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Abstract

Non-local viscoelasticity is a subject of great interest in the context of non-local theories. In a recent study, the

authors have proposed a non-local fractional beam model where non-local effects are represented as viscoelastic long-

range volume forces and moments, exchanged by non-adjacent beam segments depending on their relative motion,

while local effects are modelled by elastic classical stress resultants. Long-range interactions have been given a frac-

tional constitutive law, involving the Caputo’s fractional derivative. This paper introduces a comprehensive numerical

approach to calculate the stochastic response of the non-local fractional beam model under Gaussian white noise.

The approach combines a finite-element discretization with a fractional-order state-variable expansion and a complex

modal transformation to decouple the discretized equations of motion. While closed-form expressions are derived for

the finite-element matrices associated with elastic and fractional terms, fractional calculus is used to solve the decou-

pled fractional equations of motion, in both time and frequency domain. Remarkably, closed-form expressions are

obtained for the power spectral density, cross power spectral density, variance and covariance of the beam response

along the whole axis. Time-domain solutions are obtained by time-step numerical integration methods involving an-

alytical expressions of impulse response functions. Numerical examples show versatility of the non-local fractional

model as well as computational advantages of the proposed solution procedure.

Keywords: Non local Timoshenko beam, Fractional viscoelasticity, White noise, State variable expansion

1. Introduction

There exists a great variety of non-local beam models in recent literature [1–13], used in a wide range of engineer-

ing problems. Certainly a well-established application field is micro- and nano-engineering [12–25], where non-local

beam models with various degree of complexity have been proposed as alternative to computationally expensive and

sometimes even prohibitive molecular simulations [26], in order to capture size effects which cannot be addressed by

a classical local continuum approach [12–25].

Existing non-local beam models typically involve non-local stiffness terms [1–13, 17, 18, 21–25], but also non-local

damping terms have been considered in recent studies [28–37]. Typical examples of non-local damping at a macro-

scale are those associated with external damping patches applied on beams, surface treatments, long adhesive joints or

fibres in composites, which may produce a long-range damped coupling between non-adjacent points of the compos-

ite [28–33]. On the other hand, non-local damping models may be useful for capturing damping effects at micro-and

nano-scale [34–37], which proved to be relevant in image acquisition via high-speed atomic force microscopes [38]

and frequency measurements of vibrating nano-sensors [39]; damping effects in nanostructures have also been ob-

served as a result of humidity and thermal effects [40], external magnetic forces [41], or in tensile test on graphene
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oxide nanoplates [42].

In the last years, the authors have proposed a non-local beam model, where non-local effects are represented as

long-range volume forces and moments mutually exchanged by non-adjacent beam segments, while local effects are

modelled by the classical local stress resultants [43–46]. The long-range forces/moments are built as depending on

the volumes of the interacting beam segments, and their relative motion measured by the pure deformation modes

of the beam, through distance-decaying attenuation functions. Elastic or viscoelastic long-range interactions have

been considered, the latter with classical Kelvin-Voigt constitutive law [46]. In a more recent paper [47], long-range

volume forces and moments have been modelled by the authors with a fractional constitutive law using, in particular,

the Caputo’s fractional derivative [48]. For their capability of representing a wide range of viscoelastic behaviours,

fractional operators seem indeed particularly appropriate to build theoretical non-local models that may handle a large

variety of non-local viscoelastic effects, ranging from the nano- to the macro-scale. In ref. [47], however, numerical

solutions have been presented only for the creep response and neglecting inertial effects. Yet, in order to calculate the

response of the non-local beam model in more general cases, an effective numerical procedure is certainly required.

Ideally, it should avoid time-consuming numerical integrations which are typically involved when solving fractional

multi-degree-of-freedom equations of motion and, at the same time, it should be easy to implement also for engi-

neers who are not necessarily familiar with fractional calculus. In this context, solution procedures for computing

the stochastic response are of particular interest, in view of possible applications for modelling non-local viscoelastic

response of nano-devices as sensors or resonators.

The purpose of this paper is to introduce a comprehensive numerical approach to calculate the stochastic response

of the non-local fractional Timoshenko beam model in ref. [47], under a Gaussian white noise input. The approach

relies on a finite-element (FE) discretization in conjunction with a fractional-order state-variable expansion and a

complex modal transformation to decouple the discretized fractional equations of motion. Closed-form expressions

are derived for FE matrices associated with elastic and fractional terms. Pertinent analytical tools of fractional calculus

are used to solve the decoupled equations of motion, providing an efficient solution in time and frequency domain.

