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Abstract

The strain-difference based nonlocal elasticity theory devised by the authors

(Polizzotto et al., 2006) is applied to homogeneous isotropic beams subjected

to static loads. Shear deformation is taken into account and a warping pa-

rameter ω is used to fix the warping shape of the cross sections. On letting ω

vary from zero to infinite, a continuous family of beam models is generated,

which spans from the Euler-Bernoulli beam (ω = 0) to the Timoshenko beam

(ω →∞), and identifies itself with the Reddy beam for ω = 2. Taking as ba-

sic unknowns the axial stretching e, the Euler-Bernoulli curvature χEB and

the shear curvature η, the boundary-value problem proves to be governed

by three uncoupled integral equations whose input terms contain, beside the

load data, eight arbitrary constants. These equations are solved by address-

ing a set of eight uncoupled auxiliary integral equations independent of the

boundary conditions, each of which is either a Fredholm integral equation of
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the second kind, or is more complex but has strong similarities with the lat-

ter type of equation. This makes it possible to express (e, χEB, η), the axial

and transverse displacements (u,w) and the shear angle γ to within the men-

tioned constants, which is useful to enforce the eight boundary conditions.

The numerical solutions for simple beam problems are reported and graphi-

cally illustrated with particular concern to size effects and to their sensitivity

to shear deformation.

Keywords: Nonlocal elasticity, Shear-deformable beams, Size effects

1. INTRODUCTION

The Eringen’s nonlocal elasticity theory, either in its fully integral form (Erin-

gen, 1972a,b, 1976, 1987; Eringen and Edelen, 1972), or in its differential

form (Eringen, 1983), constitutes an appealing conceptual framework widely

employed over the last fifty years for the study of size effects of small-scale

structures. The importance of this research work for engineering applications

is well documented by an extensive literature of which here we mention a few

representative works as (Eringen, 1972a,b, 1976, 1983, 1987, 2002; Eringen

and Edelen, 1972; Aydogdu, 2009; Eltaher et al., 2016; Eptaimeros et al.,

2016; Faroughi et al., 2017; Gibson et al., 2007; Kumar et al., 2008; Ped-

dieson et al., 2003; Pin Lu et al., 2007; Rafii-Tabar et al., 2016; Reddy, 2007,

2010; Sudak, 2003; Wang and Arash, 2014; Xu et al., 2016; Ma et al., 2008;

Tuna and Kirca, 2016; Tuna et al., 2019).

As it emerges from the above reported literature, nonlocal continuum

theories were (and still are) widely applied for the evaluation of the response
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of structural models as simple beams and plates used as sensors and actuators

within micro- and nano-technologies. Contrary to the common expectation

that “smaller is stiffer”, it was found that the Eringen’s nonlocal differential

theory applied to beams and plates generally predicts softening size effects,

or even no size effects at all as in the case of a cantilever beam under a

point load (Peddieson et al., 2003). Analogous anomalies were also found for

beams and plates under free vibrations (Pin Lu et al., 2006) and buckling

conditions (Sudak, 2003), and for rods in tension (Benvenuti and Simone,

2013).

Over the years, the Eringen’s nonlocal theories have been suitably modi-

fied in order to avoid the mentioned anomalies. Among these modified theo-

ries, we mention the two phase local/nonlocal model (Eringen, 1972b, 1987;

Altan , 1989; Polizzotto, 2001; Benvenuti and Simone, 2013; Khodabakhshi

and Reddy, 2015; Wang et al., 2016); solutions admitting non-continuous dis-

placement fields (Challamel et al., 2016); hybrib models formed by the Erin-

gen’s model coupled with a strain gradient one (Challamel and Wang, 2008;

Khodabakhshi and Reddy, 2015; Xu et al., 2017a,b); solutions of the Erin-

gen’s nonlocal differential problem accompanied by special boundary condi-

tions guaranteeing the equivalence with the related purely nonlocal problem

(Fernández-Sáez et al., 2016; Wang et al., 2016); the strain-difference model

similar to the local/nonlocal two-phase one, but with a suitable strain dif-

ference field as source of the nonlocal phase (Polizzotto, 2002). The latter

model was subsequently further elaborated and given the form on which the

present paper is centered (Polizzotto et al., 2006).

A clear explanation of the limits of the Eringen’s nonlocal integral theory
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was given by Romano et al. (2017). It was pointed out that, on the one hand,

this theory leads to Fredholm integral equations of the first kind, hence it

may lead to not well-posed boundary-value problems, and that, on the other

hand, the solution of the nonlocal differential problem is in general different

from the solution, if any, of the nonlocal integral model, except that the

previously mentioned special boundary conditions may be enforced, but this

is not always allowed by the equilibrium conditions of the beam.

A further discussion on the drawbacks encountered with the Eringen’s

nonlocal elasticity models was reported in a recent paper by the authors

(Fuschi et al., 2019). Among other, it was pointed out that the requisite

called “locality recovery condition” that is the property of a given nonsimple

constitutive model to respond like a simple model that founds itself in a state

of uniform strain Polizzotto et al. (2006), is not satisfied by the Eringen’s

nonlocal model. Also an explanation was given about the reason why this

model predicts softening size effects in the majority of structural configura-

tions. Indeed, on interpreting the Eringen’s nonlocal integral model as a tool

to redistribute the source (Hookean) local stress within a body, the redistri-

bution is incomplete within a boundary layer of finite thickness of the body

(but even within the whole body if sufficiently small), hence a fraction of the

source local stress is there wasted with a consequent loss in stiffness.

The strain-difference based nonlocal elasticity theory advanced by Poliz-

zotto et al. (2006) belongs to the same nonlocal strain-integral model family

as the Eringen’s nonlocal model, but it is exempt from all drawbacks of the

latter model. It in fact is stress saving (that is, the stress redistribution is

complete), it leads to a Fredholm integral equation of the second kind (hence
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to well-posed boundary-value problems), it complies with the locality recov-

ery condition (that is, the stress response is uniform under any uniform strain

state), it generally predicts stiffening size effects.

