1(Ω). Then (16) forces σ(u−0 ) + ξ̂‖u−0 ‖2
2 = 0, so by (8)

we obtain ‖̂u−0 ‖2 ≤ 0, hence u0 ≥ 0, u0 6= 0. Therefore (38) becomes A(u0) + βu0 =
Nf (u0), so

−4u0(z) + β(z)u0(z) = f(z, u0(z)) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω . (39)

Hence u0 ∈ H1(Ω) is a nontrivial positive solution of (1). HypothesesH(f)1 (i) (iv) (v)
imply that

|f(z, x)| ≤ c5|x| for a.a. z ∈ Ω, all x ∈ IR and some c5 > 0 . (40)

We set

h(z) =

{
f(z, u0(z))
u0(z)

if u0(z) 6= 0

0 if u0(z) = 0 .

From (40) we see that h ∈ L∞(Ω). from (39) we have

−4u0(z) = (h(z)− β(z))u0(z) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω . (41)

Note that (h− β)(·) ∈ Ls(Ω). Invoking Lemma 5.1 of [21] we have that u0 ∈ L∞(Ω).
From (41) it follows that −4u0 ∈ Ls(Ω). Then by virtue of Lemma 5.2 of [21]
we have u0 ∈ H2,s(Ω). Since s > N , the Sobolev embedding theorem implies that
H2,s(Ω) ↪→ C1,α(Ω) with α = 1 − N

s
> 0. Therefore u0 ∈ C+ \ {0}. From (41) we

have

4u0(z) = (β(z)− h(z))u0(z) ≤ (β+(z)− h(z))u0(z) a.e. in Ω , hence

4u0(z) ≤ (‖β+‖∞ + ‖h‖∞)u0(z) a.e. in Ω , so, from Vazquez [20] we obtain

u0 ∈ int C+ .
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Similarly, working this time with the functional ϕ̂− we produce a second nontrivial
constant sign solution v0 ∈ −int C+. �

4. Multiplicity Theorems

In this section we prove the two multiplicity theorems for problem (1). As we
already mentioned in the Introduction, our approach will be based on the reduction
method (see Amann [1], Castro-Lazer [4] and Thews [19]).

Let Y = ⊕mi=1E(λ̂i), Ĥ = Y ⊥ = ⊕i≥m+1E(λ̂i). We have the following orthogonal
direct sum decomposition:

H1(Ω) = Y ⊕ Ĥ .

So, every u ∈ H1(Ω) admits a unique sum decomposition

u = y + û with y ∈ Y, û ∈ Ĥ .

To implement the reduction method, we need to strengthen the conditions on the
reaction f(z, x):

H(f)2: f : Ω× IR→ IR is a measurable function such that f(z, 0) = 0 for a.a. z ∈ Ω
and

(i) there exists integer m ≥ max{m0, 2} and a function η ∈ L∞(Ω) such that

η(z) ≤ λ̂m+1 a.a. in Ω, η 6= λ̂m+1 , and

and |f(z, x)− f(z, y)| ≤ η(z)|x− y| for a.a. z ∈ Ω, all x, y ∈ IR;
(ii)

λ̂m ≤ lim inf
x→±∞

f(z, x)

x
uniformly for a.a. z ∈ Ω ;

(iii) there exist µ ∈ (0, 2) and ζ ∈ L∞(Ω), ζ(z) ≤ 0 a.e. in Ω, ζ 6= 0 such that

lim sup
x→±∞

f(z, x)x− 2F (z, x)

|x|µ
≤ ζ(z) uniformly for a.a. z ∈ Ω ;

(iv) there exists a function θ ∈ L∞(Ω) such that

θ(z) ≤ λ̂1 for a.a. z ∈ Ω, θ 6= λ̂1

and lim sup
x→0

f(z, x)

x
≤ θ(z) uniformly for a.a. z ∈ Ω ;

(v) for every ρ > 0 we can find ξρ > 0 such that

f(z, x)x+ ξρx
2 ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ .

Remark 2. By virtue of hypotheses H(f)2 (i) (ii) we have

λ̂m ≤ lim inf
x→±∞

f(z, x)

x
≤ lim sup

x→±∞

f(z, x)

x
≤ η(z) uniformly for a.a. z ∈ Ω.

(42)
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Proposition 4.1. If hypotheses H(β) and H(f)2 hold, then there exists a continuous

map ξ∗ : Y → Ĥ such that

inf [ϕ(y + û) : û ∈ Ĥ] = ϕ(y + ξ∗(y)) for all y ∈ Y .

