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Abstract—Quantitative estimation of both conductivity and permittivity of biological tissues is
essential in many biomedical applications, ranging from therapeutic treatments to safety assessment
of medical devices and dosimetry. Typically, the electromagnetic field distribution inside the body
is predicted based on available ex-vivo measured electrical properties. Unfortunately, these values
may be quite different from the ones measured in-vivo and cannot account for the differences among
individuals. As a result, their use can introduce significant errors affecting therapeutic treatments and
dose estimation. To cope with this problem, in this paper a new approach for estimation of effective
electrical properties of human tissues is introduced. The proposed strategy is based on the solution
of an inverse scattering problem (by means of a contrast source inversion scheme) and the use of an
effective representation of the unknowns based on spatial priors derived by magnetic resonance imaging
or computed tomography. The approach is tested in controlled conditions against simulated single
frequency data and realistic and anthropomorphic head and neck phantoms. Moreover, the inherent
advantages have been assessed in the framework of hyperthermia treatment planning.

1. INTRODUCTION

The proper evaluation of the interaction between electromagnetic waves and the human body is
nowadays increasingly important, owing to the pervasiveness of electromagnetic technologies. As
a matter of fact, accurate knowledge of the field distribution is needed in dosimetry to assess the
safety of human exposure to radiating devices [1], as well as in planning anti-cancer hyperthermia
treatments (HTP) to deliver an optimal, patient-specific, therapy by synthesizing the excitations of
the applicator [2–4]. Also, the field distribution is required for a proper design of wireless powering of
implanted devices coupled from external sources [5]. On the other hand, since performing the relevant
field measurements is usually not possible, field evaluation relies on numerical simulations. To this end,
a key role is played by the electrical properties (EPs) of biological tissues, namely, conductivity and
permittivity, whose proper knowledge is essential to build reliable computational models of the human
body.

Currently, electromagnetic models are derived from medical images obtained by magnetic resonance
imaging (MRI) or computed tomography (CT). By segmenting these images, a 3D spatial model with
tissue labeling is generated. Then, the EPs are tissue-wise associated on the basis of the average values
reported in the literature, arising from measurements of ex-vivo tissue samples [6, 7]. As such, the
models obtained in this way assume that the EPs in-vivo and the ones ex-vivo measured are essentially
the same. Unfortunately, this seems to be not the case, according to some studies showing a not
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negligible difference existing between ex-vivo and in-vivo EPs [8–11]. Hence, there’s an increasing need
of characterizing the actual in-vivo EPs. In this respect, the straightforward direct and invasive measure
of the in-vivo properties can be fallacious. First, in some cases invasive measurements are not possible,
e.g., bone, bone marrow [12]. Second, in case invasive measurements are feasible, the adoption of an
average inter-patients EPs values would flat the natural human body variability [13]. Therefore, an
approach to estimate the in-vivo EPs in a non-invasive, low-cost and case-specific way is highly needed.

A possible technique could consist in a proper processing of the magnetic field acquired by an MRI
system [14], thus being able to reach high accuracy in determining the complex permittivity of the
scenario. However, such an approach only works at the MRI scanner resonance frequency, so that it
implicitly requires that a reliable dispersion relationship is available. Moreover, the measured data are
affected by phase uncertainties [15]. As an alternative, microwave tomography (MWT) [16–20] could
be exploited, as this technique indeed provides a low-cost and non-invasive modality to image the inside
of the human body at the frequencies of interest for the above-mentioned applications. On the other
hand, it is well known that, as compared to MRI and CT, MWT exhibits a low spatial resolution, which
would ultimately impair the pursued goal (i.e., high resolution mapping of the EPs to build reliable
computational models).