In Fuschi et al. (2019), the above strain-difference based nonlocal elas-

ticity theory was applied to Euler-Bernoulli beams under quasi-static loads

for the evaluation of the inherent size effects. Stiffening size effects were

predicted in all studied beam cases (including the cantilever beam under

point load at the free end), with results comparable with those obtainable

by the widely accepted strain gradient elasticity theory. The solution proce-

dure consists in a discrete numerical solution of a few mutually independent

Fredholm integral equations of the second kind. The proposed method lends

itself to various forms of generalizations to shear-deformable beams and to

buckling conditions. Shear-deformable beams are considered in the present

paper.

In order to account for shear deformation of a beam, it is required to

assign a warping mode of the cross section in such a way that shear strain

varies continuously from its maximum value at the neutral axis points and

leads to zero value of the shear stress at the top and bottom surfaces of

the beam. For this purpose, the longitudinal local displacement is enriched

by extra addends in the form of polynomial functions of the transverse co-

ordinate (see e.g. Reddy (2007)), or trigonometric functions (see e.g. Vidal

and Polit (2010)).

An alternative warping model is the parametric warping proposed by

Polizzotto (2015, 2018), whereby a continuous family of warping shapes is

governed by a real scalar parameter, say 0 ≤ ω ≤ ∞. On letting ω vary, a
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continuous (or discrete) family of shear-deformable beams is generated, which

spans from the Euler-Bernoulli beam for ω = 0, to the Timoshenko one for

ω → ∞, whereas it identifies itself with the Reddy beam model (Reddy,

2007) for ω = 2. The latter warping model is adopted in the present paper

and for the first time applied to nonlocal elastic shear deformable beams

obeying the strain-difference based nonlocal elasticity theory.

The objective of the present paper is to extend to axial- and shear-

deformable beams the study previously implemented by the authors (Fuschi

et al., 2019) to evaluate size effects in small-scale Euler-Bernoulli beams sub-

jected to quasi-static loads. For this aim, the strain-difference based nonlocal

elasticity theory is applied under the hypotheses of small displacements and

isotropic material. The main intent is to ascertain the influence of shear

deformation on size effects.

The method herein adopted is based on an analytical/numerical proce-

dure; it is centered on a particular choice of the basic unknown variables.

These are the beam’s axial stretching e, the Euler-Bernoulli curvature χEB

(bending curvature pertaining to the Euler-Bernoulli beam) and the shear

curvature η (first derivative of the shear angle γ). By this choice, the

boundary-value problem will be shown to be governed by three uncoupled

integral equations, of which two (related to e and χEB) are Fredholm inte-

gral equations of the second kind, the other (related to η) possesses strong

similarity with this type of integral equations. The input terms of these

governing equations are each expressed as a linear combination of some aux-

iliary loading conditions with in total as many constant coefficients as there

are boundary conditions. Taking profit from the linearity of the problem and
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of the superposition principle, an auxiliary integral equation technique is en-

visioned, by which the beam’s deformations (e, χEB, η), along with the axial

and transverse displacements (u,w) and the shear angle γ are determined

to within the mentioned constant coefficients, available to accommodate the

inherent boundary conditions.

By a simple application to a cantilever beam it will be shown that the

response of the beam is notably influenced by shear deformation and that

therefore taking into account shear deformation may constitute a paramount

issue for beam analysis.

In Section 2, some preliminaries of the beam model based on the strain-

difference nonlocal elasticity theory are presented together with the essentials

of the parametric warping technique. The constitutive equations of the beam

model are also reported together with the warping coefficients. The beam

problem is addressed in Section 3, where the equilibrium equations and the

boundary conditions are reported together with the governing uncoupled

integral equations. In Section 4, the auxiliary integral equations are derived

and discussed. In Section 5, a generalization of the Navier formula for the

normal stress and the Jourawski formula for the shear stress are presented.

In Section 6 applications of the theory to beam problems are presented and

illustrated. Conclusions are drawn in the last Section 7.

A standard notation is used throughout. The meaning of particular sym-

bols used on occasion will be given in the text at their first appearance. The

symbol := means equality by definition.
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2. PRELIMINARIES TO THE BEAM AND CONSTITUTIVE

EQUATIONS

A straight beam of length L is considered which is referred to Cartesian

orthogonal axes (x, y, z) with x coinciding with the beam axis, z along the

beam height, y in the width direction. The cross section is rectangular, of

hight h and area S, see Figure 1. The kinematics of the beam is described

Figure 1: Geometrical sketch of the beam model.

by the (small) displacements

ux(x, z) = u(x)− zw′(x) + Θ(z)γ(x)

uy ≡ 0, uz(x, z) = w(x)

 (1)

Here, u(x) is the axial displacement, w(x) the transverse displacement, γ(x)

the shear angle, that is, the cross section relative (anticlockwise) rotation

with respect to the normal to the deflected axis measured at the centroid of

the cross section; whereas Θ(z) denotes the shear warping function (specified

later on) and w′(x) := dw(x)/dx. Therefore, there are only two meaningful

strain components, that is,

εxx(x, z) = e(x) + zχ(x) + Θ(z)η(x)

2 εxz(x, z) = Θ′(z)γ(x)

 (2)

where e(x) = u′(x) (axial stretching), χ(x) = −w′′(x) (bending curvature),

and η(x) = γ′(x) (shear curvature).
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2.1. The Strain-Difference Based Nonlocal Model

The strain-difference based nonlocal model is described in (Polizzotto et al.,

2006) for 3D elastic solids and there also specialized for beam models, see

also (Fuschi et al., 2019). The fundamental mathematical ingredients are the

influence function g`(x, x̄) and the weight function Γ`(x), which are expressed

as

g`(x, x̄) :=
1

2`
exp
(
−|x− x̄|

`

)
(3)

and

Γ`(x) :=

∫ L

0

g`(x, x̄) dx̄ = 1− 1

2

[
exp
(
−x
`

)
+ exp

(
−L− x

`

)]
(4)

where ` denotes the beams’s internal length parameter (` < L). Also, there

is a kernel function expressed as

κ(x, x̄) :=
[
Γ`(x) + Γ`(x̄)

]
g`(x, x̄)−

∫ L

0

g`(x, p)g`(x̄, p) dp (5)

along with a (local phase density) function

s(x) := 1 + αΓ2
`(x) (6)

where α is a material constant to be identified via experimental tests on the

material in use and whose influence on the nonlocal solution was addressed

in Fuschi et al. (2015).

