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OBJECTIVE: In this work, we introduce Permutation Disalignment Index (PDI) as a novel nonlinear,
amplitude independent, robust to noise metric of coupling strength between time series, with the aim of
applying it to electroencephalographic (EEG) signals recorded longitudinally from Alzheimer’s Disease
(AD) and Mild Cognitive Impaired (MCI) patients. The goal is to indirectly estimate the connectivity
between the cortical areas, through the quantification of the coupling strength between the corresponding
EEG signals, in order to find a possible matching with the disease’s progression. METHOD: PDI is first
defined and tested on simulated interacting dynamic systems. PDI is then applied to real EEG recorded
from 8 amnestic MCI subjects and 7 AD patients, who were longitudinally evaluated at time TO and 3
months later (time T1). At time T1, 5 out of 8 MCI patients were still diagnosed MCI (stable MCI),
whereas the remaining 3 exhibited a conversion from MCI to AD (prodromal AD). PDI was compared
to the Spectral Coherence and the Dissimilarity Index. RESULTS: Limited to the size of the analysed
dataset, both Coherence and PDI resulted sensitive to the conversion from MCI to AD, even though
only PDI resulted specific. In particular, the intrasubject variability study showed that the three patients
who converted to AD exhibited a significantly (p < 0.001) increased PDI (reduced coupling strength) in
delta and theta bands. As regards Coherence, even though it significantly decreased in the three converted
patients, in delta and theta bands, such a behaviour was detectable also in one stable MCI patient, in delta
band, thus making Coherence not specific. From the Dissimilarity Index point of view, the converted MCI
showed no peculiar behaviour. CONCLUSIONS: PDI significantly increased, in delta and theta bands,
specifically in the MCI subjects who converted to AD. The increase of PDI reflects a reduced coupling
strength among the brain areas, which is consistent with the expected connectivity reduction associated
to AD progression.

Keywords: Electroencephalography, Alzheimer’s Disease, Mild Cognitive Impairment, Permutation Dis-
alignment Index.
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1. Introduction

Dementia is a general term used to refer to a wide range
of symptoms, associated with a decline in memory or
other thinking skills, which reduce a person’s ability
to perform everyday life activities. Alzheimer’s disease
(AD) is the most common form of dementia and ac-
counts for 60% of dementia cases '. Current diagnosis
of AD relies on quantifying the mental decline. How-
ever, by the time the patient is diagnosed, the disorder
has already caused severe brain damage. Studies suggest
that AD begins years before the clinical symptoms be-
come visible 2. Furthermore, normal ageing is also char-
acterised by a slow decline of cognitive functions, thus
discriminating normal ageing from AD, at a very early
stage, can be challenging when relying only on standard
procedures based on clinical evaluation.

Researchers hope to develop an accurate way to
early detect AD before its devastating symptoms appear.
To this purpose, high-risk population should be periodi-
cally monitored through an early detection system. With
regard to high-risk population, Mild Cognitive Impair-
ment (MCI) is a condition in which the subject experi-
ences minor problems with cognition (memory or think-
ing) and involves nearly 5-20% of people aged over 65.
In MCI patients, cognitive issues are worse than we nor-
mally expect for a healthy person of the same age, but
the symptoms are not severe enough to interfere signif-
icantly with daily life, thus, MCI is not labelled as de-
mentia 2. In recent clinical studies, amnestic MCI sub-
jects were shown to have an increased risk of develop-
ing AD. The incidence of AD, observed in 4 studies on
amnestic MCI, ranged from 10.2% to 26.0% (median:
17.6%) over 1 year and from 17.6% to 36.3% (median:
24.2%) over 2 years . Therefore, this population should
be studied on the long term and longitudinally, in order
to develop a system that can help to predict the transition
from MCI to AD. Such a system should necessarily be
non-invasive, well tolerated and low-cost; thus it could
be based on Electroencephalography (EEG). The EEG
consists in recording the electrical potentials generated
by the brain through a set of electrodes located on the
scalp. In AD patients, EEG abnormalities arise because
of anatomical and functional deficits of the cerebral cor-
tex. One of the effects of such deficits is the functional
disconnection between some cortical areas: such a dis-
connection affects the behaviour of the electrical activity
of the brain and, therefore, alter the EEG *.

Adeli et al. presented an overview of computational
modelling for the analysis of EEGs recorded from AD
patients ® ©. The hallmarks of EEG abnormality in AD
patients, compared to healthy controls, are often a shift

of the power spectrum to lower frequencies and reduced
coherences among cortical regions *, which are thought
to be associated with functional disconnections among
cortical areas resulting from the death of cortical neu-
rons 8. An EEG-based diagnostic tool should reveal the
effects of such disconnection over the scalp; to this pur-
pose, the mapping of descriptive features 2, 10, 11, 12,
might help. Stam et al. proposed to compute the syn-
chronisation likelihood of multichannel EEG data in AD
patients, subjects with MCI and subjects with subjec-
tive memory complaints (SC). The synchronisation like-
lihood significantly decreased in the 14-18 and 18-22 Hz
bands in AD patients compared with both MCI subjects
and healthy controls 3.

Dunkin et al. hypothesised that decreased coher-
ence would be associated with cognitive dysfunction
as assessed by neuropsychological tests. They found
that reduced coherence was associated with impairment
on specific neuropsychological tests. The results en-
dorsed the hypothesis that coherence reflects a func-
tional breakdown in communication between brain ar-
eas 14, Sankari et al. '® presented a comprehensive study
of intrahemispheric, interhemispheric and distal EEG
coherence in AD patients. Their study showed a pattern
of decrease in AD coherence, by indicating a decline in
cortical connectivity but they also report exceptions in
specific bands where an increase in coherence can be at-
tributed to compensatory mechanisms. Adeli et al. pre-
sented a wavelet coherence investigation of EEG read-
ings acquired from patients with AD and healthy con-
trols. Pairwise electrode coherence and wavelet coher-
ence were calculated over each frequency band (delta,
theta, alpha, and beta) 16 17

High EEG upper/low alpha power ratio was asso-
ciated with cortical thinning and lower perfusion in the
temporo-parietal lobe. Moreover, atrophy and lower per-
fusion rate were both significantly correlated with mem-
ory impairment in MCI subjects 8. In ', correlation
between EEG markers and volumetric differences in
mapped hippocampal regions was estimated in AD pa-
tients. Results showed that the increase of alpha3/alpha2
power ratio is correlated with atrophy of mapped hip-
pocampal regions in AD. In 2, the most significant
results of recent studies on correlation between scalp
EEG, cognitive decline, and anatomical substrate have
been reviewed, with particular attention to the relation-
ships between EEG changes and hippocampal atrophy.