To address such an inconvenience, in this paper, a new MWT approach for estimation of effective
EPs of biological tissues is proposed and described. The approach is based on the simple idea of
incorporating morphological information obtained from MRI or CT images into the MWT algorithm,
in order to benefit from the high spatial resolution characterizing these images. In particular, the spatial
priors derived from segmented medical images are exploited to build a patient-specific representation
basis of the unknown EPs. As a result, the properties are encoded by means of a set of (complex)
coefficients corresponding to the effective EPs of each tissue, as segmented from the MRI or CT map.
Note that besides ensuring high resolution images, this strategy allows a dramatic reduction of the
unknown parameters, which, as extensively discussed in [21], has a crucial influence on reliability and
accuracy of the retrieval procedure. In practice, the inverse scattering problem, herein solved by means
of a contrast source inversion (CSI) scheme [22], is turned into a parameters estimation, whose unknowns
are just the effective EPs of the tissue tagging in the MRI or CT map. Also note that approximating the
actual EPs distributions with a step-wise constant function is the common assumption when therapeutic
treatments are planned or field exposure is quantified [1–4]. As such, the spatial regularization herein
introduced belongs to the hard prior techniques, which can exhibit better performance with respect to
the soft prior techniques [23], wherein the EPs inside the tissue are not enforced to be exactly step-wise
constant but instead large variations are penalized [23].

The integration of MRI/CT based spatial priors (both hard and soft) into MWT has also been
considered in previous studies [23–25], in the framework of breast imaging (which is indeed another
application for which the method herein proposed is suitable). However, there are several significant
differences between the method herein proposed and those studies. As a matter of fact, in those
approaches, the spatial constraints are enforced as penalty terms within a l2 norm regularization
framework. This entails the need of weighting their contribution through properly selected regularization
parameters. This circumstance, and the very large number of unknowns which is anyway dealt with,
ultimately affects their effectiveness and applicability. In fact, up to now they have been proved to be
effective only for over-simplified scenarios consisting of at most three biological tissues. Another example
of regularization based on MRI/CT spatial priors is introduced in [26]. However, in this latter the EPs
tomography is performed by processing the signal from MRI scanner by means a Newton-Kantorovich
inversion scheme, which requires both the solution of several forward problems as well as the solution
of several linearized inverse problems.

With respect to the above-mentioned works, the proposed technique is more flexible, as the spatial
priors are herein enforced in such a way to deal with realistic anatomical heterogeneous structures,
which can be made up by many different tissues. Moreover, the proposed strategy involves a much
simpler implementation and higher efficiency both in terms of memory and computation, and there is
no need to select regularization parameters. Finally, it is important to underline that the approach
herein proposed processes single frequency data. This implies simplicity of the involved hardware
and, differently from [25], no need of using dispersion relaxations which could not model with enough
accuracy the in-vivo EPs. Indeed, the approach herein introduced could instead allow the determination



Progress In Electromagnetics Research, Vol. 164, 2019 3

of alternative and eventually more appropriate in-vivo dispersion model of the investigated tissues.
From a technological point of view, the feasibility of the approach, as well as of those in [23–

25], relies on the capability of co-registering MRI and CT images with the MWT system. While
this may be challenging, there are already examples of devices which circumvent this difficulty in the
hyperthermia treatment of head & neck (H&N) tumors [27]. Moreover, because of the need of monitoring
the temperature distribution during the treatment [28], MRI-compatible microwave systems are being
developed [29]. As a consequence, one could have a simultaneous acquisition of MRI and microwave
signals.

The paper is organized as follows. In Section 2, the basics of the inverse scattering problem are
recalled together with the role of the representation basis. In Section 3, the proposed MRI/CT based
projection and the Segmented CSI scheme are introduced and described. In Section 4, a ‘controlled’
numerical assessment is carried out against a 2D H&N scenario, which is a challenging example of
a heterogeneous biological scenario. Section 5 presents a practical example of the usefulness of the
proposed approach in the framework of HTP by exploiting a recently introduced technique [30]. Finally,
conclusions follow.

2. INVERSE SCATTERING PROBLEM

The inverse scattering problem amounts to recover the geometry and electromagnetic properties of
unknown scattering objects starting from the knowledge of the incident fields and the measurements
of the corresponding scattered fields [16]. For the sake of simplicity, let us consider the canonical 2D
scalar problem (TM polarized fields) in which the scenario is invariant along one direction and the
electric fields are polarized along the invariance axis. Note that all difficulties pertaining to the 3D
inverse scattering problem of interest, namely non-linearity (possibly leading to false solutions [21])
and ill-posedness, are already present in the 2D geometry. Moreover, the approach introduced in the
following Sections can be straightforwardly extended to the case of 3D geometries.

