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Abstract: In this paper, a multiresolution approach for the quantitative microwave imaging of
complex scenarios is introduced. The proposed strategy takes advantage of the combined use of
a recently introduced iterative method known as distorted iterated virtual experiments (DIVE),
based on the paradigm of “virtual experiments”, and a wavelet-based projection scheme. This
strategy allows the unknown profiles to be represented at different resolution scales and, as such, it
is particularly suitable for the imaging of highly heterogeneous targets. Moreover, the developed
algorithm blends together the intrinsic multiresolution feature of the wavelet projection with the
one gained by means of a frequency hopping technique. The method was tested against realistic
heterogeneous scenarios of practical interest, such as breast and tree trunk phantoms, which are of
interest in non-invasive medical diagnostics and the health monitoring of standing trees.

Keywords: inverse scattering problem; microwave imaging; multi-frequency data; multiresolution;
wavelet basis; virtual experiments

1. Introduction

The reconstruction of the electrical properties (EPs) of unknown objects by means of microwave
imaging (MWI) can represent a promising tool for non-invasive diagnostics. In fact, microwaves
can interact with matter and provide useful information about it in a non-destructive way, without
using ionizing radiation. However, MWI is affected by a limited spatial resolution, and involves
the challenging task of solving an electromagnetic inverse scattering problem, which is non-linear
and ill-posed [1]. Notably, these difficulties are worsened when the unknown profile is highly
heterogeneous. Many strategies have been proposed in the literature to tackle both non-linearity
and ill-posedness of inverse scattering problems, especially in the case of complex scenarios, such as
the cases dealing with biomedical imaging or underground inspection [2–10].

As far as non-linearity is concerned, we can distinguish among approximation-based methods,
which, while having a limited range of applicability, actually solve a linear problem [11,12]; and
non-linear methods, which instead aim at solving the full non-linear problem. Among the latter, it
is worth recalling global optimization approaches [13] and local optimization procedures [14–17].
The former have the advantage of being free from false solution issues, but the huge dimension of
real case problems prevents their actual applicability in practice. For this reason, local optimization
procedures are mostly adopted in inverse scattering problems.

As for the ill-posedness of the inverse scattering problem, regularization strategies are necessary
in order to get reliable results [18,19]. Finally, it is worth mentioning the importance of exploiting
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multi-frequency data in inverse scattering, which also plays a beneficial role in the ill-posedness of the
problem, allowing the accuracy and stability of the final results to be improved [20].

With respect to this frame, this paper proposes an innovative approach for quantitative MWI that
is particularly suitable for the reconstruction of complex scenarios. It is based on a local optimization
approach, and combines a recently introduced iterative procedure based on the virtual experiments
(VE) framework, called distorted iterated virtual experiments (DIVE) [21], and a multiresolution
strategy based on regularization by projection, wherein the wavelet basis is conveniently exploited to
represent the unknown EPs of the target [22].

In [21], the DIVE method has been presented and tested in canonical scenarios, whose EPs
were retrieved by exploiting the truncated singular value decomposition (TSVD) [23] or the total
variation–compressive sensing (TV-CS) approach [24]. Both approaches represent a regularized
inversion scheme for the linear problem involved at each DIVE iteration. In the case of TSVD, the
regularization is performed by truncating the SVD of the scattering operator to a certain index, which
leads to a smooth reconstruction of the actual profile. The TV-CS approach is instead based on the
sparsity concept and the minimization of the `1-norm of the gradient of profiles, which are stepwise
constant. These different regularization approaches are adopted in order to maximize the performance
of the imaging algorithm, according to the class of profiles one is aiming at retrieving (on the basis
of the available a priori information on the scenario at hand). In the case of highly heterogeneous
and complex scenarios, both TSVD and TV-CS approaches have turned out to be neither effective nor
reliable. In this respect, the aim of this paper is to introduce an enhanced version of DIVE that fits well
to complex scenarios by acting on the regularization scheme.