Morabito et al. 4 proposed a technique, based on
Complex Networks, to analyse the longitudinal mod-
ifications of brain connectivity and information trans-
fer in AD patients. They found out that the progres-
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sion of AD was characterised by a loss of connected
areas, in terms of network parameters. Since the evo-
lution of AD is characterised by the progressive loss
of functional connectivity within neocortical associa-
tion areas, Giannakopoulos et al. supposed that event-
modulated EEG dynamic analysis could allow to inves-
tigate the functional activation of neocortical circuits.
They reviewed and summarised clinically significant re-
sults of EEG activation studies in this field and dis-
cussed future perspectives of researches which aim at
reaching an early and individual prediction of cogni-
tive decline in healthy elderly controls 2!. Prichep et
al. reported results from initial quantitative electroen-
cephalography (qEEG) evaluations of normal elderly
subjects. Source localisation algorithms were used to
identify the most probable generators of abnormal fea-
tures in the EEG. Abnormalities were found in the pro-
dromal EEGs of those subjects who later converted to
dementia ?2. Rossini et al. analysed the cortical connec-
tivity (spectral coherence) and the low resolution brain
electromagnetic tomography sources of EEG rhythms
in MCI patients at baseline and follow-up 23. They
found out that low midline coherence and weak tem-
poral source were associated with a 10% annual rate of
MCI to AD conversion. The National Institute on Aging
and the Alzheimer’s Association (NIA/AA) workgroup
of experts postulated that what is commonly considered
Alzheimer should rather be considered a mere stage of
a long, complex degenerating process 2% and, therefore,
they strongly encouraged the researchers to engage lon-
gitudinal studies. However, the literature lacks longitu-
dinal studies on MCI/AD, because keeping such patients
and their caregivers loyal to a periodical follow-up pro-
gram can be challenging.

To our best knowledge, and also according to the
review paper 2°, the most promising work about MCI
conversion to AD is 26, they reported that IFAST method
was able to predict the conversion from amnestic MCI to
AD with high accuracy (85.98%) in a 1-year follow-up
study. This methodology was later improved but it has
been validated only in a MCI vs AD vs Controls cross
study so far 2. As already claimed above, MCI and
AD are known as disconnection disorders, because it is
well accepted that MCI/AD weakens the connectivity
between the areas of the brain. Changes in the connec-
tivity between cortical areas are likely to induce changes
in the coupling strength between the corresponding EEG
signals, this is the reason why a measure of coupling
strength between EEG signals might help to indirectly
estimate the changes in the brain connectivity due the
disease’s progression. The present work resulted from a

translational research whose goal was to longitudinally
evaluate the evolution of the brain connectivity in MCI
and AD patients, indirectly, through the EEG. The spe-
cific aim was to compare the overall coupling strength
between EEG signals at time TO and at time T1, in MCI
and AD patients, in order to assess if it could reflect
the brain connectivity reduction that is expected to be
induced by the disease’s progression. Our first evalua-
tion was carried out applying Spectral Coherence be-
cause it is the gold standard method for the indirect
estimation of the brain connectivity from the EEGs of
AD and MCI patients. The reason for that is Coherence-
based analysis comes with most of the EEG process-
ing systems used in clinical applications on MCI/AD
27 As Coherence showed a trend that was peculiar to
converted MCI but also exhibited a false positive, even
though our dataset was small, we decided to develop our
own metric for the estimation of coupling strength be-
tween time series. We introduced the Permutation Dis-
alignment Index (PDI), which is a novel measure of
coupling between time series, that can help whenever
a multivariate, amplitude invariant, robust to noise, non-
linear coupling strength analysis is necessary. With ap-
plication to EEG signals, PDI can be interpreted as an
indirect measure of the coupling strength between two
or more cortical areas, estimated through the quantifi-
cation of the alignment randomness between the cor-
responding EEG projected time series. From the theo-
retical point of view, we can address the advantages of
analysing the EEG through PDI, as compared to Coher-
ence, to endorse our choice to develop a novel, nonlin-
ear, multivariate, symbolic coupling strength descriptor:
1) Coherence is not a multivariate but only a pairwise
descriptor, thus it cannot be exploited to estimate the
joint coherence of a group of electrodes, on the contrary,
PDI can be both multivariate and pairwise thus it can be
exploited to estimate the coupling strength between a
pair of electrode sites or among a group of electrodes
covering a more extended area; 2) Coherence is linear
and can fail to capture the nonlinear dynamics of the
EEG; 3) Coherence is not a symbolic methodology and
can be more sensitive to noise, since our method relies
on the projection onto a predetermined set of symbols
(the motifs), the possible presence of amplitude burst
in the EEG due to artifacts would not cause amplitude
burst in the projected symbols, therefore in the descrip-
tor. Considered such motivations, PDI was hereby de-
fined, implemented and, first of all, tested on simulated
unidirectionally coupled Henon maps, in order to vali-
date PDI’s ability to measure the coupling strength be-
tween interacting dynamic systems. Since PDI success-
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fully reflected the coupling stregth variations in the sim-
ulated coupled systems, it was tested on real EEG sig-
nals recorded during a follow-up study which involved 7
AD patients and 8 amnestic MCI patients. The patients
were evaluated at time TO and then, 3 months later, at
time T1.

Besides Coherence, PDI was also compared to the Dis-
similarity Index (Dm) proposed by Ouyang et al. %%,
which is a nonlinear, symbolic dissimilarity measure
between time series that, in our opinion, was the best-
matching nonlinear method.

According to the achieved results, PDI seems to
have a high potential in the analysis of MCI/AD EEG
time series. We hope that the present work encour-
ages longitudinal studies on MCI patients, which are of
paramount importance in the prediction of the degener-
ation from MCI to AD.

The paper is organised as follows: Section 2 de-
scribes how the patients were selected and how the
EEGs were recorded and preprocessed. Section 3 in-
troduces the concept of PDI and describe how it was
tested on simulated data and on the experimental EEG
data. Section 5.3 introduces the standard comparative
methodologies used in the quantitative EEG analysis
(spectral coherence and dissimilarity index). Section 6
reports the achieved results, Section 7 discusses the re-
sults and Section § addresses the conclusions.

2. EEG data recording and preprocessing
2.1. Study population

Fifteen patients, 7 AD subjects and 8 MCI subjects, at
various stages of clinical evolution, were recruited at
the IRCCS Centro Neurolesi Bonino-Pulejo of Messina
(Italy). All patients were enrolled within an ongoing co-
operation agreement that also included a clinical proto-
col approved by the local Ethical Committee. All pa-
tients signed an informed consent form. The clinical di-
agnosis was performed, according to the Diagnostic and
Statistical Manual of Mental Disorders (fifth edition,
DSM-5) 2, by a multidisciplinary team including neu-
rologists, psychologists, psychiatrists and EEG experts,
through a complete medical assessment. The same ex-
aminers conducted all the cognitive and clinical evalu-
ations. Every patient underwent a neuroradiological ex-
amination to exclude other conditions (tumors, strokes,
damage from severe head trauma or buildup of fluid
in the brain, etc) that may cause symptoms similar to
AD but require different treatment. Current use of any
medications (but particularly cholinesterase inhibitors
(ChEis), Memantine, anti-depressants, anti-psychotics
and anti-epileptic drugs) was also taken into account

in AD patients. MCI patients were not undergoing any
medical treatment. All patients were assessed at baseline
(time TO) and 3 months after the first evaluation (time
T1). At time T1, 3 MCI patients exhibited a conversion
from MCI to AD. Table I provides details about gender
(Female/Male), age and diagnosis (MCI or AD) of every
patient.