Let Ω denote the region of interest where the targets are located, and εs(r) and εb(r) the complex
permittivities of the scatterers and the background medium, respectively, with r = (x, y) scanning the
investigation domain Ω. This latter is probed by means of a set of incident fields transmitted by some
antennas located in rt on a closed curve Γ and the resulting scattered fields are measured by receiver
antennas also located in rm ∈ Γ. For the generic transmitter, the equations describing the problem are
the data and state equations [16]:

Es (rm, rt) = Ae [W (r,rt)] (1)
W (r, rt) = χ(r)Ei (r,rt) + χ(r)Ai [W (r,rt)] (2)

where Ei, Es and W are the incident field, the scattered field and the contrast source induced in the
scatterers, respectively, and χ(r) = εs(r)/εb(r) − 1 is the contrast function, which relates the unknown
properties of the targets to those of the background medium. Finally, Ae and Ai are short notations for
the corresponding integral radiation operators (see [16, 17] for more details). As well-known, the problem
(1)–(2) is non-linear, as the contrast sources W also depend on the unknown of the problem, i.e., the
contrast function χ. Moreover, it is also ill-posed due to the properties of the involved operator Ae [17].
In order to face such difficulties, different efforts have been made in literature in order to develop effective
and reliable approaches. For our purposes, among the different regularization techniques, the so-called
projection methods are worth to be recalled. In these regularization methods, the dimensionality of
the space of the unknowns is reduced by choosing a suitable representation basis. In fact, a necessary
(still not sufficient) condition to overcome ill-posedness is that the dimension of the space where the
unknown function is looked for is not greater than the one of the data space [21]. Some examples can
be found in [21, 31–34], wherein projection methods based on Fourier harmonics or Wavelet transform
are adopted.

3. NEW ESTIMATION OF EPS VIA MRI/CT BASED PROJECTION

In the current state of the art, the electromagnetic model of the human body is built by segmenting MRI
or CT images and associating to each thus identified tissue the relevant ex-vivo EPs value as given in
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available databases [6, 7]. While still taking advantage from the same segmentation, which is nowadays
a well assessed and effective procedure in the clinical practice [7], the proposed approach just exploits
it to introduce a convenient expansion of the contrast function.

To illustrate this concept, let T be the number of tissues arising from the image segmentation.
Then, a tissue space for the segmented scenario is introduced as the set of T functions, T1, . . . ,TT , such
that the generic tissue basis function Tn is equal to one in all pixels associated with the n-th tissue and
zero elsewhere. Accordingly, in order to deal with ill-posedness, the unknown contrast function can be
expanded onto such a tissue space as:

χ (r) =
T∑

n=1

χ̂nTn (r) = T (χ̂) (3)

Equation (3) introduces a new way to approach to the problem of EPs estimation by microwave
imaging, as it allows to associate to each tissue just a complex number, which represents its effective
EPs. By doing so, high flexibility to deal with heterogeneous anthropomorphic scenarios made up of
many tissues is guaranteed. Moreover, unlike approaches in [23–25], regularization in Eq. (3) does
not require the selection of regularization parameters and allows a drastic reduction of the number of
unknowns. Thanks to this patient specific tissue projection, the inverse scattering problem associated
to EPs estimation can be cast as the solution of Eqs. (1)–(2), having as unknowns the T (complex)
expansion coefficients χ̂1, . . . , χ̂T , which encode the effective tissue EPs. In such a way, the complexity
of the inverse problem is remarkably simplified, as only T complex unknowns have to be determined,
with a significant mitigation of the ill-posedness and non-linearity of problem [16, 17, 21].

By means of the representation in Eq. (3), the EPs distribution is approximated with a step-wise
constant function, rather than representing by punctual values within each tissue. Note that in case of
small errors in the definition of Tn from the MRI or CT images, small errors on the effective EPs values
are also expected, as proved in [25].