The proposed strategy, named Multiresolution-DIVE (M-DIVE), solves the problem by spanning
different physical scales within a stepwise refinement framework, which includes both frequency
hopping [25] and multiscale/multiresolution techniques [26]. In more detail, M-DIVE takes advantage
of the intrinsic capability of wavelet transform to represent heterogeneous targets at different resolution
scales, thus reducing the ill-posedness of the linear problem to be solved at each DIVE iteration.
Moreover, for the first time, DIVE is used in conjunction with multi-frequency inversion techniques in
order to further improve the accuracy and reliability of the final reconstruction. Accordingly, M-DIVE
starts by retrieving a low-resolution reconstruction by processing only the lower-frequency data, and
this reconstruction is used as a starting estimation for higher-frequency reconstruction.

Starting from these considerations, and from the preliminary results obtained in [27], this paper
further investigates the potential of this approach with respect to complex scenarios. In particular,
two test cases of practical interest are considered. The first one concerns medical MWI, which is
acquiring a great deal of interest in medical diagnosis because it can offer significant advantages
over other medical imaging techniques—namely, the use of non-ionizing radiation and the possibility
of cheap and portable devices. In particular, it has gained increasing interest in the field of breast
diagnostics [28,29]. Breast profiles are characterized by a very high degree of inhomogeneity, both
in terms of geometry and EPs, hence, they allow an opportunity to fully exploit the multiresolution
capability of the proposed approach. The adoption of a wavelet representation-based approach for
biomedical imaging is not new in the literature [30,31]. It was previously proposed in conjunction
with the distorted Born iterative method (DBIM) scheme [31]. However, since the DIVE procedure has
shown an extended validity and better performance with respect to DBIM [21], the proposed M-DIVE
is expected to provide better results.

The second test case concerns the inspection of wood materials, around which interest has
been growing in recent years. The reasons for this are related to the possibility of achieving useful
information about the healthy state of standing trees in order to prevent falls and optimize cutting
strategies [32–34], but also to assess the quality of the wood product in industrial processes [32–34].
Moreover, the use of microwaves for these kinds of inspections seems to be attractive with respect to
ultrasound or X-ray-based techniques, especially in terms of cost and data acquisition time (see [32–35]
and references therein).
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The paper is organized as follows. In Section 2.1, the mathematical formulation of the problem
underlying the MWI and DIVE scheme is given. In Section 2.2, the proposed multiresolution approach
is introduced and described, while in Section 3, an extensive numerical analysis against realistic breast
and tree trunk phantoms is reported. Finally, the discussion of the results and conclusions follow.

2. Materials and Methods

2.1. Mathematical Formulation and DIVE Scheme

Let us consider an unknown non-magnetic object embedded in a homogeneous medium of
known electromagnetic features, whose cross section (with compact support) Σ is hosted in the
imaging domain Ω. With reference to the canonical 2D scalar case, the region being tested is probed by
a set of T incident fields (TM polarized) transmitted by an array of antennas located on a closed curve
Γ around Ω. The resulting scattered fields are measured by N receiver antennas, also located on Γ. By
assuming and dropping the time harmonic factor exp{jωt}, the equation describing the scattering
phenomenon, at the frequency f , is [1]:

Es
(v)(R, f ) = Ae[χ(r′, f )E(v)(r′, f )], (1)

where the subscript v = 1, . . . , T identifies the generic incident field; R ∈ Γ; r′ ∈ Ω; E and
Es are the total field in Ω and the scattered field on Γ, respectively; and Ae is a short notation
for the integral radiation operator. Finally, the EPs of the unknown object are encoded in the
contrast function χ(r′) = ε(r′)/εb − 1, wherein ε and εb are the complex permittivity of target and
background, respectively.

The solution of Equation (1) for the estimation of χ from the measured scattered fields Es implies
the overcoming of both non-linearity, as the total field also depends on the unknown contrast, and the
ill-posedness, due to the properties of Ae [1].

A possible effective approach to tackle the non-linearity has been introduced in recent years
within the VE framework [21]. The VE framework was derived from the circumstance that the
linear superposition of different incident fields gives rise to the same linear superposition of the
corresponding scattered fields. In particular, the use of these new scattering experiments has allowed a
new field approximation to be introduced, to linearize the problem in (1). Finally, in order to enlarge
the range of validity of such VE-based approximation, the iterative DIVE method [21] has recently
been proposed and tested in cases of canonical targets. This scheme is intrinsically different from
DBIM, as it takes into account the nature of the scatterers from the first step. Notably, its performance
has been shown to be remarkably better [21].