With the above definitions in mind, the (nonlocal) stresses generated by

a specified strain field within the isotropic elastic beam according to the

mentioned strain-difference model are
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σxx(x, z) = EJ [εxx](x, z)

σxz(x, z) = µJ [2εxz](x, z)

 (7)

where E = Young modulus, µ = shear modulus, whereas J is an integral

operator defined as

J [φ](x, . . .) := s(x)φ(x, . . .)− α
∫ L

0

κ(x, x̄)φ(x̄, . . .)dx̄ (8)

with φ(x, . . .) being a function of x and possibly of other space co-ordinates,

or even a constant.

2.2. Warping Function

Following (Polizzotto, 2015, 2018), the warping function Θ(z) is chosen in

the form

Θ(z) := z − |z|
1+ω sign(z)

(1 + ω)
(
h
2

)ω (9)

holding for any real nonnegative value of the warping parameter ω, as well

as for any z, but |z| ≤ h/2. It is easily verified that for ω = 0 it is Θ(z) ≡ 0

(no warping, Euler-Bernoulli beam), whereas for ω = ∞ it is Θ(z) ≡ z (no

warping but with a nonzero shear rotation, Timoshenko beam). For easy

reference the warping function Θ(z) and its derivative Θ′(z) are plotted in

Figure 2 for different values of ω.

Figure 2: Warping function Θ(z) for different values of ω: a) Θ(z); b) Θ′(z)
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Since

0 ≤ Θ′(z) = 1−
(

2 |z|
h

)ω
≤ 1 (10)

and Θ′(±h
2
) = 0, it results from Eq.(2)2 that the shear strain at the top and

bottom surfaces of the beam is vanishing, that is, εxz(x,±h/2) = 0, hence

σxz(x,±h/2) = µJ [2εxz](x,±h/2) = 0, ∀x ∈ (0, L), as it is required. The

quantity

∆ux(x, z) = Θ(z)γ(x) (11)

gives the fraction of the displacement ux(x, z) due to the warping of the cross

section.

2.3. Beam’s Constitutive Equations

The set of stress resultants of the shear deformable beam includes, beside

the standard stress resultants, that is,

[N,M,Q]x =

∫
S

[σxx, zσxx, σxz]x da (12)

two further resultants specific of the shear-deformable beam, that is,

[
M̂, Q̂

]
x

=

∫
S

[Θ(z)σxx, Θ′(z)σxz]x da (13)

where da denotes infinitesimal area measure. We shall refer to M̂ as the

warping stress moment, and to Q̂ as the warping shear force. For obvious

reasons, no warping axial force is allowed to exist. It can be easily verified

that M̂(x) ≡ Q̂(x) ≡ 0 for ω = 0 (Euler-Bernoulli beam), and M̂(x) ≡M(x),

Q̂(x) = Q(x) for ω =∞ (Timoshenko beam).
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Next, substituting Eq.(2) into Eq.(7) gives the stresses expressed as

σxx(x, z) = E {J [e](x) + zJ [χ](x) + Θ(z)J [η](x)}

σxz(x, z) = µΘ′(z)J [γ](x)

 (14)

Eq.(14)2 states that a non-zero shear stress is allowed to exist at a cross

section x if, and only if, the shear angle γ(x) 6= 0 and thus, a non-trivial

warping deformation occurs at that cross section. This fact is a characteristic

feature of the beam model under study, borrowed from the classical Euler-

Bernoulli model. For application purposes, a suitable extended form of the

Jourawski formula will be provided (in Section 5).

Then substituting Eq.(14) into (12) and (13) gives the beam’s constitutive

equations as

N(x) = ESJ [e](x)

M(x) = EIJ [χ+ a η](x)

M̂(x) = EIJ [aχ+ b η](x)

Q̂(x) = µSdJ [γ](x)

Q(x) = µScJ [γ](x)



(15)

Here, S is the cross section area, I the second area moment. The (non-
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dimensional) quantities (a, b, c, d) denote the warping coefficients which, in

the present case of isotropic material and rectangular cross section, turn out

to be functions of the warping parameter ω defined as

[a, b] (ω) = 1
I

∫
S

[zΘ(z),Θ2(z)]ω da

[c, d] (ω) = 1
S

∫
S

[Θ′(z),Θ′ 2(z)]ω da

 (16)

The following equality holds true

Q(x) =
c(ω)

d(ω)
Q̂(x) ∀x ∈ (0, L) (17)

The functions a(ω), b(ω), c(ω) and d(ω) for rectangular cross section and

isotropic material are reported in (Polizzotto, 2015, 2018). For easy reference,

they are also reported here, namely,

a(ω) = 1− 3

(1 + ω)(3 + ω)

b(ω) = 1− 6

(1 + ω)(3 + ω)
+

3

(1 + ω)2(3 + 2ω)

c(ω) =
ω

1 + ω

d(ω) =
2ω2

1 + 3ω + 2ω2


(18)

For later use, the coefficient β is also reported here, namely,

β(ω) := b(ω)− a2(ω) =
3ω2

(1 + ω)2(3 + ω)2(3 + 2ω)
(19)

For notational simplicity, in the following the dependence of the warping

coefficients upon ω will not be explicitly indicated, except whenever necessary
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for more clarity. It is worth noting that different cross sections, such as T-

shaped, I-shaped, circular, can be addressed by an appropriate definition of

the warping function Θ(z) fixed by Eq.(9) and of the warping coefficients

here defined by Eqs.(16).