Obviously, the tissue projection in Eq. (3) derived by MRI or CT can be used in conjunction
with many different inversion techniques. Also, the very low number of parameters one is looking
for would enable a fruitful exploitation of global optimization techniques. Hence, by paying the price
of an increased computational burden, a kind of completely “blind” retrieval procedure (but for the
boundaries) is also possible.

However, in the following, by taking advantage of the analysis in [21], a local optimization procedure
has been used. In this respect, the CSI [22] and Newton-Kantorovich (NK) inversion schemes [35] are
probably the most popular inversion methods which allow to tackle the problem in its full non-linearity.
However, NK aims at solving the inverse problem through a sequence of linearized problems (each
having its range of validity), which require to solve a forward scattering problem at each step. This
circumstance has a huge impact in term of computational burden. Conversely, by acting contemporarily
on both Eqs. (1) and (2), the CSI method does not require to solve a forward problem at each iteration
and does not involve any kind of approximations. For the above circumstances, in the following a CSI
scheme has been adopted. In particular, the unknown χ and the auxiliary one W are simultaneously
estimated by minimizing a cost functional [18, 32], which considers both the misfit in the data Eq. (1)
and the one in the state Eq. (2), i.e.:

Φ (W,χ) =
∑

t

‖χEi (rt) + χAi [W (rt)] − W (rt)‖2
l2

‖Ei (rt)‖2
l2

+
∑

t

‖Es (rm,rt) −Ae [W (rt)]‖2
l2

‖Es (rm,rt)‖2
l2

(4)

where the dependence from r has been omitted for the sake of brevity. Details about implementation
of tissue basis representation in Eq. (3) in the framework of CSI gradient-based optimization are given
in the Appendix.

To further improve the effectiveness of the procedure, additional information (other than spatial
priors, such as for example physical feasibility of the achieved EP values [26]) can be exploited. Enforcing
these latter can be eventually achieved by modifying the functional to be minimized by adding suitable
penalty terms. In the following we have added a penalty term which restrict the admissible solutions
to those with positive permittivity and conductivity, that is:

ΦP (χ) = kp ‖χ (r)−P (χ (r) )‖2
l2

(5)
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where P (·) is the projection of χ (and so χ̂) onto the set of positive functions [36], while kp is a positive
weight coefficient. In particular, at each iteration, P (χ) is updated in such a way that P (χ) = χ
in those pixels where permittivity and conductivity are positive, P (χ) = Re(χ) in those pixels where
conductivity is negative, P (χ) = Im(χ) in those pixels where permittivity is negative, and P (χ) = 0
elsewhere. By means of this projection, the minimization of the cost functional discards solutions
with both negative permittivity and conductivity values. Concerning the choice of kp, supported by
an extensive numerical analysis, the penalty term (5) has been normalized to the number T of basis
functions and the number of adopted antennas.

4. NUMERICAL ANALYSIS

A numerical analysis is now provided to assess the proposed strategy. The considered scenario is the
head and neck region, which is both challenging from a morphologic point of view, as it is made up by
many different tissues, and clinically relevant, being related to an increasingly important application of
hyperthermia [37]. The estimation of the EPs in H&N region is discussed in the following, whereas the
exploitation of the achieved EPs map in HTP is discussed in Section 5.

4.1. Description of the Testbed

As the main point of the paper is to present the basic idea of the method and assess it in controlled
conditions before performing an experimental validation, in the following a numerical phantom is
considered. In particular, an H&N voxel model has been obtained by merging the morphological
information gathered from the high-resolution voxel-based anthropomorphic phantom in [38] with the
results from ex-vivo tissue dielectric spectroscopy in [39, 40]. In doing so, we have carried out an accurate
survey of works published in literature concerning the expected differences between ex-vivo and in-vivo
EPs. Some of them claim that (at the considered frequency range) in living organism the permittivity
is about 25% and the conductivity is about 30% higher that the related ex-vivo values [8–10]. For this
reason, in order to build a numerical model (acting as a reference ‘ground truth’) such to be aligned
with the supposed state of the art, we have associated to each tissue a value of the inherent effective
EPs correspondingly increased with respect to the tabulated ex-vivo ones. Finally, to deal with a more
realistic scenario, namely a non-exactly stepwise constant profile, the EPs in each voxel of the model
have been perturbed by a ±10% uniformly distributed random fluctuation.