Table I: Dataset description

ID Age Gender Diagnosis TO Diagnosis T1
pt_03 68 M MCI AD
pt_23 84 F MCI [\ (@]
pt_30 69 M MCI [\ (@]
pt_41 78 M MCI MCI
pt_51 71 F MCI AD
pt_57 83 M MCI MCl
pt_71 79 F MCI AD
pt_72 65 F MCI MCI
pt_31 74 M AD AD
pt_54 83 F AD AD
pt_64 74 F AD AD
pt_65 76 M AD AD
pt_76 79 F AD AD
pt_86 83 F AD AD
pt_87 78 F AD AD

2.2. EEG recording

The EEG was recorded in a comfortable resting state,
according to the 10-20 International System (19 chan-
nels: Fpl, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F§,
T3, T4, TS5, T6, Fz, Cz and Pz), at a sampling rate of
1024 Hz, by using a notch filter at S0Hz, with linked
earlobe (A1-A2) reference. Before the EEG record-
ing, all patients and their caregivers underwent a semi-
structured interview including questions about: (a) qual-
ity of the last night sleep; (b) duration of the last night
sleep; (c) meal timing and content. The EEG recordings
were performed in the morning. During the acquisition
of the EEG, the patients kept their eyes closed but re-
mained awake. The technician, keeping the subject alert
by calling her/him name, prevented the drowsiness: the
corresponding EEG segments were discarded to avoid
the effects of auditory cortex activation. The patients did
not sleep during the recording as confirmed by the EEG
recordings which did not show any sleep pattern. The
EEG was initially sampled ad 1024Hz, according to the
general EEG recording protocol adopted at the IRCCS
Neurolesi Center. The sampling rate was set high in or-
der to make the EEG dataset as general as possible, in
order to be suitable also for possible future researches
with different goals.
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2.3. EEG preprocessing

EEG signals are commonly decomposed into the four
major EEG sub-bands: delta (0-4 Hz), theta (4-8
Hz), alpha (8-12 Hz), and beta (12-32 Hz). Each
of the four sub-bands relates to different functional
and physiological parts of the brain. In this paper,
the EEG was band-pass filtered at 0.1-32Hz, then it
was split into the four sub-bands through a set of
band-pass filters implemented in the toolbox EEGLab
(https://scen.ucsd.edu/eeglab/) 3°. In particular, we used
the function eegfiltfft, based on Fast Fourier Transform
(FFT) and inverse FFT to reconstruct only the specific
frequency range under consideration. Figure 1 shows an
EEG signal (filtered between 0.1 and 32 Hz) and the
corresponding sub-bands. Starting from one n-channels
EEG recording, we eventually end up with 4 different n-
channels EEG recordings, each one corresponding to a
different frequency sub-band: FEGs, EEGy, EEG,,
EEGg. Each sub-band-EEG was then downsampled to
256Hz. Considered the specific application, 256Hz is a
sampling rate high enough to capture delta, theta, al-
pha and beta waves, which are typically analysed in
AD/MCI patients.
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Fig. 1. An EEG signal (filtered between 0.1 and 32 Hz and ex-

pressed in V'), and the corresponding delta (0-4 Hz), theta (4-8
Hz), alpha (8-12 Hz), and beta (12-32 Hz) sub-bands.

Every sub-band-EEG recording was partitioned
into 5 s non-overlapping windows (as the sampling rate
after downsampling is 256Hz, each window included Ns
= 1280 EEG samples); therefore, each sub-band-EEG
was eventually partitioned into Nw non-overlapping
windows, where Nw depends of the length of the record-
ing. All the algorithms were implemented in Matlab

(The MathWorks, Inc., Natick, MA, USA).

Before processing the filtered EEG through the pro-
posed algorithm, artifactual segments were manually la-
belled by EEG experts and then cancelled. However, it
is worth to point out that, since the algorithm processes
the EEG window by window and then it averages the es-
timated parameters over the windows, the effect of pos-
sible artifacts is mitigated. The average time length of
the recordings, after artifact cancellation, is 5.44min.

3. A novel, EEG-based, indirect measure
of brain connectivity: Permutation
Disalignment Index

PE was introduced by Bandt and Pompe in 2002 3! as a
symbolic robust descriptor which detects dynamic com-
plexity changes in time series. Thanks to the projection
into symbols (motifs), PE allows to estimate the ran-
domness of a time series regardless of its amplitude,
which plays a key role when analysing EEG, whose am-
plitude depends on the location of the reference elec-
trode. In fact, when processing the EEG recordings
through amplitude dependent techniques, each EEG sig-
nal should be normalised to cancel the effect of close-
ness to the reference electrode. Normalisation is not
necessary when a symbolic procedure like PE is used.
However, PE is a univariate descriptor which can only
describe the randomness of a single time series (i.e. a
signal recorded at a specific electrode site) and cannot
quantify the coupling between two or more time series
(i.e. between two or more different cortical areas). We
will now briefly recall the PE definition in order to prop-
erly introduce our PDI concept.

3.1. Definition of Permutation Entropy

Given a time series x with N samples, it can be mapped
into a m-dimensional space, with m being the embed-
ding dimension and L being the time lag. Starting from
a given sample z(t) in the EEG window under analy-
sis, a m-dimensional X; vector is constructed, picking
up the remaining m — 1 samples with a L-samples shift
forward:

Xy = [z(t),z(t+ L), ....,z(t + (m —1L)]T 1)

Then the algorithm moves to the next sample x(¢ +
1) and reiterates the procedure, so a new vector X; + 1
is constructed.

The values of X; are ordered, in increasing order
and a reshaped version X r; of the original X; is defined:

Xry = [z(r), 2(m), ..oy ()] F ()



PC/INS T%IIJ.CTI,ON ) FILE

6 N. Mammone, L. Bonanno, S. De Salvo, S. Marino, P. Bramanti, A. Bramanti, Francesco C. Morabito

With 7; = 1, ..., m, where 7; tells us is what posi-
tion the sample x(7;) was in the original vector X.

By reshaping the vectors (and then considering the
original time points associated to the elements of the re-
shaped vectors) we are essentially discarding the am-
plitude of the components and only taking into account
their relative levels. We now need to associate the ob-
served pattern to a predetermined symbol (motif). The
sequence of the time points will tell us what motif the
observed pattern can be associated to. In other words,
each vector X; can be considered mapped onto a sym-
bol vector 7; = [y, T2, ..., Tm] (Where i=1,... m! and m!
is the number of the possible permutations); 7; is a se-
quence of time points, therefore a sequence of integers.
The occurrence rate of a given sequence 7; in the time
series x is denoted as px (m;), and represents the prob-
ability of observing the specific symbol 7; in the time
series under analysis.