3. THE BEAM PROBLEM

In this section, the beam’s equilibrium equations and boundary conditions

are first derived through the principle of virtual power (PVP), then the dis-

placement governing equations are reported.

3.1. Equilibrium Equations

The beam is subjected to distributed body forces bx(x, z), bz(x, z) acting

quasi-statically. Denoting by upper tildes the virtual kinematic variables,

the PVP reads as

∫ L
0

∫
S

(σxx ε̃xx + 2σxz ε̃xz) da dx =
∫ L
0

∫
S

(bxũx + bzũz) da dx

+
[
N̄ ũ+ Q̄ w̃ − M̄ w̃′ + C̄ γ̃

]L
0︸ ︷︷ ︸

free ends

(20)

where N̄ , Q̄, M̄ and C̄ denote assigned resultant forces and couples applied at

the free ends. Equation (20) has to be satisfied identically for any choice of

the virtual displacements and strains complying with Eqs.(1) and (2) along

with the conditions ũ = w̃ = w̃′ = γ̃ = 0 at the constrained ends where

u,w,w′ and γ are specified, that is,
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u = ū, w = w̄, w′ = w̄′, γ = γ̄ (constrained ends) (21)

Substituting (1) and (2) into (20) and operating in a straightforward manner,

we can obtain the field equilibrium equations of the beam as

N ′(x) + px(x) = 0

M ′′(x) + pz(x) +m′(x) = 0

M̂ ′(x)− Q̂(x) + m̂(x) = 0


∀x ∈ (0, L) (22)

where it is

px(x) :=

∫
S

bx(x, z)da

pz(x) :=

∫
S

bz(x, z)da

m(x) :=

∫
S

z bx(x, z)da

m̂(x) :=

∫
S

Θ(z)bx(x, z)da


(23)

The boundary conditions imply that at every beam end it must be:

Either u = ū and N free, or N = N̄ and u free

Either w = w̄ and M ′ free, or M ′ = Q̄ and w free

Either w′ = w̄′ and M free, or M = M̄ and w′ free

Either γ = γ̄ and M̂ free, or M̂ = C̄ and γ free


(24)
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The boundary conditions of (24)4 are explicitly affected by shear warping,

the other boundary conditions are as the classical ones. It may be convenient

to fix the value of the absolute rotaion φ at one end, then, since γ = φ+w′,

this condition is equivalent to γ = φ̄+ w′ at that end while M̂ is free.

Next, by integration of the differential equations (22) we can obtain a

closed form representation of the class of stress resultants satisfying the field

equilibrium equations as follows:

N(x) = N0(x) + ESA1

M(x) = M0(x) +
E I

L2
(B1x+B2L)

M̂(x) =

∫ x

0

Q̂(x̄)dx̄+ M̂0(x) +
E I

L
C


(25)

where A1, B1, B2, C are non-dimensional constants and

N0(x) := −
∫ x

0

px(x̄)dx̄

M0(x) := −
∫ x

0

[(x− x̄) pz(x̄) +m(x̄)] dx̄

M̂0(x) := −
∫ x

0

m̂(x̄)dx̄


(26)

In the case of statically determinate beams the expressions of N,M, M̂,Q

prove to be uniquely determinate.

Next, substituting Eq.(15) into the left-hand side of (25), we obtain the

following set of integral equations, namely,

J [e] (x) =
1

ES
N0(x) + A1 (27)

J [χ+ a η] (x) =
1

EI
M0(x) +

1

L2
[B1x+B2L] (28)
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J [aχ+ b η] (x)− µSd

EI

∫ x

0

J [γ] (x̄)dx̄ =
1

EI
M̂0(x) +

1

L
C (29)

It can be recognized that (27) and (28) exhibit a form reducible to a Fredholm

integral equation of the second kind, whereas (29) exhibits a more complex

form amounting to a linear combination of such integral equations. Since

η(x) = γ′(x), Eqs.(27-29) constitute a set of integral equations governing the

beam problem useful for the evaluation of the beam deformations e(x), χ(x),

η(x). Eq.(27) governs the beam axial deformation and is independent of the

other two equations. Instead, the latter two equations are mutually coupled,

but they can be rendered uncoupled by suitably changing the basic unknown

variables of the problem.

For this purpose, let us introduce a new state variable, say χEB, defined

as

χEB(x) := χ(x) + a η(x), ∀x ∈ (0, L) (30)

and let us remark that by (15)2 χ
EB satisfies the identity

M(x) = EIJ [χ+ a η] (x) = EI J
[
χEB

]
(x). (31)

This means that χEB(x) is the bending curvature associated to a bending

moment M(x) in a strain-difference nonlocal (shear-undeformable) Euler-

Bernoulli beam. For this reason, χEB(x) is here referred to as the Euler-

Bernoulli (bending) curvature.

Hence, recalling (19), we can write the equality

aχ(x) + b η(x) = aχEB(x) + β η(x) (32)
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Substituting (30) and (31) into (28) and (29), respectively, and introducing

the (non-dimensional) parameter

λ2 :=
µSL2d

EI
(33)

Eqs. (28) and (29) become

J
[
χEB

]
(x) =

1

EI
M0(x) +

1

L2
[B1x+B2L] (34)

and

β J [η] (x)− λ2

L2

∫ x
0
J [γ] (x̄)dx̄ = 1

EI
M̂0(x) + 1

L
C1

−a
[

1
EI
M0(x) + 1

L2B1x
] (35)

where the substitution C1 = C − aB2 has been operated. Since η = γ′, Eqs.