Time-domain solutions are obtained by standard numerical integration procedures involving closed-form impulse

response functions. Frequency-domain solutions are used to build novel exact analytical expressions for the power

spectral density (PSD), cross power spectral density (CPSD), variance, and covariance of the beam response along

the whole axis. The numerical approach proposed in this paper mirrors the numerical approach used by the authors

in ref. [49] for studying the axial vibrations of a non-local fractional bar. A main novelty with respect to ref. [49],

however, is the exact closed-form expression here obtained for the PSD/CPSD and variance/covariance of the beam

response, which may represent a useful benchmark for any alternative numerical approach. The paper is organized as

follows. Section 2 recalls the key concepts of the non-local fractional beam model and the corresponding FE equations

of motion. The proposed numerical approach for computing the stochastic response of the non-local beam model is

presented in Section 3. Finally, numerical applications are discussed in Section 4.

2. Non-local fractional beam model

Here the non-local fractional beam model is briefly recalled, along with the pertinent FE formulation. More details

may be found in ref. [45] of the authors.

2.1. Equation of motion

Consider the uniform beam in Fig. 1, referred to a reference system where x and y are principal axes for the cross

section with area A, z is the centroidal axis. Under the assumptions of small displacements, the kinematics of the

Timoshenko beam is described by the following relations:

χ(z, t) =−∂ϕ(z, t)

∂ z
; γ(z, t) =

∂v(z, t)

∂ z
−ϕ(z, t) (1)

where v is the deflection in y direction, ϕ is the rotation of the cross section about the x axis, χ is the curvature and γ
is the shear strain. The local resultants are written as

T
(l)

y (z, t) =
∫

A
τxy(x,y,z, t)dA = G∗KsAγ(z, t); M

(l)
x (z, t) =

∫

A
σz(x,y,z, t)ydA = E∗Ixχ(z, t) (2)
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where T
(l)

y is the local shear resultant in y direction, τxy is the shear stress, Ks is the shear factor, M
(l)
x is th local

bending resultant, σz is the local stress in the z direction, Ix is the moment of inertia about the x axis, E∗ = β1E,

G∗ = β1G where E is the Young’s modulus, G is the shear modulus, β1 is a dimensionless parameter with values in

the range 0÷1, that reduces the amount of local effects [44]. Regarding non-local effects, the key assumption is that

Figure 1: Non local beam.

non-adjacent beam segments mutually exert long-rangeforces and moments due to relative motion. More specifically,

consider two non-adjacent beam segment of volume ∆V (zi) and ∆V (ζk) located at the positions z = zi and z = ζk on

the beam longitudinal axis, respectively; it is assumed that they mutually exert long-range forces and moments as

a consequence of their relative motion measured by the pure deformation modes of the beam [50]. The long-range

forces/moments are supposed to be self-equilibrated according to the Newton’s third law. They are taken as linearly

depending on the product of the two interacting volumes and an attenuation function governing the decay of non-local

effects with the relative distance. In the model, both purely elastic and fractional viscoelastic forces, modeled by

Caputo’s fractional derivative, are considered. A mechanical description of the long range interactions is provided in

Fig. 2.

In Fig. 2.1 the pure deformations θ and ψ are defined as follows:

Figure 2: Pure mode of deformation.

θ(zi,ζk, t) = ϕ(ζk, t)−ϕ(zi, t); ψ(zi,ζk, t) =
v(ζk, t)− v(zi, t)

ζk − zi

+ϕ(ζk, t)+ϕ(zi, t) (3)
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The bending moments exchanged by the two volumes ∆V (zi) and ∆V (ζk), due to the pure bending rotation θ , are

given as:

qϕϕ(zi,ζk, t) = rϕϕ(zi,ζk, t)+dϕϕ(zi,ζk, t) (4a)

rϕϕ(zi,ζk, t) = gϕ(zi,ζk)θ(zi,ζk, t)∆V (zi)∆V (ζk) (4b)

dϕϕ(zi,ζk, t) = g̃ϕ(zi,ζk)
((

Dα
0+θ

)

(zi,ζk, t)
)

∆V (zi)∆V (ζk) (4c)

The forces mutually exerted by the two volumes ∆V (zi) and ∆V (ζk), due to the pure shear deformation ψ , are given

as:

qy(zi,ζk, t) = ry(zi,ζk, t)+dy(zi,ζk, t) (5a)

ry(zi,ζk, t) =
1

|zi −ζk|
gy(zi,ζk)ψ(zi,ζk, t)∆V (zi)∆V (ζk) (5b)

dy(zi,ζk, t) =
1

|zi −ζk|
g̃y(zi,ζk)

(

(Dα
0+ψ)(zi,ζk, t)

)

∆V (zxi)∆V (ζk) (5c)

whereas the moments are

qϕy(zi,ζk, t) = rϕy(zi,ζk, t)+dϕy(zi,ζk, t) (6a)

rϕy(zi,ζk, t) = gy(zi,ζk)ψ(zi,ζk, t)∆V (zi)∆V (ζk) (6b)

dϕy(zi,ζk, t) = g̃y(zi,ζk)
(

(Dα
0+ψ)(zi,ζk, t)

)

∆V (zi)∆V (ζk) (6c)