Proof. Fix y ∈ Y and consider the C1-functional ϕy : H1(Ω)→ IR defined by

ϕy(u) = ϕ(y + u) for all u ∈ H1(Ω) .

Let i : Ĥ → IR be the inclusion map and let ϕ̂y = ϕy ◦ i : Ĥ → IR. By the chain

rule we have ϕ̂′y(û) = p
Ĥ∗
ϕ′y(û) for all û ∈ Ĥ, where p

Ĥ∗
is the orthogonal projection

of the Hilbert space H1(Ω)∗ onto Ĥ∗. If we take into account H(f)2 (i) and Lemma

2.3, then for û1, , û2 ∈ Ĥ we have

〈ϕ̂′y(û1)− ϕ̂′y(û2), û1 − û2〉Ĥ = 〈A(û1 − û2), û1 − û2〉

+
∫

Ω
β(z)(û1 − û2)2dz −

∫
Ω

(f(z, y + û1)− f(z, y + û2)) (û1 − û2)dz

≥ σ(û1 − û2)−
∫

Ω
η(z)(û1 − û2)2dz ≥ c6‖û1 − û2‖2 for some c6 > 0 ,

so ϕ̂′y is strongly monotone, hence ϕ̂y is strictly convex. Also, we have

〈ϕ̂′y(û), û〉 = 〈ϕ̂′y(û)− ϕ̂′y(0), û〉+ 〈ϕ̂′y(0), û〉 ≥ c6‖û‖2 − c7‖û‖ for some c7 > 0 , (43)

hence ϕ̂′y is coercive. Since ϕ̂′y is continuous and strongly monotone, it is maximal
monotone. But a maximal monotone coercive map is surjective (see, for example

Gasinski-Papageorgiou [8], p.320). So, we can find û0 ∈ Ĥ such that

ϕ̂′y(û0) = 0 .

Then û0 is unique (by virtue of the strong monotonicity of ϕ̂′y) and it is the unique
global minimizer of the strictly convex functional ϕ̂y. So, we can define the map

ξ∗ : Y → Ĥ which to each y ∈ Y assign the unique global minimizer û0 ∈ Ĥ of ϕ̂y.
We have

0 = ϕ̂′y(ξ
∗(y)) = p

Ĥ∗
ϕ′(y + ξ∗(y)) and ϕ(y + ξ∗(y)) = inf [ϕ(y + û) : û ∈ Ĥ] .

(44)

Let yn → y in Y . Then from (43) and (44), we have that

{ξ∗(yn)}n≥1 ⊆ Ĥ ⊆ H1(Ω) is bounded .

So, we may assume that

ξ∗(yn) ⇀ v in ⊆ H1(Ω) .

Using the Sobolev embedding theorem, we can easily check that ϕ is sequentially
weakly lower semicontinuous. So, we have

ϕ(y + v) ≤ lim inf
n→∞

ϕ(yn + ξ∗(yn)) . (45)
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But from (44) we have

ϕ(yn + ξ∗(yn)) ≤ ϕ(yn + û) for all û ∈ Ĥ ,

so, bearing in mind (45) and the convergence of {yn} to y we deduce

ϕ(y + v) ≤ ϕ(y + û) for all û ∈ Ĥ , hence (44) yields

v = ξ∗(y) .

From (44) we have

p
Ĥ∗
ϕ′(yn + ξ∗(yn)) = 0 for all n ≥ 1, that is ,

p
Ĥ∗

[A(yn + ξ∗(yn)) + β(yn + ξ∗(yn))] = p
Ĥ∗
Nf (yn + ξ∗(yn)) for all n ≥ 1 ,

hence lim
n→∞
〈A(yn + ξ∗(yn), ξ∗(yn)− ξ∗(y)〉 = 0 ,

so by the Kadec-Klee property of Hilbert spaces

ξ∗(yn)→ ξ∗(y) and ξ∗ is continuous .

�

Let ϕ̃ : Y → IR be the functional defined by

ϕ̃(y) = ϕ(y + ξ∗(y) for all y ∈ Y .

Proposition 4.2. If hypotheses H(β) and H(f)2 hold, then ϕ̃ ∈ C1(Y ).