(34) and (35) are mutually uncoupled integral equations for the unknown

variables χEB and η, respectively.

We also observe the following:

i) For the Euler-Bernoulli beam (ω = 0), since correspondingly it is a =

b = β = d = 0 and χEB = χ, then (34) identifies with the equation

pertaining to the Euler-Bernoulli model, whereas (35) disappears.

ii) For the Timoshenko beam (ω →∞), since correspondingly it is a = b =

d = 1 and β = 0, then (34) remains as it is but with χEB = χ + η = φ′

(Timoshenko curvature), whereas (35) becomes

λ2

L2

∫ x

0

J [γ] (x̄)dx̄ =
1

EI

[
aM0(x)− M̂0(x)

]
+

a

L2
B1x−

1

L
C1 (36)

which governs the Timoshenko beam problem.
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4. SOLUTION METHOD BY AUXILIARY INTEGRAL EQUA-

TIONS

Equations (27), (34) and (35) contain some unknown constants to be deter-

mined by the beam’s boundary conditions; these equations cannot thus be

solved in general in the form in which they are, except in the case of stati-

cally determinate beams. Due to the linearity of the concerned equations, a

suitable solution method consists in expressing the unknown functions e(x),

χEB(x) and η(x) each as a linear combination of auxiliary unknown functions,

similar to the related source terms on the right-hand side of the governing

integral equations. This solution method is in more details explained in

the next sub-sections, starting with Eq.(27) associated to the beam’s axial

stretching.

4.1. Axial Stretching Equation (27)

Looking at the right-hand side of (27), let the unknown stretching e(x) be

expressed in the form

e(x) = e0(x) + A1 e1(x) (37)

where e0(x) and e1(x) are auxiliary response functions, whereas A1 is the

same constant appearing on the right-hand side of (27). Substituting (37)

into (27) gives

J [e0] (x)− 1

ES
N0(x) + A1 {J [e1] (x)− 1} = 0 (38)
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Since this equation must hold for arbitrary values of A1, then two mutually

independent auxiliary integral equations are generated, that is,

J [en] (x) = Rn(x) (n = 0, 1) (39)

where

Rn(x) :=


N0(x)/(ES) (n = 0)

1 (n = 1)

(40)

The above equations are Fredholm integral equations of the second kind

with a symmetric, positive definite kernel, which are known to admit each

a unique solution (Tricomi, 1985; Polyanin and Manzhirov, 2008). Notably,

these solutions can be obtained by means of a routine numerical method,

independently of the beam’s boundary conditions.

Next, the axial displacement u(x) can be readly derived by integration of

the differential equation e(x) = u′(x). We can write

u(x) = u0(x) + A1 u1(x) + A2 L (41)

where A2 is a further (non-dimensional) constant, whereas

un(x) :=

∫ x

0

en(x̄)dx̄ (n = 0, 1) (42)

Indeed, the axial displacement u(x) is determined to within the constants

A1 and A2, for which the boundary conditions of the beam problem must be

invoked.
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4.2. Bending Equation (34)

Equation (34) is not affected by the explicit presence of the warping parame-

ter ω, hence it is formally like the equation pertaining to the Euler-Bernoulli

beam model. For this reason the unknown variable χEB has been called

“Euler-Bernoulli curvature”, but one has to have in mind that, in virtue of

(30), χEB does not coincide with the bending curvature χ, except that the

beam is shear-undeformable, hence η ≡ 0, as it is the case for the Euler-

Bernoulli beam.

In analogy to the previous sub-section, let χEB be split as

χEB(x) = χEB0 (x) +B1 χ
EB
1 (x) +B2 χ

EB
2 (x) (43)

where B1 and B2 are the same constants of (34). Then, substituting (43)

into (34) permits us to write a set of three auxiliary integral equations as

J
[
χEBn

]
(x) = Un(x), (n = 0, 1, 2) (44)

where

Un(x) :=



M0(x)/(EI) (n = 0)

x/L2 (n = 1)

1/L (n = 2)

(45)

By these (mutually independent) equations, the auxiliary response functions

χEB0 , χEB1 and χEB2 can be uniquely determined again independently of the
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beam boundary conditions.

For later use, it is useful to construct an auxiliary Euler-Bernoulli trans-

verse displacement function, say wEB(x), related to χEB through the dif-

ferential relation χEB = −
(
wEB

)′′
(x). Then, by integration of the latter

equation and recalling (43) we can write

wEB(x) = wEB0 (x) +B1w
EB
1 (x) +B2w

EB
2 (x) +B3 x+B4 L (46)

in which B3 and B4 are further (non-dimensional) constants, and

wEBn (x) := −
∫ x

0

(x− x̄)χEBn (x̄)dx̄ (n = 0, 1, 2) (47)

Therefore, the displacement wEB(x) is so derived to within the four constants

B1, B2, B3, B4.

4.3. Shear Deformation Equation (35)

Applying again the procedure used before, let g(x) be a function such that

g′(x) = η(x),∀x ∈ (0, L) and let η and g be decoupled as

η(x) = η0(x) +B1η1(x) + C1η2(x)

g(x) = g0(x) +B1g1(x) + C1g2(x)

 (48)

Here, ηn(x) and gn(x), (n = 0, 1, 2), are mutually related by the integral

equations

gn(x) =

∫ x

0

ηn(p) dp, (n = 0, 1, 2), ∀x ∈ (0, L) (49)
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Substituting (48) in (35) gives

βJ [η0] (x)− λ2

L2

∫ x
0
J [g0] (x̄)dx̄+ 1

EI

[
aM0(x)− M̂0(x)

]

+B1

{
βJ [η1] (x)− λ2

L2

∫ x
0
J [g1] (x̄)dx̄+ a

L2 x
}

+C1

{
βJ [η2] (x)− λ2

L2

∫ x
0
J [g2] (x̄)dx̄− 1

L

}
= 0

(50)