In Eqs.(4)-(6), symbols rϕϕ and ry denote the elastic long-range interactions, while dϕϕ and dy indicate the fractional

ones. Specifically, symbol Dα
0+

denotes the Caputo’s fractional derivative, defined as [40]:

(

Dα
0+u

)

(t) =
1

Γ(1−α)

∫ t

0
(t − τ)−α u̇(τ)dτ (7)

where 0 ≤ α ≤ 1 and Cα are material parameters, while Γ(·) is the Euler gamma function. Further, symbols gϕ and

g̃ϕ in Eqs.(6) denote the attenuation functions of the pure-bending elastic and fractional long-range interactions re-

spectively, while gy and g̃y in Eqs.(7)-(8) have the same meaning for the pure-shear long-range interactions. Typically,

they are chosen as Gaussian, exponential or power law functions [45, 51]. The model allows different attenuation

functions for pure-bending and pure-shear long-range effects, as well as elastic and fractional ones. Next, let us divide

the beam in N segments of length ∆z and consider the bar segment of ∆V (zi) = A∆z at the location zi = i∆z, with

i = 0,1, ...,N; the equations of motion of this bar segment are

T (l)(zi +∆z, t)−T (l)(zi, t)+Ry(zi, t)+Fy(zi, t)∆z−ρ(xi)Av̈(zi, t)∆z = 0 (8a)

M(l)(zi +∆z, t)−M(l)(zi, t)+Rϕ(zi, t)∆z−ρIxϕ̈(zi, t)∆z = 0 (8b)

where qy(zi, t) is the external force per unit-length, m(x) = ρ(x)A being ρ(x) the mass per unit volume and Ry and

Rϕ are the resultants of non-local forces and moments on the beam segment written as

Ry(zi, t) =
N−1

∑
k=0,k 6=i

qy(zi,ζk, t); Rϕ(zi, t) =
N−1

∑
k=0,k 6=i

qϕϕ(zi,ζk, t)+qϕy(zi,ζk, t) (9)

Considering Eqs. (9), dividing Eqs. (8) by ∆z and taking the limit for ∆z → 0, the continuous counterparts of Eqs. (8)

are obtained:

χGA

[

∂ 2u(z, t)

∂ z2
+

∂ϕ(z, t)

∂ z

]

+qy(z, t)+
∫ L

0

2

ζ − z

{

gy(z,ζ )ψ(z,ζ , t)

+ g̃y(z,ζ )
(

(Dα
0+ψ)(z,ζ , t)

)}

dz = ρAv̈(z, t) (10a)
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EIx

∂ 2ϕ(z, t)

∂ z2
+χGA

[

∂u(z, t)

∂ z
+ϕ(z, t)

]

+A2
∫ L

0

{

gϕ(z,ζ )θ(z,ζ , t)+ g̃ϕ(z,ζ )D
α
0+ [θ(z,ζ , t)]

}

dz

+A2
∫ L

0

{

gy(z,ζ )ψ(z,ζ , t)+ g̃y(z,ζ )
(

(Dα
0+ψ)(z,ζ , t)

)}

dz = ρIxϕ̈(z, t) (10b)

The boundary conditions (BCs) hold the same form of classical local theory as it may readily be seen that, in the

equilibrium equations at the beam ends, the long-range forces and moments are infinitesimal of higher order with

respect to the local stress resultants [43]. Therefore, the BCs are:

χGA

[

∂u(z, t)

∂ z
+ϕ(z, t)

]

z=zi

=∓Ti(t) or v(zi, t) = vi(t) (11a)

EIx

∂ϕ(z, t)

∂ z

∣

∣

∣

∣

z=zi

=∓Mi(t) or ϕ(zi, t) = ϕi(t) (11b)

2.2. Finite-element formulation

The non-local fractional beam model is suitable for implementation in FE method. For this purpose, let us divide

the total length ot the beam in n FEs of the same length l, such that nl = L, being L the total length of the beam.

The points shared by adjacent FEs are the nodes; the generic i− th element has two nodes at z = ẑi = (i− 1)l and

z = ẑi+1 = il. The displacement field within the element is represented by means of standard linear shape functions as

follows:

uuui(z, t) = NNNi(z)dddi(t); dddT
i (t) =

[

v(i)1(t) ϕ(i)1(t) v(i)2(t) ϕ(i)2(t)
]

(12)

where i = 1,2, ...,n,, v(i)1,2(t) and ϕ(i)1,2(t), are deflections and rotations of the two nodes of the i− th element and

NNNi(x) is the shape functions matrix of the i− th element, that is

NNNT
i (z) =















(l−δi)(l2(1+12Ω)+(l−2δi)δi)
l3(1+12Ω)

6(l−δi)δi

l3(1+12Ω)

− (l−δi)(l+6lΩ−δi)δi

l2(1+12Ω)
(l+12lΩ−3δi)(l−δi)

l2(1+12Ω)
δi(12l2Ω+3lδi−2δ 2

i )

l3(1+12Ω)
6(δi−l)δi

l3(1+12Ω)
(l−δi)(6lΩ+δi)δi

l2(1+12Ω)
(2l(1−6Ω)+3δi)δi

l2(1+12Ω)