The algorithm counts how many times each se-
quence 7; appeared in the time series, then this number
is normalised by N — (m — 1)L to estimate the proba-
bility of the motif: p(m;) = n(m;)/(N —(m —1)L). PE
is finally computed as:

H(m) = =3 p(m:)log(p(m:)) 3)
=1

Where log is the natural logarithm. The authors
have recently successfully applied a new version of PE,
based on the concept of Renyi’s Entropy, i.e. the Renyi’s
Permutation Entropy (PEr) 32, to the study the EEG of
absence seizure patients 33, In particular, the random-
ness of the electrical activity of each cortical area was
investigated through the estimation of the randomness
of the signal recorded at the corresponding EEG channel
(time series x). In that work, Renyi’s theory 34 was intro-
duced to enhance the standard definition of PE through
the introduction of the parameter o (o > 0):

1 m! .
Hp(m) = —7—log ;pm) “)

For « — 1, we obtain the standard PE defini-
tion. High a values emphasise the super-gaussian dis-
tributions whereas low « values emphasise the sub-
gaussian ones. Therefore, o can tune the sensitivity to
sub-gaussianity and super-gaussianity of pdf distribu-
tion. In particular, higher o values (¢ > 4) empha-
sise the super-gaussianity, whereas average alpha values
(o = 2 ~ 3) emphasise both of them.

3.2. Permutation Disalignment Index

The aim of the present work was to define a new mea-
sure of coupling strength between time series and then
to test it an indirect, EEG-based, measure of brain con-
nectivity in AD and MCI patients. As AD and MCI are
known as disconnection disorders, we considered the
coupling strength between the different cortical areas
rather than the activity of the single cortical area. Fur-
thermore, we were interested in symbolic descriptors, to
ensure the independency from the reference-electrode.
Summarising, we needed a symbolic, at least bivariate,
descriptor of the coupling strength between EEG time
series.

Hereby we propose a symbolic measure of coupling
strength, referred to as Permutation Disalignment Index
(PDI). In order to properly introduce PDI, we must refer
to Section 3.1.

Our method is concisely illustrated in Figure 2. Let
us, for example, consider m=3, for sake of clarity. When
m=3, given two time series x and y, the time point ¢ and
the lag L, we can project the time series x into the vector
X, (Eq. 1) and the time series y into the vector Y; (Eq.
5):

Y, =[y(t),y(t+ L), ...yt + (m = 1)L)]"  (5)

X; and Y; are both vectors with three elements because
m=3. The values of X; and of Y; are reshaped in an in-
creasing order, as described in the previous Section.

As explained in Section 3.1, by reshaping X; and
Y}, and considering the original time points associated
to the elements of the reshaped vectors, we discard the
amplitude of the components and we only take into ac-
count their relative levels, which can be low, medium
and high (when m=3). Six possible motifs can occur
when m=3, in other words, six possible permutations of
the low, medium and high levels (Figure 2). Given a time
point #, we have to check if the same motif occurred both
in x and y or not. For example, in Figure 2, at time ¢ the
same motif 74 occurred both in x and y. The procedure
is reiterated for every time point ¢, in this way, we even-
tually come up with a final simultaneous occurrence rate
px,y (m;) of every motif 7; in x and y. Once the occur-
rence rate px y (m;) of every motif has been estimated,
we can define the PDI between x and y as:

|

1 m!
PDI(X,Y) = ——log [Z} pX7y(7Ti)a] (©6)

1=
The more coupled x and y are, the lower the PDI is
expected to be, as we expect the time series to show the

same motifs with a high probability. In this work, PDI
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has been defined according to the Renyi’s theory and the
parameter « is introduced alongside m and L, because of
the reasons discussed in Section 3.1.

—————————————— Possible Motifs with m=3
MOTIF JT1  MOTIF Tz MOTIF JTs ~ MOTIF JTa  MOTIF JTs  MOTIF JTs

AR AN
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o gra O Attime “t” the same
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\ / xandy
N i
- ) N '
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.
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Fig. 2. Given two time series x and y (for example, two EEG sig-
nals within an EEG window under analysis), given an embedding
dimension m, a time point ¢ and a lag L, we can project the time
series x into the vector X; and the time series y into the vector Yz,
which are both vectors with three elements. Six possible motifs (per-
mutations of the low, medium and high levels) can occur when m=3.
Given a time point #, the algorithm checks if the same motif occurred
both in x and y or not. In the present Figure, for example, at time ¢
the same motif 74 occurred both in x and y. The procedure is reit-
erated for every time point ¢ so that, in the end of the analysis, we
come up with a final occurrence rate px y (m;) of every motif 7; in
xand y.

PDI can be extended to the analysis of a n-
dimensional random variable X to estimate the overall
coupling among all of its n components:

m!

log | > pxy,.ox, ()"
=1
(7)

where the simultaneous occurrence of a given mo-
tif 7; in all of the time series X7, ..., X, will be investi-
gated, where i = 1, ...,m!.

PDI(X1,...X,) =

1—a

3.3. Henon Maps analysis with PDI

In this work we aimed at introducing PDI as a novel
measure of coupling strength between time series and

testing its ability in estimating the coupling strength be-
tween real EEG signals from MCI and AD patients. First
of all, we tested PDI on simulated data in order to assess
its sensitivity to the changes in the coupling strength
between interacting dynamic systems. The analysis of
the simulated time-series yielded suggestions on the se-
lection of the relevant configuration parameters for the
computation of PDI. In particular, we applied PDI to
the detection of nonlinear interdependency of two uni-
directionally coupled Henon Maps X and Y, which have
been extensively used in literature to validate measures
of coupling strength 3° 36, they are defined as:

X a1 =14—22 +byxy
Y iypp1 = 14— [an + (1 - C)yn]yn + byynfl
®)
System X drives system Y with a nonlinear coupling
strength ¢, which ranges from O to 1 with, O represent-
ing no coupling and 1 representing complete coupling.
In the analysis of Identical Systems, bx is set to 0.3 and
by is set to 0.3, whereas they are set to bx = 0.3 and
by = 0.1 for Non Identical Systems. A detailed discus-
sion about the implications of identical and nonidentical
systems can be found in 37,

Coupled Identical Henon Maps

5 T T T T T T
\ — — -alpha=1.1
4 \ alpha=2 ||
\\ alpha=3
= |- - _ - — — alpha=4
B3 - 1
2,
1 L L L L L L L L L
0 0t 02 03 04 05 06 07 08 09 1
Coupling strength
Coupled Non Identical Henon Maps
5 T T T T T T
— — -alpha=1.1
4 alpha=2 |4
alpha=3
[ . — — alpha=4
2o S
2r —-t—.
1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 03 04 05 06 07 08 09 1
Coupling strength
Fig. 3. PDI as a function of coupling strength ¢ and «. The top

sub-plot is related to the analysis of identical Henon Maps and the
bottom sub-plot is related to non-identical Henon maps.