Proof. Let y, v ∈ Y and λ > 0 (the analysis is similar if λ < 0). Then

ϕ̃(y + λv)− ϕ̃(y)

λ
≤ ϕ(y + λv + ξ∗(y))− ϕ(y + ξ∗(y))

λ
, so

lim sup
λ→0

ϕ̃(y + λv)− ϕ̃(y)

λ
≤ 〈ϕ′(y + ξ∗(y)), v〉 . (46)

Also, we have

ϕ̃(y + λv)− ϕ̃(y)

λ
≥ ϕ(y + λv + ξ∗(y + λv))− ϕ̃(y + ξ∗(y + λv))

λ
, so

lim inf
λ→0

ϕ̃(y + λv)− ϕ̃(y)

λ
≥ 〈ϕ′(y + ξ∗(y)), v〉 . (47)

From (46) and (47), we see that ϕ̃ is Gateaux differentiable at y ∈ Y and

〈ϕ̃′G(y), v〉Y = 〈ϕ′(y + ξ∗(y)), iY (v)〉 for all v ∈ Y,
where iY : Y → H1(Ω) is the inclusion map; so,

ϕ̃′G(y) = pY ∗ϕ
′(y + ξ∗(y)) .

From Proposition 4.1 we know that the map y → ϕ̃′G(y) is continuous, so ϕ̃ ∈
C1(Y ). �
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Remark 3. The above proposition allows us to consider the critical groups of ϕ̃ at
any isolated critical point.

Proposition 4.3. If hypotheses H(β) and H(f)2 hold, then ϕ̃ is anticoercive, i.e.,
if ‖y‖ → ∞, y ∈ Y , then ϕ̃(y)→ −∞.

Proof. We argue by contradiction. so, suppose we could find {yn}n≥1 ⊆ Y andM3 > 0
such that

‖yn‖ → ∞ and−M3 ≤ ϕ̃(yn) for all n ≥ 1 .

We have

−M3 ≤ ϕ̃(yn) ≤ ϕ(yn) =
1

2
σ(yn)−

∫
Ω
F (z, yn)dz . (48)

Let hn = yn
‖yn‖ , n ≥ 1. Then hn ∈ Y and ‖hn‖ = 1 for all n ≥ 1.The finite

dimensionality of Y implies that by passing to a subsequence if necessary, we have
hn → h in Y , and ‖h‖ = 1. From (48) we have

− M3

‖yn‖2
≤ 1

2
σ(hn)−

∫
Ω

F (z, yn)

‖yn‖2
dz for all n ≥ 1 . (49)

By virtue of (42) we have

λ̂m ≤ lim inf
x→±∞

2F (z, x)

x2
≤ lim sup

x→±∞

2F (z, x)

x2
≤ η(z) uniformly for a.a. z ∈ Ω .

(50)

Recall that from (40) we have

|F (z, x)| ≤ c8x
2 for a.a. z ∈ Ω, all x ∈ IR and some c8 > 0, so{

F (·, yn(·))
‖yn‖2

}
n≥1

⊆ L1(Ω) is uniformly integrable .

By virtue of the Dunford-Pettis theorem and because of (50), we have

F (·, yn(·))
‖yn‖2

⇀
1

2
η0h

2 in L1(Ω), with λ̂m ≤ η0 ≤ η . (51)

So, if in (49) we pass to the limit as n→∞ and use (51), then

0 ≤ 1

2
σ(h)− 1

2

∫
Ω
η0h

2dz ≤ 0 .

If η0 6= λ̂m, then, from Lemma 2.3 we obtain

0 ≤ σ(h)−
∫

Ω
η0h

2dz ≤ −c̃0‖h‖2 ,

a contradiction.
So, we may assume that η0 ≡ λ̂m. Then h ∈ E(λ̂m) and so by the UCP we have
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h(z) 6= 0 for a.a. z ∈ Ω. Hence |yn(z)| → +∞ for a.a. z ∈ Ω. By virtue of hypothesis
H(f)2(iii), given any ε > 0, we can find M4 = M4(ε) > 0 such that

f(z, x)x− 2F (z, x) ≤ (ζ(s) + ε)|x|µ for a.a. z ∈ Ω, all |x| ≥M4 . (52)

Then we have

d

dx

F (z, x)

x2
=
f(z, x)x− 2F (z, x)

x3
≤ ζ(s) + ε

x3−µ for a.a. z ∈ Ω, all x ≥M4 ,

so

F (z, x)

x2
− F (z, v)

v2
≤ −ζ(s) + ε

2− µ

[
1

x2−µ −
1

v2−µ

]
for a.a. z ∈ Ω, all x ≥ v ≥M4 ,

Let x→ +∞. Then from (50) we have

λ̂m
2
v2 − F (z, v) ≤ ζ(s) + ε

2− µ
vµ for a.a. z ∈ Ω, all v ≥M4 ,

so lim sup
v→+∞

1

vµ

[
λ̂m
2
v2 − F (z, v)

]
≤ ζ(s) + ε

2− µ
for a.a. z ∈ Ω .