(13)

where δi = z− ẑi. Next, being dddT(t) = [u1(t) ϕ1(t) u2(t) ϕ2(t) . . .ϕn+1(t)] the vector collecting the displacements of

all nodes, the nodal displacements of the i−th element are written as dddi(t)=CCCiddd(t) where Ci is the connectivity matrix

of the i− th element. Following a standard Galerkin approach, the dynamic equilibrium equation of the discretized

beam is

MMMd̈dd(t)+CCC(nl) ((Dα ddd)(t))+KKKddd(t) = FFF(t), (14)

being MMM the consistent mass matrix, CCC(nl) the matrix of fractional long range interactions, KKK the stiffness matrix and

FFF(t) the vector of nodal forces. The stiffness matrix is obtained as

KKK = KKK(l)+KKK(nl) =
n

∑
i=1

KKK
(l)
i +

n

∑
i=1

KKK
(nl)
i , (15)

where KKK(l) and KKK(nl) are the local and non-local contributions, respectively. The local stiffness matrix of the i− th

element is

KKK
(l)
i =

∫ ẑi+1

ẑi

[BBBi(z)CCCi]
T

DDDBBBi(z)CCCidz, (16)

where DDD = Diag [EIx χGA] and BBBi(z) is the vector collecting the spatial derivative of the shape functions, while KKK
(nl)
i

is

KKK
(nl)
i = KKK

(nl,θ)
i +KKK

(nl,ψ)
i =

n

∑
j=1

KKK
(nl,θ)
i j +

n

∑
j=1

KKK
(nl,ψ)
i j (17)
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with

KKK
(nl,θ)
i j =

A2

2

∫ ẑi+1

ẑi

∫ ẑ j+1

ẑ j

[

NNN
(ϕ)
j (ζ )CCC j −NNN

(ϕ)
i (z)CCCi

]T

gϕ(z,ζ )
[

NNN
(ϕ)
j (ζ )CCC j −NNN

(ϕ)
i (z)CCCi

]

dzdζ (18a)

KKK
(nl,ψ)
i j =

A2

2

∫ ẑi+1

ẑi

∫ ẑ j+1

ẑ j

[

2
(

NNN
(v)
j (ζ )CCC j −NNN

(v)
i (z)CCCi

)

/(ζ − z)+NNN
(ϕ)
j (ζ )CCC j +NNN

(ϕ)
i (z)CCCi

]T

gy(z,ζ )
[

2
(

NNN
(v)
j (ζ )CCC j −NNN

(v)
i (z)CCCi

)

/(ζ − z)+NNN
(ϕ)
j (ζ )CCC j +NNN

(ϕ)
i (z)CCCi

]

dzdζ (18b)

It is to emphasized that the matrix CCC(nl) has the same mathematical form of the non-local stiffness matrix KKK(nl), the

only difference being that CCC(nl) involves g̃i(z,ζ ) instead of gi(z,ζ ). Finally, the vector FFF(t) is given as:

FFF(t) =
n

∑
i=1

∫

Vi

[NNNi(x)CCCi]
T

F̄FF(z, t)dVi(x)+ [NNN1(0)CCCi]
T

F̄FF1(t)+ [NNNn+1(L)CCCn+1]
T

F̄FFn+1(t). (19)

where F̄FF(z, t) = [Fy(z, t) 0] and F̄FF i(t) = [Ti Mi], i = 1,n+1, being Ti and Mi external transverse forces and moments.

It is important to remark that closed-form expressions for all terms in the non-local matrices KKK(nl) and CCC(nl) may be

found in ref. [45] of the authors.

3. Stochastic response of non-local beam

In this section, the FE formulation of the fractional viscoelastic non-local beam introduced in the previous section

is used to study the vibration of the dynamical system for the case in which the external load vector in Eq. (14) is

composed by stochastic agencies. In particular, without loss of generality, suppose that each node of the beam is forced

by a zero mean Gaussian white noise denoted by W (t), therefore FFF(t)= pppW (t), being ppp an influence vector. Under this

assumptions, the response vector is a set of stochastic response processes dddT(t) = [V1(t), Φ1(t), . . . ,Vn+1(t), Φn+1(t)],
where capital letters distinguish stochastic processes from deterministic ones. In this way the set of coupled differential

equations in Eq. (14) becomes

MMMd̈dd(t)+CCC(nl) (Dα ddd)(t)+KKKddd(t) = pppW (t), (20)

where W (t) is characterized by a constant PSD and by a Dirac delta function as Characteristic Function (CF). In

particular,

SW (ω) = S0, RW (τ) = 2πδ (τ) (21)

being δ (τ) the Dirac delta function, SW (ω) the PSD and RW (τ) the CF.