Two different transversal slices of the so-obtained H&N voxel model have been considered (slices
A and B). In both of them, a circular inclusion of radius 0.014 m has been inserted to simulate a
wide-spread oropharynx tumor [37] (see Fig. 1).

Following [27], the working frequency has been selected equal to 434 MHz and water has been
considered as matching medium (relative permittivity 78 and conductivity 0.04 S/m). The entire region
of interest has size 0.2295 m, and a discretization of 64 × 64 cells has been considered.

The data have been simulated by using a full-wave forward simulator based on the method of
moments and, by following the model described in [41], corrupted with a complex random Gaussian
noise N (rm, rt) with a given SNR. Three different level of SNR have been superimposed to the
simulated data to assess the technique against the measurement uncertainties. Moreover, for the sake of
a more realistic noise modeling, different realizations of noise for each SNR value (i.e., different random
stream handle) have been considered to generate normal random noise samples. A set of incident fields
radiated by NA antennas, which act both as transmitters and receivers and are modelled as line sources,
has been considered evenly spaced on a circumference with radius of 0.15 m, in agreement with the size
of the applicators described in [27]. In particular, to evaluate the robustness against the reduction of
the number of data, three different number NA of antennas have been considered (NA = 28, 20 and 12).

Concerning the initialization of the CSI procedure, different random starting guesses have been
considered, without observing significant differences in terms of accuracy of EPs reconstructions.
However, in order to reduce the computational time, the CSI procedure has been initialized by setting
the coefficients χ̂n with the ex-vivo properties of the H&N tissues [39, 40]. Finally, the Tn basis functions
have been defined starting from the voxel-based phantom exploited to build the model [38]. The accuracy



6 Bevacqua et al.

(b)(a) (d)(c)

Figure 1. Relative permittivity and conductivity distributions of reference profiles: slice A (a)–(b),
slice B (c)–(d).

of the retrieved EPs has been appraised through the normalized mean square error:

err =
‖εs,n−ε̃s,n‖2

l2

‖εs,n‖2
l2

(6)

where εs,n is the actual complex permittivity of the n-th tissue, and ε̃s,n is the estimated value.

4.2. Results and Discussion

In Figs. 2 and 3 the retrieved values of relative permittivity and conductivity for slices A and B are
reported, respectively. As can be seen, the estimation of the EPs is extremely accurate, thanks to the
MRI/CT-based basis representation in Eq. (3) composed of T = 7 and 8 tissues, for slice A and B
respectively. The corresponding mean square errors, reported in Table 1, are much lower than the one
corresponding to the starting guess (about 0.045 for both slices). It is important to note that good
performance is also obtained when a higher amount of noise is superimposed on simulated data and a
reduced number of antennas is considered. Such a reduction corresponds to a significant lowering in
terms of the collected independent data. In particular, NA = 12 sources correspond to 78 independent
data (including the monostatic data), which is less than the actual degrees of freedom of the original
problem [42].

Table 1. Mean square errors — Slice A and B.

SLICE A SLICE B
NA SNR err Figures err Figures

28
30 0.0032

2(a)–(b)
0.0030

3(a)–(b)20 0.0056 0.0069
15 0.0094 0.0136

20
30 0.0042

2(c)–(d)
0.0029

3(c)–(d)20 0.0097 0.0073
15 0.0147 0.0150

12
30 0.0045

2(e)–(f)
0.0030

3(e)–(f)20 0.0131 0.0089
15 0.0172 0.0180

In order to better understand the limitations of the technique, we have also considered a further
reduction of the number of sensors up to the number of the tissue coefficients T . As can be observed
from the mean square errors reported in Table 2 for slice A, the proposed approach still works fine with
few antennas, provided a price can be paid in terms of required accuracy on measurements (in other
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Table 2. Mean square errors — Slice A: Further reduction of the number of sensors.