The DIVE procedure can be summarized in five steps, as shown in Figure 1. In the initialization
step, a first estimate χ0 is achieved by using the VE-based approximation, or other convenient starting
guesses, depending on the available a priori information. In the update step, the forward scattering
problem pertaining to the current estimate χk−1 is solved to update the Green’s function and compute
the new data—that is, the anomalous field ∆Es

k. Then, a convergence control is performed by defining
the relative residual error at the kth iteration: if the stopping rule is not satisfied, possible corrections
∆χk with respect to χk−1 are estimated by considering a distorted formulation of the scattering problem.
Thereafter, the distorted linear sampling method [36] is exploited to localize ∆χk and design a new
VE set. The last step deals with the solution of the relevant distorted linear inverse problem, which is
recast as:

∆Es
k(R, f ) = Ae

k
[
∆χk(r′, f ) E k(r′, f )

]
= L(∆χk(r′, f )), (2)

where ∆Es
k and E k are the anomalous and approximated total fields arising in the VE, respectively,

and Ae
k is the external radiation operator pertaining to the reference scenario at the kth iteration,

while L indicates the linear operator which applies to ∆χk. Note that, unlike DBIM, the total field
is approximated by taking into account the contribution of the anomaly, thanks to the VE-based
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approximation. Once Equation (2) is solved by adopting a convenient regularization technique, the
contrast update is pursued by adding the reconstructed perturbations to the current reference scenario,
namely χk+1 = χk + ∆χk. Note that, depending on the a priori information about the target, different
regularization techniques can be adopted to solve Equation (2). Finally, the procedure continues until
the stopping criterion is fulfilled.

More details about the VE framework and basics of DIVE can be found in Reference [21] and
references therein.
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2.2. Multiresolution DIVE

In this paper, the DIVE approach is tailored with respect to complex and heterogeneous scenarios.
To this end, it is integrated into a stepwise refinement framework in order to combine both the
intrinsic multiresolution feature of the regularization by projection on wavelet basis [26] and the
possibility offered by a frequency-hopping-based strategy of increasing the resolution scale by simply
changing the frequency of interest. The processing of multi-frequency data allows an increase in the
data-unknown ratio. In particular, the frequency hopping technique plays a very important role, as
low frequencies make it possible to locate the objects and to roughly reconstruct them, while higher
frequencies allow finer details to be retrieved [20].

On the other hand, the wavelet basis offers the possibility to decompose the unknown profile
into two sets of coefficients, namely, coarse and detail coefficients, and to accommodate the trade-off
between the efficiency and accuracy of the representation [22]. The thus-obtained M-DIVE scheme is
able to zoom in on details progressively, by starting with a coarse estimate of the unknown and then
further improving it.

Consequently, the unknown ∆χk in Equation (2) is represented as the superposition of wavelet
basesWn(r):

∆χk(r′, f ) = ∑
n

∆Wn
k( f )Mn( f )Wn(r′), (3)

whereWn are the wavelet bases, ∆Wn
k are the wavelet coefficients (which are the actual unknowns of

the problem), andMn is a binary mask which selects only the coarse coefficients at each frequency
and decomposition level. Then, the solution of the linear problem (2) is achieved by minimizing the
following cost functional:

Φ(∆Wn
k) = ‖∆Es

k(R, f )−L(∆χk(r′, f ))‖2
2 (4)

through an “inner” iterative procedure, ‖·‖2 being the `2-norm. In particular, the inversion of
Equation (4) is performed by integrating the representation (3) into a conjugate gradient least square
technique. More details can be found in [31].

Note that, during the overall M-DIVE procedure, the decomposition level of the wavelet
representation is changed throughout the different frequencies. Accordingly, M-DIVE starts from a
high level of decomposition (or, equivalently, a high-order coarse representation), and then the level is
progressively reduced to retrieve finer details in the image, thus improving image resolution.
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3. Results

In the following text, two relevant examples are presented in order to give a proof of the
performance achievable by means of M-DIVE, both dealing with heterogeneous profiles coming
from two real applications involving complex scenarios—that is, breast phantom imaging [29–31] and
tree trunk inspection [32–34].