The system in Eq. (20) is linear, therefore, if the input processes are Gaussian also the output responses are

Gaussian too. For this reason, each output process can be described at steady state by the PSD, and/or by its Fourier

transform, that is the CF of the response. For the evaluation of the PSD the frequency analysis is particularly useful

and also permits to find the stationary statistics of the response. In particular, with the aid of the Fourier transform,

the Eq. (20) in frequency domains yields

[

−ω2MMM+(iω)αCCC(nl)+KKK
]

dddF (ω,T ) = pppWF (ω ,T ) (22)

where the i=
√
−1 is the imaginary unit, dddF (ω,T ) contains the truncated Fourier transform of the response processes,

and WF(ω,T ) denotes the Fourier transform of the Gaussian white noises truncated at time T in the frequency domain

ω . It is worth of notice that the power law (iω)α , related to the fractional order terms, contains an effective stiffness

(related to the real part of (iω)α ) and an effective damping (proportional to the imaginary part of (iω)α ). From

Eq. (22) the response vector in the frequency domain dddF (ω,T ) is

dddF (ω,T ) =
[

−ω2MMM+(iω)αCCC(nl)+KKK
]−1

pppWF (ω,T ) = HHH(ω)pppWF (ω,T ), (23)

where HHH(ω) is matrix that contains the transfer functions of the system.
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In order to fully characterize the stationary response in terms of displacements Vj(t) and rotation Φ j(t) for j =
1,2, . . . ,n of the free degree-of-freedom, the evaluation of the PSD and all the cross PSD of each element of the vector

ddd(t) is needed. In this regard, consider the PSD matrix defined as

SSSddd(ω) = HHH∗(ω)ppp lim
T→∞

E
[

W ∗
F
(ω,T )WF (ω,T )

]

2πT
pppTHHHT(ω) = HHH∗(ω)pppS0 pppTHHHT(ω), (24)

where E [·] is the expectation value, and the apex * denotes the complex conjugate. Consequently, the matrix SSSd(ω)
with dimension 2n×2n is defined as

SSSddd(ω) =











Sd,11(ω) Sd,12(ω) . . . Sd,12n

Sd,21(ω) Sd,22(ω) . . . Sd,22n

...
...

. . .
...

Sd 2n1(ω) Sd,2n2(ω) . . . Sd,2n2n











=











SV1
(ω) SV1Φ1

(ω) . . . SV1Φn

SΦ1V1
(ω) SΦ1

(ω) . . . SΦ1Φn

...
...

. . .
...

SΦnV1
(ω) SΦnΦ1

(ω) . . . SΦn











(25)

and each term represents the PSD function of the output processes and their cross counterparts. In particular, the

diagonal terms are the PSDs, whereas the other terms are the cross PSDs. The knowledge of each term of the matrix

in Eq. (25) permits to evaluate also the correlation and cross-correlation function with the aid of the Wiener-Khinchin

Theorem. That is,

Sd, j k(ω) =
1

2π

∫ ∞

−∞
Rd, j k(τ)exp(iωτ)dτ,

Rd, j k(τ) =
∫ ∞

−∞
Sd, j k(ω)exp(−iωτ)dω,

(26)

where Rd, j k(τ) represents the cross correlation of the j-th and k-th response process. From the knowledge of the

quantities in Eq. (26) the stationary variance and covariance can be found as

σ2
d, j k =

∫ ∞

−∞
Sd, j k(ω)dω = Rd, j k(0). (27)

Observe that the quantities in Eq. (25) provide a complete description at steady state of the Gaussian processes.

Unfortunately, the PSD matrix, can be evaluated in analytical form only for a few number of degree of freedom. In

fact, usually the matrix HHH(ω) cannot be obtained by means of the matrix inversion in Eq. (23). Therefore, just a

numerical evaluation of each terms of SSSddd(ω) can be pursued by the discretization of the variable ω . For this reason

in the next subsection the problem is solved with the introduction of a proper state variable expansion and a complex

modal transformation in order to find the exact solution of each term in the PSD matrix. However, the numerical

solution obtained with the aid of of Eq. (23) is used as a benchmark for the results obtained by the method in the next

subsection.

3.1. Steady-state analysis

For the case at hand, the matrix inversion problem in Eq. (23) cannot be solved with the aid of a classical modal

transformation, therefore other mathematical tools are needed. In this regards, consider the case in which the fractional

order α is rational, under this assumptions it is possible to represent the generic fractional order as irreducible fractions

of two integer values α = a/b, where a,b ∈N. In this manner, the system in Eq. (22) can be rewritten as the following

sequential linear algebraic equations:

[

2b

∑
j=1

CCC j (iω) j/b +KKK

]

dddF (ω,T ) = pppWF (ω,T ), (28)

where the involved matrices in the summation are CCCa = CCC(nl), CCC2b = MMM and CCC j = 000, ∀ j : j ∈ (1,a]and [a,2b− 1).
Introducing the vector of state variables in the frequency domain

zzzT
F (ω,T ) =

[

dddT
F (ω,T ), (iω)1/bdddT

F (ω,T ), . . . (iω)(2b−1)/bdddT
F (ω,T )