From (50) we can obtain the auxiliary integral equations

βJ [ηn] (x)− λ2

L2

∫ x

0

J [gn] (x̄)dx̄ = Vn(x) (n = 0, 1, 2) (51)

in which (49) holds along with

Vn(x) :=



− 1
EI

[
aM0(x)− M̂0(x)

]
(n = 0)

−a x/L2 (n = 1)

a/L (n = 2)

(52)

Equations (51) exhibit a form more complex than the other auxiliary integral

equations met before. They are however linear and possess several charac-

teristics of a Fredholm integral equation of the second kind, which encourage

us to assume that the equations in question may be uniquely solved. Next,

assuming that the auxiliary response functions be known, we can construct

the shear angle γ(x) by writing

γ(x) = g0(x) +B1g1(x) + C1g2(x) + C2 (53)
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where the gn(x)(n = 0, 1, 2), are given by (49) and C2 is an arbitrary (non-

dimensional) constant.

It remains to determine the beam deflection w(x). For this purpose, let us

recall (30) and let us introduce a shear potential function G(x) (of dimension

a length) satisfying the condition

G′(x) = γ(x) = g0(x) +B1g1(x) + C1g2(x) + C2 (54)

Therefore, since η(x) = G′′(x), recalling that χ(x) = −w′′(x) and χEB(x) =

−
(
wEB

)′′
(x), by integration we can rewrite (30) in the form

w(x) = wEB(x) + aG(x), ∀x ∈ (0, L) (55)

Indeed, the shear potential function G(x) constitutes a scaled shear deflection

of the beam. Next, by (53) and by integration of (54) we can write

G(x) = G0(x) +B1G1(x) + C1G2(x) + C2x (56)

where

Gn(x) :=

∫ x

0

(x− x̄) ηn(x̄) dx̄, (n = 0, 1, 2) (57)

No additive integration constant is introduced into (56) since G can be de-

termined to within an additive constant.

Next, substituting (46) and (56) into (55) gives w(x) cast in the form

w(x) = w0(x) +B1w1(x) +B2w2(x)

+ (C1 −B2) aG2(x) + (B3 + aC2)x+B4L
(58)

where the wn(x) are given by
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wn(x) := wEBn (x) + aGn(x), (n = 0, 1, 2) (59)

The deflection response function w(x) is thus represented to within the six

constants B1, B2, B3, B4, C1, C2.

4.4. Solution Procedure

After the details presented previously within the present section, a solution

scheme emerges quite naturally. Indeed, the analysis for every loaded beam

case, proceeds with three sequential computational steps, that is,

(a) Preliminary solution of the eight (mutually independent) auxiliary inte-

gral equations (39), (44) and (51). This computation does not require

the knowledge of the boundary conditions, (the load conditions affect

only the zero-th auxiliary integral equation).

(b) Construction of the response functions u(x), w(x), γ(x) of Eqs. (41),

(55) and (54), respectively.

(c) Enforcing the boundary conditions (24) for every specific loaded beam

case, such as to evaluate the eight constants A1, A2, B1, B2, B3, B4, C1,

C2 and thus to complete the solution procedure.

It is worth noting that the eight auxiliary integral equations of step (a)

are of two different forms. One of them belongs to Eqs.(39) and (44) and,

cast in a non-dimensional form, reads as

s(x)φ(x)− α
∫ 1

0

K(x, y)φ(y) dy = F (x) (60)
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in which 0 ≤ (x, y) ≤ 1 and the kernel K(x, y) := Lκ(x, y). Additionally, the

unknown φ(y) represents in turn the original unknowns en(x) and LχEBn (x),

whereas F (x) represents Rn(x) and LUn(x). Eq. (60) may be easily trans-

formed to take on the typical form of a Fredholm integral equation of the

second kind, but this is believed not necessary for the numerical computation.

The other (non-dimensional) form of integral equation, met on addressing

(51), reads as

β
[
s(x)φ(x)− α

∫ 1

0
K(x, y)φ(y) dy

]
− λ2

∫ x
0
{s(y) Φ(y)

−α
∫ 1

0
K(y, p) Φ(p) dp} dy = F (x)

(61)

where

Φ(p) :=

∫ p

0

φ(q)dq (62)

Here again 0 ≤ (x, y, p, q) ≤ 1, K(x, y) := Lκ(x, y), whereas φ(x) is repre-

sentative of Lηn(x), F (x) of LVn(x). This latter integral equation is more

complex than (60), but we presume that it may be solved through the nu-

merical method used for (60).

4.5. Numerical Algorithm

The numerical algorithm used to solve the integral equations of the form

(60) is the Nystrom method reported by (Press et al. (1997), pp.782–785).

The solution is obtained in the form of a linear equation system, whereby

the main point is the choice of the quadrature points xi, (i = 1, 2, . . . , N),

along with the weights Wi (Gauss-Legendre quadrature rule).
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Equation (60) is approximated in the form

s(x)φ(x)− α
N∑
j=1

WjK(x, xj)φj = F (x) (63)

where φj = φ(xj). Then, on enforcing (63) at every x = xi, gives

N∑
j=1

(sj δij − αWjKij) φj = Fi, (i = 1, 2, . . . , N) (64)

which is a set of N linear equations in the unknowns φi. Then, substituting

the discrete values φi into (63) the solution function φ(x) is obtained, which

generally is well-conditioned, unless α is very close to an eigenvalue of (60).