In both examples, the scattered field data are simulated using an in-house developed forward
solver, based on the method of moments, while at each iteration of the M-DIVE scheme, the pertaining
model to build the VE is attained by means of full-wave simulations.

3.1. Breast Phantom Imaging

Two-dimensional examples concerned with quantitative reconstructions of the EPs of a slice of
two anthropomorphic breast phantoms are presented. To build the 2-D profile, the 92nd slice from
phantom ID 062204 (representing a heterogeneously dense breast) and the 65th slice from phantom ID
012304 (representing a very dense breast), both belonging to the University of Wisconsin repository [37]
(available online), were extracted and resized in such a way that the actual cell dimension was 0.5 mm.
The considered background medium was lossless and had relative permittivity equal to 18 [38].
Moreover, the adopted multi-view multi-static measurement configuration considers T = N = 20 and
T = N = 24 sources, modelled as line sources, surrounding the breast on a circumference of radius
0.0824 m and 0.1 m for phantom IDs 062204 and 012304, respectively. This number of antennas permits
collection of all the available information at the lowest frequency of 1 GHz in a non-redundant way [39].
The processed data were then corrupted by an additive Gaussian noise, with signal-to-noise ratio
(SNR) equal to 30 dB.

The range of the considered frequencies was 1–4 GHz, with a frequency step of 250 MHz [31].
The mother wavelet adopted during the procedure was the Daubechies20. In particular, at the first
three frequencies, a 3rd-level decomposition was performed, while in the frequency range 1.75–2.25
GHz, a 2nd decomposition level was considered. Finally, the 1st level of decomposition was adopted
in the range 2.5–3 GHz, and 0th-level in the range 3.25–4 GHz.

The obtained reconstruction, and some intermediate results, are shown in Figures 2 and 3. Note
that at 1 GHz, the initial guess χ0 was obtained by assuming the actual shape of the breast to be known,
and by filling it with homogeneous fatty tissue. Moreover, in the solution of problem (2), constraints
were enforced on the admissible EPs values of the investigated region being tested in order to get
permittivity values higher than 1 and conductivity values higher than 0.
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Figure 2. Dense breast (ID 062204). Real part ε′ (top) and imaginary part ε” (bottom) of the reference
permittivity and of the reconstructed profile at (from the left to the right) 1 GHz, 2 GHz, 3 GHz, and
4 GHz.
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Figure 3. Very dense breast (ID 012304). Real part ε′ (top) and imaginary part ε” (bottom) of the
reference permittivity and of the reconstructed profile at (from the left to the right) 1 GHz, 2 GHz,
3 GHz, and 4 GHz.

As it can be seen in Figures 2 and 3, the morphology and the EPs of the imaged breast profiles
were accurately retrieved. The accuracy of the obtained reconstructions was quantified by means
of the normalized mean square reconstruction error (NMSE), computed separately for the complex
permittivity function ε, and for the real (ε′) and imaginary (ε′′ ) parts of the latter. Note that the NMSEs
reported in Tables 1 and 2 were lower with respect to the ones in [31], reported in the last columns of the
tables, thus confirming the better capability of the M-DIVE approach in imaging highly heterogeneous
profiles. Note also that in [31], in contrast to the M-DIVE examples, the highest considered frequency
was 3 GHz, possibly because no significant improvements were observed as frequency increased.

Table 1. NMSE of heterogeneously dense breast (ID 062204).

Frequency NMSE on ε NMSE on ε′ NMSE on ε” NMSE on ε from [31]

1 GHz 0.29 0.28 0.69 0.41
2 GHz 0.19 0.18 0.47 Not provided
3 GHz 0.13 0.12 0.45 0.28
4 GHz 0.11 0.10 0.42 -

Table 2. NMSE of very dense breast (ID 012304).