]

, (29)
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and appending to Eq. (28) the 2b−1 identities

2b−k

∑
j=1

CCC j+k(iω)1/b(iω)( j−1)/bdddT
F (ω,T ) =

2b−k

∑
j=1

CCC j+k(iω) j/bdddT
F (ω,T ), k = 1,2, . . . ,2b−1, (30)

then a set of 2n×2b coupled algebraic equations is readily cast in the form

(

AAA
b
√

iω +BBB
)

zzzF (ω,T ) = gggF (ω,T ), (31)

where gggT
F
(ω,T ) =WF (ω,T )

[

pppT 000 . . . 000
]

, the involved matrices are symmetric and defined as

AAA =















CCC1 CCC2 . . . CCC2b−1 CCC2b

CCC2 CCC3 . . . CCC2b 000
...

...
. . .

...
...

CCC2b−1 CCC2b . . . 000 000

CCC2b 000 . . . 000 000















BBB =















KKK 000 . . . 000 000

000 −CCC2 . . . −CCC2b−1 −CCC2b

...
...

. . .
...

...

000 −CCC2b−1 . . . 000 000

000 −CCC2b . . . 000 000

.















(32)

Now, it is possible to diagonalize the involved matrix by placing the complex modal transformation zzzF (ω,T ) =
ΨΨΨyyyF (ω,T ) and premultiplying both terms by ΨΨΨT. That is,

ΨΨΨT
(

AAA
b
√

iω +BBB
)

ΨΨΨ yyyF (ω,T ) = ΨΨΨTgggF (ω,T )
(

UUUd
b
√

iω +VVV d

)

yyyF (ω,T ) = µµµF (ω,T ),
(33)

where ΨΨΨ contains the eigenvectors of the matrix DDD = AAA−1BBB, the matrices UUUd = ΨΨΨTAAAΨΨΨ and VVV d = ΨΨΨTBBBΨΨΨ are diagonal

(the subscript d stands for diagonal). Now, from Eq. (33) the response in the complex modal space is

yyyF (ω,T ) =
(

UUUd
b
√

iω +VVV d

)−1

µµµF (ω,T ) = HHHd(ω)µµµF (ω,T ), (34)

where the transfer function matrix in the complex modal space HHHd(ω) = (UUUd
b
√

iω +VVV d)
−1 is diagonal and each terms

can be evaluated in closed from. In particular, the j-th diagonal term of such matrices is given as

H j(ω) =
1

u j
b
√

iω + v j

(35)

being u j and v j the j-th terms of the diagonal matrices UUUd and VVV d, respectively.

Defining all terms in Eq. (34), each term of the vector yyyF (ω,T ) can be readily obtained in analytical form and

then the exact PSD matrix in the state variable domain can be derived. In particular,

SSSzzz(ω) = lim
T→∞

E
[

zzz∗
F
(ω,T )zzzT

F
(ω,T )

]

2πT
= ΨΨΨ∗ lim

T→∞

E
[

yyy∗
F
(ω,T )yyyT

F
(ω,T )

]

2πT
ΨΨΨT

= ΨΨΨ∗HHH∗
d(ω) lim

T→∞

E
[

µµµ∗
F

µµµT
F
(ω)

]

2πT
HHHd

T(ω)ΨΨΨT = ΨΨΨ∗HHH∗
d(ω)SSSµµµ(ω)HHHd

T(ω)ΨΨΨT

= ΨΨΨ∗HHH∗
d(ω)ΨΨΨ∗T

SSSggg(ω)ΨΨΨHHHd
T(ω)ΨΨΨT.

(36)

this matrices has dimension 4nb×4bn and its first block of 2n×2n terms contains the matrix SSSddd(ω) of the Eq. (25).

Each term of the matrices SSSzzz(ω) can be evaluated in closed form. In particular, considering the i-th row and the r-th

column of such matrices, the corresponding term is

Sz,ir(ω) =
4bn

∑
j

4bn

∑
l

2n

∑
k

2n

∑
s

Ψ∗
i lΨ

∗
s l psSg,sk(ω)pkΨk jΨr j

(

u∗l
b
√
−iω + v∗l

)(

u j
b
√

iω + v j

) = S0

4bn

∑
j

4bn

∑
l

2n

∑
k

2n

∑
s

Ψ∗
i lΨ

∗
s l ps pkΨk jΨr j

(

u∗l
b
√
−iω + v∗l

)(

u j
b
√

iω + v j

) (37)
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where pk denotes the k-th term of the influence vector ppp, and Ψk j is the term of the k-th row and the j-th column of the

eigenvector matrices ΨΨΨ. The Eq. (37) is obtained by simple algebraic passages from Eq. (36) and it is valid for generic

stochastic forcing processes once the matrix SSSg(ω) is known; for the case at hand Sg,sk(ω) = S0. The knowledge of