X and Y are initialised randomly and are iteratively
computed making c increase of 0.01 every 1000 steps. A
sample of PDI is computed every 1000 simulated sam-
ples of X and Y. Therefore, in the range ¢ <+ ¢ + 0.1,
10 PDI values are calculated because c increases with a
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0.01 increasing rate, in order to make it grow smoothly.
The ten PDI values estimated with a coupling strength
ranging from a given value c to c+0.1 are then averaged
and a single, average, PDI sample is associated to that ¢
value.

In Figure 3, PDI is depicted as a function of both the
coupling strength ¢ and «, for identical (top sub-plot)
and non-identical Henon maps (bottom sub-plot). PDI
decreases as the coupling strength increases. This sug-
gests that decreased projected alignment randomness re-
flects an increased coupling strength, as expected. The
behaviour is similar for different o values, even though
the absolute range decreases as « increases. a=1.1
shows the widest range but a non-smooth behaviour,
therefore, in this work =2 was selected. PDI for ¢ > 0.7
reflects a strong synchronisation between the two cou-
pled systems. The critical threshold ¢ = 0.7 corresponds
to the point when the maximum Lyapunov exponent of
the response system becomes negative and identical syn-
chronisation between the systems takes place. For 0 < ¢
< 0.7, PDI decreases monotonically as ¢ increases, thus
showing that PDI is sensitive even to weak coupling.

Coupled Identical Henon Maps

L L L
0 01 02 03 04 05 06 07 08 09 1
Coupling strength
Coupled Non Identical Henon Maps

L L L
0 01 02 03 04 05 06 07 08 09 1
Coupling strength

0 I I I

Fig. 4. PDI as a function of coupling strength ¢ and embedding
dimension m. The top sub-plot is related to the analysis of identi-
cal Henon Maps and the bottom sub-plot is related to non-identical
Henon maps.

Figure 4 shows PDI as a function of the coupling
strength ¢ and the embedding dimension m, for both
the identical (top sub-plot) and the non-identical Henon
maps (bottom sub-plot). PDI decreases as the coupling
strength increases.

With regard to the identical systems, for ¢ > 0.6,
PDI increases with m, which is intuitively plausible be-

cause the projected alignment randomness of two cou-
pled systems becomes inherently lower, as m increases,
because the probability of observing the same symbol
in the two time series is lower (in fact, the number of
possible symbols is equal to m!). An abrupt change can
be observed in the transition from m=6 to m=7 as the
trend appears flattened both in identical and non identi-
cal Systems. This suggests that, as m becomes too large,
PDI becomes less sensitive to the coupling strength vari-
ation.

Coupled Identical Henon Maps

o

PDI
[ RN S

[t v el el

L L L
0 01 02 03 04 05 06 07 08 09 1
Coupling strength
Coupled Non Identical Henon Maps

—r-
g AW =

PDI

1 L L L L L L
0 014 02 03 04 05 06 07 08 09 1

Coupling strength

Fig. 5. PDI as a function of coupling strength ¢ and lag L. The top
sub-plot is related to the analysis of identical Henon Maps and the
bottom sub-plot is related to non-identical Henon maps.

A relatively high m (m > 3), would inherently re-
duce the probability of a motif being detected both in
signals x and y and, therefore, reduce the estimated syn-
chronisation between them. In fact, as shown in 4 for the
simulated Henon Maps, as m increases, the sensitivity to
the coupling strength c is lost.

Furthermore, increasing m would increase the com-
putational cost because the number of possible symbols,
which we have to estimate the occurrence rate for, is
equal to m! According to the above mentioned observa-
tions, m=3 was selected in this paper.

Finally, Figure 5 shows PDI as a function of the
coupling strength ¢ and the lag L. Once again, PDI
decreases as the coupling strength increases. The be-
haviour looks similar for different L values. The issue
of optimal selection of m and L in AD/MCI EEG was
discussed in detail in 38. That paper showed that, by
setting m = 3 and L = 1, the slowing effect typical
of MCI/AD EEGs was better captured. Therefore, even
though L = 4 looks associated to a wider range (Figure
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5), since it showed the same trend as for L = 1, we se-
lected L = 1. Our future work will be focused also on
testing the method under different parameter settings, in
order to assess how this affects the performance of the
algorithm. This will be likely done on our upcoming,
extended database, so that the parameter settings can be
statistically optimised for MCI and AD patients. Until
then, we would rely on the parameter settings m = 3
and L = 1, which was shown to work fine on AD/MCI
EEG 3® and also worked fine on our theoretical assess-
ment on Henon Maps.

Once proven the ability of PDI to follow the vari-
ation of the coupling strength between two simulated
dynamical interacting systems, the next step was test-
ing PDI in the quantification of the coupling strength
between real systems like the electroencephalographic
signals of AD and MCI patients. The goal is the indi-
rect quantification of the connectivity between the corti-
cal areas through the estimation of the coupling strength
between the corresponding EEG signals.

4. Relative Power Analysis

As the Relative Power is a parameter commonly evalu-
ated when analysing EEG from MCI and AD patients,
even though it is a univariate measure and cannot di-
rectly be compared to PDI, we thought that showing a
Relative Power analysis over our longitudinal database
was appropriate. Given an EEG window under analysis
and considering the generic x-th EEG channel, the cor-
responding time series is here denoted as x. The Power
Spectral Density (PSD) of x is defined as the Fourier
Transform of the autocorrelation function (ACF) of x:

PSDyy = F{ACF,,(t)} 9)

Once each EEG channel was band-pass filtered
as described in Section 2.3, and the four sub-bands-
channels were generated (x5, 79, Ta, Tg), We can com-
pute the Relative Power (RP) of x in every sub-band
(SB):

_ PSD(SB)
RFy = PSD(total)

which is the ratio between the PSD of the signal in
the specific sub-band (f; — f2) and the overall PSD of in
the range 0.1-32Hz. The power in the sub-band f; — fo
was calculated as the integral of the PSD P,,(f), es-
timated between f; and fs. In this work, the popular
Welch algorithm was used to estimate PSD 3.

Given an FEGgp and given the generic window
w under analysis, the relative power RPY  ,(SB)

(10)

among the electrodes belonging to a specific scalp
area (frontal, temporal, central, parietal, occipital) was
calculated by averaging the EEG of the electrodes
x1,...,xk belonging to the sub-area under consider-
ation and then calculating the RP over the averaged
EEG. The RP;] . (SB) values were then averaged
over the windows w and a single average RP value
RP,1.. .x(SB) was computed for every sub-area, in
every sub-band.

The average RP RP,; _,1(SB) values were cal-
culated both at time TO and T1.

For every patient, the percent variation of
RP,1. .x(SB) (hereinafter simply denoted as RP)
was then estimated as:

(RP(T1) — RP(T0))
RP(T0)

AN(RP(T1)—RP(T0))% = %100

(11

5. Descriptors compared to PDI
5.1. Spectral Coherence

The magnitude squared coherence between two EEG
channels x and y is defined as:

L
Coll) = B P Py )

where P, (f) is the cross power spectral density of
xandy, P, (f) and Py, (f) are the power spectral den-
sities of x and y, respectively. All of them are functions
of the frequency f. Cy,(f) is a function of frequency as
well, and it is a measure of synchronisation between x
and y. Coherence ranges from 0 to 1, which indicates
how well x corresponds to y at a given frequency f. In
this work, coherence was calculated through the Welch’s
averaged, modified periodogram method 3°.