Similarly, we show that

lim sup
v→−∞

1

|v|µ

[
λ̂m
2
v2 − F (z, v)

]
≤ ζ(s) + ε

2− µ
for a.a. z ∈ Ω .

Therefore

lim sup
|v|→∞

1

|v|µ

[
λ̂m
2
v2 − F (z, v)

]
≤ ζ(s) + ε

2− µ
for a.a. (53)

From (48) and (11), we have

−M3 ≤
1

2
σ(yn)−

∫
Ω
F (z, yn)dz ≤

∫
Ω

[
λ̂m
2
y2
n − F (z, yn)

]
dz . (54)

Since |yn(z)| → +∞ for a.a. z ∈ Ω, from (53), Fatou’s lemma, (54) and choosing
ε ∈ (0, −

∫
Ω ζ(s)ds), we reach a contradiction. This proves the anticoercivity of

ϕ̃. �

Remark 4. In particular the above proposition implies that ϕ̃ satisfies the C-
condition (just note that −ϕ̃ is coercive).

Now we are ready for the first multiplicity theorem concerning problem (1).

Theorem 4.1. If hypotheses H(β) and H(f)2 hold, then problem (1) has at least
three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ C1(Ω) .
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Proof. From Proposition 3.5, we already have two nontrivial constant sign solutions

u0 ∈ int C+, and v0 ∈ −int C+ .

From the proof of Proposition 3.5 we know that u0 is a critical point of ϕ̂+ of mountain
pass type and v0 is a critical point of ϕ̂− of mountain pass type. Hence

C1(ϕ̂+, u0) 6= 0, and C1(ϕ̂−, v0) 6= 0 . (55)

Note that from (16) we have ϕ̂+|C+ = ϕ|C+ and ϕ̂−|−C+ = ϕ|−C+ . Since u0 ∈ int C+

and v0 ∈ −int C+, we have

Ck
(
ϕ̂+|C1(Ω), u0

)
= Ck

(
ϕ|C1(Ω), u0

)
, and Ck

(
ϕ̂−|C1(Ω), v0

)
= Ck

(
ϕ|C1(Ω), v0

)
.
(56)

From Proposition 2.6 of Bartsch [3] and for w ∈ {u0, , v0}, we have

Ck
(
ϕ̂±|C1(Ω), w

)
= Ck (ϕ̂±, w) and Ck

(
ϕ|C1(Ω), w

)
= Ck (ϕ,w) for all k ≥ 1 .

(57)

Then from (55), (56) and (57) it follows that

C1(ϕ, u0) 6= 0 and C1(ϕ, v0) 6= 0 . (58)

Let pY be orthogonal projection of H1(Ω) onto Y . From Liu-Li [13] we have that

u0 = pY (u0) ∈ Kϕ̃, v0 = pY (v0) ∈ Kϕ̃

and

Ck(ϕ, u0) = Ck(ϕ̃, u0), Ck(ϕ, v0) = Ck(ϕ̃, v0), for all k ≥ 0 .

It follows from (58) that

C1(ϕ̃, u0) 6= 0 and C1(ϕ̃, v0) 6= 0 . (59)

From Proposition 4.3 we know that ϕ̃ is anticoercive on Y . Also, it is continuous.
So, by virtue of the Weierstrass theorem we can find y0 a maximizer of ϕ̃. Hence

Ck(ϕ̃, y0) = δk,dmZ for all k ≥ 0 where dm = dimY ≥ 2 . (60)

Finally from Proposition 3.4 and from Liu-Li [13], we have

Ck(ϕ, 0) = δk,0Z for all k ≥ 0, so Ck(ϕ̃, 0) = δk,0Z for all k ≥ 0 . (61)

Comparing (59), (60), (61), we see that y0 6∈ {0, u0, v0}. Then y0 = y0 + ξ∗(y0) ∈
H1(Ω) is a nontrivial critical point of ϕ distinct from u0 and v0. Therefore y0 is a
third nontrivial solution of (1) and as before (see the proof of Proposition 3.5), using
the regularity results of Wang [21], we have that y0 ∈ C1(Ω). �
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Next, by strengthening the regularity of f(z, ·), we will produce a fourth nontrivial
solution. To this end, we need to compute the critical groups of ϕ̃ at infinity. To do
this, we do not need the stronger conditions on f(z, x). So, using some ideas of Liu
[12], we are able to compute precisely the critical groups of ϕ̃ at infinity. In what
follows, we assume that Kϕ̃ is finite or otherwise we already have infinitely many
solutions of (1) and so we are done.