The numerical algorithm to solve the integral equations of the form (61) is

equally inspired to the mentioned Nystrom method. Eq.(61) is approximated

in the form

β
[
s(x)φ(x)− α

∑N
j=1WjK(x, xj)φj

]

−λ2
∑i

j=1Wj

(
sj Φj − α

∑N
k=1WkKjk Φk

)
= F (x)

(65)

where

Φm := Φ(xm) =
m∑
l=1

Wl φl, (l = j, k) (66)

On enforcing (65) at every xi we get a linear equation system as
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∑N
l=1 [β (sl δil − αWlKil)

− λ2Wl

∑i
j=1 Wj

∑N
k=1 (sk δjk − αWkKjk)

]
φl = Fi, (i = 1, 2, . . . , N)

(67)

which enables one to evaluate the discrete values φl. Substituting these φl

into (65) and (66) we then can compute φ(x).

5. COMPUTATION OF THE STRESSES

The normal stresses σxx can be computed by Eq. (14)1. Also, by (15) written

in inverted form, that is,

J [e](x) =
N(x)

ES

J [χ](x) =
1

EIβ

[
bM(x)− aM̂(x)

]

J [η](x) =
1

EIβ

[
−aM(x) + M̂(x)

]


(68)

we can rewrite (14)1 in the equivalent form

σxx(x, z) =
N(x)

S
+
bz − aΘ(z)

β

M(x)

I
+
−az + Θ(z)

β

M̂(x)

I
(69)

This is a generalization of the Navier formula of classical beam theory; it

coincides with an analogous formula given by Polizzotto (2015).
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An alternative, perhaps more expressive, form of the stress formula (69)

can be obtained by (14)1, but modified by (30) whereby χ(x) = χEB(x) −

aη(x). Then, noting that M(x) = EIJ [χEB](x) we obtain

σxx(x, z) =
N(x)

S
+
zM(x)

I︸ ︷︷ ︸
Navier stress addend

+E [Θ(z)− az]J [η](x)︸ ︷︷ ︸
warping stress addend

(70)

Let us note that, since ∀ z, |z| ≤ h/2, it is

Θ(z)− az = 0 for ω = 0, ω =∞ (71)

the warping stress addend of Eq.(70) is vanishing for both the Euler-Bernoulli

beam and the Timoshenko one. Also note that the mentioned warping stress

addend gives zero contributions to the stress resultants N(x) and M(x) in

Eq.(70), since in fact it is

∫
S

[Θ(z)− az] da =

∫
S

z [Θ(z)− az] da = 0 ∀ω, ∀x ∈ (0, L) (72)

The shear stress σxz given by (14)2, recalling (10), can be rewritten as

σxz(x, z) = µΘ′(z)γ(x) = µγ(x)

[
1−

(
2 |z|
h

)ω]
(73)

Indeed, at every cross section, the shear stress predicted by the present model

is proportional to the shear angle γ(x), which is a consequence of the fact

that no shear strain is exhibited under pure bending conditions.

Eq.(73) is not useful for application purposes. In analogy with the clas-

sical Euler-Bernoulli beam, we can replace (73) with

σxz(x, z) = σeql
xz (x, z) (74)
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where σeql
xz (x, z) is the shear stress in local equilibrium with the predicted

normal stress σxx(x, z) of (69). Since σxy = 0, assuming bx = px = m = m̂ =

0, the local equilibrium equation reads

∂σxx
∂x

+
∂σeql

xz

∂z
= 0 (75)

Hence we have

σeql
xz (x, z) = −

∫ z

−h/2

∂

∂x
σxx(x, z̄)dz̄ (76)

Substituting (69) into (76), since N ′ ≡ 0, we obtain

σeql
xz (x, z) =

T (x)

βBI
[bX(z)− aY (z)] +

Q̂(x)

βBI
[−aX(z) + Y (z)] (77)

Here, since in general M ′(x) 6= Q(x), we have posited

T (x) := M ′(x) (78)

We have also introduced the quantities

X(z) :=

∫ h/2

z

zda =
1

8
Bh2

[
1−

(
2 z

h

)2
]

(79)

which is the classical first area moment, and

Y (z) :=

∫ h/2

z

Θ(z)da = X(z)− Bh2

4(1 + ω)(2 + ω)

[
1−

(
2 z

h

)2+ω
]

(80)

Eqs.(77), (78) and (79) coincide with analogous formulas given by Polizzotto

(2015) for local shear-deformable beams. As shown in the latter quoted

paper, (77) reduces to the classical Jourawski formula for ω → 0. At a cross

section x where γ(x) = 0, hence Q̂(x) = 0, Eq.(77) loses the contribution

from warping, but saves that from bending proportional to T (x).
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6. APPLICATIONS

This section is devoted to the application of the proposed theory to a simple

beam model as a cantilever beam under a point load P at the free end, which

indeed is known from the literature due to paradoxes encountered through

the application of the nonlocal-differential theory by Eringen (Eringen, 1983;

Peddieson et al., 2003). It was proved by Fuschi et al. (2019) that instead no

paradoxes of any sort occur with the strain-difference based nonlocal theory;

it is proved here that the same occurs if shear deformation is taken into

account.

The boundary conditions (24) are here specified as follows

w(0) = w′(0) = M(L) = 0, M ′(L) = P

γ(0) = 0, M̂(L) = 0

 (81)

In writing the condition γ(0) = 0 it is presumed that the clamping constraint

at x = 0 is able to impede the formation of a shear angle and thus to provide

the necessary reaction couple M̂(0). Instead at x = L we have assumed

that no constraints of any sort do exist and that therefore the shear angle

is allowed to form up freely; hence an external warping couple M̂ may be

applied at x = L, but here we have chosen M̂(L) = 0.