Given the sub-band EEG recording, FEGgp, and
given the window w under analysis (w=1,..., Nw, where
Nw is the number of analysed windows), the average co-
herence C;fy(SB) between a given couple of electrodes
x and y is calculated. The values C}’, (S B) are then av-
eraged with respect to w, in order to come up with a
single average C, ,(SB) between channels x and y, for
each EEG-sub-band recording.

(12)

5.2. Dissimilarity Index (Dm)

Given an EEG segment and given a pair of EEG chan-
nels (i. e. a pair of time series) x and y, they are projected
into the phase space to recostruct the ordinal patterns 7;,
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similarly to the procedure used in PE and PDI calcula-
tion (Sections 3.1 and 3.2).

The occurrence rates px (7;) and py (m;) of each or-
dinal pattern 7; on each of the two time series x and y
are calculated. After that, the distance between the rank-
frequency distributions is estimated and represents the
dissimilarity measure between the two time series:

m!

(Z(PX(M) = py (m))?

i=1

m!

Dm(X,Y) = T

13)

Further details can be found in Ouyang et al. 2%, We

used the algorithm shared by Ouyang et al.through the

File Exchange - MATLAB Central - MathWorks website.
The parameters m and L were set as for PDI.

5.3. Estimating PDI, Coherence and Dm
Jrom the EEG recordings

In order to carry out an overall scalp analysis, PDI, Co-
herence and D,,, between every possible pair of elec-
trodes were computed. The aim is to evaluate the be-
haviour of the above mentioned descriptors, all over
the scalp, in the follow-up of MCI and AD patients (at
time TO and at time T1), in every sub-band. Consider-
ing a sub-band K EGgp, obtained as described in Sec-
tion 2.3, and given a generic window w under analy-
sis, the PDI’, (SB), the coherence C’, (SB) and the
Dmy, (SB) between every couple of electrodes x and y
were calculated according to Sections 5.1 and 5.2. These
values were then averaged over the windows (i. e. over
the time) in order to come up with a single average PDI
value PDI, ,(SB), a single average coherence value
C1,y(SB) and a single average Dm value Dmy ,(SB),
for every couple, in every sub-band. For every patient,
either EEG-TO and EEG-T1, were analysed in this way.

6. Results

In this Section, we will first of all report the results of
the Relative Power analysis (described in Section 4) and
then we will report in detail the results of the analysis
described in Section 5.

6.1. Relative Power analysis

The estimated percent variations of RP (Eq. 4) are repre-
sented as histograms in Figure 6. This analysis was car-
ried out to detect possible shared trends in the changes
of the EEG of MCI and AD patients from the point of
view of RP variation. The top sub-plots, in Figure 6, are

associated to the MCI patients and the bottom ones are
associated to the AD patients. Each sub-plot is associ-
ated to a specific sub-band (delta, theta, alpha and beta)
and the x-axis represents the scalp sub-areas (Frontal,
Temporal, Central, Parietal and Occipital). Within each
group, every patient is depicted with a different colour
so that his/her histograms can be identified. Within each
group (AD or MCI), the patients showed some common
behaviour, which can be summarised as follows:

e The temporal and parietal areas of MCI patients
showed decreased RP in alpha band;

e The central and parietal areas of MCI patients showed
decreased RP in beta band;

e The central area of AD patients showed increased RP
in delta band;

e The frontal area of AD patients showed decreased RP
in alpha band.

6.2. PDI vs Coherence vs Dm analysis

The main goal of the present paper was to develop a
new indirect measure of connectivity and to apply it to
the EEG of MCI and AD patients in order to investigate
possible correlations with the disease’s development. In
other words, we aimed at finding possible EEG mark-
ers that are able to discriminate between stable MCI and
MCI degenerating towards AD. We decided to examine
in detail the overall scalp variation of PDI levels in the
transition from TO to T1, and to compare it with Coher-
ence and Dm.

Figures 7, 8, 9 show the boxplots of PDI, Coher-
ence and Dm, respectively. All of the three descriptors
were estimated at time TO and T1, according to the pro-
cedure described in Section 5. Boxplots are coloured ac-
cording to the results provided by the statistical analysis
discussed in Section 6.3.

Every boxplot in Figure 7, shows the PDI, ,(SB)
values calculated for every couple of electrodes x and
y at time TO or T1. Given a patient under considera-
tion, the boxplot on the left is associated to time TO
and the one on the right is associated to time T1. Sim-
ilarly, the single boxplot in Figure 8 and 9 shows the
C,,(SB) values (Figure 8) and the Dm, ,(SB) val-
ues (Figure 9), calculated for every couple of electrodes
x and y at time TO or T1. Inspecting the boxplots in the
three Figures, we can infer that the patients who expe-
rienced the conversion from MCI to AD (pt 3, pt 51
and pt 71) showed a similar behaviour from the point
of view of PDI’s evolution and Coherence’s evolution.
In particular, we can point out that, in the above men-
tioned patients, the median of the Coherence decreased
in the delta and theta bands, whereas the median of the
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Fig. 6. Percent variation of the average RP (comparing time TO and time T1). The top sub-plots are associated to the MCI patients and the
bottom ones are associated to the AD patients. Within each group, the legend shows the colour associated to each patient. The x-axis repre-
sents the scalp sub-areas (Frontal, Temporal, Central, Parietal and Occipital) and the y-axis represents the percent variation of the average RP.
Each sub-plot is associated to a specific sub-band (delta, theta, alpha and beta).

PDI increased in the delta and theta bands, thus, both de-
scriptors reflected an overall reduced coupling strength
in delta and theta band. Such a result is consistent with
the commonly shared interpretation of AD and MCI as
disconnection disorders. Boxplots in Figure 7 show that
the increase of PDI is sharp in patient 3, 51 and 71 (who
converted to AD), both in terms of increased median and
absolute range. In particular, for patients 3, 51 and 71,
the PDI boxplot range at TO shows no overlap with the
PDI boxplot range at T1 in delta band. The range of PDI
in patients 51 and 71 showed no overlap also in theta and
alpha sub-bands.

Four out of five stable MCI patients (pt 23, pt 41,
pt 57, pt 72) showed stable or increased Coherence lev-
els (i.e. stable or increased coupling strength), Figure 8,
whereas pt 30 showed reduced Coherence levels, like
the converted patients, and should be considered a false
positive. On the contrary, from the PDI perspective, the
totality of the stable MCI patients (pt 23, pt 30, pt 41, pt
57, pt 72) showed stable or reduced PDI (i.e. stable or
increased coupling strength).