Proposition 4.4. If hypotheses H(β) and H(f)2 hold, then Ck(ϕ̃,∞) = δk,dmZ for

all k ≥ 0, where dm = dimY = dim⊕mi=1 E(λ̂i) ≥ 2.

Proof. Let µ0 < infϕ̃(Kϕ̃). From Proposition 4.3 we know that ϕ̃ is anticoercive.
So, we can find γ < ξ < µ0 and 0 < ρ < R such that

CR ⊆ ϕ̃γ ⊆ Cρ ⊆ ϕ̃ξ ,

where for every r > 0, Cr = {y ∈ Y : ‖y‖ ≥ r}.
We consider the long exact sequences of singular homology groups corresponding to
triples (CR, Cρ, Y ) and (ϕ̃γ, ϕ̃ξ, Y ). So, we have

· · · → Hk(Cρ, CR)
i∗
→ Hk(Y,CR)

j∗
→ Hk(Y,Cρ)

∂∗
→ Hk−1(Cρ, CR) → . . .

↓ h∗ |Cρ ↓ h∗ ↓ h∗ ↓ h∗ |Cρ

· · · → Hk(ϕ̃
ξ, ϕ̃γ)

î∗
→ Hk(Y, ϕ̃

γ)
ĵ∗
→ Hk(Y, ϕ̃

ξ)
∂̂∗
→ Hk−1(ϕ̃ξ, ϕ̃γ) → . . .

(62)

In (62) all squares are commutative (see Granas-Dugundji [11] (p.377)) and the

maps i∗, j∗, î∗, ĵ∗, h∗ are homeomorphisms induced by the corresponding inclusions
maps. Moreover, ∂∗ and ∂̂∗ are the corresponding boundary homeomorphisms. Since
γ < ξ < µ0 < infϕ̃(Kϕ̃), from the second deformation theorem (see, for example,
Gasinski-Papageorgiou [8], p.628), we know that ϕ̃γ is a strong deformation retract
of ϕ̃ξ and so

Hk(ϕ̃
ξ, ϕ̃γ) = 0 for all k ≥ 0 (see Granas-Dugundji [11] (p.387)) . (63)

Let χ : Cρ → CR be the map defined by

χ(u) =

{
R u
‖u‖ if ρ ≤ ‖u‖ ≤ R

u if R < ‖u‖ .
Evidently χ is continuous and χ|CR = id|CR . So, CR is a retract of Cρ. Also, we
consider the deformation h : [0, 1]× Cρ → Y defined by

h(t, u) = (1− t)u+ tR
u

‖u‖
for all [t, u] ∈ [0, 1]× Cρ .
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Using h, we see that Cρ is deformable into CR over Y . Therefore, invoking Theorem
6.5, p.325 of Dugundji [6], we have that CR is a deformation retract of Cρ. This
means that

Hk(Cρ, CR) = 0 for all k ≥ 0 see Granas-Dugundji [11] (p.387)). (64)

From the exactness of the long homology sequences in (62), we have

0 = imi∗ = kerj∗ see (64) and imj∗ = ker∂∗ = Hk(Y,Cρ)

0 = imî∗ = kerĵ∗ see (63) and imĵ∗ = ker∂̂∗ = Hk(Y, ϕ̃
ξ) .

It follows that both j∗ and ĵ∗ are group isomorphisms and the Lemma D.1, p.610, of
Granas-Dugundji [11] implies that h∗ is an isomorphism. So, we have

Hk(Y,Cρ) = Hk(Y, ϕ̃
ξ) for all k ≥ 0. Since ξ < infϕ̃(Kϕ̃), we obtain

Hk(Y,Cρ) = Ck(ϕ̃,∞) for all k ≥ 0. (65)

Using the radial retraction and Theorem 6.5 of Dugundji [6] (p.325), we show that
∂Bρ = {y ∈ Y : ‖y‖ = ρ} is a deformation retract of Cρ. So

Hk(Y,Cρ) = Hk(Y, ∂Bρ) for all k ≥ 0. From Maunder [15] (p.121), we deduce

Hk(Y,Cρ) = δk,dmZ, for all k ≥ 0. Hence, taking into account (65), we obtain

Ck(ϕ̃,∞) = δk,dmZ for all k ≥ 0.