the exact expression of the PSD and CPSD of the response by the Eq. (37) permits to apply the method in [52] to find

the variance and the covariance of the response processes. In particular, denoting as σ2
z,ir the covariance between the

i-th response process and the r-th one, the following relation hold true

σ2
z,i r = 2

4bn

∑
j

4bn

∑
l

2n

∑
k

2n

∑
s

ℜ
{

Ψ∗
i lΨ

∗
s l ps pkΨk jΨr jRl j

}

, (38)

where ℜ{·} denotes the real part of the term inside the brackets, and Rl j is related to the residue of complex spectral

moments of the response processes [52] and defined as

Rl j =
S0i(−1)−b

√
−1v∗l u j − v ju

∗
l

{

(

v∗l
u∗l

)b−1 [

b log

(

u∗l
v∗l

−b
√

i

)

− γ

]

+ b
√
−1

(

v j

u j

)b−1 [

b log

(

u j

v j

b
√

i

)

− γ

]

}

, (39)

where γ is the Euler-Mascheroni constant. Obviously, when i = r in Eq. (38) the expression becomes the variance of

the i-th response process.

Eq.s (37) and (38) represent the analytical expression of the PSD/CPSD and variance/covariance of the response

processes at steady state obtained with the aid of the fractional state variable analysis and with the complex modal

transformation in frequency domain. The state variable approach introduced above can be used also in the time do-

main to perform Monte Carlo simulations to evaluate the stationary and non-stationary responses and their related

statistics. Such approach does not provide analytical expressions but it is introduced in the next subsection for sake of

completeness since it represents a valuable numerical tool to verify the accuracy of the presented analytical expres-

sions.

3.2. Time-domain analysis

The state variable analysis and the complex modal transformation used in the previous subsection can be also

applied to decouple the set of fractional differential equations in time domain [49] and it can be applied to any system

ruled by coupled fractional differential equations. In particular, by using the state variable representation in Eq. (31) in

time domain and by placing the modal transformation zzz(t) = ΨΨΨyyy(t), the Eq. (33) leads to a set of decoupled fractional

differential equations and each equation is of the kind

u j

(

D
1/b

0+
y j

)

(t)+ v jy j(t) = µ j(t), j = 1,2,3, . . . ,4bn, (40)

that represents the equation of the motion of a fractional Kelvin-Voigt model with complex coefficients [48]. The

impulse response function of the Eq. (40) is given as

h j(t) =
b
√

t

t v j

∞

∑
k=0

(

−v j/u j
b
√

t
)k

Γ(k/b+1/b)
, (41)

and the modal response of the system in Eq. (40) can be evaluated by the Duhamel superposition integral. That is,

y j(t) =
∫ t

0
h j(t − t̄)µ j(t̄)dt̄, (42)

that has to be evaluated for j = 1,2,3, . . . ,4bn. In this way all terms of the vector yyy(t) are know and by the modal

transformation also the vector of the state variable zzz(t) can be found. In particular, each term of such vector is

zl(t) =
4bn

∑
j=1

2n

∑
k=1

Ψl jΨ j k

∫ t

0
h j(t − t̄)µ j(t̄)dt̄, l = 1,2, . . .4bn. (43)

Obviously, the first 2n terms of the state variable vector represent the displacements Vj(t) and the rotations Φ j(t) of

the system in Eq. (20). Eq. (43) can be used for the Monte Carlo simulations in order to determine the stationary and

non-stationary response processes. This method is used in the numerical applications to evaluate the non-stationary

variance and to verify the accuracy of the analytical equations presented in the previous subsection.
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4. Numerical applications

Next, the proposed solution method is used to calculate the stochastic response of a cantilever non-local fractional

beam forced by a Gaussian white noise with S0 = 1. The purpose is to validate the proposed closed-form expressions

(37) and (38) for the PSD and for the variance, as well as to show accuracy and efficiency of the proposed set of

decoupled fractional equations (40), obtained from the fractional-order state-variable expansion, when performing

time-domain Monte Carlo simulations. To this aim, the following results are provided for the deflection response

along the beam:

(i) Eq. (37) for the PSD is compared with the corresponding PSD obtained from the set of coupled fractional

equations (14), that is Eq. (24). Notice that Eq. (24) for the PSD requires numerical computation of the inverse

matrix, with significant computational costs as the number of FEs increases.

(ii) Eq. (38) for the variance is compared with the corresponding one obtained from the area under the PSD (24).