NA SNR err Figures

10

50 0.0044

-
40 0.0048
30 0.0065
20 0.0135
15 0.0400

7

50 0.0063

-
40 0.0102
30 0.0151
20 0.0179
15 0.0401

(b)(a)

(d)(c)

(f)(e)

Figure 2. EPs Estimation-slice A: Retrieved values of relative permittivity and conductivity
corresponding to NA = 28 (a)–(b), NA = 20 (c)–(d) and NA = 12 (e)–(f).
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(b)(a)

(d)(c)

(f)(e)

Figure 3. EPs Estimation-slice B: Retrieved values of relative permittivity and conductivity
corresponding to NA = 28 (a)–(b), NA = 20 (c)–(d) and NA = 12 (e)–(f).

words, the number of sensors can be lowered provided measurements are more and more accurate). For
the sake of brevity, the corresponding EPs reconstructions are not shown.

5. A CASE OF INTEREST: IMPACT ON HYPERTHERMIA TREATMENT
PLANNING

This section aims at evaluating the impact of the introduced EPs estimation technique when dealing
with the planning of a hyperthermia treatment. In such application, the proposed technique appears to
be particularly advantageous as it allows to exploit the hyperthermia antennas not only to deliver the
treatment, but also as a sensing system to perform the MWT of the scenario.

Hyperthermia takes place when a supra-physiologic temperature increase (40–44◦C) is selectively
applied to the tumor for a certain time (60–90 min). As a matter of fact, in order to uniformly shape
the temperature over a given target area while avoiding the occurrence of possible hot-spots in healthy
tissues, HTP requires both an accurate knowledge of patient-specific EPs and an effective strategy to
optimally determine the excitations of the antennas constituting the applicator, which is supposed to
be a phased array.
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In view of temperature measurement difficulties, optimization of the heating for phased array
applicators relies on HTP, especially in the H&N region [43]. The herein adopted optimization strategy
is focusing via constrained power optimization (FOCO) procedure [30], which maximizes the power
deposition in the target volume, while constraining it below given levels in healthy tissues, thus
avoiding hot spots. Thanks to its mathematical formulation, FOCO is faster and more stable than
other optimization strategies [2, 44], since it is based on solving one (or more) convex optimization
problems (see [30] for more details).

Figure 4. Schematic view of the adopted evaluation setup.

In order to fully understand the importance of a reliable knowledge of the patient-specific EPs and
assess the effective improvements achieved by means of the proposed in-vivo estimation technique, four
different cases, as shown in Fig. 4, have been considered. In particular, we have considered the focused
SAR distributions obtained by:

(i) assuming the exact knowledge of the actual in-vivo parameters, say SARid;
(ii) considering the EM parameters estimated by means of the proposed technique, say SARexp;
(iii) applying the complex excitation coefficients obtained in (ii) to the actual in-vivo field distribution,

say SARact;
(iv) applying the complex excitation coefficients designed according to the ex-vivo EPs [39, 40] to the

actual in-vivo field distribution, say SARtab.

For the sake of a better understanding, let us note that SARid can be seen as a kind of ideal
ultimate performance that one can achieve, whereas the SARtab represents what is nowadays achieved
by the currently used HTP procedures exploiting the tabulated ex-vivo parameters [39, 40]. SARexp

is the SAR distribution which is expected to be actually induced in the patient on the basis of the
developed EPs estimation strategy. Finally, SARact is the power deposition administered by exploiting
the complex excitation coefficients computed on the basis of the estimated EPs parameters in the actual
scenario (e.g., including fluctuations inside each tissue, as described in Subsection 4.1). Accordingly,
planning a treatment by exploiting the estimated EPs yields accurate and effective results as long as
the estimated power depositions SARexp is similar to both SARact and SARid (this latter is considered
as a benchmark when in-vivo EPs are fully known).