As regards Dm analysis, pt 23, pt 51 and pt 71 ex-
hibited increased Dm levels (reduced coupling strength)
in delta, alpha and beta band (Figure 9); pt 57 showed
the same behaviour only in delta band and pt 72 only
in theta band. Apparently, Dm seems to be not sensi-
tive to MCI to AD conversion as there is no correlation
between DM variation and disease progression towards
AD. We can conclude that MCI patients who converted
to AD exhibited:

e Decreased median Coherence in delta and theta bands
(not specific because also one stable MCI patient, pt
30, exhibited a similar behaviour in delta band);

e Increased median PDI and increased PDI range in
delta and theta bands (specific and sharp, particularly
in delta band);

Summing all up, even though the analysed dataset
is small, both Coherence and PDI resulted sensitive to
the conversion from MCI to AD because both detected a
reduced coupling strength in delta and theta bands. Nev-
ertheless, Coherence looks less specific than PDI be-
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Boxplot of PDI at time TO and T1. Every row is associated to a specific EEG sub-band (delta, theta, alpha, beta). For each patient,

the boxplot on the left represents the values assumed at time TO whereas the boxplot on the right represents the values assumed at time T1.
On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers. The red boxplots, in the MCI group, are associated to a statistically significant increase (p < 0.001) of

PDI levels (see Section 6.3 Statistical Analysis.)

cause one stable MCI patient (patient 30) behaved like
converted patients (patient 3, 51 and 71) as he/she ex-
hibited a decreased coherence (Figure 8) in delta band,
although at T1 he/she was still diagnosed MCI. From the
PDI perspective, the reduced coupling strength in delta
and theta bands was a behaviour that could be detected
only on converted MCI patients.

6.3. Statistical analysis

In order to assess how significant was, for every patient,
the overall variation of the PDI levels, between time TO
and T1, an intra-subject, descriptive analysis was per-
formed. For every patient, given a sub-band, the two
populations under analysis were the PDI values at TO
(given a patient, the boxplot on the left in Figure 7) and
the PDI values at T1 (given a patient, the boxplot on the
right in Figure 7). The same analysis was carried out
with Coherence (Figure 8) and with Dm (Figure 9).
The Wilcoxon rank sum test “° was used to test the
null hypothesis that data in the two populations under
consideration are independent samples from identical
continuous distributions with equal medians. The statis-

tical analyses were performed in Matlab.

The achieved results are reported in Table II. The
p values corresponding to a significant (p < 0.001) in-
crease of PDI or Dm levels (reduced coupling strength)
or with significant decrease of Coherence levels (re-
duced coupling strength), are highlighted in bold style.
In Figures 7, 8 and 9, the boxplots associated with sig-
nificant (p < 0.001) increase of PDI or Dm levels
or with significant decrease of Coherence levels, were
coloured in red in MCI patients, in order to unravel pos-
sible correlations with MCI progression towards AD.

As regards PDI analysis, the intrasubject variability
study showed significantly (p < 0.001) increased PDI
levels in: Patient 3 (delta, theta); Patient 51 (delta, theta,
alpha, beta); Patient 57 (alpha, beta); Patient 71 (delta,
theta, alpha, beta); Patient 54 (theta, alpha); Patient 87
(delta, theta, alpha, beta); Patient 64 (alpha); Patient 76
(theta, alpha, beta).

As regards Coherence analysis, the intrasubject
variability study showed a significant (p < 0.001) de-
crease of Coherence, between TO and T1, in: Patient 3
(delta, theta); Patient 30 (delta); Patient 51 (delta, theta,
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(p < 0.001) of Coherence levels (see Section 6.3 Statistical Analysis.)

alpha, beta); Patient 57 (alpha, beta); Patient 71 (delta,
theta, alpha, beta); Patient 54 (theta, alpha); Patient 87
(delta, theta, alpha, beta); Patient 65 (beta); Patient 76
(delta, theta, beta).

As regards Dm analysis, the intrasubject variabil-
ity study showed significantly (p < 0.001) increased
Dm levels in: Patient 23 (delta, alpha and beta); Patient
51 (delta, alpha and beta); Patient 71 (delta, alpha and
beta); Patient 57 (delta) and Patient 72 (theta).

Focusing on MCI patients, the intrasubject variabil-
ity study showed that patients 3, 51 and 71 (who had
converted to AD by the time T1) exhibited a significant
(p < 0.001) increase of PDI in delta and theta bands
and that patients 51 and 71 exhibited the same behaviour
also in alpha and beta bands. As regards Coherence, pa-
tients 3, 51 and 71 exhibited a significant (p < 0.001)
decrease of Coherence in delta and theta bands and pa-
tients 51 and 71 behaved similarly also in alpha and beta
bands. However, also patient 30 (not converted to AD)
exhibited a significant decrease of Coherence in delta
band. As regards Dm analysis, it was not possible to de-
tect a behaviour peculiar to the converted MCI.

Summing all up, a statistically significant increase
of PDI medians was detected, in delta and theta bands,
only in the MCI subjects who converted to AD. The av-
erage increase of PDI, in delta and theta bands, might
be possibly correlated with the reduced connectivity,
which is associated to the disease progression towards
AD. The group analysis was not performed, due to the
limited size of the dataset: this will be the goal of our fu-
ture research. A large number of patients is, indeed, cur-
rently under recruitment at the IRCCS Neurolesi Center
Bonino-Pulejo (Messina, Italy). In the near future, an
extensive validation of the proposed methodology will
be carried out on the extended dataset.

7. Discussion

In this paper, we introduced a novel measure of time
series coupling, the Permutation Disalignment Index
(PDI), and its possible application as an indirect estima-
tion of the brain connectivity through the EEG, with ap-
plication to the follow-up of AD and MCI patients. PDI
is a multivariate measure which allows to estimate the
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Fig. 9. Boxplot of Dm at time TO and T1. Every row is associated to a specific EEG sub-band (delta, theta, alpha, beta). For each patient,
the boxplot on the left represents the values assumed at time TO whereas the boxplot on the right represents the values assumed at time T1.
On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers. The red boxplots, in the MCI group, are associated to a statistically significant increase (p < 0.001) of
Dm levels (see Section 6.3 Statistical Analysis.)