�

Now we introduce the stronger conditions on the reaction f(z, x):

H(f)3: f : Ω× IR→ IR is a measurable function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, ·) ∈ C1(IR) and

(i) there exist integer m ≥ max{m0, 2} and a function η ∈ L∞(Ω) such that

η(z) ≤ λ̂m+1 a.a. in Ω, η 6= λ̂m+1

and |f ′x(z, x)| ≤ η(z) for a.a. z ∈ Ω, all x, y ∈ IR;
(ii)

λ̂m ≤ lim inf
x→±∞

f(z, x)

x
uniformly for a.a. z ∈ Ω ;

(iii) there exist µ ∈ (0, 2) and ζ ∈ L∞(Ω), ζ(z) ≤ 0 a.e. in Ω, ζ 6= 0 such that

lim sup
x→±∞

f(z, x)x− 2F (z, x)

|x|µ
≤ ζ(z) uniformly for a.a. z ∈ Ω ;

(iv)

f ′x(z, 0) = lim
x→0

f(z, x)

x
≤ λ̂1 uniformly for a.a. z ∈ Ω, and f ′x(·, 0) 6= λ̂1 .
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Remark 5. Hypotheses H(f)3 (i) (ii) and the mean value theorem imply that

λ̂m ≤ lim inf
x→±∞

f(z, x)

x
≤ lim sup

x→±∞

f(z, x)

x
≤ η(z) uniformly for a.a. z ∈ Ω .

Similarly, in this case hypothesis H(f)2 (v) is automatically satisfied.

Theorem 4.2. If hypotheses H(β) and H(f)3 hold, then problem (1) has at least
fournontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0, ŷ ∈ C1(Ω) .

Proof. From Theorem 4.1 we already have three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ C1(Ω) .

Recall that

C1(ϕ, u0) 6= 0 and C1(ϕ, v0) 6= 0 (see (57)). (66)

Note that ϕ ∈ C2(H1(Ω)) and

〈ϕ′′(u0)y, v〉 =
∫

Ω
(Dy,Dv)IRNdz +

∫
Ω
βyvdz −

∫
Ω
f ′x(z, u0)yvdz for all y, v ∈ H1(Ω),

hence ϕ′′(u0) is a Fredholm operator.
By σ(ϕ′′(u0)) we denote the spectrum of ϕ′′(u0) and assume that σ(ϕ′′(u0)) ⊆ [0,+∞).
For u ∈ ker(ϕ′′(u0)), we have

−4u(z) = m(z)u(z) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω , (67)

where m(·) = f ′x(·, u0(·)) − β(·) ∈ Ls(Ω). Then from (67) and Proposition 2.2 of
Godoy-Gossez-Paczka [10] it follows that dimker(ϕ′′(u0)) ≤ 1 and so we can apply
Proposition 2.5 of Bartsch [3] and have

Ck(ϕ, u0) = δk,1Z for all k ≥ 0. (68)

Similarly we show that

Ck(ϕ, v0) = δk,1Z for all k ≥ 0. (69)

Recall that, from (60) we have

Ck(ϕ, y0) = Ck(ϕ, y0 + ξ∗(y0)) = Ck(ϕ̃, y0) = δk,dmZ for all k ≥ 0. (70)

Also, from Proposition 4.4 and Liu-Li [13], we have

Ck(ϕ,∞) = Ck(ϕ̃,∞) = δk,dmZ for all k ≥ 0. (71)

Finally from Proposition 3.4, we have

Ck(ϕ, 0) = δk,0Z for all k ≥ 0. (72)
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Suppose Kϕ = {0, u0, v0, y0}. then from (68), (69), (70), (71), (72) and the Morse
relation (see (2)) with t = −1, we have

(−1)0 + 2(−1)1 + (−1)dm = (−1)dm , that is − 1 = 0, a contradiction.

So, we can find ŷ ∈ Kϕ, ŷ 6∈ Kϕ = {0, u0, v0, y0}. Then ŷ is a solution of (1) and the
regularity result of Wang [21] imply ŷ ∈ c1(Ω).

�
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