Figures 5 and 6 depict the SARid, SARexp, SARact and SARtab distributions for slices A and B
corresponding to a 20 array element configuration and an SNR equal to 20 dB. From a qualitative point
of view, SARid, SARexp, SARact are quite similar, while SARtab shows an undesired heating of the
tissue outside the tumor. In addition, it is also possible to appreciate that SARtab exhibits a slight
“mis-coverage” of the target area as compared to the others SAR distributions. This result suggests
that the electromagnetic model obtained by means of the MRI/CT-based EPs retrieval procedure allows
a better design of the antenna array excitations than the ex-vivo model [39, 40].

For the sake of a quantitative comparison, two different metrics have been adopted, i.e., a modified
version of the Target to Hot-Spot Quotient (mTHQ) [45] and the maximum SAR side peak (SSP) in
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(b)(a) (d)(c)

Figure 5. SAR distributions as described in (i)–(iv) points, related to slice A with 20 array elements
and SNR equal to 20 dB. (a) SAR id. (b) SAR tab. (c) SAR exp. (d) SAR act.

(b)(a) (d)(c)

Figure 6. SAR distributions as described in (i)–(iv) points, related to slice B with 20 array elements
and SNR equal to 20 dB. (a) SAR id. (b) SAR tab. (c) SAR exp. (d) SAR act.

healthy tissues [3]. The mTHQ is an adapted version of the metric presented in [45] to deal with the 2D
case at hand. It is defined as the ratio of the average SAR within the target area and the average SAR
in the healthy tissues. Tables 3 and 4 report the SSP and mTHQ values for slice A and B, respectively,
evaluated on the SAR distributions (i)–(iv) for the considered array configurations and noise levels.
Interestingly, these synthetic parameters clearly indicate that the proposed EPs estimation approach
allows to improve the performance obtainable with respect to the nowadays used HTP procedures based
on ex-vivo EPs parameters [39, 40].

The trends shown in Tables 3 and 4 can be analyzed from a twofold prospective. For a given noise
level, both mTHQ and SSP values related to SAR (i)–(iii) increasingly diverge when decreasing NA.

Table 3. Evaluation of SSP and THQ Metrics related to slice A.

NA SNR 
SSP [%] mTHQ [-] 

SARid SARexp SARact SARtab SARid SARexp SARact SARtab 

28 

30dB 

47 

50 53 

89 10.50 

10.08 9.73 

9.33 20dB 52 58 9.96 9.22 

15dB 52 63 9.68 8.52 

20 

30dB 

47 

50 52 

79 10.54 

9.94 9.78 

9.02 20dB 51 59 9.89 9.30 

15dB 48 54 10.33 9.84 

12 

30dB 

50 

53 55 

76 11.12 

10.75 10.49 

9.15 20dB 57 65 10.72 9.87 

15dB 49 65 10.94 9.37 
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Table 4. Evaluation of SSP and THQ Metrics related to slice B.

NA SNR 
SSP [%] mTHQ [-] 

SARid SARexp SARact SARtab SARid SARexp SARact SARtab 

28 

30dB 

54 

57 62 

98 3.34 

3.21 3.00 

2.41 20dB 57 69 3.13 2.73 

15dB 55 79 3.06 2.44 

20 

30dB 

54 

57 60 

98 3.36 

3.23 3.15 

2.45 20dB 57 63 3.22 3.06 

15dB 55 67 3.27 2.91 

12 

30dB 

54 

58 58 

88 3.34 

3.31 3.29 

2.55 20dB 58 63 3.40 3.22 

15dB 53 70 3.73 3.20 

The same behavior can be observed, for a fixed NA when the noise level is increased. This means that
the SARact, i.e., the actual in-vivo performance, is different from the ideal one, due to the increased
error on the estimated EPs. Although this circumstance, both mTHQ and SSP corresponding to the
SARact are generally better than the one corresponding to SARtab. This confirms the importance of
a reliable knowledge of the patient-specific EPs. Results are also consistent with FOCO robustness to
EPs uncertainty as discussed in [30].