Table I1: Results of the statistical, intra-subject, descriptive analysis

PDI Coherence Dm
Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta
Pt 03 (conv to AD) | 2,86E-018 1,66E-005 0,81577343 0,44126899  1,90E-015 2,33E-006 0,44843899 0,711596705|0,112977469 0,021617034 5,71E-016 0,165451263
Pt 23 0,145728533 0,00941136 0,03032865 0,34742543 0,95202795 0,00717482 0,00227497 0,164785168| 5,46E-018 0,377389748 2,53E-005  6,53E-007
Pt 30 0,133709567 0,24228364 0,00885711 0,60108012 0,00020795 0,24805842 0,09972153 0,714043459| 2,94E-011 9,60E-012 1,19E-009  7,61E-005
G |Pt51(convto AD) | 2,33E-015 1,12E-022 1,18E-019 5,10E-020 = 1,88E-007 4,61E-027 1,27E-022  2,75E-041 | 9,88E-056  1,86E-025  9,40E-008  2,99E-014
= P41 1,33E-015  4,98E-007  4,65E-004 4,30E-008  2,15E-016 5,44E-013 6,92E-003  3,55E-008 | 2,03E-016 0,405800646 7,25E-023 0,000911609
Pt 57 0,742800365 0,70508659 5,36E-006 0,00065882 0,49697015 0,40271885 9,05E-005 0,00674046 | 5,28E-005 0,937227236 0,001285828 1,55E-006
Pt 71 (conv to AD) | 5,04E-050 2,18E-034 3,06E-023 1,04E-034 9,60E-046 6,90E-042 2,38E-024 1,65E-035 | 1,37E-026  1,69E-032  1,71E-012  2,48E-025
Pt 72 3,11E-047  4,42E-050 2,71E-013  5,53E-006 = 2,18E-036 3,03E-048 4,45E-013  2,15E-005 |0,000160145 4,29E-023 0,000104076 0,223026449
Pt 31 0,00423174  6,33E-005  5,47E-008 0,20410968  0,03748398 0,03448438 2,19E-006 0,897301284| 2,00E-016 0,058887264 1,65E-006 0,006852411
Pt 54 9,23E-002  0,00708134 0,02335987 6,89E-001 = 3,91E-001 6,22E-002 3,86E-002 0,009933283| 2,18E-006 0,041789886 0,000318493 0,145728533
Pt 87 0,006041909 0,0147187 4,17E-009 6,97E-012 2,43E-010 1,45E-007 2,27E-012 1,24E-014 |0,562098917 9,95E-018 2,29E-051 0,007413375
9( Pt 64 0,235306893 0,2344449 0,01981434 0,13976615 0,38512272 0,1664542 0,24316586 0,259895256 |0,080855598 3,07E-013  2,41E-006 0,792079229
Pt 65 0,688906413 0,75274547 0,00503846 0,08009788 0,89557052 0,88087989 0,00030665 0,00987057 | 540E-019 0,375618902 1,13E-007 0,016013818
Pt 76 0,001583312 7,02E-012  4,49E-010  1,66E-031  1,29E-007 0,00026103 0,02691103 4,46E-006 |0,137724263 2,67E-019  1,49E-057  1,46E-057
Pt 86 4,53E-002  0,54162747 5,81E-001 2,60E-002 | 1,89E-001 598E-001 7,49E-001 0,653026532|0,000353685 0,016500072 1,58E-010  2,18E-007

Results of the statistical, intra-subject, descriptive analysis. We evaluated how significant was, for every patient, the overall variation of each descriptor (PDI, Coherence and
Dm), between time TO and T1. The Wilcoxon rank sum test was applied and the p values are reported. The p values corresponding to a significant (p<0.001) increase of PDI or
Dm levels (reduced coupling strength) or with significant decrease of Coherence levels (reduced coupling strength), are highlighted in bold style.

coupling strength between signals in terms of projected
alignment randomness. PDI overcomes the limitations
of the standard univariate Permutation Entropy (PE) 3!
whenever a pairwise or multivariate measure is neces-
sary. Furthermore, it overcomes the issues that come
with applying standard, amplitude dependent method-
ologies to EEG data. In fact, when processing the EEG,

the amplitude of the signals depends on the location
of the reference electrode and, when using amplitude
dependent methods, a preprocessing step to normalise
EEG time series is required. The permutation concept
allows us to bypass the normalisation as time series are
projected into a symbolic space, where the effect of am-
plitude is lost and only the effect of variation is kept,
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which also produces an improved robustness to noise
and EEG artifacts in general. The ability of PDI in de-
tecting nonlinear interdependency of two unidirection-
ally coupled Henon maps X and Y was validated theo-
retically. PDI was then tested in a follow-up study over
8 MCI and 7 AD patients. Every patient was evaluated
at time TO and then three months later (time T1): 5 MCI
remained stable and 3 MCI exhibited a conversion to
AD. The EEG recordings were processed, in each sub-
band, in order to track the changes of the EEG’s PDI in
every range of frequency.

The study consisted in evaluating the evolution of
PDI, all over the scalp, in comparison with Coherence
and Dissimilarity Index. Coherence and PDI resulted
both sensitive to the conversion from MCI to AD; in
fact, MCI patients who converted to AD showed an in-
creased median PDI and decreased median Coherence
(reduced coupling strength) in delta and theta bands.
However, only PDI resulted specific, because Coherence
produced a false positive (a stable MCI subject exhibited
a behaviour similar to the converted MCI). Analysing
the EEG of MCI patients through PDI looks a promis-
ing way to quantify how the disease is affecting the EEG
and to detect its possible degeneration towards AD. De-
veloping EEG-based systems that are able to objectively
quantify the progression of the disease is crucial and fo-
cusing the attention on periodic, long-term, follow-up
studies is necessary. In this way, we could unravel if
the variation of key EEG features may be the hallmark
of the disease’s progression and help to foresee its de-
velopment. Furthermore, in the present paper, only rest-
ing state EEG were considered, future work will also
be focused on the analysis of EEG during tasks, includ-
ing evoked potentials. In this case, however, the traces
will be more likely to be affected by artifacts and an ad-

vanced artifact rejection step will be required 4!, 42, 43,
44

8. Conclusion

Permutation Disalignment Index (PDI) was proposed in
this paper as a new measure of time series coupling,
with application to the indirect estimation of the brain
connectivity in patients affected by AD and MCI. PDI
was tested on simulated two unidirectionally coupled
Henon maps time series in order to test its ability to
measure the coupling between interacting dynamic sys-
tems. The simulation also yielded suggestions on how
to tune the PDI parameters. PDI was then applied to
real EEG traces recorded during a follow-up study car-
ried out over 7 Alzheimer’s Disease (AD) patients and
8 Mild Cognitive Impairment (MCI) subjects. Every pa-

tient was evaluated at time TO and at time T1, 3 months
later. At time T1, 5 out of 8 MCI patients were still di-
agnosed MCI, whereas the remaining 3 exhibited a con-
version from MCI to AD. PDI was compared with the
spectral coherence, a common parameter used in liter-
ature in the analysis of AD and MCI EEG and with
the Dissimilarity Index, a recent symbolic measure of
time series dissimilarity. The study consisted in evaluat-
ing the overall evolution of PDI, sub-band by sub-band.
Both coherence and PDI resulted sensitive to the conver-
sion from MCI to AD, but only PDI resulted specific as
it allowed to detect a recurrent behaviour that was pecu-
liar only to converted MCI patients, who indeed showed
a significant increase of PDI in delta and theta bands
(p<0.001). In conclusion, the intra-subject, longitudi-
nal evaluation of the overall coupling between the EEG
signals, through PDI, looks a promising method to dis-
criminate between converted MCI and stable MCI. Fu-
ture efforts will be focused on extending the study to a
larger number of patients that should be monitored pe-
riodically and over a long time. Furthermore, PDI will
be tested, in conjunction with other EEG features, as a
possible input parameter to a system designed for the
estimation of the probability that a patient will convert
to AD.
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