In the case of statically determinate beams the computational procedure

simplifies somewhat but for more clarity we try to follow the proposed com-

putational scheme. By the equilibrium conditions we can write

N(x) ≡ 0, M(x) = −P (L− x) , M ′(x) = P (82)
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By the boundary conditions (81)3 and (81)4, the constants B1 and B2 are

determined as

B1 = −B2 =
PL2

EI
(83)

while the boundary conditions (81)1, (81)2 and (81)5 give

B3 = B4 = C2 = 0 (84)

Finally, from (81)6 by using (25)3, (15)4, (53) and recalling that C = C1+aB2,

we get

C1 =

aPL2

EI
− µSdL2

EI

[
1
L

∫ L
0
J [g0](x̄)dx̄+ PL2

EI
1
L

∫ L
0
J [g1](x̄)dx̄

]
1 + µSdL2

EI
1
L

∫ L
0
J [g2](x̄)dx̄

(85)

The numerical solution of Eqs.(44) and (51) allows to get the response

functions w(x) and γ(x) given by Eqs.(53) and (55) respectively, after substi-

tuition of the above determined constants pertinent to the addressed beam

case.

6.1. Description of the Obtained Results

The predicted response of the cantilever beam is graphically illustrated in

Figures 3(a,b), 4(a,b), 5(a-d).

In Figure 3(a), the maximum deflection ratio [w(L)− w0(L)] /w0(L), where

w0(L) = PL3/(3EI), is plotted as a function of the warping parameter

ω, 0 ≤ ω ≤ 40, for fixed values h/L = 1, E/µ = 10, α = 50, but for dif-

ferent values of the internal length `/L = 0; 0.05; 0.1; 0.15; 0.2. In Figure

3(b), the same maximum deflection ratio is plotted as a function of the in-

ternal length 0 ≤ `/L ≤ 0.2, for different values of the warping parameter
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ω = 0; 1; 2; 3; 5; 10. These two groups of plots give a clear idea of the sen-

sitivity of the maximum deflection of the beam to the combined action of

the internal length and the shear deformation through the warping parame-

ter. Figure 3(a) shows that the increasing of ω causes some softening effect,

which seems to be a natural consequence of the fact that ω > 0 means more

deformation of the Euler-Bernoulli beam, but there is a notable stiffening

effect with the increasing of `/L, as clearly shown by both Figures 3(a,b).

The stiffening effects induced by the increasing of the internal length `/L

is clearly shown in Figure 3(b), where the curve corresponding to ω = 0

coincides with the one reported in Fuschi et al. (2019).

In Figure 4(a), the quantity µSγ(x)/P , proportional to the shear angle

γ(x), is plotted as a function of x/L for differen values of the warping param-

eter ω = 0; 1; 2; 3; 5; 10, and for fixed values `/L = 0.1; h/L = 1; E/µ = 10

and α = 50. In Figure 4(b), the maximum shear angle γ(L) is plotted as a

function of ω ≥ 0, for different values of `/L but fixed values of h/L = 1,

E/µ = 10, α = 50. Since γ(L) = 0 for ω = 0, γ(L) increases, with ω in-

creasing, from zero to a pick value at ω = 1 (starting plotting point), then

γ(L) decreases tending asymptotically to the value featuring the Timoshenko

beam.

In Figures 5(a-c) the normal stress ratio σxx(x, z)/σ0 given by (69), or

by (70), is reported as a function of 2z/h at x = 0, L/2, L, respectively.

σ0 = 6PL/(Bh2) is the maximum normal stress at x = 0 in the Euler-

Bernoulli beam.

In Figure 5(d) the shear stress ratio σxz(x, z)/µ given by (73) is reported

as a function of 2z/h at x = L. As observed in Section 5, at every cross sec-
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tion x the shear stress, if computed by (77), is the sum of two contributions,

of which one is proportional to γ(x), the other is proportional to the shear

force P = M ′(x). The latter contribution is non-zero everywhere, even at

x = 0 where γ(0) = 0.

Figure 3: Cantilever beam under point load at the free end. Deflection ratio,

(3EIw(L)/PL3) − 1, for fixed values of h/L = 1; E/µ = 10 and α = 50, plotted: a)

as function of the warping parameter ω and different values of internal length, `/L; b) as

a function of the internal length `/L and different values of the warping parameter ω.

Figure 4: Cantilever beam under point load at the free end: a) Shear angle γ plotted as

a function of x/L, for different values of the warping parameter ω, at a fixed value of the

internal length `/L = 0.1; b) Maximum shear angle γ(L) plotted as a function of ω for

different values of the internal length `/L. In all plots it is h/L = 1; E/µ = 10 and α = 50.

Figure 5: Cantilever beam under point load at the free end. Stress diagrams at cross

section plotted as a function of 2z/h, for different values of the warping parameter ω, at

fixed values of the internal length `/L = 0.1, slenderness ratio, h/L = 1 and for E/µ = 10,

α = 50: a-c) Normal stresses σxx at: x = 0, x = L/2, x = L, respectively; d) Shear

stresses σxz (only contribution proportional to shear angle γ) at x = L.
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7. CONCLUSION

In the present paper, the strain-difference based nonlocal elasticity theory

devised by the authors has been applied to small-scale beams under static

loads taking into account shear deformation. For this purpose the parametric

warping method has been applied whereby a real warping parameter ω ≥ 0

is used to fix the warping shape of the cross section. On letting ω vary,

a continuous family of beam models is obtained spanning from the Euler-

Bernoulli beam (ω = 0) to the Timoshenko one (ω = ∞). The exploitation

of the warping parameter ω enables one to have a global view on the in-

fluence of shear deformation on the beam response. A central point of the

method is the choice of the basic unknowns, i.e. the axial stretching, the

Euler-Bernoulli bending curvature and the shear curvature, with which three

uncoupled Fredholm integral equations of the second kind (or similar to it)

are obtained, for which a numerical solution method has been adopted.

The main result of the present paper indicates that within the frame-

work of nonlocal beam structural models —but likely also for plate and shell

models— shear deformation has a notable influence upon size effects and

that therefore shear deformation can hardly be disregarded for a correct pre-

diction of these effects. The proposed method lends itself to generalizations

to stability and vibration problems, taking into account anisotropy of the

material. These extensions are the subject of an ongoing research.
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