6. CONCLUSIONS

In this paper, a new approach to perform the estimation of effective EPs of biological tissues has been
proposed, described and tested in controlled conditions. The approach benefits from MWT and medical
images derived from MRI or CT. Differently from other approaches in literature, it considers hard spatial
priors derived from the MRI or CT segmented images in such a way to better represent the unknown
EPs. As such, the technique exhibits high flexibility, wide applicability, as well as high accuracy in the
determination of the effective EPs, as shown in the numerical analysis. The tissue projection has been
herein proposed within a CSI scheme, but it can be used in conjunction with other inversion techniques.

The approach has been assessed and tested against a 2D realistic and anthropomorphic H&N
scenario, and an extensive analysis has been performed by varying the amount of noise on the data and
the number of antennas. By doing so, the exact knowledge of the tissues boundaries is assumed. In
case of uncertainties on the spatial priors, the boundary of the reconstructed EPs could be eventually
corrected by successively exploiting the binary regularization described in [46]. However, note that small
errors in the spatial priors are not expected to significantly affect the effective EPs reconstructions [23–
25] and hence the performance of the therapeutic treatments or dose estimations [30].

Finally, being the knowledge of EPs relevant in the determination of SAR distributions, HTP has
been considered as a case of interest and the impact of the introduced estimation technique has been
evaluated. In particular, the obtained performance has been compared with respect to the one reached
in case of HTP based on ex-vivo model. The results confirm that the improved knowledge of the effective
EPs implies a better design of the heating system and a better control of the occurrence of undesired
effects outside the tumors.

Future work will be devoted at extending and testing the method in the more challenging 3D vector
scenario and against experimental data.
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APPENDIX A.

In this section, the expressions of the gradient and the line search parameter related to the cost functional
(4) in a CSI conjugate gradient scheme are reported. To this end, let us denote with T −1 the operator
which transform the contrast function from pixels to tissue space coefficients and with T the operator
which works on the coefficients and returns a pixel representation. The expression of the cost functional
can be rewritten as follows:

Φ (W, χ̂) =
∑

t

∥∥T (χ̂)Ei+T (χ̂)Ai [W ]−W
∥∥2

l2

‖Ei‖2
l2

+
∑

t

‖Es−Ae [W ]‖2
l2

‖Es‖2
l2

(A1)

where the dependence from r, rt and rm has been omitted for the sake of brevity.
Concerning the second term in Eq. (A1) both the expression of the gradient and the coefficients

of the algebraic polynomial for the determination of the step length are as in [21, 32]. On the contrary,
following [21, 32], the expression of the gradients with respect χ̂ reads:

∇Φχ̂= 2
∑

t

T −1 [(Ei+Ai [W ])∗ ms]
‖Ei‖2

l2

(A2)

where ms = T (χ̂)Ei+T (χ̂)Ai [W ] — W represents the misfit about the state equation, and the
superscript * denotes the complex conjugate operation.

Let us consider the behavior of functional (A1) along an arbitrary line given by W + λΔW and
χ̂+λΔχ̂, where ΔW and Δχ̂ represent the descent research directions considered at a generic iteration.
Due to the nature of the involved operator, this latter can be rewritten as a fourth-degree algebraic
polynomial, i.e.:

Φ (W + λΔW,χ̂ + λΔχ̂) = aλ4 + bλ3 + cλ2 + dλ + e (A3)

where:

a =
∑

t

‖T (Δχ̂)Ai [ΔW ]‖2
l2

‖Ei‖2
l2

b = 2Re
∑

t

〈T (Δχ̂)Ai [ΔW ] ,Δms〉
‖Ei‖2

l2

c =
∑

t

‖Δms‖2
l2

‖Ei‖2
l2

+2Re
∑

t

〈T (Δχ̂)Ai [ΔW ] ,ms〉
‖Ei‖2

l2

d = 2Re
∑

t

〈ms,Δms〉
‖Ei‖2

l2

e =
∑

t

‖ms‖2
l2

‖Ei‖2
l2

Δms = T (Δχ̂) (Ei +Ai [W ] )+T (χ̂)Ai [ΔW ] — ΔW and Re (·) extracts the real part of the argument.
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