Frequency NMSE on ε NMSE on ε′ NMSE on ε” NMSE on ε from [31]

1 GHz 0.22 0.20 0.66 0.39
2 GHz 0.15 0.14 0.47 Not provided
3 GHz 0.10 0.09 0.41 0.29
4 GHz 0.08 0.07 0.40 -

3.2. Tree Trunk Inspection

The tree being tested was a four-layered oak phantom with dielectric properties fixed by following
References [32,40]. In particular, the inner heartwood layer had ε = 9 and σ = 0.005 S/m; the sapwood
layer was characterized by ε = 16, σ = 0.01 S/m; next, the thicker layer was the phloem, with ε = 22,
σ = 0.05 S/m; finally, the bark had ε = 6.2, σ = 0.02 S/m. The outer diameter of the trunk was
about 50 cm and a lossless matching medium with permittivity equal to 4.7 was chosen according to
Reference [40]. In order to mimic a more realistic environment, we added a random variation of ±5%
around the average EPs values of the trunk. The investigation domain was discretized into 64 × 64
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square cells, while the multi-view multi-static data, corrupted by 30 dB of noise, were collected by
T = N = 21 antennas located at a distance of about 12.5 cm from the trunk.

For the sake of monitoring the healthy state of a tree, we simulated some cracks inside the trunk,
identified by the dielectric parameters of the void (ε = 1, σ = 0). When an exact knowledge of the tree
structure is available, such anomalies can be detected by exploiting distorted or differential imaging
techniques [29,41]. However, in most cases, this kind of a priori information is not available and a full
imaging of the trunk under investigation has to be pursued.

In this example, the considered frequency range was 0.1–1 GHz, with a step of 150 MHz. Note
that with respect to the previous medical examples, different frequency ranges were adopted due to
the different size of the target being tested (50 cm versus 8 cm). Moreover, the wavelet decomposition
level was equal to 3 for frequencies 100 and 250 MHz, 2 for 400 and 550 MHz, and 1 for 700 and 850
MHz. Finally, a 0th decomposition level was adopted at the last frequency.

The outcome of the inversion is reported in Figure 4. Note that the starting point of the iterative
inversion algorithm was set as a homogeneous trunk having the actual dimension of the phantom and
EPs of the phloem layer. As it can be seen, the M-DIVE scheme was able to identify the different layers
and the presence of cracks inside the trunk. The accuracy of the reconstruction was also confirmed by
the achieved low values of NMSE (Table 3).
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Figure 4. Oak tree trunk. Real part of permittivity ε′ (top) and imaginary part ε” (bottom) of the
reference profile and of the reconstructed profile at (from the left to the right) 100 MHz, 400 MHz,
700 MHz, and 1 GHz.

Table 3. NMSE of oak tree trunk.

Frequency NMSE on ε NMSE on ε′ NMSE on ε”

100 MHz 0.15 0.14 0.19
400 MHz 0.05 0.05 0.28
700 MHz 0.03 0.03 0.63

1 GHz 0.02 0.02 0.97

4. Conclusions

In this contribution, a novel technique for quantitative MWI of complex scenarios was introduced
and tested. The proposed strategy exploits the DIVE scheme, which is an iterative method
recently introduced and assessed in relation to canonical targets, based on the paradigm of “virtual
experiments”. In order to introduce an enhanced version that fits well in complex scenarios, DIVE
was herein exploited for the first time in conjunction with a frequency hopping technique and a
wavelet-based multi-resolution representation of the unknown. By doing so, a multiresolution version
of the DIVE (M-DIVE) scheme was introduced.
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The developed imaging technique was tested with respect to two different applications
involving heterogeneous profiles, namely, realistic anthropomorphic breast and tree trunk phantoms.
The reconstruction images and the synthetic errors confirmed the capability of M-DIVE to deal with
complex and heterogeneous scenarios.

Note that while the two applications are different and, as such, consider different measurement
setups and settings, the general methodology (i.e., the way in which the data coming from a generic
measurement setup are processed) does not change. Of course, when moving to real applications,
different settings (e.g., type and polarization of the antennas, frequency range, etc.) must be properly
chosen and the data-processing procedure tuned accordingly, for example, by means of a suitable
calibration of the measured data.
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