(iii) The set of decoupled fractional equations (40) is numerically integrated to build 1000 samples of the response,

the variance of which is finally compared with the proposed closed-form expression (38). Numerical integration of

the decoupled fractional equations (40) is performed based on the analytical impulse response functions (41). The
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Figure 3: PSD for the free-end and midpoint deflection with α = 0.25: proposed closed-form expression (37) (thick dashed line); numerical

solution from Eq. (24) (thin solid line).
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Figure 4: PSD for the free-end and midpoint deflection with α = 0.75: proposed closed-form expression (37) (thick dashed line); numerical

solution from Eq. (24) (thin solid line).
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α = 0.25 0.75

z = L L/2 L L/2

σ2
v Eq. (38) 2.19×10−15 2.68×10−16 2.05×10−14 2.43×10−15

σ2
v Eq. (24) 2.22×10−15 2.75×10−16 2.07×10−14 2.46×10−15

Table 1: Comparison between the variances of the free-end and midpoint deflection evaluated with the proposed closed-form expression (38) and

numerical integration of the PSD obtained with Eq. (24).
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Figure 5: Variance for the free-end and midpoint deflection, with α = 0.25: evolutionary variance obtained by Monte Carlo simulation (1000

samples) from Eq. (43) (thin solid line); stationary variance obtained from the proposed closed-form expression (38) (thick dashed line).
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Figure 6: Variance for the free-end and midpoint deflection, with α = 0.75: evolutionary variance obtained by Monte Carlo simulation (1000

samples) from Eq. (43) (thin solid line); stationary variance obtained from the proposed closed-form expression (38) (thick dashed line).

case study is an epoxy microbeam with the following properties: length L = 300 µm, rectangular cross section with

dimensions b = 30 µm (width) and h = 15 µm (thickness), E = 1.4GPa, ρ = 1000kg/m3; the selected attenuation

functions are exponential:

g(x,ζ ) =
C

h2
e
|x−ζ |

λ (44a)

g̃(x,ζ ) =
C̃

h2
e
|x−ζ |

λ̃ (44b)

Two different values of the fractional order are considered for the long-range interactions, namely α = 0.25 and

α = 0.75; in both case the rational order that permits to obtain the vector state variable in Eq. (29) is 1/b= 1/4= 0.25.
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The non local parameters in Eqs. (44) are: λ = 20 µm, λ̃ = 20 µm, C = 1011 Nm−6 and C̃ = 1010 Nm−6 for α = 0.25

and C̃ = 106 Nm−6 for α = 0.75.

Figure 3 through Figure 6 show that the proposed closed-form expression (37) and (38) for PSD and variance are in

excellent agreement with corresponding numerical one obtained from Eq. (24) for the considered points along the

beam axis and values of fractional order α . As for the variances, a further comparison is made in Tab. 1 that shows very

good agreement between the values evaluated by means of Eq.(38) and the numerical integration of the PSD evaluated

with Eq. (24). Likewise, it is noticed that the proposed closed-form expression (38) for the variance matches very well

the stationary value attained by the evolutionary variance, as computed from the proposed set of decoupled fractional

equations (40). The same conclusions may be drawn also for other values of the fractional order alpha, but results are

not included for brevity. Besides accuracy, the proposed solution method is easy to implement and computationally

efficient. The method relies indeed on analytical expressions for non-local matrices KKK(nl) and CCC(nl) (see ref. [45] of the

authors), closed-form expressions (37) for PSD and CPSD, closed-form expressions (38) for variance and covariance

while time-domain numerical integration of the proposed set of decoupled fractional equations (40) can readily be

performed using the analytical impulse response functions (41). Computational advantages are significant with respect

to the classical numerical expression (24) for the PSD and CPSD or the classical computationally-expensive time-

domain numerical integration of the set of coupled fractional equations (14), which requires specific tools of fractional

calculus to discretize the time-dependent fractional derivatives [48]. In this respect, it is important to remark that the

proposed solution method can readily be used also by engineers who are not necessarily familiar with specific tools

of fractional calculus, which are not required to implement Eq. (37), (38) and Eq. (41).

5. Conclusions

In this paper the dynamic behaviour of non-local Timoshenko beam forced by a Gaussian white noise has been

investigated. Long range interactions are modelled as both elastic and viscoelastic, the latter involving fractional

derivative in the constitutive equation. Since the beam is discretized with the FE method, the mechanical behaviour

of the system is ruled by a set of coupled fractional differential equations. Due to the non-local terms in the involved

coefficient matrices the set of coupled fractional differential equations can not be decoupled with the standard method

of modal analysis. For this reason, the dynamic response of the beam is studied by means of a fractional-order

state-variable expansion and a complex modal transformation. In frequency domain this method allows to obtain

closed form expressions of PSD/CPSD and variance/covariance of any response process along the beam axis. In

time domain this approach permits to perform efficiently Monte Carlo simulations. In this way, stationary and non

stationary response processes can be found and used to evaluate numerical statistics. The proposed method is easy

to implement and does not require specific knowledge of fractional calculus, moreover numerical applications have

shown the accuracy of results in comparison with more computational expensive numerical solutions. In particular,

the numerical integrations of approximated PSD/CPSD and the Monte Carlo simulations have shown the precision

of the analytical expressions obtained in frequency domain. Despite the fact that the application considered in this

paper is a beam, the method is readily applicable to any kind of mechanical system with a finite number of degrees of

freedom.
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